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“Thousands of years ago the first man discovered how to make fire.
He was probably burned at the stake he had taught his brothers to

light, but he left them a gift they had not conceived of, and he lifted
darkness off the earth”.

Ayn Rand
in “The Fountainhead”, 1949
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In memory of my mother Rosa Mercedes Salazar
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Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP, for the financial

investment of sponsoring my four years of Ph.D. in São Paulo and Barcelona.

I also want to mention here friends at the National Institute for Space Research -

INPE who had a positive influence on my project. In alphabetical order, I want to

make a special thanks to Aline Soterroni, Caroline da Silva, Érica de Souza, Helaine
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IMPLEMENTAÇÃO E MANUTENÇÃO DE SATÉLITES EM VOO
DE FORMAÇÃO AO REDOR DOS PONTOS LAGRANGIANOS L4 E

L5 COM BASE EM ESTRATÉGIAS DE BAIXO EMPUXO

RESUMO

Este trabalho está focado em métodos de transferência a partir de uma órbita cir-
cular ao redor da Terra até órbitas periódicas ao redor dos pontos Lagrangianos L4

e L5 no sistema Terra - Lua, com aplicações para colocar vários satélites em vôo
de formação. Os pontos Lagrangianos L4 e L5 estão localizados a 60 graus acima e
embaixo da linha que conecta a Terra com a Lua e formam com estes dois corpos um
triângulo equilátero. Estes pontos Lagrangianos são estáveis pela relação de massa
entre a Terra e a Lua. Devido à sua distância, radiações eletromagnéticas que pro-
veem da Terra e chegam até eles são substancialmente atenuadas. Dessa maneira,
estes pontos Lagrangianos representam posições extraordinárias para colocar obser-
vatórios astronômicos. Inspirados nos recentes resultados em manobras assistidas
por gravidade, os métodos de transferência implementados neste trabalho usam o
campo gravitacional da Lua para atingir os pontos Lagrangianos. Nós aplicamos três
diferentes técnicas para intersectar a esfera de influência da Lua: Transferências de
Mı́nima Energia, Trajetórias G e Órbitas Caóticas, e mostramos que existem novas
trajetórias alternativas para chegar até nosso objetivo. Nós encontramos vantagens
em relação à Transferência de Hohmann tais como gasto menor de combust́ıvel e
a possibilidade de usar o mesmo lançador para enviar os satélites até os pontos L4

e L5. O trabalho também apresenta um estudo das geometrias ao redor das órbi-
tas periódicas centradas em L4 com boas propriedades para vôos em formação. Nós
consideramos a possibilidade da existência de regiões com aceleração radial relativa
zero com respeito à trajetória nominal. As simulações numéricas mostram que para
evitar grandes variações das distâncias mutuas entre os satélites, a formação tem
que estar localizada não ao longo da direção de aceleração radial relativa nula senão
ao longo da direção de aceleração radial relativa mı́nima. Este trabalho está feito
utilizando o modelo Circular Restrito de Três Corpos, considerando só o movimento
no plano da órbita dos sistema Terra-Lua.
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ABSTRACT

This thesis focuses on transfer methods from a circular parking orbit around the
Earth to periodic orbits around the Lagrangian points L4 and L5 in the Earth-Moon
system, with applications to place multiple satellites in formation flying. Lagrangian
points L4 and L5 lie at 60 degrees ahead of and behind Moon in its orbit with re-
spect to the Earth and form an equilateral triangle with the base of the line defined
by those two bodies. These Lagrangian points are stable for the Earth-Moon mass
ratio. Because of their distance, electromagnetic radiations from the Earth arrive on
them substantially attenuated. As so, these Lagrangian points represent remarkable
positions to host astronomical observatories. Inspired by the recent results in gravity
assist maneuvers, the transfer methods implemented in this work use the gravita-
tional field of the Moon to reach the Lagrangian points. We apply three different
techniques to intersect the lunar sphere of influence: Minimum Energy Transfers,
Trajectories G and Chaotic Orbits, and prove that there exist new alternative tra-
jectories to reach our target. We find advantages over the Hohmann transfer such
as less fuel spent and the possibility using only one rocket launcher to deliver space-
crafts to L4 and L5. The thesis also presents a study of geometries around periodic
orbits centered at L4 with good properties for formation flying. We consider the
possible existence of regions of zero relative radial acceleration with respect to the
nominal trajectory. Numerical simulations show that to avoid large variations of the
mutual distances between the spacecrafts, the formation flying must be arranged
not along the direction of zero relative radial acceleration but along the direction of
minimum relative radial acceleration. This work is done in the force model defined
by the Circular Restricted Three Body Problem, considering only the motion on the
plane of the orbit of the Earth-Moon system.
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1 INTRODUCTION

The concept of Satellite Formation Flying (SFF) means to have two or more satellites

in orbit such that their relative positions remain constant or obeying a certain dy-

namical configuration along the trajectory (SHOLOMITSKY et al., 1977), (BATTRICK,

2000), (BRISTOW et al., 2000), (BURNS et al., 2000), (TICKER; AZZOLINI, 2000), (FRID-

LUND, 2000). This concept, illustrated in Fig. 1.1, involves the control over the co-

ordinated movement of a group of satellites, with the goal of maintaining a specific

geometric space configuration between the elements of the cluster (SABOL et al.,

2001), allowing that a group of low cost small satellites, arranged in a space forma-

tion flying, operate like a large ‘virtual satellite’ which will have many benefits over

single satellites including simpler designs, faster build times, cheaper and unprece-

dented high resolution (KAPILA et al., 2000). There exist missions, such as the Laser

Interferometer Space Antenna (LISA), whose objective is to observe astrophysical

and cosmological sources of gravitational waves of low frequencies, goal that could

be possible using three identical spacecraft flying in a triangular constellation, with

equal arms of 5 million kilometers each (PETERSIEM et al., 2000) as shown in Fig.

1.2

Figure 1.1 - Illustration of Satellite Formation Flying.
From: (JET PROPULSION LABORATORY, 2012).

A configuration of SFF can typically be positioned and maintained in two dynami-

cally distinct scenarios: in a planetary orbit or in outer space (ALFRIEND et al., 2002).
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Figure 1.2 - Illustration of LISA spacecraft.
From: (NASA, 2012)

In the planetary orbit scenario the fundamental model is the problem involving two

light bodies (satellites), close to each other, that describe initially circular orbits of

slightly different radii around a heavy central body (for example, Earth). Because the

gravitational attraction between the two satellites is practically null, this scenario

can be considered like a superposition of two problems of two bodies. An example

of this kind of formation flying is the pair of satellites Landsat 7 with EO-1, mission

designed to enable the development of future Earth imaging observatories that will

have a significant increase in performance while also having reduced cost and mass

(YOUNG, 2012) as shown in Fig. 1.3.

In the outer space scenario, involving SFF, the interest of astronomical missions

have been to position SFF around the Lagrangian points L1 and L2 (FAQUHAR,

1970), (HENON, 1973), (BREAKWELL; BROWN, 1979), (HOWELL, 1984), (GÓMEZ et

al., 1987) or L4 and L5. Of particular interest is the stability of the five Lagrangian

points. In the case of the three collinear stationary points: L1, L2 and L3, they are

always unstable. Whereas the stability of L4 and L5 points depends on the mass

ratio between the two larger bodies (DANBY, 1962). In important celestial couples

like Earth-Moon or Sun-Earth these points are stable. Moreover, there exists a family

of periodic orbits around L4 and L5. This stability property makes the fuel required

for a spacecraft to maintain its relative position there to be almost zero. Despite

this advantage, today there are no missions orbiting L4 or L5 points for any celestial

couple. In the case of Earth-Moon, if a spacecraft were placed at these triangular
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Figure 1.3 - Illustration of satellites Landsat 7 with EO-1 in formation flying.
From: (NASA, 2011)

Lagrangian points, for example, the perturbations due to Earth’s electromagnetic

interference would be minimal because the distance between the spacecraft and

Earth is the same between the Earth and the Moon as shown in Fig. 1.4. In this

manner, L4 and L5 points could be excellent locations to place space telescopes

for astronomical observations or a space station (SCHUTZ, 1977). In addition, there

is the renewed interest of major space agencies for Lagrangian point colonization.

Furthermore, de Fillipi (FILLIPI, 1978) has made a review of the ideas of O’Neill

(O’NEILL, 1974) about building space colonies at the L4 and L5 positions. These

space stations could be used as a way-point for travel to and from the region between

Earth’s atmosphere and the Moon (cis-lunar space).

In the other hand, the vicinity of point L1 of the sun-Earth system is a very conve-

nient location for solar observations because a three-dimensional orbit in its neigh-

borhood would allow that the satellite points constantly toward the sun, without

any concealment made by the Earth or lunar eclipse. Additionally, this position is

away enough to keep the satellites distant from Earth’s electromagnetic interference.

Moreover, the vicinity of L2 is a very convenient location to position satellites for as-

tronomical observations, particularly in the infrared region, because in this vicinity

the apparent size of the Earth, which is one of the dominant sources of heat, be-

comes reduced while all other sources of heat are practically in the same direction,

facilitating the shielding of the telescope with respect to solar radiation.

Another example of missions involved Lagrangian points is the NASA’s STEREO
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solar science mission whose objective was to do an excursion to L4 and L5 of the Sun-

Earth to try and verify a theory by Richard Gott and Edward Belbruno (BELBRUNO;

GOTT, ) about the origin of the Moon. This theory hypothesizes that a giant Mars-

sized impactor, called Theia, hit the Earth to form the Moon billions of years ago.

