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Abstract 

A possible approach for modeling two-dimensional convection-diffusion 
problems in a cell-centered scheme with an unstructured triangular grid is the use 
of the Circumcenter, that is the center of the circumference that passes through 
the vertices of the triangular volume. This point is used to calculate all variables 
involved in the numerical simulation, and a Finite Volume Method was use to 
discretize the equations of an Incompressible Viscous Flow. This work analyzes 
classical problems of bidimensional flow, such as the inlet region of a Poiseuille 
flow, lid-driven cavity, backward-facing step and free convection with 
Boussinesq approximation. The application of the method has been shown to be 
a simple and flexible scheme and the results fit the analytical, experimental or 
numeric data presented in the literature.  

Keywords: unstructured grid, cell-centered scheme, incompressible flow, 
Circumcenter Approach. 

1 Introduction 

The numerical modeling of incompressible viscous flow has received special 
attention in recent decades, in particular because of the Velocity–Pressure 
relationship. Therefore, numerous different strategies to create equations that 
model the phenomena have been developed. 
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     In this work, a co-located cell-centered scheme in the primitive variables is 
developed, under a triangular unstructured grid. The viscous term of the Navier-
Stokes equation is discretized with the “Circumcenter Based Approach” (CBA) 
[9], and an up-wind scheme is used in the convective term. 
     The pressure field is calculated with an artificial equation, created by 
applying a divergent operator in the Momentum equation, and considers 
Neumann boundary conditions. The final algorithm is easy to use and 
understand, without equations to correct or under-relax any of the primitive 
variables used. The Linear System Equations involved are calculated by a 
specific solver, according to the form of the matrix resulting. 
     Computational benchmarks were realized in classical 2D flow problems, 
considering an incompressible, viscous and laminar flow. The problems are: 
flow under flat plates (Poiseuille Flow), Lid-driven cavity flow, suddenly 
expansion in a step (Backward-facing step) and natural or free convections 
problems (with Boussinesq modeling approach). 

2 Basic equations 

The equations used, in this document, for the numerical simulation of an 
uncompressible flow in steady state, will be: 
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     The equation (1) represents the continuity equation; the equation (2) 
represents the momentum equation and (3) represents the energy equation. In 

above equations, the symbol  defines the fluid density; the vector V  defines the 
velocity vector;  represents the viscosity; P represents the Pressure field; T 
defines the temperature;  the thermal conductibility and Cp the specific heat at 
constant pressure. 
     It is important to mention that in all numerical simulations presented in this 
paper we consider an incompressible laminar flow with constant density and 
viscosity. 
     In the case of free convection, the flow is not isothermal; however, this 
temperature buoyancy should not cause significant changes in density and 
viscosity of the fluid. 

3 The relationship between velocity and pressure in 
incompressible flows 

In incompressible flows, there is not an explicit equation to calculate the pressure 
evolution, and it is common to use the momentum and continuity equations to 
derive a new equation to determine the required pressure values. 
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Figure 1: Stencil for the calculation of each triangular element. 

     In this case, primitive variables with a Poisson equation will be used to allow 
pressure determination, following Gresho and Sani [1]. It can be obtained 
through the application of a divergent operator in the momentum equation (2). 
After some rearrangements, it can be defined as: 

 

 gVVVP 22
 (4) 

 

     So, the equations to be used in the numerical simulation will be: (1), (2) and 
(4). For non-isothermal cases the equation (3) must be added and solved also. 

4 Circumcenter Based Approach (CBA) 

To discretize the partial differential equations defined by (1), (2), (3) and (4) the 
Finite Volume Method [10] will be used. With the unstructured triangular grid 
used, it is necessary to integrate each PDE of the problem in the triangular cell. 
Considering the stencil in figure 1, each central control volume will be called 
“P” and the three neighbors’ cells will be called A, B, C. The cell faces for P will 
be defined a, b, c, and each of them share the P cell with A, B and C cell, 
respectively. 
     The resultant discretized equation for (2) will be: 
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here n x define the normal vector to face x,  S x define the length of face x and A 
is the area of the cell P. 
     The solution for diffusive problems in structured grid is very simple because 
the cell faces are perpendicular to the line linking the two neighbor cell centers. 
These characteristics, generally, are not found in a triangular unstructured grid. 
The use of a vertex centered scheme with Voronoi Diagrams causes a return to 
this facility. 
     Another way to maintain these characteristics in triangular unstructured grids 
is the use of CBA [9], i.e., the use of the circumcenter of each triangular cell like 
the center of the element. Remembering that the center of a circle or sphere that 
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touches each cell vertex is the point where the respective mediatrices crosses 

each other. So the term 
S

dsVn  can be approximated by: 
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here d defines the distance between the center of cell P and the neighbor X. 
For the convective term, an upwind scheme has been used. 

