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ABSTRACT

We investigate a number of nonlinear physical problems relevant for the space en-
vironment, using both observational data and a dynamical systems approach. First,
the relation between current sheets, turbulence and magnetic reconnections at the
leading edge of an interplanetary coronal mass ejection (ICME) detected by four
Cluster spacecraft on 21 January 2005 is studied. We report the observational ev-
idence of two magnetically reconnected current sheets in the vicinity of a front
magnetic cloud boundary layer, in connection with the enhancement of intermittent
turbulence. In addition, we carry out theoretical studies of edge of chaos and coher-
ent structures in fluids and plasmas, including solar dynamo, Pierce diode (double
layers), and drift waves in plasmas (long waves in shallow waters). All theoretical
models studied in this thesis share a common feature, namely, for a given physi-
cal parameter, all initial conditions converge asymptotically to an attractor, with
some of them showing a chaotic transient behavior before converging to an attrac-
tor. These chaotic transients are due to the presence of an ubiquitous unstable,
non-attracting, coherent structure known as chaotic saddle. Based on the concept of
lifetime function, we distinguish the region of phase space having shorter transient
lifetimes whose trajectories converge quickly to the attractor, from the region with
longer lifetimes whose trajectories traverse first in the vicinity of a chaotic saddle
before converging to an attractor. The boundary that separates the two regions is
called the edge of chaos, which corresponds to the stable manifold of an unstable
saddle coherent structure (the edge state) determined by the bisection method. We
show the importance of the edge states in laminar–turbulent transitions in fluids
and plasmas and conclude that the edge of chaos is an universal phenomenon in
nonlinear systems with chaotic transients, and may be crucial to understand the
phenomenon of turbulence in nature.
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ESTRUTURAS DE FRONTEIRA E TURBULÊNCIA EM PLASMAS
ESPACIAIS

RESUMO

Neste trabalho foi investigada uma série de problemas f́ısicos não–lineares relevantes
para o ambiente espacial, baseando–se tanto em dados observacionais quanto numa
abordagem de sistemas dinâmicos. Primeiro, foi estudada a relação entre as lâmi-
nas de corrente, a turbulência e a reconexão magnética na borda frontal de uma
ejeção de massa coronal interplanetária detectada pelos quatro satélites Cluster, no
dia 21 de Janeiro de 2005. Foi reportada a evidência observacional de duas lâminas
de corrente reconectadas na vizinhança da camada limite frontal de uma nuvem
magnética, as quais tem relação direta com o aumento da turbulência intermitente.
Além disso, foram feitos estudos teóricos da fronteira de caos e as estruturas coeren-
tes em flúıdos e plasmas, incluindo o d́ınamo solar, o d́ıodo de Pierce e um modelo
de ondas de deriva não–linear em plasmas (ondas longas em águas razas). Todos
os modelos estudados neste trabalho compartilham uma mesma caracteŕıstica: para
um certo parâmetro f́ısico dado, todas as condições iniciais convergem assintótica-
mente para um atrator, com algumas delas apresentando transientes caóticos antes
de convergir para o atrator. Estes transientes caóticos devem–se à presença de uma
estrutura coerente não–atrativa, chamada de sela caótica. Baseando–se no conceito
da função de tempo de vida, é posśıvel distinguir as regiões do espaço de fase com
menores tempos de vida, cujas trajetórias convergem rapidamente para o atrator,
daquelas com maiores tempos de vida, cujas trajetórias percorrem a vizinhança da
sela caótica antes de converger para o atrator. A fronteira que separa as duas regiões
é chamada de fronteira de caos, a qual corresponde à variedade estável de uma estru-
tura coerente de sela, o estado de fronteira, determinado pelo método de bisecção.
Foi demonstrada a importância do estado de fronteira nas transições de fluxo lami-
nar para turbulência em flúıdos e plasmas. Concluiu–se que a fronteira de caos é um
fenômeno universal em sistemas não–lineares que apresentam transientes caóticos, e
pode ser crucial para compreender a turbulência na natureza.
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in a two–dimensional phase–space projection at α = 2.85529π. Blue areas

indicate initial conditions that converge quickly to the attractor. Initial

conditions leading to longer lifetimes are represented by red tones. The

edge of chaos is given by the boundary between the blue and red areas.

(b) Schematic representation of the edge of chaos (SM) indicated by a

solid line and its associated saddle object (the edge state). Any initial

condition lying on the edge of chaos will converge to the edge state. . . . 49

xvi
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tractor A2 at ε = 0.131. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xvii



5.6 Basins of attraction for attractors A0 (blue) and A2 (red), for ε =

0.095, 0.111, 0.125 and 0.13. Black cross denotes the edge state ES in

each case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.7 Dynamical mechanism that creates fractal basin boundaries and a chaotic

saddle within. (a) Smooth basin boundary for ε < ε∗. (b) Homoclinic tan-

gencies for ε = ε∗. (c) Homoclinic crossings for ε > ε∗. The stable man-

ifold, and consequently the basin boundary, becomes fractal. Adapted

from Lai and Tél (2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.8 (a) Enlargement of bifurcation diagram for attractor A2 (red dots) and

the edge state ES (dashed black line). (b) Fractal dimension of the basin

boundary as a function of ε. For ε & 0.11 (indicated by the arrow) the

boundary dimension begins to increase from the unity, meaning that

basin boundary becomes fractal. . . . . . . . . . . . . . . . . . . . . . . . 70

5.9 Temporal convergence of the six positive Lyapunov exponents of the

STCS chaotic saddle, for ε = 0.13. . . . . . . . . . . . . . . . . . . . . . . 71

5.10 Amplitude spectra of A0 (blue line), A2 (red line), ES (dashed black line)

and the STCS (light blue line). . . . . . . . . . . . . . . . . . . . . . . . 71

5.11 Contourplot of the spatiotemporal evolution for the four coexisting struc-

tures at ε = 0.13. While A0, A2 and ES are spatially regular, the STCS

has a disordered spatiotemporal pattern. . . . . . . . . . . . . . . . . . . 72

5.12 Time–averaged spectral entropy of STCS as a function of ε. . . . . . . . 73

5.13 (a) Number of positive Lyapunov exponents of STSC as a function of ε.

(b) Maximum Lyapunov exponent of STSC as a function of ε. . . . . . . 74

5.14 A two–dimensional sample of phase space, showing the transient lifetime. 76

5.15 Energy time series for two initial conditions found with the bisection

method for ε = 0.199. The initial distance is 10−12. The laminar tra-

jectory (red) converges quickly to the attractor A1, and the turbulent

trajectory (light blue) goes through the STCS regime before converging

to A1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.16 Temporal convergence of the first four Lyapunov exponents of the edge

state ES at ε = 0.199. The edge state is a saddle fixed point, with one

unstable direction and thirty–nine stable directions. . . . . . . . . . . . . 78

xviii



5.17 Time series of energy E(t), spectral entropy SA(t), the distance to the

edge state ∆(t) and mutual collective correlation function C∆φ(t) for an

initial condition in the vicinity of STCS, showing a long chaotic transient

before converging to attractor A1. Lower and higher levels of synchroniza-

tion with the edge state ES coincide with higher and lower levels of spatial

disorder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.18 Synchronization between ES and STCS. A solution during the transient

turbulent regime synchronize with the edge state (vertical dashed blue

lines) prior to the bursty release of energy (vertical arrows). . . . . . . . 82

5.19 Enlargement of the bifuraction diagram for the attractor A1 (red), the

temporally chaotic saddle TCS (grey) and the edge state ES (dashed

black). Interior crisis IC and boundary crisis are indicated. Attractor A1

is considered to be a single structure divided in the parameter space by

the chaotic saddle TCS. Due to the specific Poincaré cut, it is posible
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1 INTRODUCTION

Turbulence is an ubiquitous phenomenon in space and astrophysical plasmas. It can

be observed in many different systems, such as the solar wind, the solar convective

zone and in the interestellar medium, among others (BRANDENBURG; NORDLUND,

2011). Turbulent flows are strongly irregular and chaotic, both in space and time.

Evidence of the spatiotemporal disorder in turbulence is the power spectrum of

the velocity field, with an infinite number of active modes k. The inertial subrange

is defined by the wavenumber interval greater than the scale of energy injection

kin and smaller than the dissipative scale kd, as shown in Figure 1.1. Assuming

that turbulence in the inertial subrange is isotropic, i.e., there are not preferential

directions, and homogeneous, meaning that energy transfer rate among scales ε

is constant and uniform, Kolmogorov (1941) developed a theory which predicts a

spectral index equal to -5/3 for the power spectrum,

E(k) ∝ k−5/3. (1.1)

This spectral index has also been observed for the magnetic fluctuations in the solar

wind (BISKAMP, 2003).

Kolmogorov’s assumptions of isotropy and homogeneity imply that turbulence is

self–similar or monofractal. There exists observational evidence indicating the mul-

tifractal character of fluctuations of the fluid velocity in neutral fluids (FRISCH, 1995)

and fluctuations of the magnetic field in the solar wind (FRISCH, 1995; BISKAMP,

2003), related to inhomogeneities present in the turbulence. In other words, the en-

ergy transfer rate depends on the scales, which is caused by the presence of coherent

structures in multiple scales. Large–amplitude coherent structures are responsible

for non–Gaussian probability distribution functions (PDFs) of velocity fluctuations,

with this phenomena being more pronounced at smaller scales. Multifractality in

turbulence is also known as intermittency.

Identification of coherent structures is a key to probing the nature of intermit-

tent turbulence in space plasmas such as the solar wind (BRUNO; CARBONE, 2005;

BOROVSKY, 2010). Current sheets are magnetic coherent structures in a localized re-

gion of electric current confined to a nearly two–dimensional surface, ubiquitous in a

magnetized astrophysical plasma (VELTRI, 1999), which have been seen in numerical

simulations (ZHOU et al., 2004), solar wind (GOSLING et al., 2005; GOSLING et al., 2007;
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Figure 1.1 - Power spectrum density of turbulence with the characteristic power law within
the inertial subrange, between the energy injection scale kin and the energy
dissipation scale kd.

PHAN et al., 2006; LI, 2008; CHIAN; MUÑOZ, 2011) and solar flares (LIU et al., 2010).

Magnetic reconnection in a current sheet is a fundamental mechanism that converts

magnetic energy into plasma kinetic energy in astrophysical systems (NISHIDA, 2007;

PRIEST, 2007). Interplanetary shocks and magnetic cloud boundary layers (MCBL)

are formed by the interaction of an interplanetary coronal mass ejection (ICME)

emanating from a solar active region with the ambient solar wind (WEI et al., 2003a;

WEI et al., 2003b; BOUGERET; PICK, 2007; CARGILL; HARRA, 2007), which leads to a

local enhancement of intermittency in the interplanetary turbulence, characterized

by the kurtosis–skewness interdependence, via cross–scale coupling between large–

scale structures such as shock boundaries and small–scale fluctuations (VÖRÖS et al.,

2006).

Transition to turbulence is a very important open question in fluid dynamics (ECK-

HARDT, 2008). Since the famous work of Lorenz (1963), the dynamical systems ap-

proach has been extensively used to model turbulent flows. In the last years, many

efforts have been made using the dynamical systems approach, in order to figure out

the underlying mechanisms in this transition. Two remarkable results emerge from

this approach: (i) the importance of chaotic transients, and (ii) the critical role of a
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coherent structure called the edge state.

Experimental evidence and numerical simulations have shown the existence of

chaotic transients in shear flows (SCHMIEGEL; ECKHARDT, 1997; AVILA et al., 2010).

Chaotic transients in nonlinear dynamical systems are due to non–attracting chaotic

sets known as chaotic saddles. In the last years the chaotic saddles have attracted

wide attention due to their role in the transition to turbulence in neutral fluids

(WILLIS; KERSWELL, 2007; HOF et al., 2008). Despite these results, almost no studies

relating turbulent transients and transition to turbulence in plasmas have been per-

formed. Recently Rempel et al. (2010) studied transition to turbulence in magetized

acretion disks showing that the lifetime of turbulence transients obeys a supertran-

sient law (TÉL; LAI, 2008).

The edge state is a coherent structure which lies at the boundary between the

laminar and turbulent states. Skufca et al. (2006) studied the edge of chaos in a

low–dimensional model for the plane Couette flow, showing that the edge state is

a hyperbolic structure that is attracting over the edge of chaos, and for a range

of control parameters this structure becomes chaotic. The same ideas were applied

in Schneider et al. (2007) for a pipe flow using direct numerical simulations. For

this case the edge state was found to be formed by two symmetrical vortices. The

edge state between two asymptotic solutions was found in Cassak et al. (2007) for

a two–dimensional MHD numerical model of magnetic reconnection.

The aim of this thesis is to study the relationship between coherent structures and

fundamental processes in nonlinear spatially–extended systems, such as intermit-

tency, energy transfer and dissipation, and transition to turbulence, using both ob-

servational data of turbulence in the solar wind and a set of theoretical models of

chaotic and spatiotemporally chaotic systems.

This thesis is organized as follows. In Chapter 2 the relation between current sheets,

intermittent turbulence and magnetic reconnection in the leading edge of an ICME

is investigated. In Chapter 3 we introduce basic concepts on dynamical systems. We

first apply them to study crisis and noise–induced intermittency in a nonlinear low–

dimensional model for the mean–field solar dynamo. In Chapter 4 crises and chaotic

saddles are invesigated in the Pierce diode, a one–dimensional spatially–extended

plasma model described by fluid equations, introducing the concept of edge state.

In Chapter 5 we use a model of nonlinear drift waves in plasmas (or long waves in
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shallow waters) to study the problem of laminar–turbulence transition. The origin

of the edge state and a spatiotemporally chaotic saddle, and the role played by them

in the laminar–turbulence transition are investigated. The conclusions are presented

in Chapter 6.
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2 COHERENT STRUCTURES AND MAGNETIC RECONNECTION

AT THE TURBULENT LEADING EDGE OF AN INTERPLANETARY

CORONAL MASS EJECTION

Coronal mass ejections are a major form of solar activity. They involve the expulsion

of large amounts of plasma and magnetic flux at high speeds from the solar corona

into the solar wind, are believed to be responsible for the acceleration of coronal

ions to high energies, and their manifestation in the solar wind, the interplanetary

coronal mass ejection (ICME), is responsible for many major disturbances to the

Earth’s space environment (CARGILL; HARRA, 2007). A schematic diagram of an

ICME is shown in Figure 2.1. A magnetic shock is formed ahead the ejected mass

by its interaction with the ambient solar wind. Between the shock and the plasma

a turbulent region, called sheath, is formed. The magnetic cloud, behind the ejecta,

is the large scale magnetic structure carrying magnetic flux from the corona.

In this Chapter we study the relation between current sheets, turbulence and mag-

netic reconnections at the leading edge of an ICME intercepted by the four Cluster

spacecraft in the solar wind on 2005 January 21 (FOULLON et al., 2007; DU et al.,

2008; MIRANDA et al., 2010; MUÑOZ et al., 2010). A few papers that deal with mag-

netic turbulence in ICME only tackle the region inside a magnetic cloud (LEAMON

et al., 1998; LIU et al., 2006). We report for the first time the observational evidence of

a Kolmogorov magnetic turbulence in the vicinity of two magnetically reconnected

current sheets at the front MCBL that exhibits the She–Leveque multifractal scaling

and signatures of bifurcated current sheets. Recent investigations of interplanetary

and geomagnetic data show that the leading edge of an ICME triggers the initial

phase of geomagnetic storms (DU et al., 2008; ZUO et al., 2010). Hence, an improved

knowledge of the physical processes that occur at/near the front MCBL is important

for understanding the dynamics of star–planet relation.

2.1 The ICME of 21 January 2005

Figure 2.2 provides an overview of the magnetic field and plasma parameters mea-

sured by Cluster–1 from 16:42:00 UT to 20:24:00 UT of 21 January 2005, which

shows the modulus of magnetic field |B| (nT); the three components of the vector

magnetic field Bx, By and Bz in the GSE coordinates; the angles ΦB and θB (degrees)

of the magnetic field relative to the Sun–Earth x–axis in the ecliptic plane and out

of the plane, respectively, in the polar GSE coordinates (CHIAN; MIRANDA, 2009).
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Figure 2.1 - Schematic diagram of an ICME ejected from the Sun.

SOURCE: Lang (2009)

Figure 2.2 also shows the speed of the ions |V| (km/s); the ion number density Ni

(cm−3); the ion temperature Ti (◦K), and the ion plasma beta β. Two discontinu-

ities are identified in the time series, marked by vertical dashed lines in Figure 2.2.

First, the shock arrival (SA) at 17:10:20 UT, where the modulus of the magnetic

field undergoes a sudden increase from ∼5 nT to ∼30 nT, accompanied by jumps in

|V|, Ni, Ti and β. Then, a non–compressive density enhancement (NCDE) occurs

at 18:44:05 UT related to the leading boundary of the ejecta, denoted by SB, char-

acterized by an increase of the plasma density from ∼13 cm−3 to ∼40 cm−3. The

SB is associated with a decrease of Ti and an increase of the plasma beta (MUÑOZ et

al., 2010). Foullon et al. (2007) found that the ejecta front forms behind a magnetic

discontinuity. As shown in Figure 2.2, magnetic field points mainly towards the Sun

and southward (Bx > 0 and Bz < 0), before and after the passage of the ejecta

front layer, but in the opposite way within the layer. The boundaries of this front

layer are called SB1 and SB2. The three regions of the ICME observed by Cluster
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Figure 2.2 - Overview of the ICME event of 21 January 2005 as measured by Cluster–1.
From top to bottom: modulus of magnetic field |B| (nT); the three components
of the vector magnetic field Bx, By and Bz in the GSE coordinates; angle ΦB

(degrees) of the magnetic field relative to the x-axis in the ecliptic plane; angle
ΘB of the magnetic field out of the ecliptic; the speed of the ions |V| (km/s);
ion number density Ni (cm−3); ion temperature Ti (◦K), and ion plasma beta
β. The arrival shock (SA) and the leading boundary of the ejecta (SB) are
marked by dashed lines.
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are the upstream region, before SA, characterized by quiet solar wind conditions,

the sheath, between SA and SB, characterized by large magnetic fluctuations and a

faster plasma speed, and the NCDE region, denser and colder.