It actually coalesced at Sun-Earth equilateral L4, L5 points, 93 million miles from

the Earth in either direction, on the Earth’s orbit. It is felt that residual material

exist near L4, L5. To verify this, the STEREO mission, consisting of two spacecraft,

were being redirected to go to these points to investigate the possible remains of the

mysterious planet that may have been there long ago. An illustration of missions

around Lagrangian points L1 and L2 in the Sun-Earth system is shown in Fig. 1.5.

Figure 1.4 - Illustration of a mission around Lagrangian point L4 in the Earth-Moon sys-
tem.
From: (WIKIPEDIA, 2012)

One of the problems of positioning satellites in formation flying is the cost to main-

tain them continuously orbiting each other, requiring higher fuel cost. In particular,

missions in the vicinity of the Lagrangian points, considering the scenario of the

Circular Restricted Three Body Problem (CRTBP), may be placed in families of

halo (periodic and Lissajous (quasi-periodic) orbits. All these orbits are inherently

unstable (GÓMEZ; MASDEMONT, 1993), which means that satellites positioned there

are very susceptible to perturbations, predominantly in the form of solar radiation

pressure. These effects may drive the SFF out of it desired configuration. Thereby,

a less difficult option is to place the Satellite Formation Flying in the vicinity of

Lagrangian points L4 and L5 in the Earth-Moon system. Because they are stable
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Figure 1.5 - Illustration of missions around Lagrangian points L1 and L2 in the Sun-Earth
system.
From (MATHEMATICAL ASSOCIATION OF AMERICA, 2004)

equilibrium points, less energy would be required to keep the formation in its proper

configuration.

In despite of the intense research activity directed toward the development of ef-

fective techniques that make SFF missions possible in outer space, many challenges

must still be faced. Thus, it is necessary to find methods to determine trajectories

that exploit the inherent complexity that the dynamic of CRTBP dynamic has, and

can be used to delivery the satellites to their locations in the formation flying. The

idea is to exploit the dynamics seen in the CRTBP so that, applying certain low

cost transfer orbits, the satellites be guided to the desired region where the cost to

maintain the formation flying is minimum and make it robust to perturbations.

1.1 Objectives

The objectives in this work are:

a) Development and implementation of alternative transfer strategies to de-

ploy satellites to a formation flight orbiting around the Lagrangian points

L4 and L5 in the Earth-Moon system. The satellites originally are located

in a parking orbit around the Earth.

b) Study of the relative dynamical behaviour of satellites with respect to

periodic orbits around L4 and L5 and the regions with good properties to
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formation flying.

1.2 Transfer Orbits Methods

A satellite in orbit on the Earth-Moon system can be described in the context of

the Circular Restricted Three Body Problem. In this system, there are equilibrium

points named as L4 and L5 that may provide a good position to be exploited to

positioning spacecrafts. Lagrangian points L4 and L5 lie at 60 degrees ahead of and

behind Moon in its orbit with respect to the Earth as shown in Fig. 1.6. Each one

of them is a third point of an equilateral triangle with the base of the line defined

by those two bodies. These Lagrangian points are stable for the Earth-Moon mass

ratio. Because of their distance electromagnetic radiations from the Earth arrive on

them substantially attenuated. Thus, these Lagrangian points represent remarkable

positions to host astronomical observatories. However, this same characteristic dis-

tance may be a challenge for periodic servicing mission. Actually, so far there are no

missions orbiting the L4 and L5 points for any celestial couple. By contrast, there

exist several natural examples like Trojan asteroids at the Sun-Jupiter L4 and L5

points (YOSHIDA; NAKAMURA, 2005).

Figure 1.6 - Lagrange equilibrium points geometry for the Earth-Moon system in the syn-
odic frame.
From: (ARAÚJO, 2011)

In this scenario, the Circular Restricted Three Body Problem exhibits dynamical

6



characteristics that allow us to applied alternative techniques to transfer orbits

(BOYD; MCMILLAN, 1993), (GÓMEZ et al., 2001a), (GÓMEZ et al., 2001b). In par-

ticular, we are interested in the following techniques:

a) Hohmann Transfer Orbit

b) Swing-by Maneuver

c) G Trajectories

d) Chaos Control

For simplicity, our model only considers motions on the plane of the orbit of the

Earth-Moon system.

1.2.1 Hohmann Transfer Orbit

The Hohmann transfer orbit is an orbital maneuver that uses two impulses which,

under standard assumptions, move a spacecraft between two coplanar circular orbits.

Hohmann transfer orbit is the most efficient intermediate orbit to transfer from one

circular orbit to another (MCLAUGHLIN, 2000).

Let us consider the case in which a spacecraft has to be brought from a circular orbit

of radius r0 about the Earth to a higher circular orbit of radius r1 following an elliptic

trajectory of minimum energy as shown in Fig. 1.7. This type of minimum energy

transfer orbit is commonly referred to as a Hohmann Transfer Orbit. Therefore, the

question is to determine the transfer velocity at point P0 such that the spacecraft

reaches the point P1 following an elliptic trajectory and enters a higher circular orbit.

All of this, using minimum energy.

Let vi denote the orbital velocity of the respective initial circular orbit whose mag-

nitude is given through the energy equation as

vi =

√
µE
r0

, (1.1)

where µE is the Earth gravitational constant. The value of the astrodynamic con-

stants used along this work are given in Appendix .

In this manner, Walter Hohmaan showed in 1925 that an elliptic transfer orbit to

point P1 from point P0 using minimum energy requires a departure velocity v0 at
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Figure 1.7 - Illustration of a Hohmann Transfer Orbit.

point P0 given by

v0 = vi

(√
2r1

r0 + r1

)
. (1.2)

This fact implies that to achieve point P1 a change velocity ∆v1 must be applied

∆v1 = vi

(√
2r1

r0 + r1

− 1

)
. (1.3)

Being a minimum energy transfer orbit, no radial velocity will be present at this

point. Note that one of the focus of this elliptic transfer is precisely the center of

the Earth. Since r1 > r0, ∆v1 will be always positive.

Once the spacecraft reaches the point P1 a second burn will be necessary to inject

it into the circular orbit of radius r1. The change in velocity ∆v2 of the second burn

is given by

∆v2 = vf

(
1−

√
2r0

r0 + r1

)
, (1.4)

where

vf =

√
µE
r1

. (1.5)

8



The goal of this work is to apply a minimum energy transfer orbit for placing a

spacecraft around the Lagrangian points L4 and L5.

1.2.2 Swing-By Maneuver

Over the last few years, studies like those of Broucke (BROUCKE, 1979) and Prado

(PRADO, 1993) on transfer orbits in the restricted three-body Earth-Moon-particle

problem have been analyzed. The solutions found for the Earth-Moon system guide a

spacecraft from the Moon to the Lagrangian points and back to the Moon. However,

in the case of L4 and L5 points, the particle passes very far to the Earth, i.e., it passes

an altitude greater than 2,000 kilometers above the Earth’s surface. This means that

these trajectories are not useful for a transfer between Low Earth Orbits (LEO) and

Lagrangian points L4 and L5. On the other hand, Broucke (BROUCKE, 1988) showed

that the gravitational force of the Moon could be useful to increase or reduce the

relative energy of the particle with respect to the Earth. This variation of energy

would be enough to change the trajectory of the particle and guide it to a specific

position, e.g. L4 and L5. This maneuver, known as gravity assist, is usually called

‘swing-by’ and is illustrated in Fig. 1.8.

Figure 1.8 - Illustration of a swing-by maneuver with the Moon guiding a spacecraft to
L4.

Therefore, our goal is to use a gravity assist maneuver with the Moon in such a way

that a spacecraft can be transferred from a parking orbit around the Earth to the
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Lagrangian points L4 and L5. For this purpose, depending of the relative energy of

the spacecraft to the Earth, the relative orbit of the spacecraft will be one of the

three conic solutions of the Two-body problem, i.e., be either elliptic, parabolic, or

hyperbolic. The Moon’s gravitational force can be considered as a slight perturba-

tion. However, as the spacecraft travels between the Earth and Moon, the lunar

effects must be included. In this manner, treating the Moon’s gravitational acceler-

ation as a perturbation leads to the concept of sphere of influence (BATTIN, 1987).

The sphere of influence is the region around the Moon where the trajectory of any

body is largely determined by the lunar force. The gravitational attraction of the

Earth would be very small within the Moon’s sphere of influence, and therefore this

force can be neglected. This concept is illustrated in Fig. 1.9. Thus, we will separate

the Earth-Moon-spacecraft problem in two problems of two bodies: Earth-spacecraft

and Moon-spacecraft. This approach is called ‘patched conic’. While the spacecraft

is outside the gravitational sphere of influence of the Moon, the trajectory is ap-

proximated taking only the terrestrial gravity into account and using the two-body

orbital mechanics. Similarly, once the spacecraft enters the Moon’s sphere of influ-

ence, we will assume that the spacecraft moves only under the gravitational influence

of the Moon. Depending on the speed and direction of the spacecraft relative to the

center of the Moon, it is possible to change the energy of the spacecraft relative to

the Earth and guide it to the Lagrangian points L4 and L5. The key point is, using

this approach, to determine the geometry of the geocentric departure orbit such that

the spacecraft can be placed around the equilibrium points.

Figure 1.9 - Illustration of the sphere of influence concept in the Earth-Moon system.
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1.2.3 G Trajectories

Considering minimum energy trajectories, Prado (PRADO, 1996) obtained a signif-

icant reduction in the fuel needed to move between the five Lagrangian points and

the Earth-Moon system. In this scenery, alternative transfer techniques between ter-

restrial orbits and Lagrangian points L4 and L5 with a time of flight between 18 and

20 days could be useful. This work has the goal of finding a group of G Trajectories

that make such transfers possible.