5 Boundary conditions 

5.1 Velocity with the Dirichlet condition 

In this first case the velocity on face “a”, of the triangular cell, in the boundary 
will be predefined: 

 

 CnV aa  (7) 
 

     A special and very common case, of Dirichlet condition, to be noticed is the 
no slip condition: 

 

 0aa nV  (8) 
 

     In both situations the convective contribution of face “a” is defined like a 
constant or null, respectively to (7) and (8). The pressure at the boundary, with 
no slip condition (8), can be considered to be constant. In the case of non-null 
value (7) the pressure at the boundary can be approximated in another way. 

5.2  Null velocity gradient (Neumann condition) 

This kind of boundary condition is applied specially in the outlet of a Hagen-
Poiseuille flow. Assuming that the face “a” of a cell is at the boundary, we have: 
 

 0
a

n

V
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     In this case, the value of the velocity vector in the center of A, B or C cell, is 
equal to the value in the cell center P. The value of the pressure in the boundary 
can be determined by an extrapolation in the adjacent cells. 

5.3 Adiabatic boundary with the no slip condition 

The first derivate of T in the face “a” of a cell will be null: 
 

 0
an

T
 (10) 
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     The condition defined in equation (8) will be applied. The contribution of the 
diffusive term in Energy equation (3) for the face “a” will be null, and, because 
of (8), the contribution of the convective term in (3) will be null too. 

5.4 Boundary with predefined temperature and the no slip condition 

The value of temperature at the boundary is predefined: 
 

 CTa  (11) 
 

     The condition defined in equation (8) must be applied like in the previous 
case. 

6 Results 

In this section the result for the application of Circumcenter Based Approach for 
Poiseuille flow, lid-driven cavity flow, backward-facing step flow and free or 
natural convection are presented. 

6.1 Poiseuille flow 

The results presented here were obtained solving an incompressible laminar 
viscous flow in steady state considering isothermal conditions. Brodkey [2] 
called the flow in a channel formed by two flat plates by Poiseuille flow, and in 
this case, in a fully developed flow, the maximum of the velocity parallel to the 
plates are obtained in the middle of the boundary distance, and corresponds to 
150% of the medium velocity. 
     The two dimensional domain can be viewed in figure 2. 
 
 

 

Figure 2: Poiseuille flow domain. 
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Figure 3: Flow for Re = 100. 

     The length L is 10 times larger than the height H. The triangular unstructured 
grid uses 18864 vertex and 36846 triangular cells. The velocity in the inlet of the 
domain is a flat profile. The result showing the velocity vector for Reynolds 100 
(fully developed) can be viewed in figure 3. 
     The position where the fluid can be considered as fully developed 

0
x

V  depends upon the Reynolds number. For simulations with 

Reynolds 400 and 800 the flow is not fully developed at the outlet of the domain. 
In Schlichting [3] is defined a simple equation to estimate the length of the 
developing area (Le): 
 

 Re04.0
H

Le  (12) 

 
     The simulation shows that for Reynolds 100 the relative medium value for 

x
V  is lower than 0.1% in the cell with the longitudinal coordinate is located 

after 0.35m and for Reynolds 200 the same value is obtained for 0.75m, which 
agrees with (12). 

6.2 Lid-driven cavity flow 

In this case the interior of a cavity is filled with fluid and, in the upper boundary, 
there is a layer of the same fluid moving with parallel uniform velocity. The 2D 
domain, with equal length L and height H, can be viewed in figure 4. 
     In figure 5 it is possible to see three vortexes in the streamlines visualization 
for Reynolds 1000. 
     Using Ghia et al. [4] to compare the results of the method, it is possible to see 
in figures 6 and 7, the velocity profile at the line that crosses x = L/2 and y = 
H/2, for Reynolds 100 and 1000, respectively. Remembering that the data in the 
lines x and y are obtained with a linear interpolation. 
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Figure 4: Lid-driven cavity flow domain. 

 

Figure 5: Streamlines for Reynolds 1000 in a lid-driven cavity. 