2.2 Detection of current sheets

Identification of coherent structures is a key to probing the nature of intermittent

turbulence in astrophysical plasmas such as the solar wind (BRUNO; CARBONE, 2005;

BOROVSKY, 2010). Current sheets are magnetic coherent structures in a localized

region of electric current confined to a nearly two–dimensional surface, ubiquitous

in a magnetized astrophysical plasma (VELTRI, 1999), which have been seen in nu-

merical simulations (ZHOU et al., 2004), solar wind (GOSLING et al., 2005; GOSLING

et al., 2007; PHAN et al., 2006; LI, 2008) and solar flares (LIU et al., 2010).

A characteristic feature of current sheets is the significant change in magnetic field

rotation from one side to the other of the structure.This fact was used by Li (2008)

to develop a systematic method to search for current sheets using single-spacecraft

magnetic field data. Consider a time series of magnetic field data B(t). The proba-

blility density of finding an angle between B(t) and B(t + τ) within the interval θ

and θ+∆θ can be computed directly from magnetic field measurements as

f(θ, τ)∆θ =
N τ (θ < θ′ < θ + ∆θ)

N τ (0 < θ′ < π)
, (2.1)

where N τ (θ < θ′ < θ + ∆θ) is the number of measurement pairs where the an-

gle between B(t) and B(t + τ) is within the range θ and θ + ∆θ. The integrated

distribution function is defined as

F (θ, τ) =

∫ π

θ

dθ′ f(θ′, τ), (2.2)

representing the frequency of having the measured angle larger than θ. If there are

current sheets associated with the magentic field time series, the quantity F (θ, τ)

shall scale linearly with the time separation τ when θ is larger than some critical

angle θ0, i.e.,

F (θ,Nτ) ∼ NF (θ, τ) when θ > θ0. (2.3)

The localization of the current sheets is determined by the local statistical properties

of the function F (θ, τ), as shown in Fig. 2.3. If the majority (> 60%) of the angles
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Figure 2.3 - Li (2008) method to locate current sheets within a magnetic field time series.

between B(t) and B(t + τ) in a window of size 2τ centered at time T are greater

than θ, then a current sheet is located at T . In Fig. 2.3 this threshold is denoted

by the dashed red line in the upper panel. A current sheet, denoted by red dots, is

detected within the sliding window (blue box). The parameter τ define the typical

size (scale) of the current sheets found with this procedure.

We apply the above single–spacecraft method to systematically search for current

sheets in the ICME event of 21 January 2005, based on the Cluster magnetic field

data. To show the existence of current sheets in the time series of the magnetic field,

the function F (θ, τ) has to be well ordered as a function of θ in the range of scales

of the current sheets. The upper panel of Figure 2.4 shows the function F (θ, τ) as

a function of θ for four different time scales τ . For large–scales (τ = 30, 60, 120, 240

seconds) the curves are nicely ordered with respect to θ. The lower panel of Figure 2.4

shows an almost linear dependence of F (θ, τ) with τ for different critical angles (θ =

60◦, 80◦, 100◦, 120◦). This linear behavior of F (θ, τ) as a function of τ is expected if

there are current sheets within the time series, according to equation (2.3).

Figure 2.5 shows the position of current sheets (red dots) found by the method

9



Figure 2.4 - Upper panel: F (θ, τ) as function of θ. For large–scales (τ = 30, 60, 120, 240 sec)
F (θ, τ) are nicely ordered with respect to θ. In addition, when 60◦ < θ < 120◦

the curves are approximately parallel to each other. Lower panel: F (θ, τ) as
function of τ for different values of θ. A linear behavior is clearly seen for
different critical angles, in agreement with equation (2.3).

fixing the time scale τ = 120 seconds for the same critical angles as in the upper

panel of Figure 2.4. When the critical angle value increases, the number of current

sheets detected decreases, in agreement with the behaviour of F (θ, τ) in the upper

panel of Figure 2.4. For all values of θ, both sides of the front layer that forms the

leading edge of the ejecta, SB1 and SB2, are detected as current sheets. These are

well localized structures, since the large variation in the magnetic field angles ΦB

and ΘB (Figure 2.2) is captured by the statistical properties of the sliding window

of size 2τ when it passes through the discontinuities.

The shock arrival SA is also classified as a current sheet, but for θ = 120◦ it is

no longer detected. Figure 2.6 shows the current sheets detected with the single–

spacecraft method, fixing the critical angle θ = 60◦ and varying the time scale τ ,
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Figure 2.5 - Current sheets of size τ = 120 seconds detected by the single-spacecraft
method applied over the time series of B (black line), using four critical angles
θ. The position of the currents sheets are marked by red dots. The number of
CS detected decrease as θ is increased, as expected from F (θ, τ) in the upper
panel of Fig. 2.4. Three CS, including both at the leading edge of the ejecta
are detected in all cases.

using the same values as the lower panel of Figure 2.4. The number of current sheets

detected increases as τ is increased, as is expected from Figure 2.4. A relevant point

is that for the first three time scales the current sheets detected are almost the same,

just varying in size (number of red dots). Both sides of the leading edge SB1 and

SB2 are detected again in all cases, even for the smallest τ . For τ = 240 seconds SB1

and SB2 appear merged, because the window of size 2τ is larger than the separation

between SB1 and SB2. Indeed, this merging can occur for any pair of current sheets

with a temporal size comparable with their time separation. The shock arrival SA

is detected as a current sheet for the last three values of τ . This non–persistence

11



Figure 2.6 - Current sheets detected with the single–spacecraft method, fixing the critical
angle θ = 60◦ using four time scales τ . The number of points considered as
being part of a current sheet (red dots) increases as τ is increased, as expected
from F (θ, τ) in the lower panel of Fig. 2.4.

behaviour can be explained by examining the magnetic angles ΦB and ΘB around

the SA, in Fig. 2.2. The direction of the magnetic field does not present a coherent

variation around the transition, producing the ambiguous results in Figs. 2.5 and

2.6. A remarkable fact from Figs. 2.5 and 2.6 is that the majority of current sheets

detected are in the sheath region, between SA and SB.

2.3 Turbulence and intermittency at the leading edge of the ICME

In this Section we discuss the relation between coeherent structures, such as the

current sheets found in Section 2.2, and the turbulent intermittency at the leading

edge of the ICME, studying departure from Gaussianity and multifractality of the

12



Figure 2.7 - (a) Modulus of the magnetic field |B| in the time interval containing the two
current sheets SB1 and SB2 associated with the leading edge (SB) of the
ICME ejecta. (b) Power spectral density, PSD (nT2 Hz−1), of |B| for the time
interval of (a); straight lines indicate the inertial and dissipative subranges.
The spectral indices are calculated by a linear regression of the log–log PSD
data.

SOURCE: Chian and Muñoz (2011)

magnetic fluctuations.

Figure 2.7(a) shows the modulus of the magnetic field |B| in the vicinity of the

magnetic cloud boundary layer (MCBL). This boundary layer is formed by two

current sheets SB1 and SB2, detected by the single–spacecraft method on Section 2.2

and denoted by red dots in Fig. 2.7(a). The power spectral density (PSD) of magnetic

fluctuations of Fig. 2.7(a) is computed using the Welch method (WELCH, 1967),

by dividing the time series into a set of overlapping subintervals and computing

the PSD of each subinterval by the fast Fourier transform. The average of the set

of power spectra gives the PSD of Fig. 2.7(b). The spectral index for the inertial
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Figure 2.8 - Scale dependence for three different timescales (τ=2 s, 20 s and 200 s) of
Fig. 2.7(b). (a) The normalized magnetic–field two–point differences ∆B. (b)
The probability density function PDF of ∆B, superposed by a Gaussian PDF
(orange line).

SOURCE: Chian and Muñoz (2011)

subrange −1.70 ± 0.05 is calculated by a linear regression of the log–log PSD data

in the frequency range 0.05–1 Hz, which is determined by the compensated PSD

technique of Biskamp et al. (1999). The same procedure is applied to obtain the

spectral index for the dissipative subrange −2.71 ± 0.05 in the frequency range

3–7 Hz. The correlation coefficients r2 of the linear regression are 0.93 and 0.86,

respectively, for the inertial and dissipative subranges. Fig. 2.7(b) provides the first

observational evidence of a Kolmogorov power spectra −5/3 in the inertial subrange

of the magnetic turbulence in the vicinity of a front MCBL.

The scale dependence for three different timescales (τ=2 s, 20 s, 200 s) of the

normalized two–point difference of the modulus of magnetic field and the prob-

ability density function (PDF) are shown in the upper panel of Fig. 2.8, where

∆B = (δB−〈δB〉)/σB, δB(τ) = |B(t+ τ)|− |B(t)| denotes the two-point difference
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of |B| for a given timescale τ , the angle brackets denote the mean value of δB, and

σB denotes the standard deviation of δB. The upper panel of Fig. 2.8 shows that

the magnetic field fluctuations at the leading edge of the ICME, in the vicinity of

the two current sheets SB1 and SB2, become more intermittent as the scale becomes

smaller. The three timescales in the upper panel of Fig. 2.8 correspond to 1,858 km,

18,580 km, and 185,800 km, respectively, if we assume the Taylor’s hypothesis and

use the mean ion bulk speed of 〈|Vsw|〉=929 km s−1 measured in this time interval.

The lower panel of Fig. 2.8 shows that the PDF of ∆B at the leading edge of ICME

is close to a Gaussian distribution at large timescales, but deviates significantly from

a Gaussian distribution as the timescale decreases. At small scales, the shape of the

PDF becomes non–Gaussian and leptokurtic, displaying sharp peaks at ∆B ∼ 0 and

fat tails at large ∆B, due to an excess of small– and large–amplitude fluctuations

in the SB1 and SB2 regions seen in the upper panel of Fig. 2.8.

We characterize first the multifractal nature of the turbulent boundary layers at the

leading edge of ICME by computing the scaling exponents of structure functions of

magnetic fluctuations,

Sp(τ) = 〈|δB(τ)|p〉 ∼ τα(p), (2.4)

where the angle brackets denote ensemble averaging over time, and p denotes the or-

der of structure functions within the inertial subrange, and comparing them against

the Kolmogorov’s K41 universality theory which is based on the simplified assump-

tions of homogeneity, isotropy, incompressibility, and stationarity (POLITANO; POU-

QUET, 1995). Upper panel of Fig. 2.9 shows the structure functions as a function of

the timescale τ for p = 1, . . . , 6. The scale is logarithmic for both axes. The inertial

subrange, denoted by the horizontal arrow, is the interval where the curves have an

approximately linear behavior for all p. We then apply the extended self–similatiry

(ESS) technique of Benzi et al. (1993) to improve the calculation of the scaling expo-

nent, Sp(τ) ∼ [S3(τ)]ζ(p), where ζ(p) ∼ α(p)/α(3) is found from the extended range,

as shown in the lower panel of Fig. 2.9. The horizontal arrow denotes the original

inertial subrange. The scaling exponent for each integer order p of the structure

function can be obtained by estimating the slope of a linear fitting of the curves

within the inertial subrange.

Figure 2.10 shows the scaling exponent ζ(p) as a function of p for the time series of

Fig. 2.7(a). The black dashed line denotes the K41 self–similar scaling, ζ(p) = p/3.

The statistical scaling properties of the observed magnetic fluctuations (indicated by
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Figure 2.9 - Upper panel: structure functions vs. timescale τ for p = 1 (black), p = 2
(red), p = 3 (green), p = 4 (blue), p = 5 (yellow) and p = 6 (brown).
Lower panel: structure functions after applying the Extended Self–Similarity
technique. Horizontal arrow represents the previous inertial subrange.

a diamond symbol) in Fig. 2.10 display a noticeable departure from self–similarity.

As shown by both panels of Fig. 2.8, the origin of intermittency and non–Gaussianity

is the excess of small–scale large–amplitude fluctuations, such as in the regions of

SB1 and SB2. The coherent structures, including SB1 and SB2, embedded in the

intermittent magnetic turbulence result from amplitude–phase synchronization re-

lated to nonlinear multiscale interactions (KOGA et al., 2007; CHIAN; MIRANDA, 2009;

CHIAN et al., 2010).

Several models have been proposed to improve the prediction of universality in fluid

and magnetohydrodynamic (MHD) turbulence. A model of universal scaling laws for

fully developed turbulence in fluids was postulated by She and Leveque (1994) in
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Figure 2.10 - Scaling exponent ζ of the pth–order structure function for observed values
(red diamonds), superposed by the K41 self–similar scaling (black dashed
line), and the multifractal prediction of the She–Leveque MHD model (blue
curve).

SOURCE: Chian and Muñoz (2011)

terms of scaling of a sequence of moment ratios of the energy dissipation field coarse

grained at the inertial subrange scale, whereby the moment ratios form a hierarchy of

structures and the most singular structures are assumed to be vortex filaments. This

model is successful in reproducing both experimental and numerical data of fluid

and plasma turbulence. An extension of the universal scaling of She and Leveque

(1994) was developed by Politano and Pouquet (1995) in the framework of the

Iroshnikov–Kraichnan theory of MHD turbulence for sheetlike dissipative structures,

and by Müller and Biskamp (2000) and Müller et al. (2003) within the framework

of the Kolmogorov k−5/3 law for sheetlike dissipative structures in isotropic and

anisotropic MHD turbulence, respectively. In Fig. 2.10 we compare the observed

scaling exponents of magnetic turbulence with the She–Leveque MHD model (blue

curve) of Müller et al. (2003),

ζp = p/g2 + 1− (1/g)p/g, (2.5)

where g is an adjustable parameter. Evidently, the prediction of the She–Leveque
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Figure 2.11 - Idealized two–dimensional reconnection exhaust region bounded by a bifur-
cated current sheet. The field line kinks associated with magnetic reconnec-
tion propagate as Alfvén waves along the field lines accelarating plasma away
from the reconnection site (adapted from Gosling et al. (2005)).

model for anisotropic MHD turbulence closely reproduces the observed scaling of

interplanetary magnetic turbulence, for g = 3.2257. Our results also render support

for the anisotropic Kolmogorov theory of Alfvén turbulence developed by Goldreich

and Sridhar (1995), and present the first evidence of the multifractal universality of

magnetic fluctuations in the neighborhood of a front MCBL.

2.4 Magnetic reconnection

In this Section we discuss the detection of magnetic reconnections associated with

the two currents sheets SB1 and SB2. Magnetic reconnection in a current sheet is a

fundamental mechanism that converts magnetic energy into plasma kinetic energy

in astrophysical systems (NISHIDA, 2007; PRIEST, 2007). Gosling et al. (2005) found

evidence of the existence of plasma exhausts in the solar wind observed in the in-

terior of an ICME. According to their model (Figure 2.11), as a result of magnetic

reconnection, the exhaust region is bounded on either side by kinks that propagate

as Alfvén waves along the reconnected field lines. Plasma is accelerated away from

the reconnection site when it enters into the exhaust region from both sides. Since

Alfvén waves propagating parallel (antiparallel) to B produce anticorrelated (corre-
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lated) variations in B and V, anticorrelated (correlated) changes in V and B are

expected at the upper (lower) side of the exhaust region, represented by the dashed

red arrows in Figure 2.11. Furthermore, it is expected to observe a depletion of the

magnetic field strength at the center of the exhaust region. Note that a larger field

rotation occurs across these exhaust edges. Then, the current sheet has a bifurcated

structure as seen far from the reconnection site. This splitting of the original recon-

necting thin current sheet is a result of the reconnection process (GOSLING et al.,

2005).

A quantitative comparison between observations and the model can be made by

investigating how well the observed velocity changes match with those predicted

from the so–called Walen condition (HUDSON, 1970). From the constancy of the

tangential electric field accross any discontinuity, and conservation of mass flux and

momentum, it is possible to find an equation for the change of velocity vector V2−V1

occurred when a plasma passes through an Alfvén wave (SONNERUP et al., 1981):

V2 −V1 = ±[ρ1(1− α1)/µ0]1/2(B2/ρ2 −B1/ρ1), (2.6)

where subscripts 1 and 2 refer to points upstream and dowsntream from the edge

of the exhaust region, respectively. The + and - signs represent, respectively, waves

propagating antiparallel and parallel to B, ρ is the mass density, µ0 is the permability

of vacuum, and α is the pressure anisotropy defined by

α = (p‖ − p⊥)µ0/B
2, (2.7)

where p‖ and p⊥ are the components of the pressure tensor parallel and perpendicular

to B.

Figure 2.12 shows the time series of the modulus of the magnetic field |B| (nT),

the modulus of observed ion velocity |V| (km s−1, black line) and the plasma ve-

locity (orange line) predicted by the magnetic reconnection theory of Sonnerup et

al. (1981), and the modulus of current density |J| (nA m−2) computed from B by

the curlometer method of Dunlop et al. (2002) using four Cluster spacecraft. Intense

localized current density is clearly seen in the regions of SB1 and SB2 in Fig. 2.12.

The magnetic field data of SB1 and SB2 is analyzed using the minimum variance

analysis (MVA) to find the direction along which the field component has minimum

variance (N direction), and the directions of maximum (L) and intermediate (M)
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Figure 2.12 - Detection of magnetic reconnections at the leading edge of ICME associated
with the current sheets SB1 and SB2 (magenta). |B| (nT) is the modulus
of magnetic field (enlargement of Fig. 2.7(a); |V| (km s−1) is the modulus
of the observed plasma velocity (black) and the plasma velocity (orange)
predicted by the magnetic reconnection theory of Sonnerup et al. (1981); |J|
(nA m−2) is the modulus of current density computed by the multi-spacecraft
curlometer technique of Dunlop et al. (2002).