Over the last few years, studies like those of Broucke and Prado (PRADO; BROUCKE,

1996) were obtained using a regularized model to avoid the numerical integration

errors in trajectories passing near one of the primaries. Similarly, the solutions found

for the Earth-Moon system guide a spacecraft from the Moon to the Lagrangian

points and back to the Moon. However, the particle passes very far from the Earth,

thus these trajectories are not useful for a transfer between Low Earth Orbits and

Lagrangian points L4 and L5.

On the other hand, there is a family of periodic orbits, in the restricted three-body

Earth-Moon-particle problem, around the Lagrangian equilibrium point L1, called

G Family (BROUCKE, 1968). Since some orbits of this family pass just a few hundred

kilometers from the Earth’s surface and, between 13 and 15 days later, they pass

just a few dozen kilometers from the Moon’s surface (see Fig. 1.10), it is possible

to determine trajectories such that, using the lunar gravity, send spacecrafts to the

Lagrangian points L4 and L5.

This work proposes to investigate a set of trajectories in order to establish parameters

for a guided transfer between Earth parking orbits and periodic orbits around L4

and L5 that uses the Moon’s gravitational force. In this way, a very efficient strategy

can be applied to place astronomical missions at the Earth-Moon L4 and L5 points.

1.2.4 Chaos Control

Directing a dynamical system to a desired state as quickly as possible is an important

goal in many engineering applications. With the development of nonlinear control

techniques for chaotic dynamical systems, this so-called ‘targeting’ has become fea-

sible, using small, inexpensive control actions. Applications of nonlinear targeting

arise, for example, in space flight, where a spacecraft goes through a chaotic re-

gion and has to reach its destination quickly, using as little fuel as possible. Due to

the particularly complicated dynamics of the chaotic region, conventional transfer
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Figure 1.10 - Lagrangian equilibrium points and a typical orbit of the G Family in the
synodic frame. (From: (MELO et al., 2007)

techniques often become infeasible. The targeting technique used in this work takes

full advantage of the dynamical structure of these systems and yields robust, time

optimal trajectories to a desired target.

The control of a dynamical system is usually applied by changing some accessible

system parameter or by adding an external force. In space flight applications, for

example, impulsive thrusts of a rocket engine are commonly used for trajectory

control. With this application in mind we assume, for simplicity’s sake, direct access

to the phase space momentum variables to achieve control.

Chaos in physical systems like the restricted three body Earth-Moon-particle prob-

lem can be exploited to direct a chaotic trajectory to a target (see Fig. 1.11). In

particular, the outcome of any given interaction depends sensitively on the initial

conditions (OTT, 2002). Chaos is usually viewed as undesirable when designing a

space mission: This sensitivity to slight changes in initial conditions makes hard to

predict future trajectories, and requires frequent and wasteful control impulses to

keep a probe on the desired path. However, in a series of relatively recent works

Bollt and Meiss (BOLLT; MEISS, 1995a), (BOLLT; MEISS, 1995b), Schroer and Ott

(SCHROER; OTT, 1997), and Macau and Grebogi (MACAU; GREBOGI, 2001), (MACAU;

GREBOGI, 2006), (MACAU et al., 2011) present three different ways to drive trajec-

tories in chaotic systems which use only small controls that yield optimal transport

times. However, all of these techniques assume that the particle is in the chaotic
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region. In the case of the restricted three body Earth-Moon-particle problem, the

chaotic region is at an altitude of about 59, 669 kilometers above the Earth’s center

(BOLLT; MEISS, 1995b). For example, a Hohmann transfer requires two parallel burns

of ∆v = 4.1 km/s approximately to transfer a spacecraft from a circular parking or-

bit at an altitude of 400 km above the Earth’s surface to the chaotic region between

the Earth and the Moon (MELO et al., 2007). However, this kind of maneuver is not

economically viable. Additionally, de Melo et al. (MELO et al., 2007) showed that

this value could be reduced using bi-elliptic transfers, such that the total change in

velocity obtained was between 3.5 km/s and 3.7 km/s. Although the total change

is less than the Hohmann transfer, the maneuver could be not economically viable

if the mission needs to spend more fuel to guide the spacecraft to the Lagrangian

equilibrium points L4 or L5.

Figure 1.11 - Chaotic Trajectory in the Earth-Moon system in the synodic frame.

This work proposes a new low-cost orbital transfer strategy that uses a hybrid

propulsion system. Firstly, electric propulsion to transfer a spacecraft from a LEO

with an altitude of 400 km from Earth’s surface to a higher circular orbit of 59, 669

km above the Earth’s center. Once the spacecraft reaches this altitude, a chemical

thruster makes a first impulse to enter the chaotic region between the Earth and

Moon, in such a way that, using only small perturbations, the spacecraft can reach

the Moon through the connected chaotic component and using the Moon’s gravi-

tational force, the spacecraft finally arrives at the equilibrium points L4 or L5 as
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illustrated in Fig. 1.12.

The total cost of the transfer orbits implemented in this work are given in terms

of the sum of all required changes in velocities to reach the equilibrium points and

finally to stabilize the spacecraft around them.

Figure 1.12 - Illustration of the controlled chaotic trajectory reaching Lagrange equilib-
rium point L4 for the Earth-Moon system.

1.3 Natural Configurations and Controlled Motions Suitable for Forma-

tion Flying

The simplest type of spacecraft formation flying geometry is the leader-follower type

shown in Fig. 1.13. Here the two spacecraft are essentially in identical orbits, but

separated from each other only by different anomalies. If this orbit is circular, then

the spacecraft separation will remain fixed. If the orbit is elliptic, then the spacecraft

separation will contract and expand over the time.

The satellite about which all other satellite motions are referenced is called the chief

satellite. The remaining satellites, referred to as the deputy satellites, are to fly in

formation with the chief. It is not necessary that the chief position is occupied by

a physical satellite, the chief position could be used as an orbiting reference point

about which the deputy satellites orbit.

A dynamical more challenging type of general spacecraft formation flying than the
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Figure 1.13 - Illustration of a leader-follower type of a two-spacecraft formation.

leader-follower type is shown in Fig. 1.14. Here several spacecrafts are on slightly

different orbits according some specific constraints to ensure that the relative orbits

are bounded and that the spacecrafts will not drift apart. Note that here the chief

satellite (or chief position) is the one in relative interior orbit about which all of

the other deputy satellites are orbiting. In particular, Figure 1.14 shows the chief

satellite placed in a periodic orbit around L4. The goal of this work is to place a

constellation of satellites such that the chief position is in a periodic orbit around

L4 or L5.

Figure 1.14 - Illustration of a general type of spacecraft formation where the chief satellite
is placed in a periodic orbit around L4.
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In the synodic frame referential system, the chief and deputy positions are given by

the vectors rc and rd, respectively. The relative deputy satellite position is given by

r, where its origin is at the chief satellite position and its orientation is given by the

unit vectors {x̂, ŷ} which are parallel to the synodic frame as shown in Figs. 1.13

and 1.14. Since the present work is devoted to study natural configurations suitable

for formation flying, we are interested in to find the relative deputy positions such

that large variations of the mutual distance between the spacecrafts are avoided.

In Fig. 1.15, we depict three cases of variations of the mutual distance between

the spacecrafts in a formation flying. Supposing that the relative deputy velocity is

zero, if the initial relative deputy position at instant t = t0 is the vector r1 or r3,

the behaviour of the relative distance changes over the time such that at instant

t = t1, the separation from the chief satellite is larger or smaller than the initial

state, respectively. However, if the initial relative deputy position is the vector r2,

the relative distance remains constant until the instant t = t1. What determines

the characteristics of this behaviour is the radial component of the relative deputy

acceleration (GÓMEZ et al., 2006). In the two first cases explained previously, the

relative radial acceleration is positive or negative, but in the third one, it is zero.

Therefore, a deputy satellites, with zero relative velocity placed in the region where

the relative radial acceleration is zero will keep fixed their mutual relative distance.

Figure 1.15 - Illustration of three cases of variations of the mutual distance between the
spacecrafts in a formation flying.
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In this work, we present analytical and numerical methods based on the linearization

of the relative equations of motion to find the regions where the relative radial

componente of the relative acceleration is zero. Gómez et al. (GÓMEZ et al., 2006)

applied the same methodology for halo orbits around the collinear equilibrium point

L2, which is unstable, in the Sun-Earth system. In our case, we are interested in

to apply it in periodic orbits around the equilateral equilibrium points L4 and L5,

which are stable, in the Earth-Moon system. Additionally, the cost to maintain a

formation flying placed on these regions is compared from other geometries as well

as an analysis of the expansion or contraction of the configuration.
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2 DYNAMICS IN THE CIRCULAR RESTRICTED THREE BODY

PROBLEM

The fundamental model applied in the scenario of transfer orbits and Satellite For-

mation Flying in the Earth-Moon system is the Circular Restricted Three Body

Problem (CRTBP) (SZEBEHELY, 1967) which is obtained from the model of the

three body problem with the Earth and the Moon as the primaries and using the

following simplifications:

a) the lunar eccentricity is zero,

b) the lunar inclination is zero.

The first simplification implies that the two primaries are in circular orbits about

their mutual center of mass, and the second one involves that the spacecraft can move

from one point in the plane defined by the two revolving bodies to another point in

the same plane without to change the plane orientation of the initial parking orbit.

These two simplifications satisfy the hypothesis of the Minimum Energy Transfer

(see Sect. 1.2.1).

In the following sections first the equations of motion are derived, assuming motions

only on the plane of the orbit of the Earth-Moon system. The Jacobian integral,

the Lagrangian points, the zero-velocity curves and the stability of the Lagrangian

points are treated next. Finally, the equations of relative motion of formation flying

are derived as well as numerical methods to find periodic solutions in the CRTBP.

