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Abstract:-This paper presents an analytical and numerical study about orbital characteristics of trajectories due 
to a three dimensional swing-by maneuver between a planet and a particle. The model used has the same 
hypothesis of the circular restricted three-body problem. It is assumed that the forces are given by two main 
bodies that are in circular orbits around their center of mass and that the particles are moving under the 
gravitational attraction of these two primaries. This method has been under study for a long time by several 
authors, most of them  used the dynamical system given by the “patched-conics”. The technique shown here 
generates accurate solutions for interplanetary transfer description. Two solutions are considered for the Swing-
By (clock-wise and counter-clock-wise orbit). The goal is to study the orbital change due to the variation of 
inclination, longitude of the ascending node and argument of periapsis, considering two angles of approaches. 
Finally, numerical simulations are performed using the Sun-Jupiter system to determine the evolution of the 
cloud of particles during the maneuver and to map regions for optimal maneuvers. 
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1 Introduction 
It is known that the study to optimize trajectories 
for space missions has increased in recent years, 
particularly when concerning minimizing the fuel 
consumption of spacecrafts. On the other hand, 
some strategies used during the insertion phases of 
the missions are quite complex. The procedure to 
minimize the number of activities required by the 
spacecraft during the mission is accomplished by 
the balance against propellant cost associated with 
delaying corrections until after orbit insertion. 

In the neighborhood of a planet, a spacecraft in 
a orbit around the Sun experiences perturbations 
which depend on the relative velocity between the 
spacecraft and the planet and the distance 
separating the two of them at the point of the 
closest approach. If only the gravitational field of 
the planet affects the motion of the spacecraft, the 
vehicle would make its approach along a given 
trajectory. A method frequently used in the 
literature to study the gravitational effect of the 
planets to change the trajectories of bodies is called 
patched-conic. It involves partitioning the overall 
trajectory into several two-body problems. The 
technique of transfers assumes that the sphere of 
influence of a planet has an infinite radius when 
observed from the planet, and has zero radius when 

observed from the Sun. Trajectories within the 
sphere of influence are studied by the model given 
by the two body problem, with the planet as the 
primary attracting body. In other words, only one 
celestial body influence the trajectory of the 
spacecraft for a given time. The standard maneuver 
uses a close approach with a celestial body to 
modify the velocity, orbital elements, energy and 
angular momentum of the spacecraft or several 
particles. 

Although the most usual approach to study this 
problem is to divide the problem in three phases 
dominated by the “two-body” celestial mechanics, 
other models are also used to study this problem, 
like the circular restricted three-body problem [1], 
[2], and [6] and the elliptic restricted three-body 
problem [10]. 

The literature shows several applications of the 
swing-by technique. Some examples are: a mission 
to study the Earth’s geomagnetic tail [3]; a swing-
by in three dimensions, including the effects in the 
inclination [5]; a study of the effects of the 
atmosphere in a swing-by trajectory [7]; a swing-by 
with the Moon [8]; a swing-by maneuver applying 
an impulse during the passage by the periapsis [9]; 
a swing-by in Venus to reach Mars [13]; a mission 
to Neptune using swing-bys to gain energy to 
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accomplish the mission [15], etc.. On the other 
hand, a numerical study with more detail of the 
planar restricted three-body can be found in [17] 
and [18]. 

This paper will use the Swing-By maneuver 
(gravity-assist) to analyze missions involving 
Jupiter and a cloud of particles. With the use of 
analytical equations for the variations of velocity, 
energy, angular momentum and inclination 
presented in reference [5], the study will be to 
extend those equations to determine the variation of 
longitude of the ascending node and variation of 
the argument of periapsis considering two close 
approaches. The maneuver uses a three dimensional 
swing-by with a celestial body (M2) to modify the 
energy, angular momentum, velocity and orbital 
elements of the particles with respect to the Sun 
(M1). The goal is to find an economical strategy to 
change the inclination, longitude of the ascending 
node and argument of periapsis of the orbit of the 
particles by using a close approach with Jupiter. 
Therefore, it will be possible to accompany the 
evolution of the particles and to map regions for 
optimal maneuvers. 

 

Fig. 1-Three dimensional swing-by for a cloud of 
particles. 

2 The Three-dimensional Circular 
Restricted Problem and Swing-by: 
Analytical equations  

In this study, the equations of motion for the 
particle are assumed to be the ones valid for three-
dimensional restricted circular three body problem. 
The standard dimensionless canonical system of 
units will be used, which implies that: 

i. the mean angular velocity of the motion of  M1 
and M2 is assumed to be one; 

ii. the unit of distance is the distance between M1 
and M2; 

iii. the mass of the smaller primary (M2) is given by 
= m2/( m1 + m2). The m1 and m2 are real masses 
of M1 and M2 , respectively; 

iv. The mass of M1 is 1-;  
v. The unit of time is defined such that the period 

of motion of the two primaries is 2 and the 
gravitational constant is one. 
 
