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ABSTRACT: 

 

The InterIMAGE Project aims at developing an open-source, knowledge-based framework for automatic interpretation of remote 

sensing data. The Project, which began in 2008, is leaded by the Computer Vision Lab of the Catholic University of Rio de Janeiro 

in collaboration with the Brazilian National Institute for Space Research (INPE) and the TNT Institute of the Hannover Leibniz 

University. The interpretation strategy implemented by InterIMAGE is based on a user defined knowledge model, structured through 

a semantic network. The nodes of the network represent concepts, classes of image objects expected to be found in a scene. 

Specialized image processing operators can be attached to the System, which controls their execution through a particular 

interpretation strategy, which is guided by the semantic network. The interpretation process carried out by InterIMAGE has two 

sequential, complementary phases. The first phase – the top-down step – is model-driven and generates hypotheses of the occurrence 

of image objects on the scene. The final instance network results from the data-driven, bottom-up analysis, responsible from judging 

the object hypotheses, validating or discarding them based on user defined decision rules. This paper focuses on describing the 

capabilities recently introduced in InterIMAGE, such as: multitemporal interpretation; debugging functionality; feature extraction 

and exploration; the graphical interface for creation of decision rules; and the System’s basic suite of image processing operators. In 

order to make a comprehensive description of these capabilities some simple examples will be also presented. 

 

1. INTRODUCTION 

Traditionally, image interpretation has been treated as a pattern 

recognition problem. In (Jain et al., 2000) pattern recognition 

techniques are grouped in categories, some of which are 

particularly important for the analysis of remote sensing data: 

statistical methods; methods based in machine learning; and 

structural methods. 

 

Statistical methods (Webb, 2002) can be regarded as the 

conventional solution in terms of remote sensing. In this 

category, object classes are represented by probability density 

functions defined over a predetermined attribute space. 

Appropriately modeling probability densities is the main 

challenge of this type of approach. Limitations as to the number 

of the available training patterns usually imply in the adoption 

of simple models, and in poor classification performance.  

 

Methods based on machine learning (Li et al., 2000; Mciver et 

al., 2001; Zhong et al., 2008; Chi and Ersoy, 2005), are directed 

towards the learning of complex relations among sample 

patterns, even in the absence of explicit models. The main 

disadvantage of these methods is their high demand for training 

samples, what excludes them as an alternative for many remote 

sensing applications.  

 

Structural methods involve complex patterns. They usually 

adopt a hierarchical approach in which descriptions of the 

patterns are based on simpler patterns recursively, until 

primitive patterns are reached. Particularly relevant in this 

context are the so-called knowledge-based or cognitive systems 

(Sagerer and Niemann, 1997; Liedtke et al., 1999; Bückner et 

al., 2001; Schiewe et al., 2001; Centeno et al., 2003). The main 

focus of those systems is the modeling of the classes of objects 

expected to be found in an image through the explicit 

representation of prior knowledge about their spectral, 

morphological or topological characteristics. Such knowledge, 

acquired from a human specialist, can reduce significantly the 

demand for training patterns. 

 

There are several other advantages of embodying image 

understanding knowledge into explicit structures (Crevier and 

Lapage, 1997). First, knowledge can be easily added to a 

knowledge base, without modifying preexisting rules. When 

laid out explicitly, knowledge can be more easily validated, 

since contradictions and omissions become apparent. 

Knowledge structures also favor interactive problem solution, 

providing a way to explore alternative means of extracting 

information from images. Last but not least, explicit represented 

knowledge provides for easier collaboration, for knowledge 

interchange among those tackling similar problems. 

 

The InterIMAGE Project aims at developing an open-source, 

knowledge-based framework for automatic interpretation of 

remote sensing data. The Project, which began in 2008, is 

leaded by the Computer Vision Lab of the Catholic University 

of Rio de Janeiro in collaboration with the Brazilian National 

Institute for Space Research (INPE) and the TNT Institute of 

the Hannover Leibniz University.  
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In this paper we present the main features of the InterIMAGE 

system. Special attention is given to describing the 

functionalities recently added to the system, such as: 

multitemporal interpretation support; knowledge model 

debugging functionality; feature extraction and exploration; the 

graphical interface for creation of decision rules; and the 

System’s basic suite of image processing operators. In order to 

make a comprehensive description of these capabilities, some 

simple examples are also presented. 

