
INPE-16677-RPQ/850

MODEL-BASED TEST CASE GENERATION USING

STATECHARTS AND Z: A COMPARISON AND A

COMBINED APPROACH

Valdivino Alexandre de Santiago Júnior

Maximiliano Cristiá

Nandamudi Lankapalli Vijaykumar

Original document registry:

<http://urlib.net/sid.inpe.br/mtc-m19@80/2010/02.26.14.05>

INPE

São José dos Campos

2010

http://urlib.net/sid.inpe.br/mtc-m19@80/2010/02.26.14.05

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE

Gabinete do Diretor (GB)

Serviço de Informação e Documentação (SID)

Caixa Postal 515 - CEP 12.245-970

São José dos Campos - SP - Brasil

Tel.:(012) 3945-6911/6923

Fax: (012) 3945-6919

E-mail: pubtc@sid.inpe.br

EDITORIAL COMMITTEE:

Chairperson:

Dr. Gerald Jean Francis Banon - Coordenação Observação da Terra (OBT)

Members:

Dra Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação

Dr. Haroldo Fraga de Campos Velho - Centro de Tecnologias Especiais (CTE)

Dra Inez Staciarini Batista - Coordenação Ciências Espaciais e Atmosféricas (CEA)

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Dr. Ralf Gielow - Centro de Previsão de Tempo e Estudos Climáticos (CPT)

Dr. Wilson Yamaguti - Coordenação Engenharia e Tecnologia Espacial (ETE)

DIGITAL LIBRARY:

Dr. Gerald Jean Francis Banon - Coordenação de Observação da Terra (OBT)

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Jefferson Andrade Ancelmo - Serviço de Informação e Documentação (SID)

Simone A. Del-Ducca Barbedo - Serviço de Informação e Documentação (SID)

DOCUMENT REVIEW:

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Marilúcia Santos Melo Cid - Serviço de Informação e Documentação (SID)

Yolanda Ribeiro da Silva Souza - Serviço de Informação e Documentação (SID)

ELECTRONIC EDITING:

Viveca Sant´Ana Lemos - Serviço de Informação e Documentação (SID)

pubtc@sid.inpe.br

INPE-16677-RPQ/850

MODEL-BASED TEST CASE GENERATION USING

STATECHARTS AND Z: A COMPARISON AND A

COMBINED APPROACH

Valdivino Alexandre de Santiago Júnior

Maximiliano Cristiá

Nandamudi Lankapalli Vijaykumar

Original document registry:

<http://urlib.net/sid.inpe.br/mtc-m19@80/2010/02.26.14.05>

INPE

São José dos Campos

2010

http://urlib.net/sid.inpe.br/mtc-m19@80/2010/02.26.14.05

¸

At Instituto N
Research), res
testing for som
hand, a group
de la Informac
for Information
Z-based testin
and tools and,
into the realiza
other, yielding
This Technical
Z, and also th
paper accepted
(LATW’10) th
ABSTRACT

acional de Pesquisas Espaciais (INPE - National Institute for Space
earchers and Software Engineers have been using Statechart-based
e time to test satellite computer embedded software. On the other
of researchers at Centro Internacional Franco Argentino de Ciencias
ión y de Sistemas (CIFASIS - French Argentine International Center
Systems and Sciences) and Flowgate Consulting have been applying

g for unit testing. Both groups started to compare their approaches
what started as a comparison to share ideas and results, is now turning
tion that actually both techniques complement and benefit from each
a more effective and wider Model-Based Testing (MBT) approach.
Report details the ideas of the comparison between Statecharts and
e proposal combining these two techniques shown previously in a

and presented at the 11th IEEE Latin American Test Workshop
at took place in Punta del Este, Uruguay, 2010.

RESUMO

No Instituto Nacional de Pesquisas Espaciais (INPE), pesquisadores e Engenheiros
de Software têm usado testes baseados em Statecharts já há algum tempo para
testar software embarcado em computadores de satélites. Por outro lado, um grupo
de pesquisadores do Centro Internacional Franco Argentino de Ciencias de la
Información y de Sistemas (CIFASIS) e Flowgate Consulting têm aplicado testes
basedos em linguagem Z no escopo de testes de unidade. Ambos os grupos iniciaram
uma comparação das respectivas abordagens e ferramentas e, o que se iniciou como
uma comparação para compartilhar idéias e resultados, resultou em uma proposta de
Testes Baseados em Modelos (TBM) mais ampla e efetiva, dado que se percebeu que
ambas as técnicas se complementam e se beneficiam uma da outra. Este Relatório
Técnico detalha as idéias da comparação entre Statecharts e Z, e também a proposta
combinando estas duas técnicas mostradas anteriormente em um artigo aceito e
apresentado no 11th IEEE Latin American Test Workshop (LATW’10), o qual
ocorreu em Punta del Este, Uruguai, em 2010.

MTC-Rodolfo
GERAÇÃO DE CASOS DE TESTE BASEADA EM MODELOS STATECHARTS E LINGUAGEM Z: UMA COMPARAÇÃO E UMA ABORDAGEM COMBINADA

CONTENTS

Pág.

LIST OF FIGURES

LIST OF TABLES

1 INTRODUCTION . 8

2 STATECHARTS AND FINITE STATE MACHINES FOR

TESTING AT INPE . 9

3 Z-BASED TESTING WITH FASTEST 11

4 COMPARISON: CASE STUDIES 12

4.1 EXP – OBDH Communication Protocol 13

4.2 A Simple Scheduler . 15

4.3 SWPDC . 17

4.4 Summary . 60

5 A COMPLEMENTARY APPROACH 62

6 CONCLUSIONS . 65

REFERENCES . 67

LIST OF FIGURES

Pág.