SOURCE: Chian and Muñoz (2011)

variance (SONNERUP; CAHILL JR., 1967). These three directions form an orthogonal

LMN coordinate system. Considering a current sheet as a two–dimensional planar

magnetic structure formed by two sets of oppositely directed field lines lying in a

plane, L is then the direction of the field lines, M is the out–of–plane direction,

and N is the direction perpendicular to L and M . A thin current sheet is formed

between the two oppositely directed field lines, with the current flowing in the M

direction. When the oppositely directed field lines reconnect, the current sheet bi-

furcates. Figure 2.13 shows three components of magnetic field (BL, BM , BN) and

ion velocity (VL, VM , VN) in the LMN coordinates. For visualization we have shifted

the plasma velocities in Figs. 2.12 and 2.13 by the average solar wind velocity, given

by 〈Vsw〉 = (−926, 75,−29) km s−1 in the GSE coordinates.
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Figure 2.13 - BL (red), BM (green) and BN (blue) are the components of B measured by
Cluster–1 in the LMN coordinates; VL (red), VM (green) and VN (blue) are
the components of V. This figure shows observational evidence of bifurcated
current sheets SB1 and SB2, with a plateau at BL in the middle of each
bifurcated current sheet, and counter–propagating Alfvén waves at two edges
of SB1 and SB2.

SOURCE: Chian and Muñoz (2011)

A signature of a bifurcated current sheet is the appearance of a “plateau” in BL in

the middle of a current sheet related to the region of the reconnection jet, as well as

counter–propagating Alfvén waves evidenced by correlated/anti–correlated BL and

VL at two edges of a current sheet (GOSLING et al., 2005; GOSLING et al., 2007; PHAN

et al., 2006). This signature is readily seen in Figs. 2.12 and 2.13 for both SB1 and

SB2. Each current sheet SB1 and SB2 is associated with a respective strong jet of

ion flow |V| shown in the middle panels of Fig. 2.12, which flows mainly in the L

direction as seen in the lower panels of Fig. 2.13, in agreement with the geometry of

a magnetically reconnected current sheet. The observed jet velocity is close to the

velocity predicted by the magnetic reconnection theory of Sonnerup et al. (1981),

shown in the middle panels of Fig. 2.12. Figure 2.13 shows that VL is anti–correlated

(correlated) with BL at the leading (trailing) boundary of the current sheet SB1,

and VL is correlated (anti–correlated) with BL at the leading (trailing) boundary of
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Figure 2.14 - Direct evidence of a bifurcated current sheet SB1 measured by Cluster-3.
(a) Two–step temporal variation of BL with a plateau in the middle of the
current sheet. (b) JM calculated from BL showing double peaks at both
edges of the current sheet.

SOURCE: Chian and Muñoz (2011)

the current sheet SB2. Such pairs of oppositely coupled changes in V and B are the

signatures of counter–propagating Alfvén waves and provide observational support

for magnetic reconnection exhausts in bifurcated current sheets in the solar wind

(GOSLING et al., 2005; GOSLING et al., 2007; PHAN et al., 2006).

To further clarify the signature of a bifurcated current sheet, we plot in Fig. 2.14

BL measured by Cluster–3, and JM estimated from BL near the plateau of SB1. By

assuming time–stationarity and planarity of the current sheet, we compute JM from a

single spacecraft by the Ampere’s Law, JM = (∆BL/∆t)/(µ0VCS), where the spatial

derivative is substituted by the temporal derivative using the Taylor’s hypothesis

and VCS is the normal speed of the current sheet (MOZER et al., 2008). Figure 2.14(a)

shows that the temporal variation of the reconnected component of magnetic field

BL occurs in two main steps which is an evidence that SB1 is bifurcated. Moreover,

Fig. 2.14(b) shows two peaks (indicated by arrows) in the out–of–plane component

of current density JM , at two edges of SB1, demonstrating that the current sheet
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is bifurcated. Such direct evidence of a double–peak bifurcated current sheet has

been obtained previously in association with magnetic reconnections in the Earth’s

magnetotail (HOSHINO et al., 1996) and in the magnetosheath of Earth’s bow shock

(RETINÒ et al., 2007). This is the first time such observation is demonstrated in an

ICME.
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3 INTERMITTENCY IN A MEAN–FIELD DYNAMO MODEL

In this Chapter, we study the deterministic and random chaotic dynamics of a

mean–field dynamo model with α–quenching, originally proposed by Schmalz and

Stix (1991). In particular, low–dimensional models derived from mean–field dynamo

equations are useful to understand the underlying mechanism of observed signatures

in solar and stellar magnetic activities (WEISS et al., 1984; MININNI et al., 2001). In

this context, and considering that a low–dimensional mean–field modelling neglects

the small–scale dynamics, the study of stochastic effects on such systems becomes

relevant. The onset of the intermittency induced by noise is important to under-

stand how stochastic perturbations can change the global dynamics of the system,

and help to understand in a simpler manner relevant features of solar activity such

as the Maunder–type minima (COVAS; TAVAKOL, 1997). Rempel et al. (2006) studied

the effect of noise on nonlinear Alfvén waves in a regime with multistability, includ-

ing coexistence of periodic attracting sets and a chaotic nonattracting set (chaotic

saddle), showing that an external stochastic source can destroy attractors, as well as

induce chaotic transients and extrinsic intermittency. Moreover, the effects of Gaus-

sian and non–Gaussian noise were compared (REMPEL et al., 2008). Lai et al. (2003)

proposed a general theoretical framework to analyze effects of additive noise on the

nonlinear dynamical systems which contain chaotic saddles.

In previous chapter we study the relationship between coherent structures in a tur-

bulent plasma and the magnetic reconnecion, a fundamental physical process asso-

ciated with magnetic to kinetic energy conversion and heating. Turbulence is the

typical nonlinear phenomena found in spatially–extended systems. Hereafter, we

study the role played by nonlinear coherent structures in the dynamics of a number

of spatially–extended systems, which are relevant for the space physics area, using

the framework of the dynamical systems theory. In particular, the aim of this chap-

ter is to introduce basic concepts of dynamical systems, and to apply these ideas to

a nonlinear solar dynamo model.

3.1 Dynamical systems

Dynamical systems are usually described by a set of coupled ordinary differential

equations:
dx

dt
= F(x, p), (3.1)
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where F = {F1, . . . , FN} is a nonlinear vector function, x(t) = {x1(t), . . . , xN(t)} is

the vector characterizing the state of the system at time t and p represents a set of

parameters. The vector space RN , where all the possible states x are represented,

is called the phase space, and N is the dimension of the dynamical system. For a

given initial condition x(t0) = x0, a solution x(t) of Eq. (3.1) is called trajectory,

orbit or flux. The Poincaré surface of section, or Poincaré plane, is a (N − 1)–

dimensional plane in the phase space which is intersected by the trajectory in a

particular direction. For example,

x1 = cte,
dx1

dt
> 0. (3.2)

is a Poincaré surface with trajectories crossing in the bottom–up direction. Successive

crossing points lying in the Poincaré plane define the Poincaré map. Using such map,

the phase space dimension is reduced effectively by one, facilitating visualization and

analysis.

The possible asymptotic solutions of system (3.1) are (i) fixed points, (ii) periodic

orbits, also known as limit cycles, (iii) quasi–periodic orbits and (iv) chaotic orbits. A

bifurcation of the dynamical system is a qualitative change of its dynamics produced

by varying parameters p. Local bifurcations are related to the creation/destruction

or changes in the stability of equilibrium or periodic solutions. For example, in a

period doubling bifurcation, a preexisting stable periodic orbit of period n loses its

stability, and a stable periodic orbit of period 2n is created. Bifurcations can be

studied by using the bifurcation diagram, which can be constructed by fixing the

control parameter and collecting a number of Poincaré points after discarding the

transients, varying the parameter.

3.1.1 Lyapunov spectrum

The stability of the solutions of a dynamical system can be analyzed by mean of the

Lyapunov exponents. For a typical trajectory x(t), the Lyapunov spectrum is

λi = lim
t→∞

1

t
ln
|δxi(t)|
|δxi(0)|

, (3.3)
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where {δxi(t)}Ni=1 is a set of infinitesimal vectors evolving in the tangent space of

the velocity field, as follows:

dδxi(t)

dt
=
∂F(x, p)

∂x
· δxi(t) ≡ DF(x, p) · δxi(t), (3.4)

and DF(x, p) is the Jacobian matrix evaluated along the trajectory x(t). The Lya-

punov exponents are the time–averaged stretching or contracting rates of infinites-

imal vectors along a typical trajectory in the phase space. Performing the Gramm-

Schmidt re–orthonormalization procedure described in Wolf et al. (1985), the expo-

nents can be ordered, as follows: λ1 ≥ λ2 · · · ≥ λN , where λ1 is the largest Lyapunov

exponent.

Computation of the Jacobian matrix of the flux is numerically unfeasible when the

degree of freedom N is too large, such as for some spatially–extended systems. In

that case, it is still possible to compute the largest Lyapunov exponent λ1 using the

method by Benettin et al. (1980). In this method, two trajectories x(t) and x(t)+δ(t)

are integrated from time t to t + ∆t, and the local separation (or contraction) rate

is obtained as

λt =
1

∆t
ln
|δ(t+ ∆t)|
|δ(t)|

. (3.5)

Performing the normalization δ(t+ ∆t) 7→ δ(t+ ∆t)|δ(0)|/|δ(t+ ∆t)|, and repeating

the integration M times, the maximum Lyapunov exponent is given by the average

λ1 =
∑M

k=1 λtk/M . The second Lyapunov exponent can be obtained straightfor-

wardly by integrating a third initial condition forming an orthogonal base with x

and x + δ. A trajectory can be classified as temporally chaotic if at least the first

Lyapunov exponent is positive, λ1 > 0.

3.1.2 Numerical detection of chaotic saddles

Chaotic saddle are non–attracting chaotic sets responsible for chaotic transients

and intermittency observed in many different applications (REMPEL et al., 2004b;

REMPEL et al., 2004a; REMPEL; CHIAN, 2007; CHIAN et al., 2010). Because they are

non–attracting, chaotic saddles cannot be studied by simply integrating equations

forward in time. Here we review two methods used to detect chaotic saddles.
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3.1.2.1 The sprinkler method

Consider a system with an attractor and a chaotic saddle CS coexisting in the phase

space. A region R in the phase space containing only the chaotic saddle is called

restraining region. The trajectories of all initial conditions in R will eventually leave

R and converge to attractor A, except for initial conditions lying on the stable

manifold of CS, which is a set of measure zero. Initial conditions close to the stable

manifold are first attracted to CS and stay close to its neighborhood for some

time, before they are repelled, following its unstable manifold. The closer an initial

condition is to the stable manifold of CS, the longer it transient time before leaving

R. These facts lead to the sprinkler algorithm to find chaotic saddles and their

manifolds (KANTZ; GRASSBERGER, 1985; HSU et al., 1988). For each initial condition

in a uniformly distributed grid in R the exit time T is computed, that is, the time

it takes the condition to leave R. Those initial conditions with an exit time larger

than some specified time Tc constitute an approximation to the stable manifold of

CS, and their last iterations before leaving R approximate the unstable manifold.

The points at some time TCS = ξTc are the approximation to the chaotic saddle.

Usually Tc is chosen to be large compared to the average exit time T̄ and ξ = 1/2.

3.1.2.2 The stagger–and–step method

Some applications, such as the computation of Lyapunov exponents, require a long

trajectory. A method to find an arbitrarily long trajectory close to the chaotic saddle,

called the stagger–and–step was introduced by Sweet et al. (2001). The method

uses the same concepts of restraining region R and escape time T defined in the

sprinkler method. The chaotic saddle is the collection of points x in R such that

T (x) =∞. Hence, we look for initial conditions with escape time longer than some

suitable threshold T ∗. Let us start with an initial condition x0 with escape time

T (x0) = T0 < T ∗. The escape time of the randomly perturbed initial condition

x′0 = x0 + r is computed until T (x′0) > T ∗. Then, x0 + r is evolved until the escape

time of the current point T (x) < T ∗. This point is used as the new initial condition

to iterate the process. The key point of the stagger–and–step method is the choice

of the distribution of the random perturbation r.Sweet et al. (2001) suggest using

the “exponential stagger distribution”, which is generated as follows. Let a be such

that 10−a = δ, with δ = |r|, and let amax be the maximum value of a allowed by the

machine’s numerical precision. Generate a uniformly distributed random number s

between a and amax. Choosing a random unit vector r̂, the perturbation vector is
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defined as r = 10−sr̂. In general, the threshold escape time T ∗ must be greater than

the average escape time T̄ .

3.2 Mean–field αΩ dynamo

Magnetic fields are ubiquitous in the universe. In many astrophysical bodies, the

process by which this fields are amplified and sustained is the conversion of kinetic

energy into magnetic energy, the so–called magnetic dynamo (BRANDENBURG; SUB-

RAMANIAN, 2005). In the case of the Sun, the kinetic energy comes from the plasma

motion in the convection zone. Two large–scale effects are responsible for the main

observational features in solar dynamo: the Ω and α effects. The Ω effect is the way

an originally poloidal magnetic field is converted into toroidal magnetic field, due to

the differential rotation of the Sun, which is stronger deep in the convection zone,

at the tachocline (SOLANKI et al., 2006). The tachocline is the layer where the latitu-

dinal differential rotation turns into rigid rotation, and coincide with the bottom of

the convection zone (BRANDENBURG; SUBRAMANIAN, 2005). The resulting toroidal

magnetic flux is carried out to the surface by convective motions and buoyancy.

Convection and the Coriollis force due to rotation twist the magnetic lines, leading

to the restitution of the poloidal magnetic field. The twisting of magnetic field lines

due to turbulent convective motions and the Coriollis force is called the α effect.

The solar dynamo can be modelled by mean–field equations, where the fluctuations

due to the turbulent velocity field of the convection zone appear only in the form

of certain parameters. Schmalz and Stix (1991) proposed an αΩ dynamo model for

the solar dynamo, including an α–quenching effect, dimensionless partial differential

equations are
∂A

∂t
=
∂2A

∂x2
+DB cosx− CB, (3.6)

∂B

∂t
=
∂2B

∂x2
+
∂A

∂x
, (3.7)

∂C

∂t
= ν

∂2C

∂x2
+ AB, (3.8)

where A and B are the normalized poloidal vector potential and toroidal magnetic

field, respectively, and C is the normalized dynamic α coefficient (SCHMALZ; STIX,

1991). The are two control parameters: the ratio between the turbulent diffusivity
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and magnetic resistivity ν = νt/ηt, and the so–called dynamo number

D =
α0ω0R

3

η2
t

, (3.9)

where ω0 is the angular velocity in the equator, R is the radius of the star and α0 is

a constant. The spatial variable x points in the poloidal direction, and the full range

of latitude 0 ≤ x ≤ π is considered. At x = 0 and x = π null boundary conditions

are imposed

A(0) = A(π) = B(0) = B(π) = C(0) = C(π) = 0. (3.10)

Boundary conditions are satisfied by the functions sinnx. By using a spectral ex-

pansion of the form

A =
N∑
n=1

An(t) sinnx, (3.11)

B =
N∑
n=1

Bn(t) sinnx, (3.12)

C =
N∑
n=1

Cn(t) sinnx, (3.13)

the set of Eqs. (3.6)–(3.8) is transfomed into the form

dAn
dt

= −n2An +
D

2
(Bn−1 +Bn+1) +

N∑
j=1

N∑
k=1

FnjkBjCk + σξAn(t), (3.14)

dBn

dt
= −n2Bn +

N∑
j=1

GnjAj + σξBn(t), (3.15)

dCn
dt

= −νn2Cn −
N∑
j=1

N∑
k=1

FnjkAjBk + σξCn(t), (3.16)

where

Fnjk =
8njk

π(n+ j + k)(n+ j − k)(n− j + k)(n− j − k)
, (3.17)

if n+ j + k is odd and Fnjk = 0 otherwise and

Gnj =
4nj

π(n2 − j2)
, (3.18)
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Figure 3.1 - Typical solution of the mean–field dynamo model of Eqs. (3.14)–(3.16) for
D = 205, ν = 0.5 and σ = 0. Upper panel: Temporal evolution of the aver-
aged poloidal magnetic energy. Lower panel: Saptio–temporal pattern of the
poloidal magnetic field. The vertical axis represents the latitude, with θ = π/2
being the equator.

if n + j is odd and Gnj = 0 otherwise. An and Bn are the spectral amplitudes of

the poloidal and the toroidal components of the mean magnetic field, and Cn is the

spectral amplitude of the dynamical α–quenching (SCHMALZ; STIX, 1991; COVAS;

TAVAKOL, 1997). We have introduced additive noise to the system. The variables

ξA(t), ξB(t) and ξC(t) are vectors whose components are Gaussian random variables

of zero mean and unit variance. The control parameters are the noise amplitude σ

and the dynamo number D. The ratio between turbulent diffusivity and magnetic

resistivity is fixed to ν = 0.5. By choosing the truncation order N = 4, and limiting

our study to the antisymmetric subspace of solutions, as in Covas and Tavakol

(1997), Eqs. (3.14)–(3.16) reduce to a six–dimensional dynamical system. Note that

when N = 1 Eqs. (3.14)–(3.16) reduce to the Lorenz system (LORENZ, 1963). For

N > 4 the dynamical properties of the resulting set of equations remain essentially

the same.
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We solve Eqs. (3.14)–(3.16) using a fourth–order Runge–Kutta scheme with a fixed

time step ∆t = 0.01. A typical solution of the mean–field dynamo model, for D =

205, ν = 0.5 and σ = 0, is shown in Fig. 3.1. The upper panel shows the time series of

the averaged poloidal magnetic energy (∂xA)2 and the lower panel is a densityplot of

the poloidal magnetic field. Both quantities are normalized to facilitate visualization.