2.1 Formulation of the Circular Restricted Three Body Problem and

Equations of Motion

In this section we show how the equations of the CRTBP problem are derived from

the equations of motion of the general problem of three bodies. Here the three bodies

will be the Earth, the Moon, and the spacecraft, and their masses denoted by mE,

mM , and m, respectively, such that m << mM < mE. The position vectors of the

Earth, the Moon, and the spacecraft relative to an inertial origin with perpendicular

axes ξ, η centered at the barycenter are rE, rM , and r, respectively, as shown in

Fig. 2.1.

Let the coordinates of the Earth, the Moon and the spacecraft in the inertial system

be (ξE, ηE), (ξM , ηM), and (ξ, η), respectively. Then applying the vector form of the
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Figure 2.1 - Illustration of Circular Restricted Three Body Problem: Earth-Moon-particle.

inverse square law, the equations of motion of the particle are

ξ̈ =
GmE

ρ3
E

(ξE − ξ) +
GmM

ρ3
M

(ξM − ξ) , (2.1)

η̈ =
GmE

ρ3
E

(ηE − η) +
GmM

ρ3
M

(ηM − η) , (2.2)

where G is the universal gravitational constant and ρE and ρM are the distances of

spacecraft to the Earth and the Moon, respectively. Dots denote derivatives with

respect to the dimensional time τ.

Consider a new, rotating coordinate system with perpendicular axes x̃, ỹ that has

the same origin as the ξ, η system but which is rotating at a uniform rate given by

the Kepler’s third law of planetary motion

ω =

√
G (mE +mM)

d3
EM

, (2.3)

where dEM denotes the constant relative mE −mM distance. The direction of the x̃

is chosen such that the two primaries lie along it. This coordinate system is called

synodic.

Substituting the value of the constants G, mE, mM and dEM (see Appendix ) in Eq.

2.3, the magnitude of the constant angular velocity ω of the Earth-Moon system is
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equal to

ω = 2.66525× 10−6 rad

s
.

Let the coordinates of the Earth, the Moon and the spacecraft in the rotational sys-

tem be (x̃E, ỹE), (x̃M , ỹM), and (x̃, ỹ), respectively. At instant τ , the synodic system

has rotated an angle ωτ . Thus, these coordinates are related to the coordinates in

the inertial system by the following rotation(
ξ

η

)
=

(
cosωτ − sinωτ

sinωτ cosωτ

)(
x̃

ỹ

)
. (2.4)

Differentiating each component in Eq. (2.4) twice we obtain(
ξ̈

η̈

)
=

(
cosωτ − sinωτ

sinωτ cosωτ

)(
¨̃x− 2ω ˙̃y − ω2x̃

¨̃y + 2ω ˙̃x− ω2ỹ

)
. (2.5)

Note that in the synodic frame, it was introduced the terms ω ˙̃x, ω ˙̃y that represent

the Corioli’s acceleration and ω2x̃, ω2x̃ that represent the centrifugal acceleration.

Using these substitutions for ξ, η, ξ̈, η̈ in Eqs. (2.1) and (2.2) and after some algebraic

manipulations we obtain the equations of motion in the synodic system:

¨̃x− 2ω ˙̃y − ω2x̃ = −G
(
mE

ρ3
E

(x̃E − x̃) +
mM

ρ3
M

(x̃M − x̃)

)
, (2.6)

¨̃y + 2ω ˙̃y − ω2x̃ = −G
(
mE

ρ3
E

+
mM

ρ3
M

)
ỹ. (2.7)

The equations of motion in Eqs. (2.6) and (2.7) can be written in a convenient

non-dimensional form. Firstly, we introduce the non-dimensional time variable t as

t = ωτ. (2.8)

The non-dimensional time derivative is related to the previous time derivate through

dx̃

dτ
= ω

dx̃

dt
, (2.9)

d2x̃

dτ 2
= ω2d

2x̃

dt2
. (2.10)
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Now, any scalar distances are non-dimensionalized by dividing them with the con-

stant distance dEM as

x =
x̃

dEM
y =

ỹ

dEM
xE =

x̃E
dEM

xM =
x̃M
dEM

. (2.11)

Finally, the mass quantities are non-dimensionalized by introducing the scalar pa-

rameter µ as

µ =
mM

mE +mM

. (2.12)

Similarly, substituting the value of the Earth and Moon masses (see Appendix ) in

Eq. 2.12, the scalar parameter µ of the Earth-Moon system is equal to

µ = 0.01215.

Note that with this new non-dimensional quantities, the unit distance between the

masses mE and mM , and the definition of the barycenter imply that

xM − xE = 1, (2.13)

(1− µ)xE + µxM = 0. (2.14)

Using Eqs. (2.13) and (2.14), the non-dimensional coordinates of mE and mM in

terms of the parameter µ are given by

xE = −µ, (2.15)

xM = 1− µ. (2.16)

Combining all of these definitions, the equations of motion of m in Eqs. (2.6) and

(2.7) can be rewritten in the following non-dimensional form:

ẍ− 2ẏ =
∂U

∂x
, (2.17)

ÿ + 2ẋ =
∂U

∂y
, (2.18)
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where U = U (x, y) is given by

U (x, y) =
1

2

(
x2 + y2

)
+

1− µ
ρE

+
µ

ρM
, (2.19)

and the non-dimensional relative distance ρi is defined as

ρi =

√
(x− xi)2 + y2. (2.20)

U is called a ‘pseudo-potential’. Similarly, dots denote derivatives with respect to

the non-dimensional time t.

2.2 The Jacobi integral

If we multiply Eq. (2.17) by ẋ and (2.18) by ẏ, and add the results, the non-

dimensional equations of motion in the synodic system become

ẋẍ+ ẏÿ =
∂U

∂x
ẋ+

∂U

∂y
ẏ, (2.21)

1

2

d

dt

(
ẋ2 + ẏ2

)
=

dU

dt
. (2.22)

Integrating Eq. (2.22) with respect to time yields a global integral of the motion C:

ẋ2 + ẏ2 = 2U − C, (2.23)

Then for Eq. (2.19),

(
x2 + y2

)
+

(
1− µ
ρE

+
µ

ρM

)
− ẋ2 − ẏ2 = C. (2.24)

This is the Jacobi integral, or Jacobi constant, and is the only integral of the motion

in the Restricted Three Body Problem (SZEBEHELY, 1967).

2.3 Lagrangian Equilibrium Points

Setting the velocities and accelerations in Eqs. (2.17) and (2.18) equal to zero, we

obtain the conditions that are satisfied by the equilibrium points of the CRTBP:

x− (1− µ)
x+ µ

ρ3
E

− µx− 1 + µ

ρ3
M

= 0 (2.25)(
1− 1− µ

ρ3
E

− µ

ρ3
M

)
y = 0. (2.26)

23



Equation (2.26) is only equal to zero for two geometric configurations. Either y = 0

which corresponds to the collinear solution with all bodies aligned with the rotating

axis x̃, or ρE = ρM = 1, which corresponds to the equilateral triangle solution.

Substituting y = 0 in Eq. (2.25) leads to the expression

x− (1− µ)
x+ µ

|x+ µ|3
− µ x− 1 + µ

|x− 1 + µ|3
= 0. (2.27)

Solving Eq. (2.27), we find the x coordinates of the three collinear equilibrium points

denoted by L1, L2, and L3 for the Earth-Moon system:

L1 : x = 0.836915 L2 : x = 1.15568 L3 : x = −1.00506

Note that, the L1 point is between the Earth-Moon system, the L3 is on the ‘backside’

of the Earth, and L2 is on the ‘backside’ of the Moon a shown in Fig. 1.6.

Finally, the equilibrium condition ρE = ρM = 1 yields to find the coordinates for

the two equilateral equilibrium points denoted by L4 and L5:

L4 : x =
1

2
− µ, y =

√
3/2,

L5 : x =
1

2
− µ, y = −

√
3/2.

The five equilibrium points L1, L2, L3, L4 and L5 are called Lagrangian equilibrium

points and were discovered by mathematicians Leonard Euler (EULER, 1776) and

Josep-Lois Lagrange (LAGRANGE, 1772) in the eighteenth century. Table 2.1 shows

the coordinates of the Lagrangian equilibrium points on the Earth-Moon plane.

Table 2.1 - Coordinates of the Lagrangian Equilibrium points on the Earth-Moon plane

Lagrangian equilibrium point x y
L1 0.836915 0
L2 1.15568 0
L3 −1.00506 0
L4 0.48785 0.86603
L5 0.48785 −0.86603
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2.4 Zero-Velocity Curves

A common use of the Jacobi integral is to establish regions around mE and mM

within which m may travel given its initial states. Equation (2.23) implies that

2U ≥ C otherwise the velocity of m would be complex. Therefore, 2U = C defines

the boundary curves of region where particle motion is not possible. Setting ẋ =

ẏ = 0 in Eq. (2.24) for a given constant C, provides an algebraic expression for the

regions of the x− y space where the particle can not be:

(
x2 + y2

)
+

(
1− µ
ρE

+
µ

ρM

)
= C. (2.28)

Figure 2.2 shows selected zero-velocity curves for the Earth and Moon system. For

example, from Fig. 2.2a we can see that if a particle with that value of C is in the

unshaded region around the Earth then it can never orbit the Moon or escape from

the system because it would have to cross the excluded region to do so. Similarly,

in Fig. 2.2b, if a particle is orbiting the Earth then it is possible that it could orbit

the Moon, but it could never escape from the system.

Figure 2.2 - Zero-velocity curves for the Earth-Moon system. The values of C are (a)
C = 3.50 and (b) C = 3.18. The shaded areas denote the exclude regions.