The rotating system of reference will be used, 

which has the origin at the center of mass of M1 and 
M2. The vertical axis (y) is perpendicular to the 
axis (x), which rotates with a variable angular 
velocity in a such way that M1 and M2 are always 
on this axis (Fig. 1). In this system, the position of 
M1 and M2 are: y1= y2=0, x1=-, x2=1-, y1= y2=0. 
The equations of motion for this system are [14]: 

 

 

 

 
 

(1)

where r1 and r2 are the distances from M1 and M2. 
To start the description of the mathematic model 

used in this paper, the initial conditions with 
respect to M2 at the periapsis of this trajectory are 
calculated. The initial position and the initial 
velocity of these points can seen in Fig. 1 and they 
are given by [5]: 
 

(2)
 

 

(3)

 
 
Where  is the distance from the spacecraft to the 

center of M2, Vp is the velocity of M3 with respect to 
M2 and ψ is the angle of approach. 

When the spacecraft has a close approach with 
M2, it is assumed that the two-body problem is 
valid and the whole maneuver takes place in the 
plane defined by the vectors  and . So, it is 

possible to determine the velocity of the particle 
with respect to M1 in the moment of the crossing 
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with the planet’s orbit and the true anomaly of that 
point. The velocity and true anomaly are: 

 

(4)

 
(5)

 
The parameter rsp is the distance between M1 and 
M2, a is the semi-major axis and e is eccentricity of 
the orbit. The velocity and orbital elements of M3 

are changed when it has a close approach with M2.  
So, Eq. (5) given us two solutions (θA and θB), but 
in this paper only the positive angle will be 
considered. The next procedure is to calculate the 
angle between the inertial velocity of the particle 
and the velocity of the planet: 

 
(6)

 
The next step is to calculate the magnitude of 

M1 velocity with respect to M2 in the moment that 
the approach starts:  

 
(7)

where Vi is the velocity of the particle with respect 
to M1 and  is the velocity of M3 with respect to 
M1, with   

(8)

In canonical units  is one due the fact the 
distance between M2 and M1 is one. This study 
considers two solutions assuming a close approach 
behind the planet (rotation of the velocity vector in 
counter-clock-wise sense- ψ1) and close approach 
in front of planet (clock-wise sense- ψ2) for the 
spacecraft around the Sun (Fig. 2). These two 
values are obtained from: 
 

  

(9)
 

 

 
Fig. 2-Possible rotation of the velocity vector. 

where [1] 

 
 

(10)

 is gravitational constant of the planet, δ is half 

of the angle of curvature,   are the 
velocities of  M3 with respect to M2, before and 
after the maneuver, in the referential frame 
considering the three dimensional frame [5]: 
 

(11)  

 

From Eq.(8) and Eq.(11) we can determine  

and , that are the velocities of M3 with respect to 

the inertial frame before and after the swing-by, 
respectively: 
 

(12)  

 
From those equations, it is possible to obtain 

expressions for the variations in velocity, energy, 
and angular momentum for the three dimensional 
swing-by, respectively [5]: 
 

 (13
) 
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where  is the position vector of M2 and 

 and   are the angular momentum vector of M3 

with respect to the referential frame before and 
after the swing-by for each particle. From Eq. (12) 
the angular momentum is assumed be: 
 

 =  
(14)

 =  

 
 

3 Analytical Model for the Orbital 
Elements in the Three 
Dimensional Swing-by 

 
Assuming that rp is a parameter, it is possible to 
determine the variations of the orbital elements 
after the swing-by as a function of the orbital 
elements before the maneuver and it is variations.  
The analytical form to study the orbital elements in 
the three-dimensional swing-by after the close 
approach for each particle is assumed: 

 

(15)

 

Where V0 is the velocity of M3 with respect to the 
inertial frame after the swing-by; C0 is the angular 
momentum of M3 with respect to the referential 
frame after the swing-by for each particle; a and e 
are the semi-major axis and eccentricity at the  
encounter, respectively. With those equations 
available and from Eq. (13) and Eq.(14), the results 
for inclinations are: 

(16)

 
The index k = i and k = 0 are related to before and 
after the maneuver, respectively. So,  are 

the inclinations before and after the close approach 
for each particle. 

