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ABSTRACT 

In this work we present a second s-z mapping (ST2) 

as an extension of a first one, the s-z mapping (ST1), 

presented in a previous work done by the authors. In that 

work, the ST1 mapping used only one tuning parameter 

(csi) ξ  to: 1) map the (asymptotically stable) left half s 

plane in the interior of the unitary circle in z plane; and 2) 

attain the asymptotical stabilization of a benchmark 

harmonic oscillator driven by a PD discrete controller with 

various sampling periods. In both tests, the ST1 mapping 

behaved better than other mappings listed in the literature 

(Tustin, Backward, Shneider-Kaneshige-Groutage, etc.). In 

this work we use two tuning parameters csi1 and csi2 in the 

ST2 mapping to see how both tests behave, including 

numerical simulations comparing the ST2 mapping with 

those other mappings ((ST1 and Tustin). Through the 

numerical results obtained in this work we may perceive 

that the two new-rules presented are more robust to the 

fading effects due the increasing of aliasing phenomenon in 

comparison with the Tustin rule. An analytical description 

of these new-rules is presented.  

INTRODUCTION 

Nowadays more and more space mission involves 

Large Space Structures (LSS)
[17]
, an update example is the 

International Space Station construction which creates new 

demands on dynamics techniques where the coupling 

between the rigid and flexible motion must be take into 

account in the control system design 
[15]
, as well as the 

interaction between the control system and the flexible 

structure motion play an important rule in the control 

system performance 
[16]
. 

A rigid-flexible structure may be understood 
[18] [13]

 as 

a coupling of two parts: the rigid and the flexible bodies. A 

flexible structure may be described by an infinite sum of 

simple and damped harmonic oscillators vibrating each one 

in one specific structural natural frequency. From empirical 

data 
[19]
 these vibration modes have the damping 

proportional to their values, i.e., a high frequency mode is 

highly damped and the first frequency modes are less 

damped. As yet, there is no satisfactory quantitative theory 

to predict structural damping 
[19]
. A rigid-flexible system 

could be represented as shown in the figure below 
[18]
. 
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Figure 1– A generic Rigid-Flexible structural system. 

As shown in the literature 
[1] [2]

, control algorithms can be 

tested using the simplest configuration for the flexible 

structure, i.e., analyzing a single harmonic oscillator 

damped. In the literature 
[1] [2]

, the study of stability of a 
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discrete closed control of a single and damped harmonic 

oscillator could validate the control algorithm used for a 

more complex attitude dynamics like an asymmetric rigid-

flexible satellite (with 1.4 Ton in rigid-body and 49 kg in 

the flexible appendage, with a PD control). It is an 

increasing tendency 
[17]
 to employ automatic digital 

controllers in many industrial and aerospace important 

applications due its ability of programming, lightweight, 

less power consumption, and other features. The main 

objective is the guarantee of the stability first, and the 

performance analysis after that. When the research about 

the stability of the discrete closed-loop control about 

flexible structures will be concluded, we will start the 

investigations about performance. In the next section we 

may see an introduction about the benchmark plant used in 

this work. We have used it in all numerical simulations, 

using a discrete-time zero-order-hold (ZOH) equivalency 
[1] 

[2] [3] [4] [5] [6] [7] [8] [9] [10]
.  

BENCHMARK PLANT USED AND ITS ZOH 

EQUIVALENCE 

In this work we have analyzed and simulated a damped 

harmonic oscillator given by: 

)t(u)t(x.k)t(x.b)t(x.m =++
•••

                                (Eq. 

1) 

Where m is the mass, k is the elasticity factor, and the b is 

the viscous friction coefficient, with m );0( ∞∈ , 

b )m;0[∈ , k );0( ∞∈ . The analog transfer function are 

given by: 
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2) 

where 
m

k
n =ω  );0( ∞∈  is the non-damped natural 

angular frequency of this vibration mode, and 

m
b=ζ )1;0[∈ is its damping ratio. 

The zero-order hold (ZOH) equivalent 
[3]
 of Eq. 2 may be 

calculated by: 

).1()( 1
0

−−= zzGH
Z 



L
 -1













= Tkts

sG

.

 
)(

            (Eq.3) 

Applying Eq. 3 to Eq. 2 we have, after normalizing k=1 we 

have a second order transfer function with the insertion of a 

zero due the hold: 
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TUSTIN RULE MAPPING 

The Tustin rule has the following finite differences equation 

describing it: 

1.
2
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e                                                          (Eq. 

5) 
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Seu mapeamento s-z é dado por: 
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7) 

The equation 7 is describing an unit circle in the z complex 

space, i.e., all left half plane in s complex space is mapped 

by Tustin rule (Bilinear) to the interior of this unit circle. 

