

1

Using the PLUTO language on functional tests of a Brazilian

Satellite’s On-Board Data Handling Computer

T. D. Pereira
1
, M. G. V. Ferreira

2
 and F. N. Kucinskis

3

Brazilian National Institute for Space Research, São José dos Campos, São Paulo

The testing of the functionalities of an On-Board Data Handling Computer (OBDH) is a

highly complex task, especially when a standard language, appropriate for procedures

execution, is not available. To reduce the complexity degree, the European Cooperation for

Space Standardization (ECSS) specified a language that can be used to standardize the test

procedures, called Procedure Language for Users in Test and Operations (PLUTO). The use

of such language implies some resources that are considered essential for procedures

execution. One of them is the existence of a system data model, called Space System Model

(SSM), also specified by ECSS. The Brazilian Institute for Space Research (INPE) wants to

use this language to standardize the creation and execution of its test procedures, but does

not have all the needed resources yet. To achieve this goal, a computational environment is

being developed at INPE through the following steps: definition of an architecture that

contains the key resources to execute PLUTO procedures; creation of procedures in the

language syntax; modeling of the system under test through SSM specifications; and the

development of common communication interfaces between the model and the system to be

tested. Functional requirements of an OBDH were selected to be used on the construction of

test procedures. These requirements are related to attitude and orbit control functionalities

executed according to input data acquired by simulation result of a sun sensor. This paper

describes the architecture defined to the development of this environment.

Nomenclature

ACDH = Attitude Control and Data-Handling

AIT = Assembly, Integration and Test

DSV = Domain-Specific View

ECSS = European Cooperation for Space Standardization

EGSE = Electrical Ground Support Equipment

ESA = European Space Agency

IDE = Integrated Development Environment

INPE = Brazilian National Institute for Space Research

OBDH = On-Board Data Handling

PLUTO = Procedures Language for Users in Test and Operations

SIA = Inertial Systems for Aerospace Application

SSM = Space System Model

STEPS = Spacecraft Test Procedures System

SUT = System Under Test

SVDA = Sun Vector’s Determination Algorithm

1
 Master’s student, INPE’s Space Engineering and Technology Course, thiago@dea.inpe.br.

2
 Technologist, INPE’s Satellite Control Center, mauricio@ccs.inpe.br.

3
 Technologist, INPE’s Aerospace Electronics Division, fabricio@dea.inpe.br.

2

I. Introduction

N order to validate the functionalities of a satellite, sets of test procedures are executed in different abstraction

levels during the development phases of the space system. It is common to create test procedures using different

languages, at different development and integration stages that do the same (or almost the same) thing. To avoid

such “re-creation” effort, the solution is the standardization of the procedures using only one language. Once

standardized, a single procedure could be applied in different scenarios.

The Brazilian National Institute for Space Research (INPE) lacks such standardization. Each Electrical Ground

Support Equipment (EGSE) developed to test the subsystems and equipments of INPE’s satellites has its own test

procedures execution system that implements “ad-hoc” technologies or processes. This generates high costs that

could be reduced if a single standard were followed.

The European Cooperation for Space Standardization (ECSS) defines engineering, product assurance and project

management standards to be applied to space activities. These standards allow a better organization of satellite’s

development processes. One of this standards is the ‘Test and Operations Procedure Language’ that specifies a

language standard called Procedure Language for Users in Test and Operations (PLUTO)
1
.

This language can be used to describe test and operation procedures to be executed in computational

environments. In recent years, the European industry and universities and research institutes are using it in projects

for the ESA’s missions and human resources training
2, 3

.

INPE’s goal is to develop a computational environment that allows test procedures creation and execution with

the PLUTO language. This system was named ‘Spacecraft Test Procedures System’ (STEPS). A STEPS prototype

and its architecture will be shown in this paper. To develop this prototype, a Sun Vector’s Determination Algorithm

(SVDA) was used as a case study. This algorithm is executed by an on-board computer that is being developed

through Inertial Systems for Aerospace Application (SIA) project.

II. Our approach to standardize procedures with PLUTO

A. The Procedures Structure and Needs to Use It

Using this language for test procedures brings a set of advantage for INPE:

1) Allows the re-use of test procedures at different levels (unit, subsystem and system);

2) Increases the information exchange between test and operation activities; and

3) Analyze it for application at satellite’s operation procedures.

 Figure 1. Structure of a PLUTO procedure

1
.