The analytical expressions to determine the 
longitude of the ascending node before and after 
the swing-by, respectively, is: 
 

(17)

where, from Eq.(14), we can determine 
 

�
(18)

with 

; 
 

; 
 

; 
 
and after the encounter is  
 

 
 
with 

(19)

; 
 

; 

 

; 
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In Eq.(19), the parameter d is the distance from 

M1 to M2, that, in the canonical units, is one. Next, 
it is calculate the argument of periapsis (ω) before 
and after the swing-by, that in astrodynamics can 
be calculate as follows: 

 
(20)

 In Eq. (20), we have that nk is the vector 
pointing towards the ascending node (i.e. the z-
component of n is zero), with  

 (21)
Already is the eccentricity vector (the vector 

pointing towards the periapsis), that we can 
determine through the expression [16]: 

 (22)
with 

, 

 
, 

 
, 

 
And μ /(rap ) ,    B = -rap. vp 

The term vp represents the velocity of the particle, 
rap is the distance between M2 and M3 for each 
particle and μ is the mass of the smaller primary 
(M2), that is is given by = m2/( m1 + m2).  

If  < 0 then the argument of periapsis is 

obtained by: 
. 

 
In the case of circular orbits it is often assumed 

that the periapsis is placed at the ascending node 
and therefore ω = 0. 

So, from equations (20)-(22) and Eq.(14),  we 
can determine the argument of periapsis before the 
encounter: 

 (23)
with 

; 

; 

After the swing-by, we have   

 
With 

(24)

; 

and from Eq. (25), we have  

In the case of circular orbits it is often assumed that 
the periapsis is placed at the ascending node and 
therefore ω = 0. 

4  Singularities and Regions out-of-
plane 

In this section, the study of the swing-by maneuver 
is extended to consider non-zero values for the out-
of-plane component for analyses of the variation of 
the inclination, longitude of the ascending node and 
argument of periapsis. The goal is to verify some 
characteristic regions due to the swing-by 
maneuver. This study will be important to analyze 
the evolution of the particles and to determine the 
initial conditions where an optimal maneuver is 
performed.  

Fig. 3 shows that there are several null values 
for the variations of the inclination and also 
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maximum inclinations. However, in Fig.3-c, 
considering the half angle of curvature (δ), it is 
possible to see three ranges where the singularities 
occur. The maximum amplitude for inclination is 
0.9, when studying this problem as a function of the 
close approach angle (). An overview of the 
regions of variations for inclinations can be seen 
with detail in Fig. 4, where it is possible to choose 
an inclination that minimizes the variations. The 
maximums and minimums of those oscillations are 
also dependent on the initial conditions. The red 
and blue indication (Fig.4) shows the maximum 
and minimum amplitude of the inclination, 
respectively.  
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Fig. 3- Variation of inclination as function ø, ψ and δ, 
respectively v2 = 1; rap= 0.0045848, d =1, v = 2, vp = 
3.4,  =9.5507x10-4. 
 

The amplitude of variation of the longitude of 
the ascending node as a function of φ, ψ and δ can 
be seen in Fig. 5 and Fig. 6. Analyzing Fig. 5 we 
can see that there are no singularities due to the 
swing-by maneuver for the longitude of the 
ascending node and that ∆Ω has minimum 
variations as a function of the close approach (). 

 In Fig. 5-a and Fig. 5-c it is possible to see a 
symmetric and similar range (0 rad    0.85 rad  
and 2.25 rad    4.25 rad) when ∆Ω = 0. The 
minimal variations (0.0035 rad or 0.2 deg) occur 
for ∆Ω as a function of the close approach angle 
(). Already, it is possible to see the great 
influence of the deflection angle (δ).  
 

 
Fig.4- 2D view of variation of the inclination 

for vs  for  =  = 150,  = 300, v2 = 1; rap= 

0.0045848, d =1, v = 2, vp = 3.4,  =9.5507x10-4 
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Fig.5-Amplitude of variation of Longitude of the 
ascending node as function ø, ψ and δ, respectively, for 

v2 = 1; rap= 0.0045848, d =1, v = 2, vp = 3.4,  
=9.5507x10-4. 

 
Fig. 6-a and Fig. 6-c shows several singular 

values for out-of-plane in the variation of the 
argument of periapsis. The zero divisor occur in ∆ 
when the close approach angle (=150) is fixed and 
 and  are varying. Several initial conditions that 

can be considered to obtain an optimal mission are 
presented in Fig. 6 and Fig. 7. The white regions in 
Fig.7 are singularities regions for the argument of 
periapsis. 
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Fig.6-Amplitude of variation of the argument of 

periapsis as function on ø, ψ and δ, respectively for v2 = 
1; rap= 0.0045848, d =1, v = 2, vp = 3.4,  = 9.5507x10-

4. 
 