2.1 The GTSC Architecture. 10

4.1 Statecharts model of the command recognition component of APEX

software. 14

4.2 A piece of the flat FSM obtained by GTSC for the model in Figure 4.1. . 15

4.3 Statecharts model for the Scheduler case study. 16

4.4 Flat FSM for class 4. 17

4.5 Flat FSM for class 9. 18

4.6 Flat FSM for class 12. 18

4.7 Flat FSM for class 16. 18

4.8 Flat FSM for class 20. 19

4.9 Statechart Model: Scenario 1. 20

4.10 Statechart Model: Scenario 2. 21

4.11 Statechart Model: Scenario 3 (main model). 22

4.12 Statechart Model: Scenario 3 (second hierarchy level). 23

4.13 Statechart Model: Scenario 3 (third hierarchy level). 23

4.14 Statechart Model: Scenario 4 (main model). 24

4.15 Statechart Model: Scenario 4 (second hierarchy level). 25

4.16 Statechart Model: Scenario 4 (second hierarchy level). 26

4.17 Statechart Model: Scenario 4 (third hierarchy level). 26

4.18 Statechart Model: Scenario 4 (third hierarchy level). 27

4.19 Statechart Model: Scenario 5 (main model). 28

4.20 Statechart Model: Scenario 5 (second hierarchy level). 29

4.21 Statechart Model: Scenario 6 (main model). 30

4.22 Statechart Model: Scenario 6 (second hierarchy level). 31

4.23 Statechart Model: Scenario 7 (main model). 32

4.24 Statechart Model: Scenario 7 (second hierarchy level). 33

4.25 Statechart Model: Scenario 8 (main model). 34

4.26 Statechart Model: Scenario 8 (second hierarchy level). 35

4.27 Statechart Model: Scenario 9 (main model). 36

4.28 Statechart Model: Scenario 9 (second hierarchy level). 37

4.29 Statechart Model: Scenario 10 (main model). 38

4.30 Statechart Model: Scenario 10 (second hierarchy level). 39

4.31 Statechart Model: Scenario 11 (main model). 40

4.32 Statechart Model: Scenario 11 (second hierarchy level). 41

4.33 Statechart Model: Scenario 12 (main model). 42

4.34 Statechart Model: Scenario 12 (second hierarchy level). 43

4.35 Statechart Model: Scenario 13 (main model). 44

4.36 Statechart Model: Scenario 13 (second hierarchy level). 45

4.37 Statechart Model: Scenario 14 (main model). 46

4.38 Statechart Model: Scenario 14 (second hierarchy level). 47

4.39 Statechart Model: Scenario 15 (main model). 48

4.40 Statechart Model: Scenario 15 (second hierarchy level). 49

4.41 Statechart Model: Scenario 16 (main model). 50

4.42 Statechart Model: Scenario 16 (second hierarchy level). 51

4.43 Statechart Model: Scenario 17 (main model). 52

4.44 Statechart Model: Scenario 17 (second hierarchy level). 53

4.45 Statechart Model: Scenario 18 (main model). 54

4.46 Statechart Model: Scenario 18 (second hierarchy level). 55

4.47 Statechart Model: Scenario 19 (main model). 56

4.48 Statechart Model: Scenario 19 (second hierarchy level). 57

4.49 Statechart Model: Scenario 20 (main model). 58

4.50 Statechart Model: Scenario 20 (second hierarchy level). 59

5.1 Two test cases generated by GTSC for the EXP case study. 62

5.2 Z schema boxes for the memory load command. 63

5.3 Formalization of the combined approach. 64

LIST OF TABLES

Pág.

4.1 Samples of test cases for the model in Figure 4.1. 14

4.2 Variables for the Scheduler case study. 17

4.3 Equivalence classes for the Scheduler case study. 17

4.4 Comparison criteria. Case-study-independent dimensions. 61

4.5 Comparison criteria. Case-study-dependent dimensions. Times are in

minutes. 62

1 INTRODUCTION

Satellite software is a mission critical, reactive and data handler program that

must be validated and verified thoroughly. In these cases, verification and validation

always comprises testing although other techniques can be applied too. Testing a

program which presents a reactive behavior and data handling functions as well, is a

complex task that does not seem to be extensively addressed in an industrial setting.

Furthermore, if it is desirable Model-Based Testing (MBT) to test both units and the

complete system with tool support, then the informed results rapidly approaches to

zero. In (NETO et al., 2008) and (HIERONS et al., 2009) such issues are not addressed,

although (HIERONS et al., 2001) deals with them. Hence, in this Technical Report, the

problem outlined above is addressed, in the context of space application software. In

fact, this Technical Report details the ideas of the comparison between Statecharts

and Z, and also the proposal combining these two techniques shown previously in

a paper accepted and presented at the 11th IEEE Latin American Test Workshop

(LATW’10) that took place in Punta del Este, Uruguay, 2010.

This work is the outcome of what started as a comparison between two MBT

approaches, one adopted at the Instituto Nacional de Pesquisas Espaciais (INPE

- National Institute for Space Research) and another at the Centro Internacional

Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS - French

Argentine International Center for Information Systems and Sciences), and later

became a combination of both techniques. The joint project started with the

intention to see how test designers at INPE could improve the testing of satellite

computer embedded software. At the beginning only one thing was clear: both groups

were working on MBT but with different notations and tools. Then, both groups

demonstrated their respective methods to each other using the same real-world

case study proposed by INPE. The first conclusion was that both methods were

functionally testing the same system but in different ways. Latter Paradkar’s work

(PARADKAR, 2005) was extended in order to accomplish the comparison between

the approaches. Finally, it was realized that both approaches could be combined into

a single one addessing model-based test case generation with the main benefits of

the techniques: Statecharts to model behavior and Z to model the data space.

This Technical Report is organized as follows. Chapters 2 and 3 briefly introduce the

approach used by each group. Chapter 4 details the case studies and the results of

comparing both methods. Chapter 5 presents the proposal for combining Statechart-

8

based and Z-based testing. The conclusions are in Chapter 6.