Although rather simple, this αΩ mean–field dynamo model shows a behavior similar

to that observed in the solar dynamo. The time series of the poloidal magnetic field

is cyclic, with maxima and minima of activity. Moreover, the maxima of magnetic

activity do not have constant amplitude, with some cycles with lower activity. The

spatiotemporal behavior of the poloidal magnetic field shows opposite polarities

in both hemispheres and periodic reversals from cycle to cycle. Cycles, minima of

activity and polarity reversals are all features which have been observed in the Sun

and other stars with magnetic activity (SOON et al., 1993; HOYT; SCHATTEN, 1997;

TOBIAS, 2002).

3.3 Bifurcation diagram

First, let us consider a deterministic dynamo in the absence of noise (σ = 0) by con-

structing a bifurcation diagram from the numerical solutions of Eqs. (3.14)–(3.16),

varying the dynamo number D. The Poincaré plane is chosen as A1=0 and Ȧ1 < 0.

For each value of D, we perform 500 iterations of the Poincaré map, discarding the

transients and keeping the last 300 points. Figure 3.2 shows the resulting bifurca-

tion diagram, where we plot variable C2 of the Poincaré points as a function of D.

The black line from the left denotes a period–1 periodic orbit. At D ≈ 179.7 this

periodic orbit suffers a pitchfork bifurcation (PB), and loses its stability. In that

moment two period–1 periodic orbits are created, denoted by red and blue lines.

These new periodic attractors undergo a period doubling bifurcation at D ≈ 197.4.

Both attractors become chaotic through an infinite succession of period doubling

bifurcations, also known as period doubling cascade, an universal route to chaos

(FEIGENBAUM, 1979). These two chaotic attractors merge into one larger attractor

at D ≈ 204.3, in a global bifurcation known as merging crisis. Within the chaotic

interval denoted by black dots in Fig. 3.2 there are subintervals where the system

is periodic. We will focus in one periodic window (PW) near D = 206. The interval

spanned by this periodic window is too small to be seen in Fig. 3.2.
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Figure 3.2 - Bifurcation diagram of Eqs. (3.14)–(3.16) using as control parameter the dy-
namo number D. PB denotes the pitchfork bifurcation where a periodic at-
tractor (black) loses its stability and two new periodic attractors (blue and
red) arises. These two attractors become chaotic through a cascade of period
doubling bifurcations. MC denotes the merging crisis, when the attractors
merge one to each other to form a single chaotic attractor. PW indicates a
periodic windows embedded in the chaotic region.

3.3.1 Periodic window

A periodic window is a region of the parameter space where an interval containing

stable periodic solutions is surrounded by chaos. Even though the attracting solu-

tions within a periodic window are not chaotic, trajectories typically display chaotic

transients before they converge to the periodic attractors. Hence, a chaotic saddle,

a non attracting chaotic set responsible for chaotic transients, is expected within a

periodic window.

In figure 3.3(a) a periodic window of the system is shown, where both the attractor

(black) and the surrounding chaotic saddle (SCS, green) are plotted. This periodic

window begins at DSNB ∼ 205.901 where a pair of stable and unstable periodic

orbits of period–13 are created by a saddle–node bifurcation (SNB), and ends at

DIC ∼ 205.852305 where an interior crisis takes place. The two largest Lyapunov

exponents of the attractor (black and red) are plotted in 3.3(b). The period–13
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Figure 3.3 - (a) Periodic window of the bifurcation diagram, where both the attractor
(black) and the surrounding chaotic saddle (green) are plotted. (b) The two
largest Lyapunov exponents of the attractor (black and red). (c) Enlargement
of one of the thirteen branches of (a).

stable periodic orbit evolves to a banded chaotic attractor (BCA) via a cascade of

period doubling bifurcations. An enlargement of one of the thirteen branches of the

attractor is plotted in 3.3(c). Two bifurcations are indicated by arrows. A pitch–fork

bifurcation (PFB) at DPFB ∼ 205.872, where two coexisting attractors (blue and

red) are born, and an attractor–merging crisis (MC) at DMC ∼ 205.856 involving

the merging of two coexisting attractors, forming a single attractor (black). The

surrounding chaotic saddle (green) is robust and persists after the interior crisis. At

34



Figure 3.4 - The characterization of IC due to a chaotic attractor–chaotic saddle collision
at the end of the periodic window. (a) The BCA (black), the SCS (green), one
Poincaré point of the period–13 mediating UPO (cross) and its stable manifold
(dashed line). (b) Stable (light blue) and unstable (brown) manifolds of the
SCS.

the onset of the interior crisis, the banded chaotic attractor loses its stability due to

a global bifurcation and is converted into a banded chaotic saddle (BCS) (orange).

3.4 Interior crisis

An interior crisis is characterized by a sudden enlargement of a chaotic attractor as a

parameter is varied, and it is a common feature of periodic windows. The collision of

a mediating unstable periodic orbit and its stable manifold with the chaotic attractor

is responsible for this chaotic transition (GREBOGI et al., 1983b). Furthermore, it was

demonstrated by Rempel et al. (2004b) that a surrounding chaotic saddle and its

stable manifold also collide with the attractor. This important fact can be used to

characterize the collision.

The characterization of an interior crisis due to the collision described above at the

end of the periodic window of Fig. 3.3 is shown in Fig. 3.4(a). Only one of thirteen

branches of the banded chaotic attractor BCA (black solid line) and only one of

thirteen Poincaré points of the period–13 mediating unstable period orbit (cross)

are plotted. At crisis D = DIC, BCA collides head–on with the surrounding chaotic

saddle SCS (green) as well as the mediating unstable periodic orbit of period–13
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Figure 3.5 - (a) A Poincaré map time series of the banded chaotic attractor (BCA) at
D = 205.8525 > DIC, before the interior crisis. (b) The time series of crisis-
induced intermittency corresponding to the post-crisis chaotic attractor. (c)
Time series of the random attractor for a small noise amplitude σ = 10−3.5.
The trajectory traverses the vicinity of BCA. (d) For a larger value of the
noise amplitude, σ = 10−3, the time series of the random chaotic attractor
shows evidence of noise–induced intermittency.

and its invariant stable manifold (dashed line). The mediating orbit is created by

the saddle–node bifurcation at D = DSNB, as demonstrated in Fig. 3.3(c). The

surrounding chaotic saddle is formed by the intersection of its stable (light blue)

and unstable (brown) manifolds, shown in Fig. 3.4(b), which exhibits gap regions

typical of non–attracting chaotic sets. Note that the stable manifold of the mediating

unstable periodic orbit (dashed line) of Fig. 3.4(a) coincides with the edge of the

stable manifold of the surrounding chaotic saddle of Fig. 3.4(b).

Now we discuss crisis–induced intermittency. A time series of Poincaré map of the

BCA at D = 205.8525 > DIC, before the interior crisis, is plotted in Fig. 3.5(a),

and its corresponding two dimensional projection is plotted in Fig. 3.6(a). After the
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Figure 3.6 - Two dimensional Poincaré maps corresponding to the cases of Fig. 3.5. The
random chaotic attractors (black) in (c) and (d) have similar features as the
deterministic chaotic attractors of (a) and (b), respectively. Figures (a) and (c)
show the SCS in the deterministic and stochastic cases, respectively (green).

onset of the interior crisis, coupling unstable periodic orbits are created at the gap

regions of the SCS and BCS via an explosion of chaotic sets (ROBERT et al., 2000) and

topological gap filling (SZABÓ et al., 2000) which couple two chaotic saddles, leading

to the formation of a large chaotic attractor shown in Fig. 3.6(b). The time series

of crisis–induced intermittency corresponding to the post–crisis chaotic attractor of

Fig. 3.6(b) is shown in Fig. 3.5(b). We distinguish two kinds of behavior in the time

series. The banded or “laminar” periods correspond to the trajectory visiting the
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vicinity of BCS, and the surrounding or “bursty” periods occurs when the trajectory

visits the vicinity of SCS. This is a direct consequence of the coupling between two

chaotic saddles BCS and SCS after the interior crisis. An importance of intermittent

behavior is found in nonlinear dynamo models is in understanding the mechanism

of production of the so–called grand or Maunder–type minima in solar and stellar

activity, during which the amplitude of the stellar cycle is greatly diminished (COVAS;

TAVAKOL, 1997).

3.5 Noise–induced intermittency

In the previous section we discussed the typical phase space landscape during an

interior crisis in the border of a periodic window of the mean–field dynamo model.

We have shown the dynamical mechanism responsible for the interior crisis, as well

as the intermittency resulting from the coupling of two chaotic saddles BCS and

SCS. In this section we fix the parameter D before the interior crisis to study the

system under the influence of additive noise. The theoretical framework to study the

role of additive noise in nonlinear dynamical systems was developed by Lai et al.

(2003). It was shown that the key mechanism for the onset of noise–induced unstable

dimension variability, transition to chaos and intermittency in stochastic differential

equations, is the presence of a chaotic saddle in the originally deterministic system.

The stochastic differential equations (3.14)–(3.16) with σ > 0 are solved using

the standard Heun’s method (KLOEDEN; PLATEN, 1992), which is a second–order

predictor–corrector method. We fix parameters D = 205.8525 > DIC, just before the

interior crisis, using the noise amplitude σ as control parameter. The Poincaré map

time series of the random attractor for a small noise amplitude σ = 10−3.5 is shown

in Fig. 3.5(c). Comparing with the deterministic case in Fig. 3.5(a), we see that for

σ = 10−3.5 the random attractor trajectory traverses the vicinity of the determinis-

tic banded chaotic attractor BCA. Encreasing only slightly the noise amplitude to

σ = 10−3, the time series of the random attractor shows evidence of noise–induced

intermittency, with “laminar” periods intermingled with “bursty” periods, similar to

that observed for the crisis–induced intermittency.

Lai et al. (2003) proposed an explanation for the phenomena of noise–induced inter-

mittency within periodic windows. The external additive noise induces the interac-

tion between the random attractor and the chaotic saddle, changing the dynamical

properties of the trajectories. This process depends on the amplitude of noise, as

38



Figure 3.7 - Schematical representation of transition to chaos and noise–induced intermit-
tency in a stochastical dynamical system.

suggested by Fig. 3.5(c) and (d). Hence, a crisis–like chaotic transition is expected.

The schematical representation of such a transition is shown in Fig. 3.7. The up-

per panel of Fig. 3.7 shows the typical configuration of the phase space before the

transiton, for σ < σc. A random attractor (red area plus the circle) coexists with

a chaotic saddle (black dots) and its stable and unstable manifolds, represented by

lines. The additive noise creates a sphere of influence around the old deterministic

attractor (red) called the noisy basin of the attractor. There is no overlap between

the stable manifold of the chaotic saddle, denoted by lines entering the black dots,

and the noisy basin. In this case, a random initial condition leads to a trajectory

confined in the vicinity of the deterministic attractor, although there can be tran-

sient chaos initially, in the sense that the trajectory may move toward the chaotic

saddle along its stable manifold, wander near the saddle for a finite amount of time,

and leave it along its unstable manifold. At σ ≈ σc, the noisy basin “touches” the

stable manifold of the chaotic saddle. For σ > σc, a subset of the stable manifold of

the chaotic saddle is located in the noisy basin, as shown in the lower panel of Fig.

39



Figure 3.8 - (a) First two Lyapunov exponents of the random chaotic attractor as a func-
tion of the noise amplitude, near the transition to a more chaotic state
D = 205.8525. (b) The scaling of the first Lyapunov exponent of the ran-
dom chaotic attractor for σ & σc.

3.7. As a result, there is a nonzero probability that a trajectory near the attractor is

kicked out of the noisy basin and moves toward the chaotic saddle along its stable

manifold. Because the chaotic saddle is nonattracting, the trajectory can stay in its

vicinity for only a finite amount of time before leaving along its unstable manifold

and then, enter the noisy basin again, and so on. Thus, the intermittent behavior

observed for σ & σc is explained as a noise–induced coupling between the noisy basin

of the attractor and the chaotic saddle.

Transition to noise–induced intermittency can be studied by examining the dynam-

ical properties of the random attractor characterized by the Lyapunov exponents.

The upper panel of Fig. 3.8 shows the first two Lyapunov exponents of the random

chaotic attractor as a function of the noise amplitude, indicating the critical noise

amplitude σc ≈ 10−3.1, above which λ1 of the random chaotic attractor exceeds λ1

of the deterministic BCA and increases monotonically until it approaches λSCS of

40



the surrounding chaotic saddle (dashed green line).

Lai et al. (2003) have shown that for σ & σc, the first Lyapunov exponent λ1 of the

random chaotic attractor scales as

(λ1 − λBCA) ∼ (σ − σc)
α, (3.19)

with the scalling exponent given by

α = 1− 1

(τλSCS)
, (3.20)

where τ is the average exit time of the SCS from the restraining region. The scaling

of the first Lyapunov exponent λ1 of the random chaotic attractor for σ & σc is

shown in the lower panel of Fig. 3.8, where λBCA refers to the λ1 of the deterministic

banded chaotic attractor. The black line is the linear fit of the data, with a a slope

of 1.104± 0.04. In this case, τ ≈ 362 and λSCS ≈ 0.345, giving a theoretical scalling

exponent α = 0.992, represented by the dashed blue line. The observed scalling

exponent is in good agreement with the theory.
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4 EDGE STATE AND CRISIS IN THE PIERCE DIODE

In Chapter 3 we introduced the basic concepts of dynamical systems and applied

them to study a model of solar dynamo in the presence of additive noise. That set

of six differential equations is a low–dimensional problem, even though this model

arises from a spatially–extended system. Now, we study a physical system where a

much larger number of degrees of freedom is considered.

In this chapter we study the chaotic dynamics in the Pierce diode, a simple spatially–

extended system for collisionless bounded plasmas, focusing on the concept of edge

of chaos, the boundary that separates transient from asymptotic dynamics. We fully

characterize an interior crisis at the end of a periodic window, thereby showing direct

evidence of the collision between a chaotic attractor, a chaotic saddle and the edge

of chaos, formed by a period–3 unstable periodic orbit and its stable manifold. The

edge of chaos persists after the transition from weak to strong chaos.

4.1 Edge of chaos

In a dynamical system, the basin of attraction of a given attractor is the set of

initial conditions which converge to that attractor. If the system has more than one

attractor, we can define a subset that separates the basins: the boundary of basins.

An extension of this concept was introduced by Skufca et al. (2006) while studying

transition to turbulence in shear flows using a nine–dimensional truncation of the

Navier–Stokes equation. In that model, the system has one attractor, coexisting with

a chaotic saddle, the structure responsible for the chaotic transients (REMPEL et al.,

2004a; REMPEL; CHIAN, 2007; REMPEL et al., 2010). Skufca et al. (2006) observed

that, even though only one basin of attraction is present, the phase space can be

divided into two regions, depending on whether an initial condition displays a chaotic

transient behavior or not. The boundary between these two regions is called the edge

of chaos. In the last years, the dynamical properties of the edge of chaos have been

studied in a wide variety of applications, such as direct numerical simulations of pipe

flow (SCHNEIDER et al., 2007), a numerical MHD simulation for two–dimensional

magnetic reconnection (CASSAK et al., 2007), and a generic two–dimensional map

(VOLLMER et al., 2009). These works illustrate the rich dynamical behavior of the

edge of chaos and its important role in transitions to chaos and turbulence.
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Figure 4.1 - Schemtaic diagram of the Pierce diode.

4.2 Pierce diode

In this Chapter we apply ideas of Section 4.1 to the Pierce diode, a one–dimensional

spatially–extended plasma model. Constituting the simplest model for collision-

less bounded plasma systems, the classical Pierce diode (LAWSON, 1989) is a one–

dimensional electrostatic parallel–plane diode with gap spacing L into which a mo-

noenergetic electron beam at constant velocity v0 and charge density ρ0 is injected.

An immobile neutralizing ion background with density ρ0 is present between the

planar electrodes held at the same potential (short–circuit condition). Figure 4.1

is a schematic representation of this system. In particular, the presence of a con-

trolled amount of background ions inside microwave tubes allows plasma–filled de-

vices to operate at currents much higher than the maximum current for vacuum

tubes, thereby increasing significantly the power handling capabilities of microwave

tubes. From the emitter (at x = 0), the monoenergetic electron beam, after cross-

ing the gap spacing between the plates, is completely absorbed by the collector at

x = L. Although rather simple, this distributed model exhibits many features of

the electron beam dynamics in a variety of microwave electronic devices such as the

klystron and the virtual cathode oscillator (TRUBETSKOV et al., 1996). In addition,
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this model is used for studying the stability of electron flows in plasma–filled diodes

and charge neutralized ion beam transport for inertial confinement fusion (BAR-

ROSO et al., 2001), and also space physics applications such as double layers in the

magnetospheric cusp (TREUMANN; BAUMJOHANN, 1997). A biparametric version of

the model (TERRA, 2011) and helix travelling–waves (DATTA et al., 2011) have been

investigated recently, showing the Pierce as a still interesting problem to study.