Substituting the non-dimensional coordinates of the Li Lagrangian equilibrium

points (see Table 2.1) in Eq. 2.28, we obtain the critical values Ci which corresponds

to the regions such that the Lagrangian points are reachable in the Earth-Moon

system. Table 2.2 shows the critical values of C and the corresponding Lagrangian
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points that are reachable. Similarly, in Fig. 2.3, we show the zero-relative curves of

the Earth-Moon system touching the Lagrangian equilibrium points. As we can see

the equilibrium points L4 and L5 are reachable if and only if C ≤ C4. This fact

is important for us due to we are interested in to guide a formation flying around

them.

Table 2.2 - Critical values of C and the corresponding Lagrangian points that are reachable
in the Earth-Moon system

C Value Reachable Lagrangian Points
C1 3.1883 L1

C2 3.1721 L1, L2

C3 3.0121 L1, L2, L3

C4 2.9879 L1, L2, L3, L4, L5

Figure 2.3 - Critical Zero-Velocity curves about Earth and Moon touching the Lagrangian
equilibrium points.
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2.5 The Stability of the Lagrangian Equilibrium Points

Let the coordinates of the Lagrangian equilibrium points be (x∗, y∗) and let the

position of mass m be (x∗ + x′, y∗ + y′) where x′ and y′ are small. Substituting the

coordinates x = x∗ + x′, y = y∗ + y′ of the mass m in Eqs. (2.17) and (2.18),

and expanding the partial derivatives ∂U/∂x, ∂U/∂y around (x∗, y∗) by using the

Taylor’s theorem (LANG, 1997), we have that, considering only the linear terms and

remembering that ∂U/∂x = ∂U/∂y = 0 at (x∗, y∗), the equations of motion around

the Lagrangian Equilibrium points are

ẍ′ − 2ẏ′ = x′
(
∂2U

∂x2

)
∗

+ y′
(
∂2U

∂x∂y

)
∗
, (2.29)

ÿ′ + 2ẋ′ = x′
(
∂2U

∂y∂x

)
∗

+ y′
(
∂2U

∂2y

)
∗
, (2.30)

where the subscript ∗ denotes evaluation of the partial derivatives at the points of

equilibrium so they have constant values.

For a collinear equilibrium point for which y∗ = 0, we have

ẍ′ − 2ẏ′ = x′ (1 + 2ζ) , (2.31)

ÿ′ + 2ẋ′ = y′ (1− ζ) , (2.32)

where ζ is defined by

ζ =
1− µ
ρ3
E

+
µ

ρ3
M

. (2.33)

We try a solution x′ = Aeλt, y′ = Beλt. Substituting the trial solutions into Eqs.

(2.31) and (2.32), we have

λ4 + (2− ζ)λ2 + (1 + 2ζ) (1− ζ) = 0. (2.34)

The roots for λ2 are given by

λ2
1 =
− (2− ζ) +

√
(2− ζ)2 − 4 (1 + 2ζ) (1− ζ)

2
, (2.35)

λ2
2 =
− (2− ζ)−

√
(2− ζ)2 − 4 (1 + 2ζ) (1− ζ)

2
. (2.36)
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Now by Eq. (2.27) we know that

x∗ − (1− µ)
x∗ + µ

ρ3
E

− µx
∗ − 1 + µ

ρ3
M

= 0.

This expression can be written in the form

x∗
(

1− 1− µ
ρ3
E

− µ

ρ3
M

)
− µ (1− µ)

(
1

ρ3
E

− 1

ρ3
M

)
= 0.

So, using the definition of ς, we find that

1− ζ =
µ (1− µ)

x∗

(
1

ρ3
E

− 1

ρ3
M

)
. (2.37)

From simples inspection we have for L1 and L2 that x∗ > 0 and ρE > ρM , then

1 − ζ < 0. Similarly, we have for L3 that x∗ < 0 and ρE < ρM , thus 1 − ζ < 0.

Therefore for each collinear equilibrium point λ2
1 > 0 and λ2

2 < 0. This means that

the collinear equilibrium points are unstable. However, the purely imaginary roots

imply that there exits infinitesimal periodic orbits around the collinear points. These

periodic orbits correspond to a family which can be generated from infinitesimal

elliptic orbits around the equilibrium points (BROUCKE, 1962). An example of this

family is the G Trajectories which represent a set of periodic orbits around L1 in

the Earth-Moon system as shown in Fig. 1.10.

Now we analyze the stability of the triangular equilibrium points. We have x∗ = 1
2
−µ,

y∗ = ±
√

3/2, and ρE = ρM = 1. The equations of motion are

ẍ′ − 2ẏ′ =
3

4
x′ +

3
√

3

4
(1− 2µ) y′, (2.38)

ẍ′ + 2ẏ′ =
9

4
y′ +

3
√

3

4
(1− 2µ)x′. (2.39)

We again try a solution x′ = Aeλt, y′ = Beλt. Substituting the trial solutions into

Eqs. (2.38) and (2.39), we have

λ4 + λ2 +
27

4
µ (1− µ) = 0. (2.40)
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The roots for λ2 are given by

λ2
1 =
−1 +

√
1− 27µ (1− µ)

2
, (2.41)

λ2
2 =
−1−

√
1− 27µ (1− µ)

2
. (2.42)

For stability λ must be purely imaginary so that there must be two real negative

roots for λ2. Substituting the mass ratio µ = 0.01215, we find that the condition

1− 27µ (1− µ) > 0 (2.43)

is satisfied for the Earth-Moon system. This implies that the roots will occur in

pairs of the form λ1,2 = ±ik1 and λ3,4 = ±ik2, where k1, k2 are real numbers

and k1 = 0.2982, k2 = 0.9545 for this system. Since x′, y′, ẋ′, ẋ′ must all be real,

the coefficients of the exponential terms consist of complex conjugates. Hence our

solution for x′ can be written

x′ (t) = (a1 + ib1) eik1t + (a1 − ib1) e−ik1t

+ (a2 + ib2) eik2t + (a2 − ib2) e−ik2t, (2.44)

with a similar equation for y′ (t) . Since eiθ = cos θ + i sin θ and the coefficients are

complex conjugates, Equation (2.44) can be rewritten as

x′ (t) = 2 (a1 cos k1t− b1 sin k1t) + 2 (a2 cos k2t− b2 sin k2t) . (2.45)

So the resulting motion of the particle displaced from the equilibrium point L4 (or

L5) in the Earth-Moon system is oscillatory in form; hence the particle will remain

in the vicinity of the equilibrium point and the motion is stable. Note that the both

purely imaginary roots for λ implies the existence of these two frequencies in the

solution for x′ and y′. Therefore the motion is the superposition of two harmonic

oscillations: a short-period motion with a period 2π/ |k2| ≈ 2π and a superimposed

longer period motion with a period 2π/ |k1| about the equilibrium point. In the

system of units that we have chosen the short period is approximately the same as

the period of the revolution of the primaries.

After the elimination of either the short- or the long-period terms, the orbit of the

particle becomes an ellipse which can be seen in Eq. (2.45). Figure 2.4 shows two el-

liptic orbits of periods 6.58 and 21.07 non-dimensional units around L4 for the Earth

and the Moon system. The center of the ellipses is at the origin of the coordinate
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system with perpendicular axes x′, y′ which coincides with L4. The principal axes of

the ellipses are rotated relative to the coordinate system x′, y′ by an angle α given

by (SZEBEHELY, 1967):

α =
1

2
tan−1

√
3 (1− 2µ). (2.46)

In the Earth-Moon system, α is equal to 29.7◦.

Figure 2.4 - Long and Short Period Orbits about L4 for the Earth and the Moon system.
The principal axes of the elliptic trajectories are oriented according to the
angle α

2.6 Equations of Local Dynamics of Satellite Formation Flying

In this section we describe a linear approach to the problem of Formation Flying

that gives the relevant information about the local dynamics of the problem.

Let X = (x, y, ẋ, ẏ)T be the vector that describes the position and velocity of the

mass m. Hence the equations of motion in Eqs. (2.17) and (2.18) can be written in

vector form as

Ẋ = f (X) , (2.47)
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where

f =


ẋ

ẏ

2ẏ + ∂U
∂x

−2ẋ+ ∂U
∂y

 . (2.48)

Now assume a formation flying such that the chief satellite is placed in a periodic

orbit around L4. Let Xh (t) and X (t) be the vectors corresponding to the trajectories

of the chief and deputy satellites, respectively. Therefore the vector ∆X (t) = X (t)−
Xh (t) represents the relative position and velocity vectors of the deputy satellite

with respect to the chief satellite at instant t. The coordinates of vector ∆X (t)

are defined in a coordinate system x̂, ŷ which is parallel to the rotating coordinate

system x, y and is centered at Xh (t) as shown in Fig. 2.5.

Differentiating the vector ∆X with respect to time t, we have

∆Ẋ = Ẋ − Ẋh

= f (X)− f (Xh) . (2.49)

Supposing that the radius of the formation flying (largest separation between the

spacecrafts) is small, then we can linearize the vector field f (X) around the periodic

orbit Xh (t)

f (X) ≈ f (Xh) +Df (Xh) ∆X. (2.50)

Substituting this expression in Eq. (2.49), we obtain that the linear behaviour of the

deputy satellite around a periodic solution:

∆Ẋ = Df (Xh) ∆X, (2.51)

where

Df =


0 0 1 0

0 0 0 1
∂2U
∂x2

∂2U
∂y∂x

0 2
∂2U
∂x∂y

∂2U
∂y2

−2 0

 . (2.52)
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Figure 2.5 - Illustration of a satellite formation flying about L4. The vectors Xh (t) and
X (t) are the corresponding trajectories of the chief and deputy satellites,
respectively. Vector ∆X (t) represents the relative position and velocity of
the deputy satellite with respect to the chief satellite at instant t.