 

In the remainder of this paper we describe the basic 

characteristics of InterIMAGE and the interpretation strategy 

implemented by the system (Section 2). In Section 3 we 

describe the capabilities recently introduced in InterIMAGE. 

Finally, some conclusions are presented in Section 4. 

 

 

2. SYSTEM DESCRIPTION 

InterIMAGE is a multi-platform framework, counting currently 

with implementations for LINUX and Windows operational 

systems. The System is coded in C++, using also the QT4 cross-

platform application development framework (Summerfield, 

2010), the Visualization Toolkit (VTK) class library (Schroeder 

et al., 2006) and Terralib (Camara, 2000), a GIS classes and 

functions library developed at INPE. 

 

InterIMAGE provides support for the integration of image 

processing operators in the interpretation process and, as such 

operators are treated as external programs by its control 

mechanism, they can be coded in any computer language, and 

can even be proprietary programs. The InterIMAGE framework 

offers, nonetheless, a suit of basic operators 

(http://www.dpi.inpe.br/terraaida), assembled with the classes 

and functions supplied by the TerraLib library (Câmara et al., 

2000).  

 

InterIMAGE is founded on GeoAIDA (Bükner et al., 2001), 

developed at the TNT Institute (Institut für 

Informationsverarbeitung) at the Leibniz Hannover University, 

Germany, and it inherited from that system its interpretation 

engine and some of its basic knowledge representation 

structures.  

 

The central goal of InterIMAGE is to aid the user in the 

interpretation of a scene, providing thus a symbolic meaning to 

the different regions that compose the scene. The reader should 

note that the term scene here refers to a geographic region and 

not to one particular remote sensing image. In fact, for the 

interpretation of a scene with InterIMAGE, one can integrate 

different georreferenced data covering the region of interest, 

such as a collection of images acquired at different points in 

time or acquired by different sensors, or even data from a 

vector, GIS database.  

 

InterIMAGE’s interpretation process is guided by a knowledge 

model, which embodies and explicitly represents prior 

knowledge about a particular geographic region and about the 

objects expected to be found in it. The knowledge model can 

correspond to the user’s prior knowledge or the knowledge 

acquired by analyzing the input data (RS images or GIS layers) 

through the tools provided by system.  

 

The basic element of a knowledge model in InterIMAGE is a 

semantic network (fig. 1). Each node of the network represents 

a concept – a class of objects expected to be found in the scene.  

 

 
 

Figure 1.  A Semantic Network in InterIMAGE 

 

The user can define for each network node specific operations – 

which can process input data with particular characteristics, e.g. 

different input images – to search for the objects of the class 

associated to the node. 

 

During interpretation, InterIMAGE’s control process will visit 

the nodes of the semantic network in a particular order, 

executing the operations associated to each node. Initially, the 

control process will visit the nodes from top to bottom – from 

the root to the leaf nodes – in the so called top-down step of the 

interpretation process. After reaching the leaf nodes, the 

interpretation process will traverse the network in the opposite 

direction, in the so called bottom-up step.  

 

The operations associated to each node are specialized for the 

top-down or bottom-up interpretation steps. Top-down 

operations are responsible for what is usually regarded in the 

remote sensing field as feature extraction, which in this context 

means finding regions on the scene associated to the occurrence 

of a class of objects. Hence, the output of a top-down operation 

is a set of object hypotheses.  

 

Why the term hypothesis was used in the last paragraph? This 

should become clearer later, but the basic idea is that the results 

of top-down operations need to be validated (or discarded) in 

the subsequent, bottom-up interpretation step. Top-down 

operations may be though of as local processes linked to the 

nodes of the semantic network. As those processes do not 

communicate with each other directly, they may generate results 

that are inconsistent among one another, i.e. they may associate 

to the same geographic region different classes of objects. It is 

the task of the bottom-up operations to resolve the conflicts 

among the hypotheses generated in the top-down step, i.e. to 

decide which hypotheses will prevail. The hypotheses validated 

through the bottom-up operations are regarded as object 

instances. 

 

Bottom-up and top-down operations are generally composed by 

two elements, an operator (top-down or bottom-up) and a 

decision rule. In practical terms, the user can select an operator 

and set its parameters, and define decision rules at each node of 
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the semantic network, for the top-down and for the bottom-up 

interpretation steps. In doing so, the user defines how to find 

the possible occurrences of a specific concept, and how to 

choose among the concurrent occurrences of the different 

concepts. 

