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Observational Constraints on Visser’s Cosmological Model
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Theories of gravity for which gravitons can be treated as massive particles have presently
been studied as realistic modifications of General Relativity, and can be tested with cosmological
observations. In this work, we study the ability of a recently proposed theory with massive gravitons,
the so-called Visser theory, to explain the measurements of luminosity distance from the Union2
compilation, the most recent Type-Ia Supernovae (SNe Ia) dataset, adopting the current ratio of
the total density of non-relativistic matter to the critical density (Ωm) as a free parameter. We
also combine the SNe Ia data with constraints from Baryon Acoustic Oscillations (BAO) and CMB
measurements. We find that, for the allowed interval of values for Ωm, a model based on Visser’s
theory can produce an accelerated expansion period without any dark energy component, but the
combined analysis (SNe Ia+BAO+CMB) shows that the model is disfavored when compared with
ΛCDM model.

PACS numbers: 98.80.-k, 95.36.+x, 95.30.Sf

I. INTRODUCTION

The current Universe’s energy budget is a consequence
of the convergence of independent observational results
that led to the following distribution of the energy
densities of the Universe: 4% for baryonic matter, 23%
for dark matter and 73% for dark energy [1]. The
key observational results that support this picture are:
mesurements of luminosity distance as a function of
redshift for distant supernovae [2–4], anisotropies in the
Cosmic Microwave Background (CMB) observed by the
WMAP satellite [5] and the Large Scale Structure (LSS)
matter power spectrum inferred from galaxy redshift
surveys such as the Sloan Digital Sky Survey (SDSS) [6]
and 2dF Galaxy Redshift Survey (2dFGRS) [7].

In order to explain all the currently available
cosmological data, the cosmological concordance model
ΛCDM need to appeal to two exotic components, the so
called dark matter and dark energy. The latter drives the
late time accelerated expansion of the Universe and it is
one of the greatest challenges for the current cosmology.
Indeed, the physical nature of the dark energy is a
particularly complicated issue to address in the ΛCDM
context, due to its unusual properties. It behaves
as a negative-pressure ideal fluid smoothly distributed
through space. One can ask if the accelerating expansion
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of the Universe might indicate that Einstein’s theory
of gravity is incomplete, i.e., can an alternative theory
of gravity explain consistently the late-time cosmic
acceleration without recurring to dark energy?
There are several alternative approaches based on the

idea of modifying gravity. Currently, one of the most
studied alternative gravity theories is the so called f(R)
gravity, whose basic idea is to add terms which are powers
of the Ricci scalar R to the Einstein-Hilbert Lagrangian
[8–13].
Recently, M. Visser proposed a modification of the

general relativity (GR) where the gravitons can be
massive particles [14]. In particular, several authors have
studied the limits that can be imposed to the graviton
mass using different approaches. For example, from
analysis of the planetary motions in the solar system
it was found that mg < 7.8 × 10−55g [15]. Another
bound comes from the studies of galaxy clusters, which
gives mg < 2 × 10−62g [16]. Although this second limit
is more restrictive, it is considered less robust due to
uncertainties in the content of the Universe in large
scales. Studying rotation curves of galactic disks, de
Araujo and Miranda [17] have found that mg ≪ 10−59g
in order to obtain a galactic disk with a scale length of
b ∼ 10 kpc.
Studying the mass of the graviton in the weak field

regime Finn and Sutton have shown that the emission
of gravitational radiation does not exclude a non null
(although small) rest mass. They found the limit mg <
1.4 × 10−52g [18] analyzing the data from the orbital
decay of the binary pulsars PSR B1913+16 (Hulse-Taylor
pulsar) and PSR B1534+12.
In particular, as discussed by Bessada and Miranda

[19], if mg > 10−65g then massive gravitons would leave
a clear signature on the lower multipoles (l < 30) in the
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cosmic microwave background (CMB) anisotropy power
spectrum. Moreover, massive gravitons give rise to a non-
trivial Sachs-Wolfe effect which leaves a vector signature
of the quadrupolar form on the CMB polarization [20].
An interesting result that comes from Visser’s model

is that the gravitational waves can present up to
six polarization modes [21] instead of the two usual
polarizations obtained from the GR. So, if in the future
we would be able to identify the gravitational wave
polarizations, we would impose limits on the graviton
mass by this way.
The Visser’s theory of massive gravitons can be used

to build realistic cosmological models that can be tested
against available observational data. It has the advantage
that it is not necessary to introduce new degrees of
freedom neither extra cosmological parameters. In fact,
the cosmology with massive gravitons based on the
Visser’s theory has the same number of parameters of
the flat ΛCDM model but no extra fields are added.
In this paper we derive cosmological constraints on the
parameters of the Visser’s model. We use the most recent
compilation of Type-Ia Supernovae (SNe Ia) data, the
so-called Union2 compilation of 557 SNe Ia [22]. We
also combine the supernova data with constraints from
Baryon Acoustic Oscillations (BAO) [23] and CMB shift
parameter measurements [24].
The paper is organized as follows: in Section II we

briefly review the Visser’s approach. Section III is
devoted to the description of the cosmological model. In
Section IV we investigate the observational constraints
on the Visser’s cosmological model from SNe Ia, BAO
and CMB shift parameter data. In Section V we present
our conclusions.