 
 

Fig.7- 2D view of variation of the Argument of periapsis 
as function of ø and ψ for  =  = 150, =300, v2 = 1; rap= 

0.0045848, d =1, v = 2, vp = 3.4,  =9.5507x10-4. 
 

5 The Orbital Change of Particles: 
Numerical Analyses of the 
Problem 
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Based in the initial conditions observed in section 
4, some simulations will be performed to analyze 
the orbital variation of the cloud of particles subject 
to a close approach with Jupiter. It is assumed that 
the particles are in orbit around the Sun with given 
semi-major axis and eccentricity and the periapsis 
distance (rp) and apoapsis distance (ra) are assumed 
to be known.  

The simulations are performed with the 
following characteristics: the Sun (or the other 
perturbations) does not affect the motion of the 
particles; the orbital elements will be analyzed after 
and before the maneuver for some values of the 
semi-major axis and eccentricity considering a 
cloud of particles. The solution 1 will be performed 
for the first maneuver behind the planet and 
solution 2 for the first maneuver performed in front 
of the planet. The initial conditions are: rap = 50 Rj 
(Jupiter radius), vp = 4, both in canonical units and 
with initial inclination ø=300. 

 Fig. 8 shows the variation of the angle of close 
approach as a function of the semi-major axis. In 
this figure we can see the range of variation for 
both cases and that it does not have a dispersion of 
the particles through the semi-major axis.  These 
results are important to choose an angle of 
approach that makes minimal changes during the 
maneuver. The influence of the angle  in the 
variations of the orbital elements was analyzed.  
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Fig.8- Angle of approach as a function of the semi-

major axis 
 

From the analyses of the areas, it is possible to 
see a difference in the behavior between both 
solutions (Figs. (9)-(14)). In Fig. 9 the amplitude of 
the variation in the eccentricity doesn´t have a 
similar behavior, showing a decreasing for solution 
2, reaching the minimum value and then a 
dispersion of the particles in the end of the 
trajectory. 

The variation of inclination of the orbit after the 
swing-by has a strong influence from the initial 
inclination and semi-major (Fig. 10). Solution 1 

shows that the particles are concentrated at the end 
of the trajectory and reaches a minimum variation 
of the inclination. Solution 2 shows a large 
variation in the inclination and a similar dispersion 
of the particles, as seen in Fig. 9, but have no 
relationship between the eccentricity and 
inclination. This is possible due to the energy gain 
that occurs when the particles pass behind Jupiter.  
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Fig. 9- Eccentricity vs semi-
major axis. 
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Fig. 10- Inclination vs semi-
major axis. 
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We can see in  Fig. 11 and Fig. 14 a minimum 
difference between solution 1 and solution 2 for the 
variation of the longitude of the ascending node 
and the angular momentum, respectively. 
Furthermore, in Fig. 11, we can see a large 
decrease in the longitude during the maneuver. 
Those preliminary results indicate that further 
studies have to be performed to obtain more 
indications of this phenomenon, showing the 
relationship between these two variables. 
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It is visible that there is a difference in the 
variation of energy observed in Fig. 13. This result 
was expected because of the effects of the swing-by 
increases when the particles is passing closer to 
Jupiter. The two solutions considered, depending 
on the geometry of the encounter, has different 
behaviors. The cases where occurs the increase in 
energy generates parabolic and hyperbolic orbits 
after the passage. 
 

6  Conclusion 
The effects of the close approach in the longitude 
of the ascending node, argument of periapsis and 
inclination of the spacecraft are studied and the 
results show several particularities. Depending on 
the angle of approach, it has little influence in the 
variation of the inclination in the cases considered. 
There are no singularities due to the swing-by 
maneuver for the longitude of the ascending node 
and ∆Ω has minimum variation as a function of the 
angle of approach (). The longitude of the 
ascending node and the angular momentum showed 
a minimum difference between solution 1 and 
solution 2, but a large dispersion of the particles. 
The eccentricity of the particles showed a large 
variation due to the increase of the semi-major axis. 
The argument of the periapsis has a large variation 
in both solutions, but the maximum variation occur 
when the particles are closer to Jupiter. 
The study and simulations showed the importance 
of changing the values for the variation in the semi-
major axis and eccentricity, as described in the 
plots. In this way, this research can be used by 
mission designers to obtain specific mission goals. 
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