2.7 Newton’s Method to find Periodic Orbits

In this last section we describe briefly a numerical algorithm to design periodic

solutions in the CRTBP.

Let φ (t,X0) be the orbit which passes through X0 at time t = 0 and intersects

the x-axis at point Xf at time t = T as shown in Fig. 2.6, i.e. φ (0, X0) = X0 and

φ (T,X0) = Xf .

A periodic solution must satisfy the following condition

φ (t,X∗) = X∗,

φ (t,X∗)−X∗ = 0. (2.53)

Therefore Eq. (2.53) can be solved using the Newton’s method (GAUTSCHI, 1997).

Given an initial condition X0, the sequence

Xn+1 = Xn −
(
∂φ (T,Xn)

∂X

)−1

(φ (T,Xn)−Xf ) , (2.54)
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Figure 2.6 - Orbit φ (t,X0) passes through X0 at time t = 0 and intersects the x-axis at
the point Xf at time t = T . Periodic solution φ (t,X∗) satisfies the condition
φ (t,X∗) = X∗.

converges to a solution X∗. The matrix Φ (t) = (∂φ (t,Xn) /∂X) is called the State

Transition Matrix (SCHAUB; JUNKINS, 2003) and satisfy the differential equation

(MORRIS; SMALE, 1974)

Φ̇ = (Df) Φ, (2.55)

Φ (0) = I, (2.56)

where Df is the derivative of the vector field f in Eq. (2.47) and I is the identity

matrix.

In this manner, starting from an initial condition X0, we find a periodic solution in

the CRTBP integrating the system of differential equations (2.47) and

φ̇ = f (φ) , (2.57)

φ (0) = X0, (2.58)

until the orbit φ (T,X0) intersects the x-axis at a time t = T as shown in Fig.

2.6. The vector φ (T,X0) and the inverse of matrix Φ (T ) are substituted in Eq.

(2.54), and we iterate the Newton’s method that converges to a solution X∗ for
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some prescribed tolerance (approx. 10−6). The existence of the inverse of the state

transition matrix is guaranteed by the Inverse Function Theorem (LANG, 1997). A

good approximation for an initial condition X0 near X∗ can be given by the linear

approach in Eq. 2.44.

The procedure described here is sometimes called the method of differential correc-

tions or differential correction procedure (ALLGOVER; GEORG, 1990).
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3 TRANSFER ORBITS

In the following sections we will describe the transfer methods used in this work

to place a spacecraft in a periodic orbit around the Lagrangian points L4 and L5

for the Earth and the Moon system. Essentially, the methods consist in to find

the initial conditions such that the trajectory of the spacecraft intersects the semi-

major or -minor axes of an elliptic orbit around the equilibrium points and to apply a

stabilizing impulsive thrust in order that the spacecraft enters the elliptic trajectory.

The initial conditions depends on the set of parameters that determine the first

impulse thrust applied to guide the spacecraft to L4 and L5.

The first section presents in general the stabilizing impulsive thrust applied on the

spacecraft once it intersects the axis of the elliptic orbit. The second section describes

the elements of the Hohmann Transfer Orbit used to accomplish our mission. The

third section presents the mathematical description of the swing-by maneuver as

well as the patched conic approximation such that we will discuss the geometric

parameters involved in the transfer orbits. Finally, the third and fourth sections

introduce two alternative new techniques to guide spacecrafts to equilibrium points

L4 and L5: G Trajectories and Chaos. Basically, the difference between these new

techniques and the swing-by maneuver is the way the spacecraft leaves the Earth’s

sphere of influence and enters the lunar sphere of influence. In fact, G Trajectories

and Chaos will use the family of periodic orbits around the equilibrium point L1 and

the chaotic region that exists in the Earth-Moon system to achieve our objective,

respectively.

3.1 Stabilizing Impulsive Thrust

Suppose that our mission consists in to place a spacecraft in an elliptic orbit centered

at triangular equilibrium point L4 (or L5) such that the lengths of the semi-major

and minor axes are a and b, respectively. Since the principal axes of the ellipse are

rotated relative to the coordinate system x′, y′ by an angle α = 29.7◦ as shown in

Fig. 2.4, the equations of motion around the equilibrium point can be simplified by

rotating the coordinate system by 29.7◦ clockwise about the equilibrium point. The

new coordinates, (x′′, y′′), are given by(
x′′ (t)

y′′ (t)

)
=

(
cos 27.9◦ − sin 27.9◦

sin 27.9◦ cos 27.9◦

)(
x′ (t)

y′ (t)

)
, (3.1)
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where

x′ (t) = x (t)−
(

1

2
− µ

)
, (3.2)

y′ (t) = y (t)−
√

3

2
, (3.3)

and, x (t) and y (t) are the coordinates of the spacecraft in the rotating system.

Given a trajectory with a vector of initial conditions X (0) = (x0, y0, ẋ0, ẏ0)T , let

us assume that this trajectory intersects the axis x′′ at a point x′′ (t∗) > 0 at time

t = t∗ as shown in Fig. 3.1. Since the trajectory is defined by the vector X (0), then

the goal of this work is to find the initial conditions such that

x′′ (t∗)− a = 0. (3.4)

Similarly, if the trajectory intersects the axis y′′ at a point y′′ (t∗) > 0 at time t = t∗,

then we must find the initial conditions such that

y′′ (t∗)− b = 0. (3.5)

The same idea also works whether x′′ (t∗) , y′′ (t∗) < 0.

Figure 3.1 - Illustration of the spacecraft’s trajectory intersecting the perpendicular axes
x′′, y′′.
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Now denote by va and v∗
a the velocities with respect to coordinate system x′′, y′′ at

the point (a, 0) of the elliptic orbit and the spacecraft, respectively, as shown in Fig.

3.2. Therefore the change in velocity ∆v2 of the stabilizing impulsive thrust to enter

the elliptic orbit is given by

∆v2 = va − v∗
a. (3.6)

Similarly if we denote by vb and v∗
b the velocities at the point (0, b) of the elliptic

orbit and the spacecraft, respectively, as shown in Fig. 3.2, the change in velocity

∆v2 of the stabilizing impulsive thrust to enter the elliptic orbit is given by

∆v2 = vb − v∗
b . (3.7)

Figure 3.2 - Illustration of the stabilizing impulsive thrust applied to enter the elliptic
orbit around L4 when the spacecraft intersects (a) the semi-major axis and
(b) the semi-minor axis.

3.2 Modified Hohmann Transfer Orbit

Consider an Earth-centered inertial coordinate system n̂1, n̂2 and suppose a space-

craft in a circular orbit of radius r0 around the Earth such that the inertial axes

are aligned with the rotating coordinate system at time t = 0 as shown in Fig. 3.3.
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Therefore the angle between the axis n̂1 and L4 (or L5) is 60◦ (π/3 radians) at that

instant. In the dimensional system of units, the mean motion of the equilibrium

points L4 and L5 is ω = 2.66525 × 10−6 rad/s (see Sect. 2.1) with respect to the

inertial frame.

As we can see in Fig. 3.3, the geometry of any spacecraft’s trajectory is given by the

the velocity at departure v0 and the phase angle γ0 of departure. Therefore our goal

is to find v0 and γ0 to place the spacecraft in a periodic orbit around the triangular

equilibrium points. This problem can be simplified if we neglect the effects of the

lunar gravity (this approximation is called ‘Patched Conic’ and will be explained

with more details in the next section). Thus, the problem becomes in a two-body

problem and we are interested in determine a suitable transfer orbit that will connect

the corresponding position vector r0 with the orbit of L4 and L5. Remember that

with respect to the inertial frame, the resulting motion of L4 and L5 is a circular

orbit about the Earth.

Now note that this problem is essentially the minimum energy transfer orbit de-

scribed in Sect.1.2.1 where for the spacecraft to leave its circular orbit of radius

r0 and enter the elliptic orbit of semi-major axis of am = (r0 + d) /2, a tangential

change in velocity ∆v1 is required

∆v1 = vi

(√
2d

r0 + d
− 1

)
. (3.8)

where vi =
√
µE/r0. Therefore the magnitude of the velocity at departure v0 is

v0 = vi

(√
2d

r0 + d

)
. (3.9)

The phase angle γ0 can be computed once the time of of flight ∆t is determined.

The time of transfer follows from the Kepler’s equation (SCHAUB; JUNKINS, 2003):

∆t = π

√
a3
m

µE
. (3.10)

The points L4 and L5 move through an angle ω∆t between the injection and arrival

at the periodic orbit about them. Hence the phase angles at departure for L4 and
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L5 missions, are then determined from

γ0 = π −
(
ω∆t+

π

3

)
, (3.11)

γ0 = π −
(
ω∆t− π

3

)
, (3.12)

respectively.

Figure 3.3 - Illustration of the minimum energy transfer orbit to periodic orbits around
(a) L4 and (b) L5.

As we can see in Fig. 3.3, the position and velocity vectors r0, v0 at the injec-

tion point for L4 and L5 missions are expressed with respect to the inertial frame

components as

r0 = r0 cos γ0n̂1 − r0 sin γ0n̂2, (3.13)

v0 = v0 sin γ0n̂1 + v0 cos γ0n̂2. (3.14)

The coordinates of the Earth in the non-dimensional rotating system are (−µ, 0).