 

An operator (top-down or bottom-up) is an executable program 

– external to the System’s core – called by the control 

mechanism during interpretation. An operator, therefore, 

embodies implicit knowledge about one or more concepts. The 

term implicit has to do with the fact that the problem solving 

knowledge encoded in the operator cannot be manipulated or 

altered by the user of InterIMAGE, which can merely set the 

parameters of those operators through the system’s GUI.  

 

The user knows what the operator does through its 

documentation, but he/she usually will not necessarily know 

precisely how it does it. InterIMAGE is very flexible with 

respect to the integration of new operators. The expert user can 

create a new operator by encoding a specific algorithm into an 

executable program, which can be coded in any programming 

language. This program will need, however, to conform to a 

communication protocol (specified in InterIMAGE’s user 

guide), so that that the System will know how to call the 

program, set its parameters, and process its outcome. 

 

Top-down operators are responsible for partitioning the scene 

into sub-regions, which are the geographic representation of the 

object hypotheses. Bottom-up operators are responsible for 

evaluating the object hypotheses – validating, discarding or 

altering them.  

 

After the execution of an operator (top-down or bottom-up), 

InterIMAGE will execute user defined decision rules, which can 

be designed through a specific visual language (Section 3.2). 

Their basic tasks are to filter, group or reclassify the results of 

the operators according to a particular criteria. A bottom-up 

decision rule can also contain commands to resolve eventual 

spatial conflicts among the hypotheses generated in the top-

down step. A decision rule can be though of a set of actions that 

complement what an operator does, as it may alter or refine the 

operator’s output. 

 

The output of the interpretation process is a symbolic 

description of the scene, consisting of an instance network – a 

network of object instances. Based on the instance network, the 

system is able to create different thematic maps representing the 

different levels of concepts in the semantic network.  

 

 

3. INTERIMAGE ENHANCEMENTS 

In the last few years – since the report presented in (Oliveira et 

al., 2008), in the GEOBIA2008 Conference – new functionality 

has been added to InterIMAGE, and in the remainder of this 

paper we report on the most relevant of those new functions. 

 

3.1 Basic Operator Suit 

Although, as it has been said in Section 2, the user can add its 

own classification or feature extraction methods to the system as 

external operators, the standard version of InterIMAGE comes 

with a suit of basic, generic operators. This suit of operators was 

constructed using primarily the functions and methods present 

in the TerraLib library, and for that reason they are called 

TerraAida operators. The source code of those operators, as 

well as binaries and documentation can be found at 

http://www.dpi.inpe.br/terraaida.  

 

We present below a list of the currently available TerraAIDA 

operators. 

 

� TerraAIDA Arithmetic: generates segments based on the 

thresholding of a grayscale image resultant from a user 

defined arithmetic operation over the bands of an input image. 

 

� TerraAIDA Baatz&Schäpe Segmentation: performs a 

segmentation of an input image using the algorithm proposed 

in (Baatz and Shäpe, 2000). 

 

� TerraAIDA Checkerboard Segmentation: creates rectangular 

shaped image segments according to user defined 

specifications.  

 

� TerraAIDA NDVI Segmentation: generates segments based on 

the thresholding of a grayscale image whose digital numbers 

are equivalent to the Normalized Difference Vegetation Index 

(NDVI) (Sellers, 1985).  

 

� TerraAIDA Region Growing Segmentation: performs a 

segmentation of an input image through the algorithm 

proposed in (Bins et al., 1996). 

 

� TerraAIDA ShapeFile Import: imports polygons from a 

shapefile (ESRI, 1998) and generates segments based on the 

imported polygons. 

 

� TerraAIDA ShapeFile Intersection: creates segments from the 

intersection of the regions associated to higher level 

hypotheses (from the father, semantic network node) and a 

shapefile provided by the user. 

 

� TerraAIDA Decision Tree Classifier: classifies regions based 

on the supervised C4.5 algorithm (Quinlan, 1993). This 

operator works together with one of the segmentation 

operators listed above, classifying the resulting segments, 

based on samples selected by the user. 

 

The operators listed above are to be used in the top-down 

interpretation step (Section 2). They are, therefore, used in the 

process of generating object hypotheses of the concepts 

associated to the semantic network nodes they are attached to. 