The system is characterized by the single control parameter α = ωpL/v0, often

referred to as the Pierce parameter, where ωp =
√
ρ0e/ε0me, denotes the plasma

frequency of the electron beam, with ε0 the vacuum permittivity, and e and me the

electronic charge and the electron mass respectively. The electron flow in this system

can be described by the cold fluid equations, namely, continuity, momentum and the

Poisson’s equations
∂ρ

∂t
+
∂(ρv)

∂x
= 0, (4.1)

∂v

∂t
+ v

∂v

∂x
=
∂φ

∂x
, (4.2)

∂2φ

∂x2
= α2(ρ− 1), (4.3)

where ρ is the mass density, v is the electron flow velocity and φ is the electric

potential. In Eqs. (4.1)–(4.3) dimensionless variables (density ρ, velocity v, electric

potential φ, space coordinate x and time t) are used (HRAMOV et al., 2006). They

are related to the corresponding dimensional variables as follows:

ρ′ = ρ0ρ, v′ = v0v, φ′ = (mev
2
0/e)φ,

x′ = Lx, t′ = (L/v0)t, (4.4)

where the symbols denoted by a prime correspond to the dimensional values. Using

this normalization scheme, the boundary conditions of system (4.1)–(4.3) read as

ρ(0, t) = 1, v(0, t) = 1 and φ(0, t) = φ(1, t) = 0. A linear approximation analysis

(PIERCE, 1944; LAWSON, 1989) can be performed on the assumption of solutions of

the form ρ(x, t) = ρ0 +ρ1(x, t) and v(x, t) = v0 +v1(x, t), where time and spatial de-

pendence of ρ1(x, t) and v1(x, t) are respectively of the form exp(−iωt) and exp(ikx).

Substituting these ansatz solutions in Eqs. (4.1)–(4.3) and taking just leading terms,
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Figure 4.2 - Numerical solutions of the Pierce diode linear dispersion relation Eq. (4.5).
Black lines represent nonoscillatory solutions, and red and blue lines represent
oscillatory solutions. Upper panel: linear frequencies. Lower panel: growth
rates.

we obtain the a linear dispersion relation given by (PIERCE, 1944; MATSUMOTO et

al., 1996)

2ω2(ω2 − α2) + iα{(ω + α)2[ei(ω−α) − 1]− (ω − α)2[ei(ω+α) − 1]} = 0, (4.5)
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where ω as a complex frequency

ω = r + is. (4.6)

The derivation of linear dispersion (4.5) is given in Appendix A. Figure 4.2 shows

numerical solutions of (4.5), normalized by π. Linear frequencies, given by the real

part of Ω, are plotted as a function of α/π in the upper panel of Fig. 4.2. Imaginary

part of Ω gives the linear growth rates, shown in the lower panel of Fig. 4.2. Black

lines indicate non–oscillatory solutions, while red and blue indicate oscillatory so-

lutions. Dispertion relation (4.5) provides time growing (unstable) non–oscillatory

solutions for (2n− 1)π ≤ α ≤ 2πn, (n = 1, 2, 3, . . . ), growing (unstable) oscillatory

solutions for 2πn ≤ α ≤ (2n + 1 − εn)π, and damped (stable) oscillatory solutions

for (2n− 1− εn)π ≤ α ≤ (2n− 1)π, where 0 < εn � 1 varies slightly with n. Thus

the stability character of linear oscillatory solutions alternates as the parameter α

is increased by π. Then an otherwise single damped mode starts growing at α = π

and remains unstable until α = 2π, a situation in which a virtual cathode is formed

with electrons being reflected back to the emitter. Moreover, the transition from

instability to stability just below each odd multiple of π is due to a Hopf bifurcation

(LAWSON, 1989).

4.3 Bifurcation diagram

We solve the continuity and momentum equations (4.1)–(4.3) using a first–order

backward difference scheme in space and a second–order implicit scheme in time, over

a spatial grid with N = 512 points. In order to satisfy the zero–potential conditions,

the Poisson’s equation is solved by means of the sine fast Fourier transform method

(MATSUMOTO et al., 1996). The state of the system at each discrete time tk is given by

ρki = ρ(xi, tk) and vki = v(xi, tk), where xi is a grid point. We define a Poincaré map

as ρ(x = L/4, t) = 1 and ∂tρ(x = L/4, t) < 0 to construct a bifurcation diagram by

varying the parameter α. For every value of α, we discard the initial transient (100

iterations) and plot the next 200 iterations of the map. We are interested in a periodic

window of period–3 (p–3) near α = 3π. Figure 4.3(a) shows the bifurcation diagram

of this periodic window, and Fig. 4.3(b) the first and second Lyapunov exponents

of the attractor computed using the technique described in Benettin et al. (1980).

Three types of bifurcation that characterize the periodic window, as was shown

in Chapter 3, are noteworthy: a saddle–node bifurcation (SNB) at α ≈ 2.85584π,

where a splitting pair of p–3 stable and unstable periodic orbits arises; a period–
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Figure 4.3 - (a) Bifurcation diagram: a p–3 periodic window in the Pierce diode. Within
the window the attractor (blue dots) coexists with the surrounding chaotic
saddle (red dots) and a p–3 UPO (black lines). SNB (IC) denotes saddle–
node bifurcation (interior crisis). (b) First (black) and second (red) Lyapunov
exponents.

doubling cascade leading to a banded chaotic attractor (BCA); and an interior crisis

(IC) at α = αc ≈ 2.8552792π, where the banded chaotic attractor is converted into

a banded chaotic saddle (BCS), and the size of the chaotic attractor is increased,

as will be discussed in Section 4.5. Coexisting with a banded attractor inside the

periodic window, a surrounding chaotic saddle (SCS), given by red dots in Fig.

4.3(a), is responsible for chaotic transients which mimic the dynamics of the larger

chaotic attractor outside the periodic window.
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Figure 4.4 - (a) Density plot of the lifetime, given in units of Poincaré map iterations, in
a two–dimensional phase–space projection at α = 2.85529π. Blue areas indi-
cate initial conditions that converge quickly to the attractor. Initial conditions
leading to longer lifetimes are represented by red tones. The edge of chaos is
given by the boundary between the blue and red areas. (b) Schematic repre-
sentation of the edge of chaos (SM) indicated by a solid line and its associated
saddle object (the edge state). Any initial condition lying on the edge of chaos
will converge to the edge state.

4.4 Lifetime function and bisection method

49



To study how the surrounding chaotic saddle SCS shapes the phase space within

the periodic window of Fig. 4.3, we introduce the lifetime function (SKUFCA et al.,

2006) of an initial condition

y0 = {ρ0
i , v

0
i }, i = 1, . . . , N, (4.7)

where ρ0
i and v0

i are the initial density and velocity profiles in the spatial grid.

The lifetime is defined as the time the initial condition y0 takes to converge to the

attractor inside the periodic window. We use a two–dimensional projection of the

Poincaré map zk = {ρ(x = L/2, tk), ρ(x = 3L/4, tk} to facilitate the definition of

convergence. Fist, we collect a set of M Poincaré points S = {zjA, j = 1, . . . ,M} in

the attractor. Then, we integrate the initial condition y0 generating the discrete two–

dimensional Poincaré map zk. For each discrete time step k, we define the distance

between zk and S as

∆(zk, S) = min(||zk − zjA||, j = 1, . . . ,M), (4.8)

where ||zk − zjA|| is the Euclidean distance. When the distance to the attractor is

less than some suitable threshold ∆(yk, S) < δ, we consider yk has converged to

the attractor. In this case we use δ = 10−4. A two–dimensional density plot of the

lifetime in the phase–space at α = 2.85529π is shown in Figure 4.4(a). Blue areas

denote initial conditions that converge quickly to the banded chaotic attractor. Areas

of longer lifetime, in red tones, exhibit an apparent fractal structure, which indicates

the proximity of the corresponding initial conditions to the stable manifold of the

surrounding chaotic saddle. Thus, there exist two possible trajectories for a given

initial condition in the phase space: (i) the trajectory may converge directly to the

attractor, or (ii) the trajectory may visit the vicinity of the surrounding chaotic

saddle before converging to the attractor. Under this circumstance, we can define

two regions or pseudo–basins of attraction in the phase space: the laminar basin (blue

region) related to (i), and the chaotic basin (red region) related to (ii). The basin

boundary separating laminar and chaotic basins is the edge of chaos (SKUFCA et al.,

2006). The asymptotic trajectory on this boundary is called the edge state (ES).

In order to determine the ES, we apply the bisection method (SKUFCA et al., 2006).

From Fig. 4.4(a) we note that any path connecting the two basins must intersect

the edge of chaos (dashed line in Fig. 4.4(b)). First we select two initial conditions,

yL and yC , in the laminar and chaotic basins, respectively. Then we integrate the
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Figure 4.5 - Poincaré time series of two trajectories on the laminar side (blue circles) and
chaotic side (red triangles) of the edge of chaos before converging to the p–3
periodic attractor for α = 2.85564π. Poincaré points are plotted for each three
iterations, m = 1, 4, 7, . . . .

initial condition yM=(yL + yC)/2 and decide which side the initial condition is on.

By sucessive bisections we reduce the distance d = ||yL−yC ||, and bring yL and yC

close to the edge of chaos. By integrating the system using the final yL and yC as

initial conditions we generate trajectories that track along the edge of chaos, spend

some time near the ES, and then depart either to the attractor or to the chaotic

saddle.

As an example, we apply the bisection method for α = 2.85564π, in the middle of

the periodic window (Fig. 4.3), where the attractor is a p–3 stable periodic orbit.

Figure 4.5 shows the Poincaré points of every three iterations of laminar (blue circles)

and chaotic (red triangles) initial conditions. Both trajectories go along the edge of

chaos in the beginning, passing near the edge state, after which they separate. The

laminar trajectory converges quickly and smoothly to the attractor, whereas the

chaotic one spends some time near the surrounding chaotic saddle before converging

to the attractor. We compute the ES for several values of the control parameter α in

the periodic window, and conclude that the saddle object that separates the laminar

and chaotic basins is the p–3 UPO that arises jointly with the p–3 periodic attractor

at the SNB (black line in Fig 4.3(a)). Hence, the edge state is the p–3 UPO and its

stable manifold (SM) is the edge of chaos.
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Figure 4.6 - Three–dimensional projection of the grid of initial conditions generated from
four points A, B, C and D, containing part of the banded chaotic attractor
BCA (blue) and the chaotic saddle SCS (red).

4.5 Interior crisis

In the following, we examine the role of the edge state ES played in the interior crisis

which occurs at the end of the periodic window (Fig. 4.3). In chaotic systems with

one positive Lyapunov exponent, an interior crisis is a sudden transition triggered

by a collision between a chaotic attractor, a mediating unstable periodic orbit UPO

and its stable manifold (GREBOGI et al., 1983b), already shown for the mean field

dynamo system of Chapter 3. Morever, at the onset of crisis, the surrounding chaotic

saddle (SCS) also collides with the attractor (CHIAN et al., 2007). One has to find

all these four structures to characterize the crisis. When the crisis takes place, at

α = αc, we numerically find the chaotic attractor, the chaotic saddle SCS using

the sprinkler method (HSU et al., 1988), and the edge state ES with the bisection
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Figure 4.7 - Two–dimensional Poincaré plots at the onset of ((a) and (b)) and after ((c)
and (d)) the interior crisis. (a) Three structures involved at the onset of crisis:
the banded chaotic attractor (BCA, blue), the surrounding chaotic saddle
(SCS, red) and the p-3 edge state (black crosses). (b) An enlargement of the
dashed rectangle region indicated in (a). The p-3 mediating UPO (the edge
state) and its stable manifold (the edge of chaos, dashed line) collide with
BCA and SCS . The stable (grey) and unstable (green) manifolds of SCS
are also shown. (c) Post–crisis banded chaotic saddle (BCS, blue), SCS, and
a p–14 coupling UPO (green crosses) with its branches in the gaps of both
banded and surrounding regions. (d) An enlargement of (c). The edge state
(black cross) and the edge of chaos (dashed lines) are also shown.

method (SKUFCA et al., 2006). As in Chapter 3, we use the fact observed by Rempel

et al. (2004a) that the boundary of the stable manifold of SCS approximates the

stable manifold of the mediating UPO. We compute the stable manifold of the SCS

with the projection technique developed by Rempel et al. (2004a) to study chaotic
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Figure 4.8 - Poincaré time series showing crisis–induced intermittency.

transitions in high–dimensional systems. A suitable grid of chosen initial conditions

is constructed using one point A from BCA and three points B, C and D from SCS

at the vicinity of the collision. Figure 4.6 shows a three–dimensional projection of

this grid (grey points) jointly with the attractor BCA (blue) and the chaotic saddle

SCS (red) at the moment of the interior crisis. Figure 4.7(a) shows the attractor

BCA (blue), the surrounding chaotic saddle SCS (red dot) and the p–3 edge state

ES (black crosses) in a two–dimensional projection of the phase space. The grid of

initial conditions near the collision corresponds to the dashed rectangle of Fig. 4.7(a).

Figure 4.7(b) displays a zoomed–in view of this region to elucidate the collision which

characterizes the interior crisis. At the onset of the interior crisis, the chaotic saddle

(red) and the boundary of its stable manifold (grey) collide with the banded chaotic

attractor (blue). The edge state (black cross) and its stable manifold (dashed lines)

form the boundary between the attractor and the chaotic saddle pseudo–basins (blue

and red regions, respectively, in Fig. 4.4(a)), and when they collide, the edge of chaos

also collides simultaneously with them.

4.6 Intermittency

At the collision the chaotic attractor loses its stability and is converted into a banded

chaotic saddle (BCS). The SCS is robust and persists after the crisis. Figure 4.7(c)

shows these two non–attracting chaotic sets at α = 2.85523π, after crisis character-
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ized by gaps. After the onset of the interior crisis, an infinite number of coupling

UPOs are created, filling the gap regions via an event called explosion (ROBERT et al.,

2000; SZABÓ et al., 2000). These newly created unstable periodic orbits have compo-

nents in both surrounding and banded regions and are responsible for the coupling

of the two regions. In general, the coupling UPOs are difficult to find numerically,

due to their long periods. This is a particularly complex task in a spatially extended

system. Using the technique introduced by Lathrop and Kostelich (1989) we found a

p–14 coupling UPO, which is plotted as green crosses in Fig. 4.7(c). An enlargement

of the same region of phase space as in Fig 4.7(b) is shown in Fig 4.7(d), including

the edge state (black cross) and its stable manifold (dashed lines). After the crisis

the edge of chaos separates the two regions occupied by SCS and BCS.

The link between both regions provided by the coupling UPOs has, as a direct

consequence, the formation of a larger chaotic attractor characterized by an inter-

mittent behavior. Figure 4.8 shows the time series of crisis–induced intermittency

corresponding to the post–crisis chaotic attractor. The laminar and bursty periods

of the crisis–induced intermittency correspond to the trajectory visiting the vicinity

of the BCS and SCS chaotic saddles, respectively.
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5 EDGE OF CHAOS AND SPATIOTEMPORALLY CHAOTIC SAD-

DLES AT THE LAMINAR–TURBULENCE TRANSITION

Three–dimensional turbulence in fluids and plasmas can be studied both, by means of

experimental measurements, as in Chapter 2, and by solving numerically the partial

differential equations describing the spatio–temporal evolution of density, velocity,

magnetic field, etc. Direct numerical simulations of turbulence require a considerable

computational effort, involving large and expensive hardware and long runs. Chaos

theory can describe some phenomena related to turbulence, as we showed in Chapters

3 and 4, but the lack of spatial information in low–dimensional systems makes it hard

to draw conclusions to understand the nonlinear dynamics of real fluids (REMPEL et

al., 2009a). On the other hand, many applications of chaos theory are based on the

possibility of exploring wide regions of the phase space, in other words, it is necessary

to evolve many initial configurations until they reach some final state. For this reason,

a direct application of chaos theory to the fluid equations is sometimes unfeasable.

A possible solution to this problem is to use systems with just one spatial dimension

modeled by a partial differential equation that can exhibit spatiotemporally chaotic

behavior.

In this Chapter the ideas presented in Chapters 3 and 4 are applied to the Benjamin–

Bona–Mahoney equation, a partial differential equation used to model nonlinear drift

waves in magnetized plasmas and shallow water waves in fluids, such as tsunamis.

This equation is also known as the regularized long–wave equation (RLWE). In

Section 5.1 and 5.2 we present the equation and the representation of dynamical

variables we use in our work. In Section 5.3 a Hamiltonian formalism is derived

for the conservative case of the RLWE. In Section 5.4 a detailed description of

all attractors found in the system and the bifurcations they undergo is given. The

genesis of an edge state and the chaotic saddle responsible for the spatiotemporally

chaotic transients are studied in Section 5.5. Finally, in Section 5.6 we analyze the

transition to turbulence in terms of the edge of chaos.

5.1 Regularized Long–Wave Equation

The driven–damped regularized long–wave equation (RLWE), also known as

Benjamin–Bona-Mahony equation, is given by

∂tu+ a∂txxu+ c∂xu+ fu∂xu = −γu− ε sin(x− Ωt) (5.1)
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where u(x, t) is a real function of space and time, a, c and f are constants, ν is a

damping parameter, ε is the driver amplitude, and Ω is the driver frequency. We

define periodic boundary conditions u(x, t) = u(x + 2π, t), and fix a = −0.28711,

c = 1, f = −6, ν = 0.1, and Ω = 0.65. These parameter values can be chosen

arbitrarily, with the exception of a, which must be negative for physical reasons

and to avoid numerical instability (HE; SALAT, 1989). Here, the values are chosen

following the previous works of He and Chian (2003), Rempel and Chian (2007) and

Chian et al. (2010).