PLUTO language is similar to a high-level

programming language. Its structure is shown in Figure

1. Some instructions are optional, except the ‘Main

Body’ that is composed by steps. The steps can be a

command or a set of commands, an action request to the

operator or a call to another procedure.

The language allows logical conditions construction;

operator interaction during execution; loop routines;

arithmetic operations with various engineering data; and

scheduling of execution.

In a ‘Declaration Body’ the user can declare global

variables or events that can occur in the System Under

Test (SUT) during the procedure execution. The

‘Preconditions Body’ allows the description of conditions

to start the procedure execution. These conditions can be:

wait some time, wait until a condition or set of conditions

become true.

The ‘Watchdog Body’ purpose is to detect events at

system level, for example, anomalies on some equipment.

On a given anomaly detection, the watchdog interrupts

the procedure execution.

The instructions written in the ‘Confirmation Body’ verify the equipment under test or operation to make sure

that the ‘Main Body’ steps were executed correctly. As PLUTO is an interpreted language, it needs an interpreter to

execute its instructions set in conformance with the ECSS standard that specifies it. INPE aims to develop a

PLUTO language interpreter for applying it in test activity during the development of its equipments and

I

3

subsystems, and also at AIT activities. Having an interpreter, PLUTO test procedures start to be a deliverable item,

together with contracted subsystems and equipments.

B. The Space System Model
The use of the PLUTO language requires a SUT data model. ECSS has proposed a data model for the entire

space system in its ‘Ground Systems and Operations’ standard.

 Figure 2. Object types associated to a System Element

5
.

The data model structure must be

hierarchical in order to represent the real

functional decomposition of the system. This

structure is called Space System Model

(SSM)
4
.

The SSM is composed by different data

types which are identified as objects. The

object types are classified as System Element;

Activity, that can be executed by it System

Elements; Report Data that reflects the

System Element state; and Events that can be

handled for its control and monitoring.

Figure 2 shows a System Element

composed by Activities, Report Data and

other data that are used for configuration

management and requirements control during

its life cycle. Any System Element can also

comprise other System Elements.

Due to the large amount of information in

a SSM, there is the need to extract, for a given

problem, only the required data. In order to do so, ECSS has specified the Domain Specific View (DSV)
4
. A DSV is

composed by a subset of the model needed for a given application. This concept can be used during the development

of equipments and subsystems and only the interest data for that application are used into SSM.

Croce
6
 applied PLUTO language and SSM concepts in its work. He stated that a PLUTO procedure must

reference a SSM object and, in order to write or execute the procedures the best way is to maintain the SSM

structure between the procedure executor and the SUT. During the execution, the access to the model is

encapsulated. Seymour
7
 also says that a PLUTO procedure must refer to the SSM to read or write values into its

objects. The data read and write into the model are done by a language interpreter during execution.

4

III. STEPS Architecture

From those presented concepts, INPE is developing a computational environment called ‘Spacecraft Test

Procedures System’ (STEPS) to prepare and execute test procedures. Figure 3 shows its components.

 Figure 3. STEPS’s architecture.

To start procedures execution, the SSM must be loaded in memory in order to be accessed by the language

interpreter accesses its objects. This image of the SUT’s model is called ‘SSM Instance’. This module allocates a

data structure into memory with the same hierarchical characteristics as the SSM specifications. Its basic operation

is to search the model objects through parameter identification. The access to model is done through Get and Set

requests generated by language interpreter and sent to the ‘SSM Instance’.

A Get request reads an object of type Event or Report Data. A Set request writes data into a SSM object or

requests an execution, if the object is Activity type. If the SSM receives a Get request from ‘PLUTO Interpreter’, it

returns the last acquired value and if it receives a Set request, it interacts with SUT through transmission of

telecommand and telemetry. The communication between ‘SSM Instance’ and ‘SUT’ is done by an interface that

interprets the object purpose and transcribes its purpose into telecommand.

‘SSM Instance’ module is composed by the ‘Identify Events’ and ‘External Interfaces’ components. The first can

be used by the user to define customized Events in SUT context. An Event can be the occurrence of conditions that

can be configured by the user into SSM or generated by SUT. The second component allows communication from

procedure interpreter with external equipments. In some cases, a test procedure requires interaction of other

equipment with SUT to achieve the test objectives.

Once instantiated, the SSM can be accessed by the ‘PLUTO Interpreter’. ‘PLUTO interpreter’ interprets the

procedure steps to execute it and sends Get and Set requests to the instantiated model. This architecture also has

support elements to prepare and monitor the SUT model and PLUTO procedures and to store test results.