6.3 Backward-facing step flow 

This problem consists of a flow with inlet in a straight channel (height h) that 
suddenly opens in a larger channel (height H). The relationships between the 
different heights are: H/h = 2 and the length L will be 2H. The tests are 
performed with Reynolds 150, and the direction of the velocity vector can be 
viewed in figure 8:  
    In Zhao and Zhang [12] it is possible to found physical and numerical results 
for Reynolds 150. The location of the main vortex after the step and the re-
attachment point in [13] experimental results can be compared with the 
numerical data obtained in this work in table 1. 
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(a)                                                       (b) 

Figure 6: Velocity profile interpolated at x = L/2 (a) and y = H/2 (b) for 
Reynolds 100. 

 

 
(a)                                                       (b) 

Figure 7: Velocity profile interpolated at x = L/2 (a) and y = H/2 (b) for 
Reynolds 1000. 

 

 

Figure 8: Direction of the velocity vector in Reynolds 150. 
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Table 1:  Location of the main vortex and re-attachment point. 

 X coordinate 
for vortex 

Y coordinate 
for vortex 

Re-attachment 
point 

Zhao & Zhang [12] 0,925 H 0,29 H 2,25 H 
CBA 0,9 H 0,24 H 2,6 H 

 

 
(a)                                                      (b) 

Figure 9: Temperature field for Ra = 103 (a) and Ra = 104 (b). 

Table 2:  Nusselt number in free convection. 

 Ra = 103 Ra = 104 
Vahl Davis [5] 1,116 2,234 
Actual simulation 1,06005 2,01911 

6.4 Free or natural convection 

The main characteristics of free convection are a natural flow of the fluid 
because of density buoyancy when submitted to temperature or pressure 
variations. In this problem the density buoyancy occurs because of temperature 
gradient in a bidimensional domain with a box shape, where the horizontal 
boundaries are adiabatic, the right vertical boundary is consider hotter than 
medium temperature and the left vertical boundary is colder than the same 
reference value, and remembering that the Boussinesq approximation for the 
body force g is used in momentum equation. 
     The shaded graphic of temperature field for Rayleigh number (Ra) equal 103 
and 104 can be checked in figures 9(a) and 9(b). 
     Table 2 allows checking the Nusselt number calculated by the current method 
and the Nusselt number numerically calculated by Vahl Davis [5]. 

7 Conclusions 

The Pereira Filho [13] work is the first use of CBA to solve incompressible flow 
problems, however, in his last work, only the Hagen-Poiseuille flow are solved. 
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The 3D grid used was triangular and unstructured in x and y directions, and 
structured in the z direction (the direction of the main stream). In this work there 
is no structured grid in any direction and it is possible to notice recirculation 
vortices in almost of cases tested, including a new variable (temperature) 
calculation in one of them (free convection).  
     Analyzing the results presented, it is possible to conclude that the CBA can be 
used in an alternative way to modeling 2D incompressible laminar flow 
problems under triangular unstructured grids. The resulting discrete equations, in 
primitive variables, are easy to obtain and understand, without use of staggered 
grids, corrections or under-relax procedures. 
     Because of simplicity, the CBA method presents a small algorithm 
complexity and a low computational costs when comparing other methods used 
with the same purpose and characteristics, like Frink [6], Mathur and Murthy [7], 
Despotis and Tsangaris [8], because needs a minor arithmetic operations per 
“timestep”. 
     The benchmarks performed shows promising behavior, agreeing with 
classical 2D incompressible problems. However, numerical instabilities were 
found with flows with higher Reynolds Numbers. The future inclusion of a 
turbulent modeling scheme in CBA needs to be investigated with this kind of 2D 
flows. Another problem encountered shows that the method is grid dependent, 
needing efficient grid generators, specially to prevent the generation of triangular 
element with internal angles bigger than 90º, like depicted in Date [11]. In this 
case, Delaunay triangulations minimize the problem. 
     This kind of problem (triangular element with internal angles bigger than 90º) 
makes the circumcenter be localized outside the control volume. However, the 
problem affects also Voronoi schemes (Vertex centered), creating polygons with 
sides that do not cross triangular faces. In 3D flows similar problems can occurs 
with tetrahedral elements (circumsphere localized outside the control volume). 
     For the future the authors suggests a better investigation of 3D case 
(preliminary analyzes shows numerical precision lose), and comparative tests 
with other classical approaches, like Voronoi schemes and Frink [6] scheme. A 
compressible modeling case and an inclusion of turbulent scheme can be 
explored too. 
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