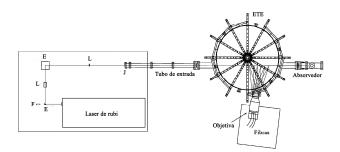
CALIBRAÇÃO DO DIAGNÓSTICO DE ESPALHAMENTO THOMSON MULTICANAL DO TOKAMAK ETE POR ESPALHAMENTO RAMAN

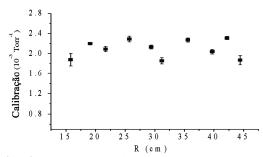
Luiz A. Berni*

Laboratório Associado de Plasma (LAP) – Instituto Nacional de Pesquisas Espaciais (INPE) Avenida dos Astronautas, 1758 - São José dos Campos - SP CEP 12227-010

1. Introdução


Para medir os perfis de densidade e temperatura do plasma do tokamak ETE (Experimento Tokamak Esférico) [1] foi implementado o diagnóstico por Espalhamento Thomson Multicanal (ETM) com laser de rubi de alta potência (λ = 694,3 nm, Emax = 10 J, Tpulso = 30 ns) [2]. As informações sobre a temperatura do plasma são obtidas através da medida do alargamento da linha do laser e a densidade através da medida da intensidade da luz espalhada. Para se determinar a densidade do plasma o ETM foi calibrado usando a técnica de espalhamento Raman com gás nitrogênio.

2. Experimento


A figura 1 mostra um vista superior da montagem do diagnóstico. O feixe do laser entra na câmara do ETE através de um tubo de vôo que contém peças especiais para diminuir a luz espúria do sistema e após atravessar o plasma (ou gás durante a calibração) o feixe é bloqueado por placas de grafite (absorvedor). Uma objetiva (F/6,3) construída especialmente para o ETE coleta a luz do laser espalhada pelo plasma (ou gás) em dez posições espaciais. Esta luz é conduzida por dez fibras ópticas (NA = 0,37 e $\phi = 0,8mm$) até um policromador. As fibras constituem uma linha de atraso sendo que a primeira fibra tem comprimento de 8 m e os comprimentos das demais fibras são acrescidos de 14m sucessivamente até a décima fibra com 134 m de comprimento. Com esta linha de atraso é possível utilizar apenas um único policromador para detectar a luz espalhada nas dez posições espaciais uma vez que os sinais são entregues sucessivamente ao detector. O policromador é formado por filtros de interferência que analisam o espectro espalhado em diferentes faixas do espectro e de fotodiodos do tipo avalanche. Temperaturas na faixa de 20 a 160 eV e densidade até $3,5 \times 10^{19}$ m⁻³ foram medidas com este diagnóstico. Durante a calibração a câmara foi preenchida com gás nitrogênio em 4 pressões diferentes entre 10 e 100 Torr e sinais de espalhamento Raman foram registrados para as 10 posições radiais de observação.

3. Resultados

Para cada posição de observação foram obtidas as intensidades de espalhamento em função da pressão do gás. A figura 2 resume o resultado da calibração, onde o eixo das abscissas indica a posição radial de observação dentro da câmara e o eixo das ordenadas os fatores de calibração.

Fig. 1. Vista superior do diagnóstico de ETM, onde L – lente, E – espelho, F – fotodiodo e J –janela.

Fig. 2. Curva de calibração por espalhamento Raman em gás nitrogênio.

4. Referências

[1] G. O. Ludwig et al., Braz. J. Phys. 33, 848-859 (2003).

[2] L.A. Berni, M.P. Alonso, R.M. Oliveira; Multipoint Thomson Scattering Diagnostic for the ETE *Tokamak; Review of Scientific Instruments 2004, vol. 75, num. 10, pp 3884 – 3886.*

^{*}Autor Correspondente: berni@plasma.inpe.br