We solve Eq. (5.1) using a pseudo–spectral method, by expanding u(x, t) in a Fourier

series (REMPEL; CHIAN, 2007):

u(x, t) =

N/2∑
k=−N/2

ûk(t)e
ikx. (5.2)

We set the number of modes N = 32. By introducing (5.2) into (5.1) we obtain a

set of ordinary differential equations for the complex Fourier amplitudes ûk(t):

(1− ak2)
dûk
dt

= −ick ûk − νûk +
ε

2
[(sin Ωt+ i cos Ωt)δ1,k − fF(u∂xu), (5.3)

where the last term on the right–hand side is the Fourier transform of the nonlinear

part of (5.1). In the pseudo–spectral method this term is computed in the real space

using information from the Fourier space. First, we compute the derivative in the

Fourier space ∂xu→ ikûk and then both ûk and ikûk are inverse Fourier transformed

to real space, where the multiplication fu∂xu is performed. Finally, the result is

Fourier transformed back to the Fourier space. Numerical integration is performed

using a fourth–order Runge–Kutta integrator, with a time step ∆t = T/500, where

T = 2π/Ω is the driver period in Eq. (5.1). At each time step, 1/3 of the highest k

modes are set to zero to avoid aliasing errors. Thus, the effective number of modes

is N = 20.

5.2 Amplitude–phase representation and Poincaré section

An important issue to consider when studying different kinds of solutions in high–

dimensional systems is to choose a good representation of the available information,

in order to achieve a correct interpretation of the physical situation being investi-

gated. Based on the fact shown by He (2005), that for a small ε the asymptotic
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solution of equation (5.1) is a steady wave (SW) in the form u0(x, t) = u(x − Ωt),

we adopt the amplitude–phase representation of the variables ûk to describe the

dynamics of the system. Expression (5.2) can be written in terms of amplitude and

phase in the laboratory frame of reference (x, t) as

u(x, t) =
N∑
k=1

|ûk(t)| cos(kx+ φLk (t)), (5.4)

where

|ûk| =
√

[Re ûk]2 + [Im ûk]2 and φLk = tan−1

(
Im ûk
Re ûk

)
. (5.5)

The driver frame of reference (ξ, τ) is given by the follow transformation:

ξ = x− Ωt τ = t. (5.6)

Introducing (5.6) into (5.4), we have

u(ξ, τ) =
N∑
k=1

|ûk(τ)| cos(k[ξ + Ωt] + φLk (t)) (5.7)

=
N∑
k=1

|ûk(τ)| cos(kξ + φDk (t)), (5.8)

with the phase in the driver frame

φDk = φLk + kΩt. (5.9)

Here, the phase shift kΩt arises from the Doppler effect depending on wave number

k. Comparing expression (5.8) with the form of the SW solution u0 ≡ u0(ξ), we see

that both |ûk| and φDk have to be independent of time. Hence, the SW solution is

a fixed point in the driver frame using the amplitude–phase Fourier representation.

An example of the steady wave for ε = 0.01 is shown in Fig. 5.3(b), plotted using

(5.8).

Furthermore, He (2005) showed that at a certain value εH a Hopf bifurcation occurs,

the SW fixed point becomes unstable and a limit cycle replaces it as the new attrac-

tor. For ε > εH all the solutions oscillates around some value in time. For this reason

it is convenient to introduce a Poincaré section to construct a map, from which the

bifurcation behavior can be revealed. Inspecting the numerical solutions, we choose
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A2 = 0.1 and dA2/dt > 0 as the Poincaré map in this case.

The temporal evolution of the wave energy, which is a constant of motion for ν =

ε = 0, is

E(t) =
1

4π

∫ 2π

0

[u(x, t)2 − aux(x, t)2] dx. (5.10)

Substituting (5.8) into (5.10), and recalling that τ = t, we have the energy in terms

of the Fourier spectrum,

E(t) =
1

4

N∑
k=1

(1− ak2)|ûk(t)|2. (5.11)

We will use this quantity to investigate bifurcations in the parameter space in Section

5.4.

5.3 Hamiltonian formulation

In the absence of dissipation and an external source of energy (ν = ε = 0), the long

wave equation (5.1) is written as

∂tu+ a∂txxu+ c∂xu+ fu∂xu = 0, (5.12)

As a first approach, in this section we study travelling waves of Eq. (5.12) with the

form

u(x, t) = u(x− V t). (5.13)

Introducing the new variable ξ = x−V t and using the chain rule, the temporal and

spatial derivatives are transformed into a total derivative of ξ:

∂

∂t
=
∂ξ

∂t

d

dξ
= −V d

dξ

∂

∂x
=
∂ξ

∂x

d

dξ
=

d

dξ
. (5.14)

using Eqs. (5.14) in Eq. (5.12), we obtain the following third–order ODE:

d3u

dξ3
= A

d

dξ
u2 +B

du

dξ
, (5.15)

where A = f/(2aV ) and B = (c− V )/(aV ). Integrating once, we obtain

d2u

dξ2
= Au2 +Bu+ C, (5.16)
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where C is an integration constant. Finally, introducing a new variable v = du/dξ,

we can rewrite Eq. (5.16) in a Hamiltonian form:

du

dξ
=
∂H

∂v
, (5.17)

dv

dξ
= −∂H

∂u
, (5.18)

with

H(u, v) = −
(
A
u3

3
+B

u2

2
+ Cu

)
+
v2

2
. (5.19)

The equilibrium solutions or fixed points of the Hamiltonian system can be found

equating equations (5.17)–(5.18) to zero. In this case, due to the quadratic nonlin-

earity, there are two fixed points p± given by

p± = {u±, 0} =

{
−B ±

√
B2 − 4AC

2A
, 0

}
. (5.20)

To classify the two fixed points p± and their stability, first we linearize equations

(5.17)–(5.18) around the fixed point p±,

d

dξ

(
u

v

)
= J(p±)

(
u

v

)
, (5.21)

where J(p±) is the Jacobian matrix

J(p±) =

(
∂2H
∂u∂v

∂2H
∂v2

−∂2H
∂u2

− ∂2H
∂u∂v

)
=

(
0 1

2Au± +B 0

)
. (5.22)

The classification and stability of p± are given by the two eigenvalues of matrix

(5.22),

λ±1 =
√

2Au± +B and λ±2 = −
√

2Au± +B. (5.23)

We are interested in the case where the two fixed points coexist. Using the values

of a, c and f defined in Section 5.1, the condition C < 0 is enough to ensure the

coexistence of two fixed points. Under these conditions, the eigenvalues of p− only

have imaginary part, and the eigenvalues of p+ are real numbers, one positive and

one negative, as shown in Fig. 5.1. We conclude that p− is a center point, generating

oscillatory solutions around it, and u+ is a saddle point, with one attracting direction

related to the negative eigenvalue, and one repelling direction, related to the positive
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Figure 5.1 - Stability analysis of fixed points p− (left panel) and p+ (right panel). For
C < 0, the eigenvalues of p− are imaginary, and the eigenvalues of p+ are
real, one positive and one negative. p− is a center and p+ is a saddle. When
C = 0 both fixed points cease to exist.

Figure 5.2 - Contours of H(u, v). Each curve defines a constant energy solution of the
system of equations (5.17)–(5.18). Red lines denote the stable and unstable
manifolds of p+.

eigenvalue.

Figure 5.2 is a visualization of the phase space. The fixed points p− and p+ are

represented by blue dots. Because the system is conservative, each contour line

H(u, v) =constant represents a particular solution. The attracting and repelling

directions of p+, shown as a red line surrounding the center point p−, define a
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Figure 5.3 - Solutions of Eq. (5.1) for: (a) ε = 0 and ν = 0, and (b) ε = 0.01 and ν = 0.1.

separatrix of the phase space, and it is called a homoclinic curve. Solutions within the

curve are oscillatory, and solutions outside the curve are unbounded. The separatrix

itself defines a solitary wave.

Even though the Hamiltonian system for travelling waves (5.17)–(5.18) represents a

severe simplification of the complete problem (5.1), it predicts fairly well the shape

of solutions when dissipation and an external source are added. Figure 5.3 shows an

oscillatory solution of the Hamiltonian system (left panel) compared with a solution

obtained by solving numerically Eq. (5.1) for ε = 0.01 and ν = 0.1. This result shows

that the phase space portrait of the long wave equation for the conservative case

is a mimic of the complete phase space, at least for small values of ε and ν. The

consequences of adding more driver energy into the system will be discussed in the

following section.

5.4 Attractors and bifurcations

In this section we analyze the different kind of solutions of Eq. (5.1) and the bi-

furcations they suffer as the control parameter ε is varied. We are interested in

investigating the domain of solutions in the interval ε ∈ [0, 0.25], which has been

reported in previous works as containing a rich variety of nonlinear dynamics, in-

cluding steady travelling waves (SW), periodic, quasiperiodic, temporally chaotic
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Figure 5.4 - Bifurcation diagram of all solutions of Eq. (5.1) in the interval ε ∈ [0, 0.25].
Arrows indicate bifurcations and transitions suffered by different solutions as
the parameter is varied.

and spatiotemporally chaotic attractors (HE, 2005; REMPEL; CHIAN, 2007).

We have identified a total of four different attractors in the interval ε ∈ [0, 0.25], each

of which bifurcates independently as a function of ε. The bifurcation diagram for

these four attractors is shown in Fig. 5.4. Points corresponding to the wave energy

are plotted every time a particular solution crosses the Poincaré section described in

section 5.2. The fixed point solutions, represented by thick lines, have not Poincaré

map associated and we only plot the energy, which is constant for a given ε. In the

following we describe in detail the four different attractors and their corresponding

bifurcations.

Attractor A0 is represented by a blue thick line at the left of Fig. 5.4, and arises as

a fixed point when ε > 0. This fixed point loses its stability at ε ≈ 0.079, when a

Hopf bifurcation occurs, marked as HB in Fig. 5.4. At that point a period–1 periodic
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Figure 5.5 - Two–dimensional projection of the Poincaré map of quasioperiodic attractor
A2 at ε = 0.131.

orbit is created, remaining until ε ≈ 0.1925, when the orbit in no longer observed in

the phase space. Attractor A0 only changes its energy as ε increases and does not

suffer any other bifurcation.

Attractor A2 arises in a tangent bifurcation TB at ε ≈ 0.09, when two fixed points,

one stable (thick red line) and one unstable, labeled ES (black dashed line), are

created. The important role of the unstable fixed point is the central topic of this

chapter, and we devote an entire section to explain its nature, how to find it and

its influence on the organization of the phase space of the entire system. Continuing

with the bifurcation scenario of A2, when ε ≈ 0.125 the attractor suffers a Hopf

bifurcation and becomes a periodic orbit (thin red line). At ε ≈ 0.1297 a transition

occurs, seen as the moment when Poincaré points densely fill the region around the

single–point periodic attractor, which loses its stability in the transition. Figure 5.5

is a 2D projection of the Poincaré map at ε = 0.131, after the transition, showing

that points in the attractor form a closed curve, indicating that the limit cycle

has bifurcated into a 2D torus, and A2 has become a quasiperiodic attractor. This

attractor loses its stability at ε ≈ 0.13235, ceasing to exist. Coexistence of attractors
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A0 and A2 implies that each attractor possesses its own basin of attraction, a region

of the phase space whose initial conditions converge to the specific attractor. The

bifurcation analysis of the basin boundary is crucial to understand the origin of

spatiotemporally chaotic transients and the transition to wave turbulence, as we

will see in sections 5.5 and 5.6.

A saddle–node bifurcation SNB is observed at ε ≈ 0.1774. From this transition the

period–2 periodic attractor A1 arises, which is plotted as red points in Fig. 5.4.

This attractor shows a number of different bifurcations as ε is increased, involving a

transition to quasiperiodicity and a series of period doubling cascades to temporal

chaos, with some periodic windows interspersed in the parameter space. Near ε ≈
0.1925 the attractor becomes chaotic in time, and it remains chaotic until ε ≈
0.2, when it suddenly loses its stability via an interior crises (IC), leading to the

spatiotemporally chaotic attractor A3, shown as a dense region of dark blue dots in

Fig. 5.4. The origin of this attractor is a spatiotemporally chaotic saddle (STCS)

which exist in the phase space for ε < 0.2, plotted as light blue dots, and becomes

attracting at the transition. The genesis of the STCS is studied in Section 5.5, while

the details about the interior crisis transition to spatiotemporal chaos are discussed

in Section 5.6. After the transition, a temporal chaotic saddle TCS (grey dots in

Fig. 5.4) is created from the destabilized attractor A1. The temporally chaotic saddle

continues to exist until ε ≈ 0.22105, when a boundary crisis (BC) takes place and the

TCS becomes a temporally chaotic attractor. This attractor is labelled A1 because

it shares a common origin with the chaotic attractor that loses its stability in the

interior crisis IC. A more detailed explanation of this boundary crisis is given in

Section 5.6. When ε is increased, attractor A1 eventually becomes a period–1 orbit

via an inverse period doubling cascade. This periodic attractor disappears when a

Hopf bifurcation takes place at ε ≈ 0.2308, and a fixed point, represented by a red

thick line, replaces it. Finally, the fixed point A1 disappears in a tangent bifurcation

(TB) at ε ≈ 0.235, jointly with the saddle fixed point ES previosuly created with

A2.

5.5 Genesis of the edge state and the STCS

In this section we will discuss the genesis of an important structure called edge state

(ES), and how it is related to the origin of the spatiotemporally chaotic saddle STCS

shown in Fig. 5.4. These two structures are fundamental to understand a variety of

phenomena that have been reported in the past, such as spatiotemporally chaotic
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Figure 5.6 - Basins of attraction for attractors A0 (blue) and A2 (red), for ε =
0.095, 0.111, 0.125 and 0.13. Black cross denotes the edge state ES in each
case.

transients and the transition to a fully–developed spatiotemporally chaotic attrac-

tor STCA (REMPEL; CHIAN, 2007), spatiotemporal intermittency (REMPEL et al.,

2009a) and amplitude–phase synchronization (HE; CHIAN, 2003; CHIAN et al., 2010).

Spatiotemporally chaotic states in the Eq. (5.1) are equivalent to wave turbulence

solutions, and therefore it is possible to do some analogies between the phenomenol-

ogy found here and those related to more complicated problems, such as transition

to turbulence in neutral fluids and plasmas.

As we mentioned in Section 5.4, when the attractor A2 arises as a stable fixed point,

an unstable fixed point is created at the same time. Attractor A2 coexists with the

periodic orbit A0, and each one has its own basin of attraction, which corresponds to
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the set of initial conditions converging to the attractor. The basins of attraction are

separated by boundaries. We define the edge state as the saddle structure that lies in

the basin boundary. The bisection method, described in Chapter 4, has been adapted

to this situation, considering the attractors A0 and A2 as the final states separated

by the edge state. We found that the edge state ES is the unstable fixed point born

in the tangent bifurcation TB, as show in Fig. 5.4. The edge state corresponds to a

saddle steady wave moving with the driver speed Ω in the laboratory frame.

Figure 5.6 shows the basins of attraction of A0 (blue region) and A2 (red region) for

ε = 0.095, 0.111, 0.125 and 0.13, jointly with the ES, denoted by a white cross, in

each case. As can be observed, the basin boundary changes from smooth to a more

complicated shape as ε is increased. In other words, the basin boundary suffers a

metamorphosis, and becomes fractal.

It is a well known fact that if a basin boundary is fractal, then there is a chaotic

saddle in the boundary (LAI; TÉL, 2011). The typical mechanism by which a basin

boundary becomes fractal is called homoclinic tangency, and is outlined in Fig. 5.7.

Throughout the process, where ε is the bifurcation parameter, there is a saddle

fixed point, denoted ES. The stable manifold of ES is the basin boundary between

an attractor to its right (shown) and another attractor (not shown). For ε < ε∗,

the basin boundary is smooth. When ε = ε∗, homoclinic tangencies between the

stable and unstable manifolds of ES occurs. For ε > ε∗, a chaotic saddle is created

as a consequence of the infinite homoclinic crossings, implying a Smale horseshoe–

type dynamics (LAI; TÉL, 2011). The stable manifold of the chaotic saddle, and

consequently the basin boundary, becomes fractal. This bifurcation is called smooth–

to–fractal basin boudary metamorphosis (GREBOGI et al., 1987).

From Fig. 5.6 and the scenario described above, we conclude that somewhere in the

interval ε ∈ [0.095, 0.125], a homoclinic tangency involving the stable and unstable

manifolds of the edge state ES takes place. To quantify the metamorphosis of the

basin boundary, we compute its fractal dimension for several values of ε. The fractal

dimension of the basin boundary is obtained by calculating the probability f of two

initial conditions separated by a distance δ to lie in different basins (GREBOGI et al.,

1983a). In general, we have

f(δ) ∼ δα, (5.24)

where the scaling exponent α = D − d is called the uncertainity exponent, D is the
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Figure 5.7 - Dynamical mechanism that creates fractal basin boundaries and a chaotic
saddle within. (a) Smooth basin boundary for ε < ε∗. (b) Homoclinic tangen-
cies for ε = ε∗. (c) Homoclinic crossings for ε > ε∗. The stable manifold, and
consequently the basin boundary, becomes fractal. Adapted from Lai and Tél
(2011).

total dimension of the phase space, and d is the dimension of the basin boundary. Fig-

ure 5.8 summarizes the results of this calculation over the interval ε ∈ [0.095, 0.132],

where there is a coexistence of attractors. We use a two–dimensional phase space

projection (|û1|, |û2|) with D = 2. Figure 5.8(a) shows the bifurcation diagram of A2

and ES, and 5.8(b) is the basin boundary fractal dimension as a function of ε. d = 1

corresponds to a smooth boundary, which seems to be the case until ε ≈ 0.11, when

the fractal dimension becomes greater than one. From there onwards, the fractal di-

mension increases quickly with the parameter, in agreement with changes observed

along the different panels of Fig. 5.6.

From the previous analysis, it can be concluded that a chaotic saddle STCS is created

near ε ≈ 0.11. In order to determine the dynamical spatiotemporal properties of this
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Figure 5.8 - (a) Enlargement of bifurcation diagram for attractor A2 (red dots) and the
edge state ES (dashed black line). (b) Fractal dimension of the basin bound-
ary as a function of ε. For ε & 0.11 (indicated by the arrow) the boundary
dimension begins to increase from the unity, meaning that basin boundary
becomes fractal.

non–attracting chaotic set, we use the stagger–and–step method (SWEET et al., 2001)

to construct arbitrarily long trajectories close to the chaotic saddle, for several values

of ε.