2 STATECHARTS AND FINITE STATE MACHINES FOR TESTING

AT INPE

INPE has been using MBT within research projects for system and acceptance

testing. Statecharts (SANTIAGO et al., 2006; SANTIAGO et al., 2008) and Finite State

Machines (FSMs) (AMBROSIO et al., 2007) are the main techniques used for modeling

the behavior of the Implementation Under Test (IUT) for testing purposes. The

application domain is software embedded into on-board computers of scientific

satellites and balloons under development at INPE. These MBT approaches have

shown efficiency in detecting defects in the source code.

One of the main advantages of FSMs is simplicity. Reactive systems, protocol

implementations, classes of Object-Oriented applications are some examples

commonly addressed by FSM modeling. Several test criteria (methods) may be

used for model-based test case generation regarding the FSM technique. A few of

such methods are the Transition Tour (TT), Distinguishing Sequence (DS), Unique

Input/Output (UIO), W (SIDHU; LEUNG, 1989), switch cover (1-switch) (PIMONT;

RAULT, 1976) and state counting (PETRENKO; YEVTUSHENKO, 2005). Despite their

adoption by many researchers, FSMs are not too adequate for representing features

such as parallelism and hierarchy. On the other hand, Statecharts provide a simple

way to represent these characteristics. There are several approaches proposed to

generate test cases from Statecharts models (BINDER, 1999) (SANTIAGO et al., 2006).

In system and acceptance testing, the entire software product is considered. If

a professional wants to develop model-based test case generation relying on, for

example, FSMs or Statecharts, he/she must develop the state-transition diagrams.

Due to the state explosion problem, a test designer at INPE usually breaks down

the entire system based on usage scenarios. Models are then derived to address each

scenario and, provided they are small enough, test cases are generated from them.

INPE has been developing an environment named Geração Automática de Casos de

Teste Baseada em Statecharts (GTSC - Automated Test Case Generation based on

Statecharts) that allows test designers to model software behavior using Statecharts

and/or FSMs in order to automatically generate test cases based on some test

9

criteria for FSM and some for Statecharts (SANTIAGO et al., 2008). At present, GTSC

implements a version of switch cover, UIO and DS test criteria for FSM models and

two test criteria from the Statechart Coverage Criteria Family (SCCF) (SOUZA,

2000) for Statecharts models: all-transitions and all-simple-paths. Figure 2.1 shows

the GTSC architecture. Note that besides the architectural elements, it also shows

external elements (Reachability Tree, Test Cases, ...) built during the use of GTSC

by a test designer.

Figure 2.1 - The GTSC Architecture.

GTSC transforms a Statecharts model into a flat FSM, i.e. a model where all

hierarchical and orthogonal features of the Statecharts were removed. Each state

of the resulting flat FSM is actually a configuration of active BASIC states of the

input model at a certain instant of time. This flat FSM is indeed the basis for test

case generation. Hence, a test designer may follow two approaches:

a) If a SCCF test criterion will derive test cases, GTSC must adapt the flat

FSM to resemble a reachability tree (MASIERO et al., 1994). Thus, based on

the selected test criterion of SCCF and on this tree, test cases are created;

b) If an FSM test criterion is the option, it is only necessary for the user to

choose among the available criteria for FSM and instruct the environment

10

to generate test cases, based on the flat FSM.

GTSC was able to generate flat FSMs with as many as 40 states (configurations)

and more than 300 transitions, and test suites with up to 265 optimized test

cases, showing its potential scalability for handling complex systems (SANTIAGO

et al., 2008). INPE has also been developing a Web tool that allows model-based

test case generation named WEB-Perform Charts (ARANTES et al., 2008). WEB-

PerformCharts works similar to GTSC, by transforming a Statecharts model into a

flat FSM, and it has implemented the TT, a version of switch cover and UIO test

criteria for FSM models. Such a tool addresses collaborative work where different

teams cooperate with an objective of reaching a specific goal, and it has generated

flat FSMs as complex as the ones created by GTSC.

3 Z-BASED TESTING WITH FASTEST

Phil Stocks and David Carrington introduced in (STOCKS; CARRINGTON, 1996;

STOCKS, 1994; MACCOLL; CARRINGTON, 1998) the Test Template Framework

(TTF) to conduct MBT of Z specifications (SPIVEY, 1989). TTF includes a rigorous

and disciplined technique for defining and structuring abstract test templates and

cases1. They also proposed new testing tactics particularly well suited to the Z

notation. Testing tactics are the mechanisms used to partition the input space into

test templates and, in turn, test templates into more test templates, thus building a

so called testing tree. Test cases are elements selected from the leaves of the testing

tree.

Fastest (CRISTIÁ; MONETTI, 2009) is a flexible, efficient and automatic

implementation of the TTF developed conjointly by CIFASIS and Flowgate

Consulting. Currently, Fastest automates test suite definition and test case

derivation for unit testing. Fastest receives a Z specification in LATEX format using

the CZT package (COMMUNITY Z TOOLS, 2009). Then, the user has to enter a list

of the operations to test, as well as the tactics to apply to each of them. In a third

step Fastest automatically generates the testing tree of each operation. After the

trees are generated, the user can browse them and their test classes, and he/she

can prune any node, both manually or automatically. Once the user is done with

pruning, he/she can instruct Fastest to find one abstract test case for each leaf in

1Test templates can also be called test suites, test classes or test objectives.

11

all the test trees. Although the method to find abstract test cases has proved to be

quite automatic, it is worth to say that it does not guarantee to find abstract test

cases for all test objectives. In those cases, the engineer can help Fastest to find a

test case by issuing a rather straightforward command. The user can export all the

results –testing trees, test classes and abstract test cases– in LATEX format.