Because in the system of units that we have chosen, the non-dimensional synodic

frame system is rotating at a uniform unitary rate, therefore, using the Transport

Theorem (SCHAUB; JUNKINS, 2003) in Eqs. (3.13) and (3.14), the non-dimensional

coordinates of the position vector r0 = (x0, y0)T and velocity vector v0 = (ẋ0, ẏ0)T
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with respect to the rotating coordinate system are

x0 =
r0 cos γ0

dEM
− µ, (3.15)

y0 = −r0 sin γ0

dEM
, (3.16)

ẋ0 =
v0 sin γ0

ωdEM
+ y0, (3.17)

ẏ0 =
v0 cos γ0

ωdEM
− x0 − µ. (3.18)

Finally, from Eqs. (3.9) and (3.10), the velocity and phase angle at departure de-

pends on the radius r0 and the apocentre d. As the initial radius is fixed, the only

independent variable is the apocentre. Therefore, the goal consists in to find the

value of d such that Eq. (3.4) or (3.5) is satisfied. In other words, to find a zero of a

function. Because the continuity of the system of differential equations (2.47), Equa-

tions (3.4) and (3.5) can be solved quickly using the Newton-secant method. Since

the periodic orbits are close to equilibrium points, then d ≈ dEM . Once the space-

craft intersects the elliptic orbit, the stabilizing impulsive thrust ∆v2 is required to

place the spacecraft into the periodic orbit as shown in Fig. 3.2.

The total cost ∆vT of the transfer is computed by

∆vT = ∆v1 + ∆v2. (3.19)

3.3 Using the gravitational field of the Moon

In the previous section, the lunar gravity was neglected to transfer the spacecraft

from a circular parking orbit around the Earth to a periodic orbit about the equi-

lateral equilibrium points. Now, we will use a gravity assist maneuver with the

Moon to transfer the spacecraft. For this purpose, we will use the ‘patched conic’

approximation, separating the Earth-Moon-spacecraft problem in two problems of

two bodies: Earth-spacecraft and Moon-spacecraft. While the spacecraft is outside

the gravitational sphere of influence of the Moon, the trajectory is approximated

by taking only the terrestrial gravity into account and using the two-body orbital

mechanics. Similarly, once the spacecraft enters the Moon’s sphere of influence, we

will assume that the spacecraft moves only under the gravitational influence of the

Moon. Depending on the speed and the direction of the spacecraft relative to the

center of the Moon, it is possible to change the energy of the spacecraft relative to
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the Earth and guide it to the Lagrangian points L4 and L5. The key point using this

approach is to determine the geometry of the geocentric departure orbit such that

the spacecraft can be placed around L4 and L5.

In order to look for trajectories like that, a first simplifying assumption is to consider

only the gravitational attraction force of the Earth as long as the spacecraft is around

it and receives the first impulsive to enter into an elliptic transfer orbit. While the

trajectory does not cross the gravitational sphere of influence of the Moon, the two-

body orbital scenario is considered. One of the advantages of this approach is that

the solution of the two-body problem is analytical (BATTIN, 1987). Additionally, the

Moon’s orbit will be assumed as circular with radius of dEM and angular velocity

ωM (see Appendix ).

Now, a second assumption is made when the spacecraft crosses the Moon’s sphere

of influence. In that instant, the spacecraft will be regard as moving only under the

gravitational influence of the Moon. Similarly, a second problem of two bodies has

to be analyzed. To express the sphere of influence concept in mathematical terms

we rewrite the equations of motion of the spacecraft in Eqs. (2.1) and (2.2). Let RE

and RM be the position vectors of the spacecraft relative to the Earth and Moon,

respectively. Similarly, the position vector from the Moon to the Earth is denoted by

REM , as illustrated in Fig. 3.4. The equation of motions of the spacecraft relative

to either the Earth or Moon are given by

R̈E = −GmE

R3
E

RE︸ ︷︷ ︸
aE

−GmM

(
RM

R3
M

+
REM

R3
EM

)
︸ ︷︷ ︸

adE

,

R̈M = −GmM

R3
M

RM︸ ︷︷ ︸
aM

−GmE

(
RE

R3
E

− REM

R3
EM

)
︸ ︷︷ ︸

adM

.

In this case, the gravitational attraction of the other celestial body is expressed as a

disturbance acceleration adE
on the two-body solution about the Earth and adM

on

the two-body solution about the Moon. The lunar sphere of influence is the region

around the Moon where the magnitude of the disturbance acceleration vector adM

is equal to the magnitude of the two-body acceleration vector aM . Since the mass of

the Earth is greater than the mass of the Moon (almost 82 times greater), the radius

RS of the gravitational sphere of influence of the Moon is approximately (BATTIN,
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1987):

RS = dEM

(
mM

mE

)2/5

. (3.20)

Substituting the values of dEM , mE and mM (see Appendix ) in Eq. (3.20) yields

the value

RS = 66, 181 km,

or about 1/6 the Earth-Moon distance.

Figure 3.4 - Illustration of the sphere of influence concept in the Earth-Moon system. The
radius RS of the lunar sphere of influence is about 1/6 the distance from Earth
to the Moon.

3.3.1 The Mathematical Description of the Swing-By

Figure 3.5 illustrates the geometry of the geocentric departure orbit. Originally, the

spacecraft is in a parking circular orbit of radius r0 around the Earth. The four

quantities that determine totally the geometry of the departure orbit are

r0, v0, φ0, λ0, (3.21)

where v0 and φ0 are the velocity and angle at departure, and λ0 is the angle that

specifies the point at which the geocentric trajectory intersects the lunar sphere

of influence. Another important quantity shown in Fig. 3.5 is the phase angle of

42



departure γ0 which can be easily determined once the four quantities are known.

As we can saw in the previous section, this angle is necessary to determine the

initial conditions of the departure in the rotating frame. Additionally, since we are

interested in minimum energy trajectories to reach the Moon’s sphere of influence,

the angle at departure φ0 = 0 in all trajectories.

Figure 3.5 - Illustration of the geocentric departure orbit.

3.3.1.1 The Geocentric Departure Orbit

The geometry of the departure begins computing the radius r1 and angle γ1 by using

the law of cosines and sines in the triangle defined by the radius RS and dEM :

r1 =
√
d2
EM +R2

S − 2dEMRS cosλ0, (3.22)

γ1 = sin−1

(
RS

r1

sinλ0

)
. (3.23)

Similarly, the energy εE and angular momentum hE of the spacecraft relative to the

center of the Earth can be computed from the departure conditions (3.21):

εE =
v2

0

2
− µE

r0

, (3.24)

hE = r0v0. (3.25)
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Finally, from the conservation of energy and angular momentum, the geocentric

speed v1 and the flight path angle φ1 at arrival (see Fig. 3.6) are given by

v1 =

√
2

(
εE +

µE
r1

)
, (3.26)

φ0 = cos−1 hE
r1v1

. (3.27)

3.3.1.2 The Selenocentric Arrival Orbit

Once the spacecraft enters the lunar sphere of influence, the velocity vector with

respect to the Moon is determined by

v1 = v2 − vM , (3.28)

where vM is the velocity vector of the Moon with respect to the center of the Earth

(see Fig. 3.6). Based on our simplified model of the Earth-Moon system, the orbital

speed of the Moon is

vM = ωMdEM ,

= 1.0183
km

s
. (3.29)

Figure 3.6 - Illustration of the selenocentric arrival orbit.
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Similarly, applying the law of cosines to the vectorial triangle between the velocity

vectors v1 and −vM , the selenocentric arrival speed v2 is given by

v2 =
√
v2

1 + v2
M − 2v1vM cos (φ1 − γ1). (3.30)

The angle σ2 defines the direction of the arrival velocity vector v2 relative to the

Moon’s center, and can be determined from (BATE et al., 1971)

σ2 = sin−1

(
vM
v2

cosλ0 −
v1

v2

cos (λ0 + γ1 − φ1)

)
. (3.31)

In this way, if the arrival conditions RS , v2 and σ2 are known, therefore the periselene

radius rp and speed vp of the spacecraft can be easily computed. Firstly, the energy

εM and angular momentum hM of the spacecraft relative to the Moon are determined

from the arrival conditions (3.30) and (3.31):

εM =
v2

2

2
− µM
RS

, (3.32)

hM = v2RS sinσ2, (3.33)

where µM is the Moon gravitational constant (see Appendix ).

Now that these two quantities are know, the semilatus rectum pM and eccentricity

eM of the selenocentric arrival orbit can be expressed in terms of energy and angular

momentum, respectively:

pM =
h2
M

µM
, (3.34)

eM =

√
1 +

2εMh2
M

µ2
M

. (3.35)

From the polar equation of conics and the conservation of energy follows that

rp =
pM

1 + eM
, (3.36)

vp =

√
2

(
εM +

µM
rp

)
. (3.37)

It is important to note that the periselene radius can not be less than the radius of

the Moon (see Fig. 3.7), otherwise, the spacecraft will impact the Moon.
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3.3.1.3 Swing-By Maneuver

When the spacecraft makes a close approach with the Moon, this close approach

changes the trajectory of the spacecraft. Figure 3.7 shows this event and the variables

involved.

Figure 3.7 - The Swing-by Maneuver with the Moon.

The vector v3 represents the velocity vector of the spacecraft with respect to the

Moon when it leaves the lunar sphere of influence and ψ, the angle between the

periselene and the line that connects the Earth with the Moon, is called the angle of

approach. Under the hypothesis of the patched-conic model, the orbit of the Earth

and Moon are not changed by this close approach.

Assuming that the approach trajectory is a hyperbolic orbit, the relative velocity v2

rotates by an angle 2δ when the spacecraft crosses again the lunar sphere of influence

as shown in Fig. 3.7. At that moment, the relative velocity v3 will have the same

magnitude as the arrival velocity v2. The angle δ can be determined through the

expression for the hyperbolic asymptote angle (SCHAUB; JUNKINS, 2003) and the

eccentricity of the selenocentric arrival orbit (3.35):

δ = sin−1 1

eM
. (3.38)
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After the spacecraft leaves the lunar sphere of influence, it returns to a new Keplerian

orbit around the Earth and the swing-by maneuver is complete. The differences

between the orbits before and after this close encounter will determine the trajectory

that intersects the periodic orbit around L4 or L5.