5

IV. Developing a STEPS Prototype

A. A Case Study for the STEPS Prototype

The INPE’s On-Board Data Handling team is developing an on-board computer to the SIA’s project orbital

platform. As this on-board computer will execute both On-Board Data Handling and the Attitude Control functions,

it is being called Attitude Control and Data Handling (ACDH) Computer. The ACDH Computer has communication

interfaces with other equipments and subsystems including four solar sensors, each one measuring the intensity of

sunlight on one face of the platform.

ACDH Computer flight software runs a Sun Vector’s Determination Algorithm (SVDA) to define the satellite

control parameters. It receives measurement values from four solar sensors and determines the current satellite

attitude with respect to the Sun and, if necessary, to perform an attitude maneuver to point the solar panels to it.

Figure 4 illustrates the four solar sensors scenario.

 Figure 4. Case Study (Sun Vector’s Determination Scenario).

SVDA calculates the X, Y and Z axis from sensors values and release it to satellite attitude control with three-

axis stabilization. To test this case, the EGSE communicates with ACDH Computer through analog and digital

interfaces to send analog values to simulate the solar sensors. The on-board computer receives the EGSE analog

values and uses it as parameters to SVDA execution.

This case study was created to exercise the STEPS prototype, not being representative of a real attitude

determination scenario.

B. The STEPS Prototype

From the case study a SSM and a PLUTO procedure to test SVDA were developed. The SSM includes all data

relevant to the SVDA context: four input parameters generated by solar sensors and three output parameters

generated by SVDA. The procedure has instructions to access the objects from model. Figure 5 shows the procedure

created for this case study.

ACDH Computer
Sunlight

Analog

inputs

Sun

Sensor

A

Sun

Sensor

D

Sun

Sensor

B

Sun

Sensor

C

Y

X

Z

Sun Vector’s Determination Algorithm Scenario

Sun Vector’s

Algorithm

6

 1 procedureprocedureprocedureprocedure Sun_Vector_Determination

 2 DDDDeclareeclareeclareeclare

 3 variable real variable real variable real variable real X_Axis :=:=:=:= 0.0 degdegdegdeg;;;;

 4 variable real variable real variable real variable real Y_Axis :=:=:=:= 0.0 degdegdegdeg;;;;

 5 variable real variable real variable real variable real Z_Axis :=:=:=:= 0.0 degdegdegdeg;;;;

 6 variable real variable real variable real variable real analog_value_out1 :=:=:=:= 0.0 VoltsVoltsVoltsVolts;;;;

 7 variable real variable real variable real variable real analog_value_out2 :=:=:=:= 0.0 VoltsVoltsVoltsVolts;;;;

 8 variable real variable real variable real variable real analog_value_out3 :=:=:=:= 0.0 VoltsVoltsVoltsVolts;;;;

 9 variable real variable real variable real variable real analog_value_out4 :=:=:=:= 0.0 VoltsVoltsVoltsVolts;;;;

10 end declare end declare end declare end declare

11 preconditionspreconditionspreconditionspreconditions

12 wait until wait until wait until wait until switch_on ofofofof ACDH_COMPUTER = true;= true;= true;= true;

13 end preconditionsend preconditionsend preconditionsend preconditions

14 mainmainmainmain

15 Simulate Environment Analog_Value_Out_1 ofofofof SUN_SENSOR_A ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;;

16 Simulate Environment Analog_Value_Out_2 ofofofof SUN_SENSOR_B ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;;

17 Simulate Environment Analog_Value_Out_3 ofofofof SUN_SENSOR_C ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;;

18 Simulate Environment Analog_Value_Out_4 ofofofof SUN_SENSOR_D ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;;

19 analog_value_out1 :=:=:=:= Analog_Value_Out_1 ofofofof SUN_SENSOR_A ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;;

20 analog_value_out2 :=:=:=:= Analog_Value_Out_2 ofofofof SUN_SENSOR_B ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;;

21 analog_value_out3 :=:=:=:= Analog_Value_Out_3 ofofofof SUN_SENSOR_C ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;;

22 analog_value_out4 :=:=:=:= Analog_Value_Out_4 ofofofof SUN_SENSOR_D ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;;

23 wait for wait for wait for wait for 0.5 ssss;;;;

24 X_Axis :=:=:=:= Sun_Vector_X_Axis ofofofof SUN_VECTOR_ALG ofofofof ACDH_COMPUTER ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;;

25 inform userinform userinform userinform user “X axis result: ” X_Axis;;;;