Fastest was envisioned as a client-server application. The main reason for thinking

in a distributed system came from the realization that calculating abstract test cases

from test objectives in large projects could be a hard computing problem, but highly

parallelizable as well. Then, a scalable application using the idle computer power

present in a corporate network, became an appealing option. However, in such a

large project there is shared information –such as the definition or parametrization

of some testing tactics, test cases already calculated, theorems that help to prune

testing trees, etc.– that all the clients and servers should be able to access. Hence,

a typical Fastest installation has a data server that is known to all other processes,

some client processes and a number of testing servers.

4 COMPARISON: CASE STUDIES

This ongoing work is the result of a joint effort between two institutions from Brazil

and Argentina. The cooperation started by comparing the MBT techniques used at

each institution. The second step was to define a common problem to work with so

both groups had a common workbench. The first problem was proposed by INPE’s

group. CIFASIS researchers then developed a Z model and applied Fastest in order

to generate test cases. INPE researchers had already a Statecharts model and the

test cases generated by the GTSC environment. The comparison was then extended

to two more examples: one proposed by INPE and the other proposed by CIFASIS.

The same methodology was followed in all case studies. First, the party proposing the

problem delivers an informal, natural language requirements specification. Second,

the other party starts to write a formal model. Third, if the party writing the

model finds some problem (incompleteness, inconsistency) or misunderstands the

requirements, the other party will send corrections/explanations. Fourth, when the

model has been finished the party who wrote it will apply its MBT methodology

and tool.

12

In the next sections, the three case studies are described and some models are

presented.

4.1 EXP – OBDH Communication Protocol

The first problem proposed by INPE was the software that will be embedded into

an astrophysical experiment, hereafter called EXP, computer of a Brazilian scientific

satellite. A proprietary protocol was specified for the communication between EXP

and the On-Board Data Handling (OBDH) computer. OBDH is the satellite platform

computer to process platform and payload information and to generate and format

data that has to be transmitted to Ground Stations.

OBDH sends one out of nine commands at a time to EXP, which returns an answer

to OBDH. Each command must arrive within certain time constraints. Commands

ask EXP to perform some operations or to return some data about its state. There

are simple commands and there are more complex commands to transmit scientific

data acquired by the payload, to dump EXP’s computer memory, to load data sent

by OBDH, etc.

Figures 4.1, 4.2 and Table 4.1 show a Statecharts model, the flat FSM1 produced by

GTSC and test cases derived according to two test criteria, respectively. The model

in Figure 4.1 refers to a piece of the entire software embedded into EXP computer.

In Figure 4.2, each state of the flat FSM is actually a configuration of two active

BASIC states of the Statecharts model at a certain instant of time. Besides, it shows

only a piece of the flat FSM (the entire model has 16 states and 61 transitions). Also

note that some transitions do not have an explicit output (in these cases, outputs

are null).

It is important to emphasize that the Statecharts model in Figure 4.1 was derived

based on a perspective of the design of the software product. When test cases are

derived from design documents, some authors define the technique as gray box testing

(ABDURAZIK; OFFUTT, 2000).

1In all state-transition diagrams representing FSMs in this work, a state depicted by two circles,
one inner surrounded by other outer, is the initial state of the FSM.

13

Figure 4.1 - Statecharts model of the command recognition component of APEX software.

Table 4.1 - Samples of test cases for the model in Figure 4.1.

Criteria Test Cases
all-

transitions

{(0xEB/null, 0x92/null, Type01/tok, Cks Ok/null), (0xEB/null,

0x92/null, Type07/tok, Size01 C/sok, Data00 C/dok,

TypeOkSizeOkDataOK C/tsdok), (0xEB/null, 0x92/null, Type1B/tok,

Size38 E/sok, Data0x100 E/dok, TimerTimeout/null), (0xEB/null,

0x92/null, Type1F/tok, TimerTimeout/null), ...}
all-simple-

paths

{(0xEB/null, 0x92/null, Type02/tok, Cks Ok/null), (0xEB/null,

0x92/null, Type07/tok, Size01 C/sok, Data01 C/dok,

TypeOkSizeOkDataOK C/tsdok, Cks NotOk/null,), (0xEB/null,

0x92/null, Type1B/tok, Size38 E/sok, Data0x100 E/dok,

TypeOkSizeOkDataOK E/tsdok, Cks Ok/null), (0xEB/null,

0x92/null, Type1F/tok, Size01 F/sok, Data33 F/dok,

TypeOkSizeOkDataOK F/tsdok, TimerTimeout/null), ...}

14

Figure 4.2 - A piece of the flat FSM obtained by GTSC for the model in Figure 4.1.

4.2 A Simple Scheduler

This case study was proposed by CIFASIS borrowing it from (UTTING; LEGEARD,

2007). The problem is about the basic operations of a simple scheduler. The

environment can buffer processes for latter execution and can withdraw a process

from the waiting list. On the other hand, the scheduler can swap between the active

process and one other process ready for execution. The idea behind this problem

was twofold: (a) to propose a simpler problem, and (b) to apply the techniques to a

somewhat less reactive system.

Figure 4.3 shows the Statecharts model for the Scheduler case study where new1

new2, ... refer to the same operation: new(pid)2. This had to be done because the

GTSC environment does not accept non-determinism. The same remark applies for

2pid = process identifier

15

Figure 4.3 - Statecharts model for the Scheduler case study.

the other events in the model. Another observation is that there are also guarding

conditions within the labels of the transitions. Four variables exist as shown in

Table 4.2.

In order to generate test cases, the values of the variables shown in Table 4.2 shall

be chosen. For this purpose, the traditional black box testing technique Equivalence

Partitioning (MATHUR, 2008) was used and five classes were identified according

to Table 4.3. For each one of these classes, GTSC produces a different flat FSM

and, based on such model, test cases are generated. Figures 4.4, 4.5, 4.6, 4.7, 4.8

show the Flat FSMs for the classes 4, 9, 12, 16, and 20 respectively. Recall that each

state of each flat FSM is actually a configuration of two active BASIC states of the

16

Table 4.2 - Variables for the Scheduler case study.