 

Figure 1– Tustin mapping 

NEW-RULE 1 MAPPING (ST1) 

The limitations of the classical methods presented so far in 

preserving the stability for high gains and high sampling 

periods suggested us to propose new s-z mappings. This 

begun in two main works in the literature 
[1] [2]

 through the 

difference equation: 

1..
2

−−∇= kkk eu
T

e ξ                                                 (Eq. 8) 

Applying the z-transform 
[3]
 on it we have the new s-z 

mapping 1, we will have: 
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Which shifts the pole from z = -1 in the Tustin rule to z' = -

ξ, 0 ≤ ξ ≤ 1. This avoids or retards the instabilization in 
closed loop systems, by using ξ as a new design parameter 
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(besides the control gains and the sampling period). The 

new rule 1 becomes: the Tustin rule if ξ = 1; and the 
backward mapping if ξ = 0. Its inverse is given by: 
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T
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The new rule 1 also maps the left half s plane into a circle 

with center and radius given by equation 13, always inside 

the unit circle in plane z. To prove this, note that: 

if ξ = 1 → center = 0 ; radius = 1; (Tustin); (Eq. 28) 

if ξ = 0 → center = ½ ; radius = ½; (backward); (Eq. 29) 

The simplest possible expression for the center is: 

( )ξ−= 1.
2

1
center                                                      

(Eq.11) 

Lets rewrite equation 7 to describe a circle with center 

given by equation 11, whose circumference corresponds to s 

= j.ω: 
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Which proves the thesis. Thus, the equation of the new-rule 

mapping is described as: 

( ) ( )ξξ +=−− 1.
2

1
 1.

2

1
 z                                        

(Eq.13) 

We may see the new, the Tustin and the backward mappings 

graphical comparison at the figure 2. 
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Figure 2 The New-Rule 1, the Tustin and the backward 

mappings. 

NEW-RULE 2 MAPPING (ST2) 

The equation of finite differences for the new-rule 2 is: 

( ) 1211 ..
2

−− −−= kkkk euu
T

e ξξ                                 (Eq.14) 

Applying the z-transform 
[3]
 on it we have the new s-z 

mapping #2: 
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In analogy to the last case, 
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(Eq.17) 

That it describes a family of circles inside the unit circle, 

with centers on the real axis. 
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Figure 3- The new-rule 2 mapping. 

We may note by the figures 2 and 3 that the Tustin, 

backward and new-rule 1 methods are particular cases of 

this new-rule 2. 

PD CONTROL WITH THESE TRHEE RULES 

Replacing the expression that governs the Tustin mapping 

in a PD control, 
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(Eq.18) 

we will have, 
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A PD controller designed by new-rule 1 is given by: 
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A PD controller designed by the most general, than the last 

two, new-rule 2 is given by: 
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NUMERICAL RESULTS 

We have used the constant values showed in Table I in all 

simulations. 

Table I: constants used. 

Damping ratio ζ  0.9 

Natural frequency Nω  0.3 Hz 

Proportional Gain Kp 3.0 

Derivative Gain 4.8 

New-Rule 1 coefficient ξ  0.1 

New-Rule 2 coefficient 1ξ  0.8 

New-Rule 2 coefficient 2ξ  0.1 

 

In Table II we may see some numerical simulations done by 

a simulation tool running in a personal computer (Pentium 

IV, 500 MHz).  

In the figures 4 to 7 we have a comparative results using 

many values for the sampling period T for the three rules: 

Tustin, New-Rule 1 and New-Rule 2. 

 

 

Table II: numerical  results obtained. 

Sampling 

Period T in 

seconds 

Mapping 

Rule 

Stable Unstable 

Tustin *  

New-Rule 1 *  

 

0.35 

New-Rule 2 *  

Tustin  * 

New-Rule 1 *  

 

0.7 

New-Rule 2 *  

Tustin  * 

New-Rule 1 *  

 

1.0 

New-Rule 2 *  

Tustin  * 

New-Rule 1 *  

 

1.2 

New-Rule 2 *  

Tustin  * 

New-Rule 1 *  

 

1.6 

New-Rule 2 *  
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Tustin  * 

New-Rule 1 *  

 

3.0 

New-Rule 2 *  

Tustin  * 

New-Rule 1 *  

 

4.0 

 New-Rule 2 *  

Tustin  * 

New-Rule 1  * 

 

4.5 

New-Rule 2  * 

 

Figure 4- Numerical Results for T = 0.35 second. 

 
Figure 5- Numerical Results for T = 1.0 second. 

 
Figure 6- Numerical Results for T = 3.0 seconds. 

 

Figure 7- Numerical Results for T = 4.5 seconds. 

CONCLUSION 

We may note from the Table II and the figures 4-7 that the 

New-Rule 1 and New-Rule 2 are more robust to the aliasing 

phenomenon due the increasing of the sampling period T 

that the classical Tustin rule. In special, the New-Rule 2 

responds to the input unit step with less power than the 

New-Rule 1. All of these effects were experimentally 

showed in this work but until now we do not have a 

concrete explanation for the phenomenon. A dedicated 

work is in course to investigate in details why these 

variations of the Tustin mapping becomes more robust to 

the aliasing and trying to bring a general and complete 

comprehension of this questions.  
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