The user should note that all but the last listed operator provide 

solely segments, that is, they do not perform any classification 

of the output segments.  The user can, however, define decision 

rules (see next section) that will actually classify the segments, 

selecting only the ones that are to be considered hypotheses of 

the corresponding semantic network nodes, and assigning to 

those hypotheses membership values that can later be used on 

the process of deciding among overlapping hypotheses. 

  

3.2 Decision Rules 

Decision rules can be used either to classify image segments 

generated by one of the top-down, segmentation operators listed 

in the prior section, or to decide among the concurrent object 

hypotheses, in the bottom-up interpretation step. 
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A graphical user interface was devised to aid the user in the 

definition of decision rules. The elements of this interface are 

depicted in fig. 2.  

 

 

 
 

Figure 2.  Basic Decision Rule Elements 

 

The Class element invokes all hypotheses of a specific object 

class (associated to a node of a semantic network). The Join 

element joins hypotheses associated to different object classes.  

 

In a decision rule, InterIMAGE can calculate a number of 

different attributes of a object hypothesis, attributes based on 

spectral values, shape, texture and topological characteristics of 

the image segments associated to those hypotheses. These 

attributes can be used in the Selection of hypotheses, based on a 

crisp threshold. Selection rules can be combined by logical And 

or Or operations.  

 

The Expression element enables the user to create named 

variables form the object hypotheses properties. The values of 

those variables, are stored within the object hypotheses, and can 

be used later in the same decision rule, or in a decision rule 

associated to another semantic network node. The Membership 

element enables the user to assign membership values to the 

object hypotheses, which can be done through a combination of 

membership functions such as shown in fig. 3. The Aggregation 

element allows for the aggregation of attribute values over a set 

of object hypotheses, and the Classify element – enabled only in 

the bottom-up interpretation step, i.e., in a bottom-up decision 

rule – is used to resolve spatial conflicts among competing 

hypotheses. 

 

 
 

Figure 3.  A Top-Down Decision Rule Example 

 

Figure 3 shows a simple top-down decision rule example, for 

the Trees node in the semantic network shown in fig.1. In this 

case a segmentation top-down algorithm was attached to the 

Trees node, and all the segments generated by the operator are 

submitted to the rule. First, all the segments for which the ratio 

of the mean values of band 4 (with respect to all other bands of 

image1) are higher than a certain crisp threshold are selected to 

be considered as Trees hypotheses. Than, those hypotheses will 

receive a membership value that is the minimum value of the 

FuzzyM2 and FuzzyM3 membership functions, defined, 

respectively over the mean pixel values of bands 2 and 3 of 

image1.  The membership functions are defined interactively by 

the user, function FuzzyM2 is shown in fig.4. 

 

 
 

Figure 4.  A Membership Function Example 

 

Figure 5 shows a simple bottom-up decision rule example, for 

the Vegetation node in the semantic network shown in fig.1. 

Basically what the rule does is to select all the hypotheses 

generated in the top-down interpretation step, for the nodes 

Trees and Grass, and perform an operation that will decide on 

the wining hypotheses based on their membership values. It is 

important to note that if there is a partial spatial overlap 

between a hypothesis of Trees and a hypothesis of Grass, the 

hypothesis with the lower membership value will not be 

completely discarded, only the overlapping part of it will be 

eliminated, i.e. the region associated to it will become smaller. 

 

 
 

Figure 5.  A Bottom-Up Decision Rule Example 

 

The last operation of a decision rule is a merging operation; this 

operation is responsible for grouping, spatially, the resulting 

hypotheses of a decision rule. There are three possibilities: 

global merge – all the hypotheses are combined into a single 

hypothesis, which can cover a non-contiguous area; merge 

connected – each group of spatially connected hypotheses will 

be combined into a single hypotheses, which will cover a 

contiguous area; or no merge, the hypotheses that resulted from 

the decision rule will not be merged. 

 

3.3 Multitemporal Interpretation Support 

InterIMAGE provides support for multitemporal interpretation 

by offering alternative control strategies that take into 

consideration the temporal dimension of the interpretation 

problem. And this temporal dimension is made explicit in the 

semantic network through the so-called temporal nodes. The 

nodes 2000 and 2001 in the network shown in fig. 6 are 

temporal nodes. Each network branch underneath a temporal 

node is regarded as a temporal branch. 
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InterIMAGE implements two alternative interpretation 

strategies, namely: sequential and synchronous multitemporal 

strategies.  