Variable Type Meaning
pid integer Process identification

pid exists boolean A process has already been created in the system with this pid

has act boolean There is an active process

has ready boolean There are ready processes

Table 4.3 - Equivalence classes for the Scheduler case study.

Class pid pid exists has act has ready Remark
4 pid < 1 false true true pid = 0

9 1 ≤ pid ≤ 6 false false false pid = 1

12 1 ≤ pid ≤ 6 false true true pid = 5

16 1 ≤ pid ≤ 6 true true true pid = 6

20 pid > 6 false true true pid = 7

Figure 4.4 - Flat FSM for class 4.

Statecharts model.

4.3 SWPDC

The third case study was a software product specified and developed in the scope of

the Qualidade do Software Embarcado em Aplicações Espaciais (QSEE - Quality of

Space Application Embedded Software) research project at INPE (SANTIAGO et al.,

17

Figure 4.5 - Flat FSM for class 9.

Figure 4.6 - Flat FSM for class 12.

Figure 4.7 - Flat FSM for class 16.

18

Figure 4.8 - Flat FSM for class 20.

2007). SWPDC is the software embedded into the Payload Data Handling Computer

(PDC) and it is the hardest problem of all analyzed in this work. Although similar in

conception to the case study described in Section 4.1, SWPDC is much more complex

because it handles not only scientific and dump data (e.g. housekeeping data), but

also accomplishes data memory management, implements flow control mechanisms,

etc. Data transmission is more complex since SWPDC has to keep record of the

last transmitted frame because OBDH can ask it again if some problem during

transmission was detected.

Differently from the model for the EXP case study (Section 4.1) in which the design

perspective was the option, in the SWPDC case study, a usage scenario approach

was taken into account in order to generate the models. Hence, 20 usage scenarios

were chosen and consequently 20 sets of Statecharts models were elaborated. This

is a typical black box testing (MATHUR, 2008) by means of MBT.

The 20 usage scenarios cover several situations such as transmission of scientific,

dump and housekeeping data, initiation of the system, changing of software

parameters, distinction if the system is being powered on or if a reset has occurred

and so on. All 20 usage scenarios and their respective models are shown from

Figure 4.9 to Figure 4.50. In most cases, due to the hierarchy feature of Statecharts,

a single usage scenario has more than one model. Besides, parallelism is addressed

in all Statecharts models.

19

Figure 4.9 - Statechart Model: Scenario 1.

20

Figure 4.10 - Statechart Model: Scenario 2.

21

Figure 4.11 - Statechart Model: Scenario 3 (main model).

22

Figure 4.12 - Statechart Model: Scenario 3 (second hierarchy level).

Figure 4.13 - Statechart Model: Scenario 3 (third hierarchy level).

23

Figure 4.14 - Statechart Model: Scenario 4 (main model).

24

Figure 4.15 - Statechart Model: Scenario 4 (second hierarchy level).

25

Figure 4.16 - Statechart Model: Scenario 4 (second hierarchy level).

Figure 4.17 - Statechart Model: Scenario 4 (third hierarchy level).

26

Figure 4.18 - Statechart Model: Scenario 4 (third hierarchy level).

27

Figure 4.19 - Statechart Model: Scenario 5 (main model).

28

Figure 4.20 - Statechart Model: Scenario 5 (second hierarchy level).

29

Figure 4.21 - Statechart Model: Scenario 6 (main model).

30

Figure 4.22 - Statechart Model: Scenario 6 (second hierarchy level).

31

Figure 4.23 - Statechart Model: Scenario 7 (main model).

32

Figure 4.24 - Statechart Model: Scenario 7 (second hierarchy level).

33

Figure 4.25 - Statechart Model: Scenario 8 (main model).

34

Figure 4.26 - Statechart Model: Scenario 8 (second hierarchy level).

35

Figure 4.27 - Statechart Model: Scenario 9 (main model).

36

Figure 4.28 - Statechart Model: Scenario 9 (second hierarchy level).

37

Figure 4.29 - Statechart Model: Scenario 10 (main model).

38

Figure 4.30 - Statechart Model: Scenario 10 (second hierarchy level).

39

Figure 4.31 - Statechart Model: Scenario 11 (main model).

40

Figure 4.32 - Statechart Model: Scenario 11 (second hierarchy level).

41

Figure 4.33 - Statechart Model: Scenario 12 (main model).

42

Figure 4.34 - Statechart Model: Scenario 12 (second hierarchy level).

43

Figure 4.35 - Statechart Model: Scenario 13 (main model).

44

Figure 4.36 - Statechart Model: Scenario 13 (second hierarchy level).

45

Figure 4.37 - Statechart Model: Scenario 14 (main model).

46

Figure 4.38 - Statechart Model: Scenario 14 (second hierarchy level).

47

Figure 4.39 - Statechart Model: Scenario 15 (main model).

48

Figure 4.40 - Statechart Model: Scenario 15 (second hierarchy level).

49

Figure 4.41 - Statechart Model: Scenario 16 (main model).

50

Figure 4.42 - Statechart Model: Scenario 16 (second hierarchy level).

51

Figure 4.43 - Statechart Model: Scenario 17 (main model).

52

Figure 4.44 - Statechart Model: Scenario 17 (second hierarchy level).

53

Figure 4.45 - Statechart Model: Scenario 18 (main model).

54

Figure 4.46 - Statechart Model: Scenario 18 (second hierarchy level).

55

Figure 4.47 - Statechart Model: Scenario 19 (main model).

56

Figure 4.48 - Statechart Model: Scenario 19 (second hierarchy level).

57

Figure 4.49 - Statechart Model: Scenario 20 (main model).

58

Figure 4.50 - Statechart Model: Scenario 20 (second hierarchy level).