First, we focus on the STCS at ε = 0.13, soon after the smooth–to–fractal basin

boundary metamorphosis. Properties of the temporal dynamics of the chaotic sad-

dle are revealed by studying the Lyapunov exponents. The complete Lyapunov spec-

trum is computed from the solution obtained with the stagger–and–step, using the

method by Wolf et al. (1985), described in Chapter 3. Figure 5.9 shows the tempo-

ral convergence of the positive Lyapunov exponents. We found 6 positive exponents,

which means that this chaotic set is hyperchaotic. Such a large number of unstable
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Figure 5.9 - Temporal convergence of the six positive Lyapunov exponents of the STCS
chaotic saddle, for ε = 0.13.

Figure 5.10 - Amplitude spectra of A0 (blue line), A2 (red line), ES (dashed black line)
and the STCS (light blue line).
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Figure 5.11 - Contourplot of the spatiotemporal evolution for the four coexisting structures
at ε = 0.13. While A0, A2 and ES are spatially regular, the STCS has a
disordered spatiotemporal pattern.

dimensions near the homoclinic tangency is in accordance with the rapid growth of

the fractal dimension of the basin boundary as a function of ε, as observed in Fig.

5.8(b).

The Fourier amplitude spectrum, which indicates the distribution of energy among

spatial modes k, can be used to characterize the spatial properties of the chaotic sad-

dle. Figure 5.10 shows the time–averaged amplitude spectrum of the chaotic saddle

STCS (light blue line), and as a comparison, the spectra of A0 (blue line), A2 (red

line) and ES (black dashed line). The chaotic saddle spectrum is broadband, con-

taining much more energy in higher k modes than any other state. To illustrate the

spatial disorder of the chaotic saddle, Fig. 5.11 shows spatiotemporal contourplots

of the four coexisting states, obtained by the relation (5.4), in the laboratory frame.

While A0, A2 and ES are spatially regular (SR), the chaotic saddle shows a clear

spatial disorder. A quantification of spatial disorder is the Fourier power spectral
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Figure 5.12 - Time–averaged spectral entropy of STCS as a function of ε.

entropy SA (POWELL; PERCIVAL, 1979; XI; GUNTON, 1995), given by

SA(t) = −
N∑
k=1

pk(t) ln pk(t), (5.25)

where pk(t) is the relative weight of a Fourier mode k at an instant t

pk(t) =
|ûk(t)|2∑N
k=1 |ûk(t)|2

. (5.26)

The spectral entropy is maximum for a random variable with uniform distribution,

pk(t) = 1/N for all k. For N = 20, the entropy upper limit is Smax
A = lnN ≈ 3.

The index SA has been applied to study Eq. (5.1), to characterize the transition

to spatiotemporal chaos near ε ≈ 0.2 (REMPEL; CHIAN, 2007), and the level of

amplitude synchronization between modes (CHIAN et al., 2010). At ε = 0.13, the

time–averaged spectral entropy of the chaotic saddle is 〈SCS
A (t)〉 = 1.233, which

represents the most disordered state if compared with spectral entropies of the two

attractors, 〈SA0
A (t)〉 = 0.914 and 〈SA2

A (t)〉 = 1.134, and with the spectral entropy

of the edge state 〈SES
A (t)〉 = 0.937. From all of the information exposed above, we

conclude that the chaotic saddle has clear signatures of spatiotemporal chaos at

ε = 0.13.
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Figure 5.13 - (a) Number of positive Lyapunov exponents of STSC as a function of ε. (b)
Maximum Lyapunov exponent of STSC as a function of ε.

Next, we study the dynamical evolution of STCS as the control parameter ε is

varied. Figure 5.12 shows the variation of the time–averaged power spectral entropy

〈SA(t)〉 for the chaotic saddle STCS as a function of ε. The degree of spatial disorder

increses with ε, until it reaches the maximum value near ε ≈ 0.19. Spatial disorder

and temporally chaotic dynamics have similar variations with the control parameter.

Figure 5.13(a) shows the number of positive Lyapunov exponents N+ as a function

of ε. The number of positive Lyapunov exponents grows quickly with ε near the

homoclinic tangency point ε∗, reaching its maximum value of N+ = 14 at ε ≈ 0.195.

The rate of growth of N+ decreases with ε. Almost the same behavior is observed

for the maximum Lyapunov exponent λ1 as a function of ε, shown in Fig. 5.13(b).

The spatiotemporal chaos associated with the STCS becomes more complex as the

control parameter is increased.

We also use the information from the Lyapunov spectra to infer ε∗, near the mo-

ment of the genesis of STCS. For ε > 0.125 we use the stagger–and–step method to

compute the Lyapunov spectra. For ε ≤ 0.125 the transient lifetimes are too short

to apply that technique. A way to estimate the number of positive Lyapunov ex-

ponents is to compute a large number of finite–time Lyapunov spectra and to take

the average, as suggested by Ott (1993). The red circle in Fig. 5.13(a) marks a data

point obtained this way, for ε = 0.125. Doing a linear extrapolation with the first

three data points of N+, the genesis of STCS is estimated to occur at ε∗ ≈ 0.115.

A similar analysis using the maximum Lyapunov exponents λ1 yields ε∗ = 0.11274.

The information from fractal dimension of the basin boundary (Fig. 5.8(b)) and the
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Lyapunov spectra are essentially in agreement.

5.6 Edge of chaos at the onset of laminar–turbulence transition

In the previous section we studied the origin of an edge state ES, given by a saddle

steady wave of the RLWE, that emerges in a tangent bifurcation jointly with the

attractor A2. Also, we showed the role of the edge state ES and its stable mani-

fold, the basin boundary, in the genesis of a spatiotemporally chaotic saddle STCS,

apparently due to the tangency between the stable and unstable manifolds of the

edge state. In this section we return to the edge of chaos problem, originally formu-

lated by Skufca et al. (2006), and explored in Chapter 4 in the Pierce diode. The

orginal idea of the edge of chaos was presented for the laminar–turbulence transition

problem in shear flows, and it was tested using a low–dimensional Galerkin projec-

tion of the Navier–Stokes equation. The main ingredient to have an edge of chaos

is the coexistence of a asymptotically laminar attracting solution with turbulent

transients. These ingredients are present in the RLWE system from ε ≈ 0.13235

to ε ≈ 0.2, when one (or two) spatially regular laminar attractor (A0 and/or A1)

coexists with a spatiotemporally chaotic saddle STCS, responsible for the turbulent

transients. In this section we will show that the edge of chaos concept is helpful to

understand important nonlinear phenomena such as amplitude–phase synchroniza-

tion and laminar–turbulence transition, as well as to explain the two crises observed

in the bifurcation diagram.

5.6.1 Edge of chaos before IC: ε = 0.199

When attractor A2 disappears at ε ≈ 0.13235, the necessary conditions for the

existence of the edge of chaos are created: a spatially regular attractor A0 coexists

with the recently emerged spatiotemporally chaotic saddle STCS. This chaotic saddle

evolves with the parameter ε, until it eventually exhibits, at ε = 0.199, a maximum

of fourteen positive Lyapunov exponents (see Fig. 5.13). The chaotic saddle STCS

is responsible for long spatiotemporally chaotic transients. As in Chapter 4, and

following main works in this area (ECKHARDT; MERSMANN, 1999; SKUFCA et al.,

2006; SCHNEIDER et al., 2007), an approach to detect the edge of chaos is to compute

the lifetime of initial conditions in some region of the phase space. The lifetime of an

initial condition is defined as the time it takes to converge to the spatially regular

attractor. Figure 5.14 shows the lifetime landscape in a two–dimensional cut of

the phase space. The red region indicates short lifetime, and corresponds to initial
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Figure 5.14 - A two–dimensional sample of phase space, showing the transient lifetime.

conditions whose trajectories do not present spatiotemporally chaotic transients, and

converge to the temporally chaotic attractor A1 quickly. On the other hand, light

blue regions correspond to initial conditions whose temporal evolution presents long

spatiotemporally chaotic transients before converging to A1. A fractal boundary,

the edge of chaos, separates the two regions or pseudo–basins, called laminar and

turbulent pseudo–basins, respectively. As in the Pierce diode problem of Chapter

4, the stable manifold of the chaotic saddle is well approximated by the regions of

longer lifetime.

The black cross in Fig. 5.14 gives the position of the edge state ES, which lies

on the edge of chaos. The edge state ES is found by using the bisection method

(SKUFCA et al., 2006). By integrating many different initial conditions it is possible

to see that those trajectories that present chaotic transients have large energy peaks,

in opposition to those that converge quickly to the attractor, with lower energy

levels. Beginning with two initial conditions uL and uH , with short and long lifetime,

respectively, we integrate the condition given by the middle point of the path that

connects both conditions, uC = (uL + uH)/2, until it converges to A1. We use the

energy level E0 = 0.2 as a threshold to decide to which region the condition belongs.
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Figure 5.15 - Energy time series for two initial conditions found with the bisection method
for ε = 0.199. The initial distance is 10−12. The laminar trajectory (red)
converges quickly to the attractor A1, and the turbulent trajectory (light
blue) goes through the STCS regime before converging to A1.

If the maximum energy along the trajectory of uC is lower than E0, the initial

condition is in the laminar pseudo–basin. Otherwise, uC belongs to the turbulent

pseudo–basin. Repeating this procedure, we found pairs of conditions at both sides

of the edge of chaos, arbitrarily close one to each other. Figure 5.15 is an example of

two initial conditions found with the bisection method, with the distance between

them ||uL − uH || < 10−12. The red curve is the trajectory of laminar condition uL,

and the light blue curve is the trajectory of transient turbulent condition uH . As

the inset in Fig. 5.15 shows, both trajectories remain close to each other, with the

energy being almost constant, until t ≈ 50. That part of the solutions corresponds

to trajectories passing near the edge state ES, which is a fixed point and has a

constant energy. From t & 50, the two trajectories separate quickly. The laminar

trajectory converges immediately to the attractor, while the turbulent trajectory
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Figure 5.16 - Temporal convergence of the first four Lyapunov exponents of the edge state
ES at ε = 0.199. The edge state is a saddle fixed point, with one unstable
direction and thirty–nine stable directions.

remains chaotic until it eventually converges to the attractor at t ≈ 4000.

By systematically applying the bisection method it is possible to construct a long

trajectory close to the edge state ES. This trajectory is used to compute the stability

of ES. Figure 5.16 shows the temporal evolution of the first four Lyapunov exponents

of the edge state. This result confirms that the edge state is a saddle structure, with

one unstable direction, and thirty–nine (39) stable directions. The edge of chaos in

Fig. 5.14 is a two–dimensional projection of this high–dimensional stable manifold.

5.6.2 Synchronization of A1 and STCS with the edge state ES

As seen in Section 5.5, the turbulent state given by the STCS has little correlation

in space. However, the broadband Fourier amplitude spectrum indicates strong in-

teraction among different scales. In recent years, the concept of synchronization has

been used to understand how such interactions are related to different phenomena
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observed in the RLWE. He and Chian (2003) studied the on–off collective imperfect

phase synchronization within the fully developed spatiotemporally chaotic attractor

A3 at ε = 0.22. They showed that bursts observed in the energy time series are

highly correlated to phase synchronization events among scales. Phase synchroniza-

tion due to nonlinear multi–scale interactions are responsible for the existence of

coherent structures within the spatiotemporal attractor A3. This fact has also been

observed in the atmospheric turbulence at the canopy of Amazon forest (CHIAN et

al., 2008) and the intermittent magnetic field turbulence of solar wind (KOGA et

al., 2007; CHIAN; MIRANDA, 2009). Amplitude–phase synchronization across spatial

scales was investigated by Chian et al. (2010) in order to explain the on–off intermit-

tency between laminar and turbulent states at the onset of permanent spatiotem-

porally chaotic attractor A3. They showed that the laminar (bursty) states in the

on–off spatiotemporal intermittency correspond, respectively, to the nonattracting

coherent structures (chaotic saddles) with higher (lower) degrees of amplitude–phase

synchronization across spatial scales.

The abovementioned studies are based on the idea of self–synchronization: different

scales of the same state synchronize among themselves, generating the observable

effects. Here we explore the idea of synchronization between two different states: the

edge state ES and some other solution of the system. Let u(ξ, τ) be the solution of

Eq. (5.1) in the driver frame, for some initial condition u(ξ, τ0) = u0(ξ). As we have

access to N = 20 Fourier modes, the amplitudes {bk} = {|ûk|} and the phases {φk}
in the driver frame, for k = 1, . . . , 20, are known for τ > τ0. In terms of amplitudes

and phases the solution can be written as

u(ξ, τ) =
N∑
k=1

bk(τ) cos[kξ + φk(τ)]. (5.27)

We are interested in measuring the level of synchronization between the solution of

u(ξ, τ) and the edge state uE(ξ), previously found by the bisection method. For this

purpose we introduce the distance ∆ between the solution u(ξ, τ) and the edge state

uE(x)

∆2(t) =

∫ 2π

0

|u(x, t)− uE(x)|2 dx. (5.28)

The edge state has Fourier amplitudes {b̃k} and phases {φ̃k}, with an expression in
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the real space similar to (5.27), then we can rewrite (5.28) as

∆2(t) =

∫ 2π

0

(
N∑
k=1

bk cos[kx+ φk]− b̃k cos[kx+ φ̃k]

)2

dx. (5.29)

After some algebra, and evaluating the integrals, the distance between u(ξ, τ) and

uE(τ) is given in terms of their amplitude and phase spectra,

∆2(t) = π

N∑
k=1

b2
k + b̃2

k − 2bkb̃k cos[φk − φ̃k], (5.30)

recalling that τ = t. In this case ∆(t) is a measure of both amplitude and phase

synchronization between the solution u(ξ, τ) and the edge state uE(ξ). Indeed, when

the amplitude and phase spectra of the solution approach to edge state spectra, ∆

decreases.

He and Chian (2003) introduced a collective correlation function to measure the

level of phase synchronization among scales for a spatiotemporally chaotic state in

the RLWE. We want to measure phase synchronization between two states, thus we

use a variation of this index, taking into account that a total phase synchronization

is achieved when the argument of the cosine function in (5.30) is zero for all scales

k. Using this fact, a mutual collective correlation function between two states can

be defined as

CM
∆φ(t) = |ΠM

k=1 cos(φk − φ̃k)|. (5.31)

Perfect phase synchronization is achieved when all phases of the edge state and the

solution are exactly equal, and a mutual collective correlation function is equal to

one.

Figure 5.17 shows the time series of the wave energy E(t), amplitude spectral entropy

SA(t), distance ∆(t) and index C5
∆φ(t) of a solution u(ξ, τ) for ε = 0.199 and an initial

condition in the turbulent pseudo–basin. The solution has a long chaotic transient,

caused by the STCS, characterized by higher energy levels and rapid fluctuations. At

t ≈ 3500 the solution converges to the temporally chaotic attractor A1, represented

by lower energy levels and a bounded behavior. The amplitude spectral entropy

SA characterizes the level of self–synchronization among Fourier modes of u(ξ, τ).

The red line is a running average, to facilitate visualization, also plotted for the

C∆φ time series. It is evident that the STCS regime is characterized by a lower

80



Figure 5.17 - Time series of energy E(t), spectral entropy SA(t), the distance to the edge
state ∆(t) and mutual collective correlation function C∆φ(t) for an initial
condition in the vicinity of STCS, showing a long chaotic transient before
converging to attractor A1. Lower and higher levels of synchronization with
the edge state ES coincide with higher and lower levels of spatial disorder.

self–synchronization level (high entropy values) than the attractor A1. This is in

accordance with previous results by Chian et al. (2010). The surprising fact is that

both ∆ and C∆φ show essentilly the same behavior, but this time with respect to

the edge state ES. On average, STCS is more distant to ES than A1, meaning that

the chaotic attractor is more synchronized with ES in amplitude and phase than

the STCS. Also, the phase synchronization between A1 and ES is higher on average.

From these results, we conclude that the dynamical evolution of solution u(ξ, τ) is,

in part, controlled by its interaction with the edge state ES.
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Figure 5.18 - Synchronization between ES and STCS. A solution during the transient tur-
bulent regime synchronize with the edge state (vertical dashed blue lines)
prior to the bursty release of energy (vertical arrows).

Previous analysis deals with average levels of synchronization between ES and the

two stages of solution of u(ξ, τ). But by examining the STCS region of C∆φ in Fig.

5.17, we see a local phase synchronization with ES, given by the peaks in the time

series. Figure 5.18 shows an enlargement of the STCS showing some of these peaks.

Vertical dashed blue lines denote four instants of high local amplitude and phase

synchronization with ES. Each case is characterized by a local minimum of ∆ and

a pronounced peak in C∆φ at the same time, indicating a good correlation between

the events of local synchronization and the subsequent energy bursts indicated by

arrows. He and Chian (2003) showed that the energy bursts within the spatiotem-

porally chaotic trajectory are related to higher degree of phase self–synchronization,

probably associated with solitary waves (see Fig. 4 of He and Chian (2003)). We

conclude that synchronization between ES and u(ξ, τ) in the STCS regime triggers

the self–synchronization process, leading to an energy burst.
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Figure 5.19 - Enlargement of the bifuraction diagram for the attractor A1 (red), the tem-
porally chaotic saddle TCS (grey) and the edge state ES (dashed black).
Interior crisis IC and boundary crisis are indicated. Attractor A1 is consid-
ered to be a single structure divided in the parameter space by the chaotic
saddle TCS. Due to the specific Poincaré cut, it is posible to appreciate the
collision between A1 and ES that triggers the interior crisis and the transition
to spatiotemporal chaos.