II. THE FIELD EQUATIONS

The full action considered by Visser is given by [14]:

I =

∫

d4x

[√−g
c4R(g)

16πG
+ Lmass(g, g0) + Lmatter(g)

]

,(1)

where besides the Einstein-Hilbert Lagrangian and the
Lagrangian of the matter fields we have the bimetric
Lagrangian

Lmass(g, g0) =
1

2
m2

√
−g0

{

(g−1
0 )µν(g − g0)µσ(g

−1
0 )σρ (2)

×(g − g0)ρν − 1

2

[

(g−1
0 )µν(g − g0)µν

]2

}

,

where m = mgc/~, mg is the graviton mass and (g0)µν
is a general flat metric.
The field equations, which are obtained by variation of

(1), can be written as:

Gµν − 1

2
m2Mµν = −8πG

c4
T µν, (3)

where Gµν is the Einstein tensor, T µν is the energy-
momentum tensor for perfect fluid, and the contribution
of the massive tensor to the field equations reads:

Mµν = (g−1
0 )µσ

[

(g − g0)σρ −
1

2
(g0)σρ(g

−1
0 )αβ (4)

×(g − g0)αβ

]

(g−1
0 )ρν .

Note that if one takes the limit mg → 0 the usual
Einstein field equations are recovered.
Regarding the energy-momentum conservation we will

follow the same approach of [25] and [26] in such a way
that the conservation equation now reads [27, 28]:

∇νT
µν =

m2c4

16πG~2
∇νM

µν , (5)

since the Einstein tensor satisfies the Bianchi identities
∇νG

µν = 0.

III. COSMOLOGY WITH MASSIVE

GRAVITONS

For convention we use the Robertson-Walker metric as
the dynamical metric:

ds2 = c2dt2 − a2(t)

[

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]

,

(6)
where a(t) is the scale factor. The flat metric is written
in spherical polar coordinates:

ds20 = c2dt2 −
[

dr2 + r2
(

dθ2 + sin2 θdφ2
)]

. (7)

The choice of Minkowski as the non-dynamical
background metric g0 is based on the criterion of
simplicity. In first place, the metric g0 is defined in
such a way that it coincides with the dynamical metric
g in the absence of gravitational sources. The other
point is that we do not need additional parameters for
the cosmological model. The last important point is
that considering Minkowski for g0 we obtain a consistent
relation for the energy-momentum conservation law [27].
Using (6) and (7) in the field equations (3) we get the

following equations describing the dynamics of the scale
factor (taking k = 0 for simplicity):

(

ȧ

a

)2

+
1

4
m2c2(a2 − 1) =

8πG

3c2
ρ (8)

and

ä

a
+

1

2

(

ȧ

a

)2

+
1

8
m2c2a2(a2 − 1) = −4πG

c2
p, (9)

where as usual ρ is the energy density and p is the
pressure.
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From Eq. (5) we get the evolution equation for the
cosmological fluid, namely:

ρ̇+ 3H

[

(ρ+ p) +
m2c4

32πG
(a4 − 6a2 + 3)

]

= 0, (10)

where H = ȧ/a. Considering a matter dominated
universe (p = 0) the above equation gives the following
evolution for the energy density:

ρ =
ρ0
a3

− 3m2c4

32πG

(

a4

7
− 6a2

5
+ 1

)

, (11)

where ρ0 is the present value of the energy density. Note
that in the case mg → 0 we obtain the usual Friedmann
equations.
Now, inserting (11) in the modified Friedmann

equation (8) we obtain the Hubble parameter:

H2(a) = H2
0

[

Ω0
m

a3
+

1

2
Ω0

g

(

7a2 − 5a4
)

]

, (12)

where the relative energy density of the i-component is
Ωi = ρi/ρc (ρc = 3H2c2/8πG is the critical density)
where ‘i’ applies for baryonic and dark matter. Moreover,
the present contribution of the massive term is defined
by:

Ω0
g =

1

70

(

mg

mH

)2

(13)

where mH = ~H0/c
2 is a constant with units of mass.