 

In the sequential interpretation strategy, the interpretation 

process will stop, in the top-down step, when it reaches the 

temporal nodes. Then it will proceed just for the first temporal 

branch. When processing (top-down and bottom-up) is 

complete for the first temporal branch, the validated hypotheses 

of the children of the first temporal node will be use to generate 

initial hypotheses for the children of the second temporal node, 

and this process will continue until the last temporal branch is 

processed, when the interpretation will resume for the node that 

is the father of the temporal nodes. 

 

It is important to observe that the children of the temporal nodes 

need not correspond to similar concepts, and that the temporal 

nodes can be placed at any hierarchical level of the semantic 

network. 

 

 
 

Figure 6.  Semantic Network with Temporal Branches 

 

In the synchronous interpretation strategy, interpretation will 

proceed as normal during the top-down step, i.e. the temporal 

branches will be processed in parallel. In the bottom-up step, 

however, interpretation will halt at each temporal branch until 

each branch is completely processed (top-down and bottom up). 

Then the membership values of the competing hypotheses of the 

children of the temporal nodes will be subjected to an operation 

called multitemporal merge, which will use class transition 

possibility values – expressed in a fuzzy transition matrix – to 

update the hypotheses membership values, as reported in the 

work (Feitosa et al., 2009). These updated membership values 

will in turn be used in deciding which hypotheses will prevail.      

  

3.4 Interactivity Support 

A number of capabilities have been also included in 

InterIMAGE to allow the definition of knowledge models in an 

interactive fashion and to permit the debugging of such models. 

 

In the semantic network depicted in fig. 1. there is a red circle 

next to the Ceramic Roof node. It indicates a break point in the 

interpretation process, and signals to that process that when it 

reaches that node it should stop and enter the stepwise execution 

mode. In such mode, the user can command the process to 

proceed to the next node, to resume the execution as normal, or 

he/she can invoke the analysis manager.  

 

The analysis manager has a graphical interface that allows the 

user to experiment with different operators and decision rules, 

by modifying such elements – i.e. trying out different 

segmentation operators or segmentation parameters, and 

alternative decision rules – and visually investigating their 

results.  

 

The analysis manager also allows the user to spatialize spectral, 

textural, morphological and topological attributes over the 

image segments that represent the object hypotheses, and to 

produce histograms and scatter plots from their values. 

 

In the stepwise execution mode, the user can also undo the 

operations performed at a node of the semantic network. 

 

Another important feature is the possibility to visualize 

intermediate results of the interpretation process. The user can 

select any result of any processing step, before or prior to the 

execution of top-down and bottom-up operations, so that he/she 

will be able to investigate the effects of such operations to any 

hypothesis generated during the interpretation process 

 

There are many other features which will not be described here 

due to the lack of space, such as de interface for creating and 

editing shapefiles, definition of regions of interest (ROIs) and 

the definition of samples for supervised classification operators. 

 

Further details about the system, including technical and user 

documentation, source code and executable versions are 

available at the InterIMAGE Project’s website1, at the 

InterIMAGE wiki2 and at the TerraAIDA website3. 

 

 

4. CONCLUSION 

In this paper the basic characteristic and interpretation process 

implemented by the InterIMAGE System, an open source 

knowledge-based framework for automatic interpretation of 

remote sensing data developed by the Computer Vision Lab of 

the Catholic University of Rio de Janeiro in collaboration with 

the Brazilian National Institute for Space Research (INPE) and 

with the TNT Institute of the Leibniz Hannover University have 

been presented. 

 

We believe that with the recently included functionality, 

InterIMAGE has become an interesting alternative to 

commercial software packages for the interpretation of remote 

sensing image data. The most obvious advantage being that the 

system can be acquired for free. 

 

Another important advantage with respect to the commercial 

packages is that InterIMAGE is not a black-box. Besides it 

                                                                 
1 http://www.lvc.ele.puc-rio.br/projects/interimage 
2 http://wiki.dpi.inpe.br/doku.php?id=interimage 
3 http://www.dpi.inpe.br/terraaida 
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documentation, the user with some programming skills can 

download and investigate its source code, and find out exactly 

how the System’s functions work.  

 

Moreover, users can add to InterIMAGE their own methods in 

the form of operators, and can even modify some functionalities 

of the system. Being that so, we believe that InterIMAGE can 

be used as a software framework for the development of 

scientific research in the fields of Object Based Image Analysis 

and Computer Vision. 
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