5.6.3 Interior and boundary crises

The bifurcation diagram of Fig. 5.4 shows two sudden transitions involving the

chaotic attractor A1: an interior crisis IC and a boundary crisis BC. In this subsection

the role of the edge state in these crises is exposed. Figure 5.19 is an enlargement of

the bifurcation diagram over the interval ε ∈ [0.17, 0.245], showing the bifurcations

of attractor A1 (red), including the crisis IC at ε ≈ 0.1996 and BC at ε ≈ 0.22105,

the edge state ES (dashed line) and the temporally chaotic saddle TCS. In this

interval the spatiotemporally chaotic saddle STCS and the spatiotemporally chaotic

attractor A3 also exist, but are not shown in Fig. 5.19.

A crisis is a parametric transition involving at least two chaotic sets and a mediating

saddle point or unstable periodic orbit (UPO), and is characterized by a sudden size
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Figure 5.20 - Saddle steady wave found by He and Chian (2003) (thick red line) and edge
state ES (dashed black line) plotted in the real space. Both structures are
the same.

increase or a sudden disappearance of a chaotic attractor as a system parameter is

varied. Crises are caused by the multiple collision between the chaotic attractor, the

chaotic saddle, the saddle point and its stable manifold. In Chapters 3 and 4, we

studied in detail the interior crisis involving a mediating UPO. In those cases, the

chaotic saddles involved are low–dimensional in the sense of having only one positive

Lyapunov exponent, representing one expanding direction. This implies that the

chaotic saddles in both cases have a local planar shape in the phase space defined by

the Poincaré map (see e.g. Fig. 4.6). From this fact, we could project the collision

in suitable grids of initial conditions, allowing us to show direct evidence of the

multiple collision, even for a spatially extended system such as the Pierce diode. For

the case of the RLWE, the chaotic saddle has characteristics of spatiotemporal chaos,

with fourteen expanding directions at the moment of the interior crisis. Hence, it is

extremely difficult to obtain a graphical representation of the collision between the

attractor and the chaotic saddle. On the other hand, it is easier to show the collision

between the attractor and the mediating saddle point. As it was firt noted by He

and Chian (2004), the mediating saddle structure which collides with the attractor

is a saddle steady wave uSW(ξ) in the laboratory frame, which corresponds to a
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Figure 5.21 - Collisions between the attractor A1 and ES that trigger interior and bound-
ary crises. (a) Temporally chaotic attractor A1 (red) and edge state ES (black
cross) colliding with each other, just before the interior crisis IC preceding
the transition from temporal chaos to spatiotemporal chaos. (b) Attractor
A1 and ES colliding with each other before the boundary crisis BC.

saddle fixed point in the driver frame. Imposing the condition ∂uSW(ξ)/∂τ = 0 and

expanding the wave in the Fourier space, He and Chian (2004) found the saddle fixed

point responsible for the collision. Figure 5.20 is a comparison between uSW(ξ) (thick

red line) and the edge state ES (dashed black line) found using the bisection method

at ε = 0.199. It is evident that both waves are the same structure. Consequently,

the edge state ES is the saddle fixed point responsible for the interior crisis IC.

In Fig. 5.21 we plot the attractor A1 in the real phase space u(ξ = 0, τ) vs. ∂u(ξ =

0, τ)/∂ξ for two values of ε, and the edge state, denoted by a black cross. The left

panel shows for ε = 0.1995, how chaotic attractor A1 approaches the edge state

ES, just before the interior crisis IC. Due to the collision, A1 loses its stability and

becomes a temporally chaotic saddle TCS. This chaotic saddle, jointly with STCS,

form the global spatiotemporally chaotic attractor A3. These two chaotic saddles

are responsible for the on–off intermittency observed after the transition (REMPEL;

CHIAN, 2007; REMPEL et al., 2009a; CHIAN et al., 2010). The chaotic saddle TCS

evolves as ε is varied, as shown in Fig. 5.19. At ε ≈ 0.22105 TCS becomes stable

via a boundary crisis, reappearing as the temporally chaotic attractor A1. This

crisis is produced by a new collision involving the edge state ES. In this case, the
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Figure 5.22 - Temporal evolution of energy E(t), the distance to the edge state ∆(t)
and the mutual colllective correlation function C∆φ(t) showing the laminar–
turbulence transition after the interior crisis IC. Vertical dashed blue lines
denote the time interval when the collision between the solution and the edge
state ES occurs. Red arrows indicate the energy level of ES.

right branch of attractor A1 in the bifurcation diagram collides with ES when the

parameter ε decreases. The right panel of Fig. 5.21 shows the attractor A1 right

before the collision, at ε = 0.2211.

The collision between the edge state ES and the attractor A1 can be analyzed in

terms of synchronization between the two states. Right after the crisis, at ε = 0.1997,

an initial condition in the TCS, the region previously occupied by A1, is integrated.

After IC, the global attractor is a mixture of two chaotic saddles, TCS and STCS.

Because the initial condition chosen is in the TCS, eventually the trajectory “jumps”

to the STCS. Figure 5.22 shows the temporal evolution of the wave energy E(t),

the distance to ES ∆(t) and the mutual collective correlation C∆φ at the moment

of laminar–turbulence dynamical transition. Vertical dashed blue lines denote the
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interval of maximum synchronization between the solution u(ξ, τ) and the edge state

ES. In this interval, energy remains almost constant, corresponding to the energy

level of ES, denoted by two red arrows. Within the synchronization interval, the

distance ∆ reaches its minimum value and C∆φ its maximum value, both at the

same time. Right after this moment of quasi–perfect mutual synchronization, the

solution is pushed out towards the spatiotemporally chaotic stage. This process

explains how the edge state, in addition to mediate the laminar–turbulent transiton,

is responsible for the coupling of two chaotic saddles TCS and STCS, forming the

spatiotemporally chaotic attractor A3.
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6 CONCLUSION

In Chapter 2, we studied the relation between current sheets, turbulence and mag-

netic reconnections at the leading edge of an interplanetary coronal mass ejection.

Current sheets and magnetic reconnections play a fundamental role in many re-

gions of the heliosphere (KAMIDE; CHIAN, 2007; PASCHMANN, 2008). A statistical

analysis of boundary layers of a large number of magnetic clouds indicated that

magnetic cloud boundary layers (MCBL) are formed by the interaction between

magnetic clouds and the ambient solar wind, which may be linked to the outer

loops of an ICME and often display the properties of magnetic reconnection (WEI et

al., 2003b), as confirmed by numerical simulations (SCHMIDT; CARGILL, 2003) and

models (DASSO et al., 2006) of the magnetic-cloud–solar-wind interaction. In fact,

magnetic reconnection exhausts have been observed at the front and rear edges of a

number of ICMEs (GOSLING et al., 2005; GOSLING et al., 2007). Hence, our study of

the relation between currents sheets, turbulence and magnetic reconnection in the

neighborhood of a front MCBL is key to understand the dynamics and structure of

ICME boundary layers, and can aid in forecasting the onset of a geomagnetic storm

caused by an ICME (DU et al., 2008; ZUO et al., 2010).

We characterized for the first time the multifractal nature of a Kolmogorov mag-

netic turbulence at the leading edge of an ICME where two bifurcated current sheets

with signatures of magnetic reconnections are found. These edge structures play a

fundamental role in the dynamical processs of plasma turbulence, removing mag-

netic energy and accelerating particles in the sheath–cloud transition region. Our

methodology can be readily applied to other turbulent boundary layers of astro-

physical plasmas, such as termination and bow shocks of the heliosphere and astro-

spheres (STONE et al., 2008; SAHAI; CHRONOPOULOS, 2010). Further studies of the

magnetic-cloud–solar-wind coupling will improve our understanding of the dynam-

ics of star–planet relation and search for exoplanets (KIVELSON, 2007; CHIAN et al.,

2010).

The basic concepts of nonlinear dynamical systems were presented in Chapter 3, and

tested using a low–dimensional mean–field solar dynamo model, where the interior

crisis at the end of a periodic window was characterized. The crisis–induced inter-

mittency typically observed after the chaotic transition is explained by the collision

of the a banded chaotic attractor (BCA), a surrounding chaotic saddle (SCS) and a

mediating unstable periodic orbit (UPO) and its stable manifold (Fig. 3.4). When
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additive noise was introduced into the system, we observed noise–induced intermit-

tency, generated by the stochastic coupling between the noisy attractor and the SCS.

The maximum Lyapunov exponent follows a power law as a function of the noise

level, in agreement with the theory of Lai et al. (2003). Even though rather simple,

this kind of stochastic nonlinear low–dimensional models could be useful to under-

stand the underlying mechanism governing the Maunder–type minima observed in

the solar magnetic activity.

In Chapter 4, we adapted the concept of edge of chaos, a structure that separates

the transient behavior from the attracting one, to analyze a low–dimensional interior

crisis in the Pierce diode, a classical model for confined plasma devices. We showed

that in a periodic window of that system, the edge state is the p–3 UPO that emerges

from a saddle–node bifurcation at the start of the periodic window. In addition, we

obtained direct evidence for the crucial role of this edge state in the interior crisis, as

shown in Fig. 4.7. Also, we found a p–14 copling UPO created after the transition,

via an event called explosion (ROBERT et al., 2000), linking the two chaotic saddles

BCS and SCS. The observed crisis–induced intermittency is a direct consequence

of the coupling between the chaotic saddles. This is the first time that a complete

characterization of the interior crisis is performed in the Pierce diode.

The fundamental role played by the edge state in a number of phenomena in the

regularized long wave equation (RLWE) was investigated in Chapter 2. Through the

bifurcation diagram of Fig. 5.4 we see the rich variety of nonlinear dynamics of the

RLWE, including steady travelling waves (SW), periodic, quasiperiodic, temporally

chaotic and spatiotemporally chaotic attractors, as the driver amplitude ε is varied

(HE, 2005; REMPEL; CHIAN, 2007).

For the interval ε ∈ [0.090.13235] two attractors A0 and A2 coexist. The edge state

ES is a saddle steady wave with one unstable direction created at a tangent bifur-

cation jointly with attractor A2. The ES and its stable manifold separate the phase

space in two regions, the corresponding basins of attractions of A0 and A2. The stable

manifold of ES coincides with basin boundary. In this scenario, the first important

dynamic transition involving the ES and its stable manifold is a smooth–to–fractal

basin boundary metamorphoses (Figs. 5.6 and 5.8) when ε ≈ 0.11, probably due

to a homoclinic tangency between the stable and unstable manifolds of ES. From

this transition a fundamental structure arises: the spatiotemporally chaotic saddle

STCS, responsible for the turbulent transients. The genesis of the STCS is a key
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to understand the origin of the laminar–turbulence transition, since this spatiotem-

poral unstable coherent structure becomes stable at the transition, generating the

asymptotically attracting turbulence. In Section 5.6 we address the problem of the

edge of chaos at ε = 0.199, just before the transition to turbulence. The phase space

is divided in the laminar and the turbulent regions (Fig. 5.14). The boundary be-

tween these regions is the edge of chaos, which is the stable manifold of the ES. The

initial conditions in the turbulent region traverse the vicinity of the STCS before

decaying into the laminar attractor. We observe that even though the STCS stage

is less self–synchronized, on average, than the laminar attractor (Fig. 5.17), there

exists a well–defined correlation between local synchronization between the ES and

the STCS, and the moments prior to a bursty release of energy (Fig. 5.18). It was

shown by He and Chian (2003) that energy peaks in the STCS stage are related to

higher phase self–synchronization events within the turbulent set. The explanation

for this cause–effect relation could be associated to the fact that the ES has only one

unstable direction. Every time the turbulent trajectory aproximates the ES (maxi-

mum mutual synchronization moment), the solution goes away along the unstable

direction of the ES, which is an invariant set. At ε = 0.199, the STCS is highly

spatially uncorrelated, with fourteen positive Lyapunov exponents. But, if locally

the trajectoty passes through a region of the phase space with only one positive

Lyapunov exponent, the lack of correlation should decrease, increasing the level of

local self–synchronization, corresponding to the energy peaks.

The collision between the temporally chaotic attractor and ES is responsible for

the laminar–turbulence transition at ε ≈ 0.1996. As a consequence of this high–

dimensional interior crisis, the laminar temporally chaotic attractor loses its stability

and becomes a temporally chaotic saddle (TCS), which coexists with the STCS after

the transition. The spatiotemporally chaotic attractor STCA created in the collision

results from the coupling of the two chaotic saddles TCS and STCS. The edge state

ES is responsible for this coupling.

The edge structures, such as the reconnecting current sheets observed in the fully

developed turbulent leading edge of an ICME, or the saddle solutions in the Pierce

diode and the RLWE, are fundamental pieces in dynamical processes associated

to the transition–like phenomena. From the evidence in low–dimensional systems

(Chapters 3 and 4) and a spatiotemporally chaotic system (Chapter 5), it is ex-

pected that the dynamical properties of chaotic transitions and laminar–turbulence

91



transition are defined by the edge of chaos and the edge state. This is a significant

finding since it can be used to understand more complex transitions in the space

and astrophysics context, such as transitions in nonlinear dynamos (REMPEL et al.,

2009b) and magnetized acretion disks (REMPEL et al., 2010).
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APENDIX A - DERIVATION OF THE LINEAR DISPERSION RELA-

TION FOR THE PIERCE DIODE

The electron flow in the Pierce diode can be described by the cold fluid equations,

namely, continuity, momentum and the Poisson’s equations

∂ρ

∂t
+
∂(ρv)

∂x
= 0, (A.1)

∂v

∂t
+ v

∂v

∂x
=
∂φ

∂x
, (A.2)

∂2φ

∂x2
= α2(ρ− ρ0), (A.3)

where ρ is the mass density, v is the electron flow velocity and φ is the electric

potential. The boundary conditons we adopted are ρ(0, t) = ρ0, v(0, t) = v0 and

φ(0, t) = φ(1, t) = 0. A linear approximation analysis can be performed on the

assumption of solutions of the form ρ(x, t) = ρ0 + ρ1(x, t) and v(x, t) = v0 + v1(x, t),

with the temporal dependence being exp(−iωt):

ρ = ρ0 + ρ1(x)e−iωt, (A.4)

v = v0 + v1(x)e−iωt. (A.5)

Inserting A.4 and A.5 into Eqs. (A.1)–(A.3), and taking just the first order terms,

we obtain

− iωρ1 + v0
∂ρ1

∂x
+ ρ0

∂v1

∂x
= 0, (A.6)

− iωv1 + v0
∂v1

∂x
=
∂φ

∂x
. (A.7)

First, we look for the solution of Eq. (A.3) when ρ1 = 0. In that case ρ = ρ0 and
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the equation for the electric potential is

∂2φ

∂x2
= 0, (A.8)

which has a linear solution

φ = Ax+D. (A.9)

If ρ1 = 0, from Eqs. (A.1) and (A.2) we have

∂v1

∂x
= 0 ⇒ −iωv1 =

∂φ

∂x
= A. (A.10)

Now, for the case ρ1 6= 0, let us suppose a sinusoidal spatial dependence for the

perturbations ρ1(x) = ρ̃1e
ikx and v1(x) = ṽ1e

ikx, and for the electric potential φ ∼
eikx. Substituting into Eqs. (A.4), (A.5) and (A.3) we have

− iωρ̃1 + ikv0ρ̃1 + ikρ0ṽ1 = 0, (A.11)

− iωṽ1 + ikv0ṽ1 = ikφ, (A.12)

− k2φ = α2ρ̃1. (A.13)

From Eqs. (A.11) and (A.12) we have

(kv0 − ω)ρ̃1 = −kρ0ṽ1, (A.14)

ṽ1 =
kφ

kv0 − ω
. (A.15)

Inserting (A.15) into (A.14)

(kv0 − ω)ρ̃1 =
−k2φρ0

kv0 − ω
, (A.16)

and using (A.13), finally we obtain

(kv0 − ω)2 = α2ρ0. (A.17)
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Recalling that ρ0 = 1 and v0 = 1, the solutions for the wavenumber k are

k1 = ω + α k2 = ω − α. (A.18)

Hence, velocity, density and electric potential have the form

v(x, t) = v0 + (a+ beik1x + ceik2x)e−iωt, (A.19)

ρ(x, t) = ρ0 + (f + geik1x + heik2x)e−iωt, (A.20)

φ(x) = Ax+D +Beik1x + Ceik2x (A.21)

Inserting (A.19) into (A.7) we have

−iω(a+beik1x+ceik2x)+v0(ik1be
ik1x+ik2ce

ik2x) = Ax+ik1Be
ik1x+ik2Ce

ik2x. (A.22)

Grouping terms, we obtain

a =
iAα

ω
, b =

k1B

α
, c = −k2C

α
. (A.23)

Imposing the boundary condition v1(0) = 0,

iAα + ω(k1B − k2C) = 0. (A.24)

In a similar way, replacing (A.20) into (A.6) and gruping terms, we obtain

f = 0, g = −ρ0k1b

α
, h =

ρ0k2c

α
. (A.25)

Imposing the boundary condition ρ1(0) = 0 and using previously obtained constants,

we have

C = −k
2
1

k2
2

B. (A.26)

Boundary condition φ(0) = 0 implies

D = −(B + C). (A.27)

107



Replacing (A.26) in (A.24) gives

B =
iα(ω − α)

2ω2(ω + α)
A, (A.28)

and using this in (A.26) we have

C = − iα(ω + α)

2ω2(ω − α)
A, (A.29)

Using Eqs. (A.27)–(A.29),

D =
iα

2ω2(ω2 + α2)
[(ω + α)2 − (ω − α)2]A. (A.30)

Applying the boundary condition φ(1) = 0, finally we obtain the linear dispersion

relation for the Pierce diode

2ω2(ω2 − α2) + iα{(ω + α)2[ei(ω−α) − 1]− (ω − α)2[ei(ω+α) − 1]} = 0. (A.31)

108
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