Since we are assuming a plane Universe (k = 0), the
total density parameter is Ω0

total = 1. Thus, Ω0
g can be

replaced by Ω0
g = 1 − Ω0

m. This tell us that the model
described by the Hubble parameter (12) has only two free
parameters, namely H0 and Ω0

m, which can be adjusted
by the cosmological observations, i.e., the same number
of free parameters of the ΛCDM model.

IV. ANALYSIS AND DISCUSSION

A. Supernova Ia

In order to put constraints on the cosmological model
derived from the Visser’s approach, we minimize the χ2

function

χ2(Ωm) =
∑

i

[µth(zi|Ωm)− µobs(zi)]
2

σ2(zi)
(14)

where µth(zi|Ωm) is the predicted distance modulus for
a supernova at redshift zi. For a given Ωm we have

µ(z|Ωm) ≡ m−M = 25 + 5 log dL(z|Ωm), (15)

where m and M are, respectively, the apparent and
absolute magnitudes, and dL(z|Ωm) stands for the
luminosity distance given by

dL(z|Ωm) = (1 + z)c

∫ z

0

dz′

H(z′|Ωm)
. (16)

Also, µobs(zi) are the values of the observed distance
modulus obtained from the data and σ(zi) is the
uncertainty for each of the determined magnitudes from
supernova data.
Evaluating the minimum value of χ2 from the Union2

compilation of SNe Ia [22] we found χ2
min = 561.11 for

the Visser’s theory, with Ωm = 0.261+0.021
−0.020, where we

have considered errors at 1 sigma level.

B. Baryon Acoustic Oscilations

The primordial baryon-photon acoustic oscillations
leave a signature in the correlation function of luminous
red-galaxies as observed by Eisenstein et al. [23]. This
signature provides us with a standard ruler which can be
used to constrain the following quantity

A =
√

ΩmE(z1)
−1/3

[

1

z1

∫ z1

0

dz

E(z)

]2/3

, (17)

where E(z) = H(z)/H0, the observed value of A is
Aobs = 0.469± 0.017 and z1 = 0.35 is the typical redshift
of the SDSS sample. The computation of the value of Ωm

which better adjust Aobs lead us to Ωm = 0.306+0.027
−0.025.

C. CMB Shift Parameter

The shift parameter R, which relates the angular
diameter distance to the last scattering surface with the
angular scale of the first acoustic peak in the CMB power
spectrum, is given by (for k = 0) [24, 29]

R1089 =
√

ΩmH2
0

1089
∫

0

dz

H
= 1.70± 0.03. (18)

It is worth stressing that the measured value of R1089 is
model independent. Also, note that in order to include
the CMB shift parameter into the analysis, it is needed
to integrate up to the matter-radiation decoupling (z ≃
1089), so that radiation is no longer negligible and it was
properly taken into account. With these considerations,
the best-fit value for the relative matter density using
R1089 is Ωm = 0.224+0.046

−0.038.

D. Joint analysis

When the measurements of SNe Ia luminosity
distances are combined with information related to the
Baryon Acoustic Oscillation (BAO) peak and the CMB
shift parameter, the constraining power of the fit to
the parameters in the cosmological model is greatly
improved. Following such an approach we examine here
the effects of summing up the contributions of these last
two parameters into the χ2 of Eq. (14). Our result is
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Visser ΛCDM
Fit χ2

min Ωm χ2
min Ωm

SNe 561.11 0.261+0.021

−0.020 542.68 0.270+0.021

−0.020

CMB ∼ 0 0.224+0.046

−0.038 ∼ 0 0.239+0.043

−0.036

BAO ∼ 0 0.306+0.027

−0.025 ∼ 0 0.273+0.025

−0.024

SNe+CMB+BAO 565.06 0.273+0.015

−0.015 543.76 0.267+0.015

−0.015

SNe(Sys) 538.83 0.295+0.039

−0.036 530.72 0.275+0.040

−0.037

SNe(Sys)+CMB+BAO 542.07 0.290+0.020

−0.019 531.81 0.265+0.019

−0.018

TABLE I: Best-fit values for Ωm for the cosmological observables considered in this work. It is also shown how the introduction
of systematic errors from the SNe measurements can affect the best-fit. We have worked only with flat Universe models, i.e.,
k = 0.
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FIG. 1: Hubble parameter as a function of the redshift for
best-fit value obtained from SNe Ia. By using the different
best-fit values, the curve does not change significatively

Ωm = 0.273 ± 0.015 with the corresponding minimum
value for the χ2 function: χ2

min = 565.06.

We can compare our results with the ΛCDM model by
taking the difference between χ2

g and χ2
ΛCDM , which are

the minimum χ2 values for the massive bimetric model
and for the ΛCDM model, respectively. The evaluation
of this difference gives the result ∆χ2 = χ2

g − χ2
ΛCDM =

21.30, which shows that the bimetric Visser’s model is
disfavored when compared with the flat ΛCDM model.