59

4.4 Summary

After applying each technique to the preceding problems, the first and quite obvious

conclusion was that all looked very different: models, test cases and methods or

tactics were, initially, hard to compare. Hence, a framework was necessary in order

to compare both techniques and tools. After searching for articles comparing MBT

techniques and tools (PARADKAR, 2005; NETO et al., 2008; SINHA et al., 2006),

the work of Paradkar (PARADKAR, 2005) was followed and the set of dimensions

defined by the author to base the comparison was extended. These dimensions were

divided into two groups summarized in Tables 4.4 and 4.5. Table 4.4 includes those

dimensions that are, at least to some extent, independent of the cases studies, while

Table 4.5 reunites those dimensions whose values depend on each case study.

The dimensions named Notation concepts and MBT concepts include the new

concepts a software engineer with a basic knowledge on formal modelling has to

learn in order to apply each technique. The dimensions whose values are marked

with X indicate which technique is more suitable for each dimension –this does not

necessarily mean that the other technique cannot be applied at all. In column No.

of test cases of Table 4.5, it is shown for GTSC the number of test cases and (/) the

number of test steps since “test step” is a meaningful concept regarding FSM-based

MBT techniques. On the other hand, for Fastest it is given the number of test cases

since each test case has always only one test step. The dimension called Ratio is the

ratio between the two left rows. By indicating the Model size the goal was to give

a broad idea of the model complexity. For the Z models it is provided the number

of Z-LATEX lines of code, while for the Statecharts models it is shown the number of

states and (/) the number of transitions of the flat FSM. Although these measures

are incomparable to each other, they give an idea of the relative complexity: (a)

between the case studies, and (b) with respect to other models that can be found in

the literature.

Table 4.4 shows that both techniques are rather similar, although GTSC can be

applied to more phases of the testing process. As easily noted, Table 4.5 shows

that GTSC outperforms Fastest when reactive systems are considered (EXP and

SWPDC), but Fastest wins when the tools are applied to a (more) information

oriented system (Scheduler).

Although this comparison was useful, it was realized a possibility for complementing

60

Table 4.4 - Comparison criteria. Case-study-independent dimensions.

Dimension GTSC – INPE Fastest – CIFASIS & Flowgate
Notation
concepts

Statecharts: XOR and AND
states, external events, actions
(internal events or outputs),
conditions, hierarchy, parallelism
and machine synchronization,
broadcasting, shallow and deep
history, PcML language

Z (subset): first order logic, state
and operation schema, schema
language, typed logic, typed set
theory, before and after state
convention, input and output
variables convention, logic and
mathematics for modelling

MBT
concepts

reachability tree, state
configuration, Statecharts
flattening, determinism, test
criteria for FSM (switch cover,
UIO and DS) and for Statecharts
(all-transitions and all-simple-
paths)

testing tactics (standard
partitions, disjunctive normal
form, free types), testing tree,
domain partition, valid input
space

Computability
issues

state explosion huge finite models

Computability
solutions

duplicate nodes (Statecharts test
case generation)

parallelization, user assistance

Test
objectives

usage scenarios and models to
represent them

written as Z schema boxes

Test cases sequences of events producing
state transitions

bindings between state or input
variables, and constant values

Unit testing X
Integration
testing

X

System
testing

X

Acceptance
testing

X

Reactive
systems

X

Information
systems

X

61

Table 4.5 - Comparison criteria. Case-study-dependent dimensions. Times are in minutes.

Dimensions
Case study Comp. time No. of test cases Ratio Model size

GTSC Fastest GTSC Fastest GTSC Fastest GTSC Fastest

EXP 0:51 124:00 78/436 112 0:0.6 1:06 16/61 608
Scheduler 3:20 3:00 5/43 29 0:40 0:06 7/16 240
SWPDC 11:42 158:00 30/663 117 0:23 1:21 512/522 1,238

both techniques, as is shown in the next chapter.

5 A COMPLEMENTARY APPROACH

As seen in Table 4.4 test cases generated by GTSC are sequences of state transitions,

while test cases generated by Fastest are bindings or assignments between state

variables and constant values. Figure 5.1 shows two test cases generated by GTSC

for the EXP case study.

Figure 5.1 - Two test cases generated by GTSC for the EXP case study.

In Figure 5.1, the test cases correspond to OBDH sending a memory load command

to EXP –i.e. OBDH sends a program to EXP that it must load into its computer

memory. 0xEB and 0x92 identify the beginning of a new order coming from OBDH.

T1B means that the sequences correspond to a memory load command. Size38 E

and Data0x100 E are the size in Bytes of a piece of program, and the address in

memory where this piece of code will be loaded followed by the code, respectively.

The event TypeOkSizeOkDataOK E means the data (code) sent by OBDH was

received correctly by EXP. Note that the first test sequence ends in a timeout

event. This means that OBDH has taken too long in sending all the data, and

62

so actually no memory load is performed. The second test sequence describes a

successful command, i.e. EXP loads the code into its computer memory.

Figure 5.2 shows Z schema boxes which are two test cases generated by Fastest for

the same memory load command.

Figure 5.2 - Z schema boxes for the memory load command.

Observe that each test case is a set of assignments1. Each assignment sets a constant

value for one of the state and input variables. Regarding this command, the most

important variables are data?, which is the input variable representing the new

program; addr?, representing the initial address where the program must be loaded;

and memd, which is the state variable representing EXP’s computer memory. Then,

roughly speaking, the first test case says that OBDH has sent a two byte long

program to be loaded starting at the first memory location while EXP’s memory

holds a one byte long program; and, on the other hand, the second test case says

1Actually they are not assignments but propositional equalities.

63

that OBDH has sent an empty program –that should be loaded after the program

currently being held by EXP– while EXP’s computer memory is occupied by a single

byte program.

After arriving at this point, an approach that combines both techniques emerged

quite easily. All the test sequences generated by GTSC that include in the execution

of a data intensive, underspecified2 operation –with respect to the Statecharts

model– are considered and, at that point, all the test cases generated by Fastest

for that operation are executed. For example, since the first GTSC test sequence

written above does not include in the execution of a data intensive operation, then

any Z test case is executed for it; however, 28 Z test cases are executed for the second

test sequence since it represents EXP loading its memory with a new program. In

this way, the software is tested as a whole and every time it gets to a point where

a complex data-intensive operation has to be executed, then this operation is fully

tested too.