26 Y_Axis :=:=:=:= Sun_Vector_Y_Axis ofofofof SUN_VECTOR_ALG ofofofof ACDH_COMPUTER ofofofof ACDH_SUBSYSTEM ooooffff SATELLITE;;;;

27 inform userinform userinform userinform user “Y axis result: ” Y_Axis;;;;

28 Z_Axis :=:=:=:= Sun_Vector_Z_Axis ofofofof SUN_VECTOR_ALG ofofofof ACDH_COMPUTER ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;;

29 inform userinform userinform userinform user “Z axis result: ” Z_Axis;;;;

30 end mainend mainend mainend main

31 endendendend

 Figure 5. PLUTO procedure defined for the case study.

Access to objects from model is done through procedure either for data reading or writing. The procedure

described at Figure 5, has a command called Simulates Environment that is not specified in PLUTO standard. It was

defined due to an expected need regards to the interaction from SUT with other equipments during the tests. At this

work, ADVS depends on interaction between ACDH Computer and solar sensors. When the Simulates Environment

command is interpreted, the PLUTO Interpreter sends a Set request to SSM Instance. Then SSM Instance uses the

communication mechanism that was defined in the External Interfaces to keep communication with these solar

sensors.

Although due to the lack of these solar sensors, a simulator was created to send relevant data to ACDH

Computer. This simulator sends four individual values to be used as input data by ADVS. The usage of this

simulator can be manually or automated by a PLUTO procedure as presented in this work.

Figure 6 shows the STEPS prototype Graphical User Interface (GUI). This prototype loads the SSM, shows SSM

hierarchical and waits for start of procedure execution. It also affords data visualization through ‘Housekeeping

Data’ area during execution. The procedure and model were described in text format and XML scheme. The

confirmation status of each procedure command is informed as ‘confirmed’, ‘not confirmed’ or ‘aborted’ and each

operation made by interpreter is also informed in the Output Log area.

7

 Figure 6. STEPS’s Graphical Interface.

V. Conclusions

This work represents a first effort to standardize INPE’s test procedures with PLUTO language. A prototype was

developed having a ‘PLUTO Interpreter’ with routines to execute a procedure and a ‘SSM Instance’ to manage a

model. Both were applied to the presented case study. Communication mechanisms between interpreter and

instanced model were developed to allow its communication with SUT and external equipment. Our goal is to

follow with the STEPS development to create a full ‘PLUTO Interpreter’ and a ‘SSM Manager’ with GUIs to

facilitate the preparation and to monitor the test procedures execution.

Acknowledgements

The authors would like to thank the contribution of Ronaldo Arias INPE’s Technologist and SIA project

member, and also Research and Projects Financing (FINEP-FUNDEP-SIA) for the financial support.

References
1European Cooperation for Space Standardization (ECSS), “Space Engineering: Test and Operations Procedure Language”,

ECSS-E-ST-70-32C, ESTEC, The Netherlands, 31 July 2008.
2Fritz, Michael., Roeser, H-P., Eickhoff, J., Reid, S., “Low Cost Control and Simulation Environment for the ‘Flying

Laptop’, a University Microsatellite”, SpaceOps Conference, 25-30 April, Huntsville – Alabama, EUA, 2010.
3Adamson, K., Bargellini, P., Nogueira, T., Nett, H, Caspar, C., ADM-AEOLUS: Mission Planning Re-Use, Autonomy and

Automation, SpaceOps Conference, 25-30 April, Huntsville – Alabama, EUA, 2010.
4European Cooperation for Space Standardization (ECSS), “Space Engineering: Ground Systems and Operations”, ECSS-E-

ST-70-31C, ESTEC, Netherlands, 31 July 2008.
5European Cooperation for Space Standardization (ECSS), “Space Engineering: Space system data repository”, ECSS-E-TM-

10-23A, ESTEC, The Netherlands, 25 November 2011.
6Croce, F., Simonic, A., ECSS-E-70-32 Test Platform and Applicability Area, SpaceOps Conference, 12-16 May,

Heidelberg, Germany, 2008.

8

7Seymour, M. A., The PLUTO operations procedure language and its use for RADARSAT-2 mission operations, SpaceOps

Conference, 17-21 May, Montréal, Canada, 2004.
8Koller, M., Reggestad, V., Adamson, K., Kay, R., “ESOC Earth Observation Missions and the Automation of Operational

Routine Tasks”, SpaceOps Conference, Huntsville – Alabama, EUA, 25-30 April 2010.