In the Table I we summarize our results for Ωm

considering each cosmological observable: SNe, CMB,
BAO and the combined analysis (SNe+CMB+BAO). For
the sake of comparison it is also shown the values of χ2

min

and Ωm for the ΛCDM model.

It is also instructive to evaluate the effect of adding
the systematic uncertainties of the SNe analysis on our
results. Considering only SNe, the addition of the
systematic erros to the statistical erros lead us to Ωm =
0.295+0.039

−0.036 for the Visser’s model. We also obtain a
considerable lower value for the difference between the
χ2 of the two models ∆χ2 = 8.11. Now, taking into
account the CMB and BAO measurements together with
SNe, we obtain Ωm = 0.290+0.020

−0.019 and ∆χ2 = 10.26 (see

μ
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46

z

0 0.2 0.4 0.6 0.8 1 1.2 1.4

FIG. 2: Best-fit for the distance modulus versus redshift for
the Visser model (solid gray line) and the ΛCDM model
(dashed line). The SNe data were taken from the Union2
compilation [22].

Table I).
In the Fig. 1 and Fig. 2 we show the Hubble

parameter and the distance modulus as functions of
redshift considering the best-fit value of Ωm for the SNe.
For the sake of comparison, the standard ΛCDM model
is also shown. Note that although the massive graviton
model is disfavored, it seems to be able to reproduce
very well the SNe Ia measurements, as can be seen in
the Fig. 2. This shows the importance of the χ2 test in
distinguishing the two models.

E. Effective equation of state

The Fig. (3) shows the effective equation of state

weff (z) = −1 +
2(1 + z)

3H

dH

dz
(19)

as a function of the redshift for the best-fit values
above. The deceleration parameter, which is shown in
the Fig.4, is related to weff through q(z) = (3weff (z) +
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FIG. 3: Effective state parameter as a function of the redshift
for the best-fit value obtained from SNe Ia.
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FIG. 4: Deceleration parameter as a function of the redshift
for the best-fit value obtained from SNe Ia. Note that the
acceleration phase is transient in the Visser model.

1)/2. In order to plot these curves we have included
a component of radiation with the present value of
the density parameter Ωr = 5 × 10−5. For the best-
fit value found in our analysis, the Visser model goes
through the last three phases of cosmological evolution,
i.e., radiation-dominated (w = 1/3), matter-dominated
(w = 0) and the late time acceleration phase (w < −1/3).

Note that for low redshifts the Visser’s model shows
additionally a phase dominated by matter, indicating
that for this model the late time acceleration of the
Universe was a transient phase which has already
finished. Moreover, for low redshifts, this behavior of
the Visser’s theory is in accordance with the fact that
the luminosity distance of very low redshift SNe Ia can
be fitted with CDM model only, i.e., at very low redshift
the ΛCDM, CDM and Visser’s model are degenerate for
the cosmological observations.

V. CONCLUSIONS

The theory of massive gravitons as considered in
the Visser’s approach has the advantage that the field
equations (3) differs from Einstein equations only in a
subtle way, namely, by the introduction of the bimetric
mass tensor Mµν . Moreover the van Dam-Veltmann-
Zakharov discontinuity (vDVZ) present in the Pauli-
Fierz term can be circumvented in Visser’s model by
introducing a non-dynamical flat-background metric [30].
From the cosmological point of view, the meaning of

the mass tensor, classically speaking, is a long range
correction to the ordinary Friedmann equation. Such a
correction mimics the effects of a dark energy component
in such a way that additional fields are not necessary.
In this context, we have shown that the cosmological

model with massive gravitons could be a viable
explanation to the dark energy problem. But, although
the parameter Ωm is well constrained, the model
is disfavored when compared to the ΛCDM model.
Considering systematic errors, the difference between the
χ2
min of the two models reduces considerably, but the the

Visser model is still disfavored.
Finally, the plots of the effective state parameter

and of the deceleration parameter for the best fit value
of Ωm, show a very particular feature of the Visser’s
model, namely, the transient behavior of the accelerated
phase of expansion. The Universe begins to accelerate
approximately at the same redshift of the ΛCDM model,
but for a very small redshift (z ∼ 4 × 10−2) we have a
second transition and the Universe becomes to decelerate
again. In spite of this, the behavior of the Hubble
parameter H(z) is very similar in both models as can
be seen in the Fig.1. In this way, one would think that
the transient acceleration phase is what make the Visser
model less compatible with SNe data than the ΛCDM
model. This is a problem which we will address in the
future in order to find consistent modifications of Visser’s
approach.
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