The approach is now presented in a more formal and systematic way. Let E be

the set of events in the Statecharts model and D the subset of E that represents

the execution of some data-intensive operation, which have also been specified as Z

operations. Let S be the set of test sequences derived from the Statecharts model.

Now, consider the subset of S, SD, including all the test sequences that contain some

element of D. For each d in D, define Td as the set of tests derived from the Z model

for unit d; each t in Td is a call to d with some specific input parameters. If P is the

program that has been modeled in Statecharts and Z, then test P with the set of

test sequences as defined in Figure 5.3.

Figure 5.3 - Formalization of the combined approach.

2Underspecification in Statecharts models comes into picture due to two main reasons. First,
Statecharts are based on FSM, and Z on first order logic. First order logic is more expressive
than FSM, regarding data transformation operations. Second, the ability (or lack of ability) of the
test designer in adequately modeling the IUT for testing. And this lack of ability occurs probably
because a test designer relies the development of the models based on documents (requirements
specifications, ...) which present serious issues. In some cases, there is no documentation at all
available which is a worse situation.

64

In other words, any test sequence must be broken in the points where there is a call

to a data-intensive operation and replace these points with each test case generated

from the Z model for the corresponding operation.

As this formalization shows, the method can be made automatic by simply using a

convenient naming convention.

Coming back to the EXP-OBDH case study, there are two data intensive operations:

memory load and transmit data. Fastest yielded 28 and 20 test cases, respectively, for

these operations. On the other hand, GTSC generates two test sequences including

the execution of these operations. Then, the original 78 test cases generated by GTSC

become 126, improving the original test suite in about 60%. Furthermore, there is

not only an improvement in the number of test cases but also (a) in the chances to

uncover defects (faults) in complex operations that would not be thoroughly tested

by any method alone; and (b) in the fact that the test cases provided by Fastest

give the exact input constants that must be provided to the IUT, thus augmenting

the proportion of automatic steps of the testing process.

The research methodology that was developed before getting these results made the

Z models unnecessarily complex because they describe not only those operations

underspecified in the Statecharts model but also all the simpler and reactive ones.

With this combined approach, the Z model must describe only data intensive

operations. In this way both the effort and the size (complexity) of the Z model

can be reduced. For instance, the EXP-OBDH Z model is 608 ZLOC (Table 4.5) but

only less than 241 are involved in the data intensive operations.

It is worth to be mentioned that Statecharts can be used to model data-intensive

systems, and, on the other hand, Z can be used to model reactive systems. Hence

it would be possible to use only one approach, but it would be easier and more

intuitive to combine both approaches as described in this chapter.

6 CONCLUSIONS

In this Technical Report, two MBT techniques and tools were compared and

an approach was presented in order to combine those techniques to improve the

testing of systems including both reactive and data intensive functions. The main

conclusions of this work so far are: (a) it is rather easy to combine the approaches,

65

and (b) that the combined approach could potentially uncover many defects that

each technique alone cannot.

There is a lot of work to do in the future. First, it is necessary to assess the amount

of defects uncovered by the combined approach by applying, for instance, mutation

analysis. In doing so, a comparison between the new combined methodology and

the previous individual methodologies developed by each team can be done. Second,

new case studies shall be addressed so that what have learned so far can be applied–

for example, writing shorter Z models that efficiently complement the Statecharts

model. Third, both tools will be integrated resulting in a more automatic process.

66

REFERENCES

ABDURAZIK, A.; OFFUTT, J. Using UML collaboration diagrams for static

checking and test generation. In: UML 2000 - the Unified Modeling

Language. Berlin/Heidelberg, Germany: Springer Berlin/Heidelberg, 2000.

v. 1939, p. 383–395. Lecture notes in computer science. 13

AMBROSIO, A. M.; MATTIELLO-FRANCISCO, F.; SANTIAGO, V. A.; SILVA,

W. P.; MARTINS, E. Designing fault injection experiments using state-based

model to test a space software. In: Dependable Computing. Berlin/Heidelberg,

Germany: Springer Berlin/Heidelberg, 2007. v. 4746, p. 170–178. Lecture notes in

computer science. 9

ARANTES, A. O.; VIJAYKUMAR, N. L.; SANTIAGO, V. A.; GUIMARAES, D.

WEB-PerformCharts: a collaborative web-based tool for test case generation from

Statecharts. In: INTERNATIONAL CONFERENCE ON INFORMATION

INTEGRATION AND WEB-BASED APPLICATIONS & SERVICES (IIWAS),

10., 2008, Linz, Austria. Proceedings... New York, NY, USA: ACM, 2008. p.

374–381. 11

BINDER, R. V. Testing object-oriented systems: models, patterns, and tools.

USA: Addison-Wesley Professional, 1999. 1248 p. 9

COMMUNITY Z TOOLS. 2009. Available from:

<http://czt.sourceforge.net/>. Access in: Oct 20, 2009. 11

CRISTIÁ, M.; MONETTI, P. R. Implementing and applying the

Stocks-Carrington framework for model-based testing. In: Formal Methods in

Software Engineering. Berlin/Heidelberg, Germany: Springer Berlin/Heidelberg,

2009. v. 5885, p. 167–185. Lecture notes in computer science. 11

HIERONS, R. M.; BOGDANOV, K.; BOWEN, J. P.; CLEAVELAND, R.;

DERRICK, J.; DICK, J.; GHEORGHE, M.; HARMAN, M.; KAPOOR, K.;

KRAUSE, P.; LüTTGEN, G.; SIMONS, A. J. H.; VILKOMIR, S.; WOODWARD,

M. R.; ZEDAN, H. Using formal specifications to support testing. ACM

Computing Surveys, v. 41, n. 2, p. 1–76, 2009. 8

67

http://czt.sourceforge.net/

HIERONS, R. M.; SADEGHIPOUR, S.; SINGH, H. Testing a system specified

using Statecharts and Z. Information and Software Technology, v. 43, n. 2, p.

137–149, 2001. 8

MACCOLL, I.; CARRINGTON, D. Extending the Test Template Framework. In:

BCS-FACS NORTHERN FORMAL METHODS WORKSHOP, 3., 1998, Ilkley,

UK. Proceedings... [S.l.], 1998. p. 1–17. 11

MASIERO, P. C.; MALDONADO, J. C.; BOAVENTURA, I. G. A reachability

tree for Statecharts and analysis of some properties. Information and Software

Technology, v. 36, n. 10, p. 615–624, 1994. 10

MATHUR, A. P. Foundations of software testing. Delhi, India: Dorling

Kindersley (India), Pearson Education in South Asia, 2008. 689 p. 16, 19

NETO, A. D.; SUBRAMANYAN, R.; VIEIRA, M.; TRAVASSOS, G. H.; SHULL,

F. Improving evidence about software technologies: a look at model-based testing.

IEEE Software, v. 25, n. 3, p. 10–13, 2008. 8, 60

PARADKAR, A. Case studies on fault detection effectiveness of model based test

generation techniques. In: WORKSHOP ON ADVANCES IN MODEL-BASED

TESTING (A-MOST), 1., 2005, St. Louis, MO, USA. Proceedings... New York,

NY, USA: ACM, 2005. p. 1–7. 8, 60

PETRENKO, A.; YEVTUSHENKO, N. Testing from partial deterministic FSM

specifications. IEEE Transactions on Computers, v. 54, n. 9, p. 1154–1165,

2005. 9

PIMONT, S.; RAULT, J. C. A software reliability assessment based on a structural

and behavioral analysis of programs. In: INTERNATIONAL CONFERENCE ON

SOFTWARE ENGINEERING (ICSE), 2., 1976, San Francisco, CA, USA.

Proceedings... New York, NY, USA: ACM, 1976. p. 486–491. 9

SANTIAGO, V.; AMARAL, A. S. M.; VIJAYKUMAR, N. L.;

MATTIELLO-FRANCISCO, M. F.; MARTINS, E.; LOPES, O. C. A practical

approach for automated test case generation using Statecharts. In: ANNUAL

INTERNATIONAL COMPUTER SOFTWARE & APPLICATIONS

CONFERENCE (COMPSAC) - INTERNATIONAL WORKSHOP ON TESTING

AND QUALITY ASSURANCE FOR COMPONENT-BASED SYSTEMS

68

(TQACBS), 30., 2006, Chicago, IL, USA. Proceedings... Los Alamitos, CA,

USA: IEEE Computer Society, 2006. p. 183–188. 9

SANTIAGO, V.; MATTIELLO-FRANCISCO, F.; COSTA, R.; SILVA, W. P.;

AMBROSIO, A. M. QSEE project: an experience in outsourcing software

development for space applications. In: INTERNATIONAL CONFERENCE ON

SOFTWARE ENGINEERING & KNOWLEDGE ENGINEERING (SEKE), 19.,

2007, Boston, MA, USA. Proceedings... Skokie, IL, USA: Knowledge Systems

Institute Graduate School, 2007. p. 51–56. 19

SANTIAGO, V.; VIJAYKUMAR, N. L.; GUIMARAES, D.; AMARAL, A. S.;

FERREIRA, E. An environment for automated test case generation from

Statechart-based and Finite State Machine-based behavioral models. In:

INTERNATIONAL CONFERENCE ON SOFTWARE TESTING,

VERIFICATION AND VALIDATION (ICST) - WORKSHOP ON ADVANCES

IN MODEL BASED TESTING (A-MOST), 1., 2008, Lillehammer, Norway.

Proceedings... Washington, DC, USA: IEEE Computer Society, 2008. p. 63–72. 1

CD-ROM. 9, 10, 11

SIDHU, D. P.; LEUNG, T. K. Formal methods for protocol testing: a detailed

study. IEEE Transactions on Software Engineering, v. 15, n. 4, p. 413–426,

1989. 9

SINHA, A.; WILLIAMS, C. E.; SANTHANAM, P. A measurement framework for

evaluating model-based test generation tools. IBM Systems Journal, v. 45, n. 3,

p. 501–514, 2006. 60

SOUZA, S. R. S. Validação de especificações de sistemas reativos:

definição e análise de critérios de teste. 264 p. Thesis (PhD in Applied

Physics) — Universidade de São Paulo, São Carlos, SP, Brazil, 2000. 10

SPIVEY, J. M. The Z notation: a reference manual. Upper Saddle River, NJ,

USA: Prentice-Hall, 1989. 155 p. 11

STOCKS, P.; CARRINGTON, D. A framework for specification-based testing.

IEEE Transactions on Software Engineering, v. 22, n. 11, p. 777–793, 1996.

11

STOCKS, P. A. Applying formal methods to software testing. Thesis (PhD

in Computer Science) — University of Queensland, Brisbane, Australia, 1994. 11

69

UTTING, M.; LEGEARD, B. Practical model-based testing: a tools approach.

San Francisco, CA, USA: Morgan Kaufmann Publishers, 2007. 456 p. 15

	COAT
	VERSUS
	TITLE PAGE
	ABSTRACT
	RESUMO
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1 INTRODUCTION
	2 STATECHARTS AND FINITE STATE MACHINES FOR TESTING AT INPE
	3 Z-BASED TESTING WITH FASTEST
	4 COMPARISON: CASE STUDIES
	4.1 EXP – OBDH Communication Protocol
	4.2 A Simple Scheduler
	4.3 SWPDC
	4.4 Summary

	5 A COMPLEMENTARY APPROACH
	6 CONCLUSIONS
	REFERENCES