The first important quantity that has to be computed is the difference ∆v between

the velocities with respect to the Earth before and after the swing-by. Assuming

that the close approach is instantaneous, then the vector velocity of the Moon with

respect to the Earth remains practically constant. Therefore,

∆v = (v2 + vM )− (v3 + vM ) ,

= v2 − v3. (3.39)

Now, from Fig. 3.7 we can get a vector diagram as shown in Fig. 3.8. This diagram

shows that the magnitude of the vector difference ∆v is equal to

∆v = 2v2 sin δ, (3.40)

and that this vector makes an angle ψ with the line that connects the Earth with the

Moon. This fact gives us the components ∆vx and ∆vy for the increment in velocity

∆v:

∆vx = 2v2 sin δ cosψ, (3.41)

∆vy = 2v2 sin δ sinψ. (3.42)

In this way, the second important quantity that has to be derived is the change in

energy ∆ε. Since the close approach is instantaneous, the potential energy does not

change before and after the encounter, however the kinetic energy does. Therefore,

the change in energy can be computed subtracting the kinetic energy ε+ after the

encounter and the kinetic energy ε− before. So, let us denote by

v1 =

(
vx1

vy1

)
, (3.43)

the coordinates of the geocentric velocity vector v1 just before the encounter (see

Fig. 3.6). Then, the coordinates of the geocentric velocity vector after the encounter
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Figure 3.8 - Velocity vectors involved in a swing-by maneuver with the Moon.

are

v1 + ∆v =

(
vx1 + ∆vx

vy1 + ∆vy

)
. (3.44)

Thus the result is

∆ε = ε+ − ε−,

=
1

2

(
(vx1 + ∆vx)

2 + (vy1 + ∆vy)
2
)
− 1

2

(
(vx1 )2 + (vy1)2

)
,

= vx1 ∆vx + vy1∆vy +
1

2

(
(∆vx)

2 + (∆vy)
2) . (3.45)

The point is therefore to determine the coordinates of vector velocity v1.

Firstly, Figure 3.9 shows the vector diagram obtained by the vector addition v1 =

v2 + vM . In this case, the angle β can be computed applying the law of cosines to

the vectorial triangle between the velocity vectors v1, v2 and vM :

β = cos−1 v
2
2 + v2

M − v2
1

2v2vM
. (3.46)

Now, since the angle between the vector velocity v2 and the vertical line is equal to
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Figure 3.9 - Vector diagram describing the vectorial sum v1 = v2 + vM .

β then coordinates of vector velocity v1 are equal to:

v1 = v2 + vM ,

=

(
v2 sin β

−v2 cos β

)
+

(
0

vM

)
,

=

(
v2 sin β

vM − v2 cos β

)
. (3.47)

In other words

vx1 = v2 sin β, (3.48)

vy1 = vM − v2 cos β. (3.49)

Substituting the velocity components (3.41)-(3.42) and (3.48)-(3.49) in Eq. (3.45),

this leads to

∆ε = 2v2 sin δ (v2 sin δ − v2 sin (ψ − β) + vM sinψ) . (3.50)

Finally, to determine the changes in velocity and energy, it is necessary to compute

the value of the angle of approach ψ. Thus, using the vector diagrams described in
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Figs. 3.8 and 3.9, we find (see Fig. 3.10)

ψ = δ + β. (3.51)

Therefore, the ∆ε expression can be simplified to:

∆ε = ∆v (vM sinψ) . (3.52)

Figure 3.10 - Geometric relation between angles δ, β, and ψ.

3.3.2 Initial Conditions

Considering a spacecraft in an Earth circular parking of radius r0, we use a mini-

mum energy transfer orbit so that the spacecraft leaves its circular orbit, enters an

elliptic orbit of semi-major axis of am = (r0 + d) /2 and crosses the Moon’s sphere of

influence as shown in Fig. 3.11. Therefore, assuming no lunar gravity, the magnitude

of the tangential change in velocity ∆v1 and the injection speed v0 are given by Eqs.

(3.8) and (3.9), respectively. The tangential change in velocity implies that φ0 = 0.

In this way, once the radius r0 of the circular parking orbit and the apocentre d of the

elliptic transfer orbit are fixed, the minimum energy transfer give us automatically

three of the four parameters that describe the geometry of the departure orbit: r0,
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v0, φ0. The fourth parameter λ0 remains as independent variable.

Let us suppose that the radius r0 and the apocentre d are given; the angle λ0 specifies

the point at which the geocentric trajectory will cross the lunar sphere of influence,

and the swing-by maneuver will generate different trajectories for different values

of λ0. In this case, as we could see in Sect. 3.3.1, all the parameters involved in

the patched-conic approximation and swing-by maneuver can be easily determined

for each trajectory. Once the geometry of the departure orbit is known, the non-

dimensional initial conditions r0 = (x0, y0)T and v0 = (ẋ0, ẏ0)T at the injection

point which determine the space’s trajectory in the rotating coordinate system, can

also be computed.

Figure 3.11 - Illustration of a minimum energy transfer orbit of semi-major axis of am =
(r0 + d) /2 to cross the lunar sphere of influence.

Firstly, suppose similarly that the Earth-centered inertial coordinate system n̂1, n̂2

are aligned with the rotating coordinate system at time t = 0 as shown in Fig. 3.11.

Therefore, the initial conditions can be found whether we know the phase angle at

departure γ0 as we could see in Sect. 3.2.

In this manner, let us denote by f1 and ∆t the angle and time of flight of the

spacecraft between injection and arrival at the lunar sphere of influence. Based on
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our simplified model, the Moon moves through an angle ωM∆t between these two

events. Figure 3.12 shows how these angles: γ0, f1, ωM∆t, are related. Therefore, if

we determine the angle f1 and the time ∆t, the value of the angle at departure γ0

will be easily computed.

Figure 3.12 - The spacecraft and Moon move through an angle f1 and ωM∆t, respectively,
between injection and arrival at the lunar sphere of influence.

Now, to find the value of f1 and ∆t, we must determine the semilatus rectum pE and

eccentricity eE of the geocentric departure orbit. Thus, from the energy and angular

momentum of the departure orbit computed in Eqs. (3.24) and (3.25), we have

pE =
hE
µE

, (3.53)

eE =

√
1 +

2εEh2
E

µ2
E

. (3.54)

Then f1 follows from the polar equation of conic:

f1 = cos−1 pE − r1

r1eE
. (3.55)
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Next, the eccentric anomaly E1 can be determined from

E1 = cos−1 eE + cos f1

1 + eE cos f1

. (3.56)

Finally, the time of flight ∆t is obtained from

∆t = (E1 − eE sinE1)

√
a3
m

µE
. (3.57)

Therefore, the phase angle at departure γ0 is determined from Fig. 3.12:

γ0 = f1 − γ1 − ωM∆t. (3.58)

Once the angle at departure γ0 is known, the non-dimensional initial conditions

(x0, y0, ẋ0, ẏ0)T follow from Eqs. (3.15)-(3.18). Thus, once the radius r0 and the

apocentre d are fixed, the goal is to find the angle λ0 that solves Eq. (3.4) or (3.5).

Similarly, when the spacecraft intersects the elliptic orbit around L4 or L5, a sta-

bilizing impulsive thrust ∆v2 is required to place the spacecraft into the periodic

orbit. The total cost ∆vT of the transfer is computed by Eq. (3.19).

3.4 G Trajectories for L4 and L5

The dynamics of the CRTBP predicts the existence of periodic orbits around the

Lagrangian equilibrium points (BROUCKE, 1968). We are interested in the family of

periodic orbits around the L1 point.

In general, the initial conditions in the system of differential equations (2.47) that

allow finding periodic orbits of G Family have the following form

(x0, y0, ẋ0, ẏ0) = (x0, 0, 0, ẏ0) , (3.59)

where (−µ+ rE/dEM) < x0 < xL1 , rE is the average radius of the Earth (see

Appendix ) and xL1 is the abscissa of the Lagrangian equilibrium point L1 in the

non-dimensional synodic frame (see Table 2.1). Note that Eq. 3.59 implies that the

necessary condition to put a spacecraft into a periodic orbit of G Family is that

the Earth, the spacecraft and the Moon are aligned in this order at t = 0. This

alignment does not represent a significant restriction. For example, if a spacecraft is

in a circular parking orbit of 400 km above the Earth’s surface, it will occur every
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1.54 hours; practically the orbital period of the parking orbit. Figure 3.13 shows a

typical periodic orbit of G Family. This kind of trajectory is a starting point of the

transfers presented in this work.

Figure 3.13 - Lagrangian equilibrium points and typical orbits of the G Family in the
synodic coordinate system: (a) (x0, 0, ẋ0, ẏ0) = (0.741686, 0, 0, 0.53176),
(a) (x0, 0, ẋ0, ẏ0) = (0.299999, 0, 0, 0.195941) and (c) (a) (x0, 0, ẋ0, ẏ0) =
(0.399997, 0, 0,−2.271238).
From: (MELO et al., 2007)

One of the characteristics of the periodic orbits of G Family is the instability, mainly

those that pass few hundred kilometers from the Earth’s surface and a few dozen

kilometers from the Moon’s surface as show in Fig. 3.13(b). Therefore, it is possible

to derive, from these periodic orbits, trajectories capable to transfer spacecraft from

an Earth parking orbit to the Moon’s sphere of influence.

Once the spacecraft reaches the Moon’s sphere of influence, our goal is to use the

Moon’s gravitational force in such a way that the spacecraft either gains or losses

enough energy to arrive at L4 or L5. Therefore, the firsts step is to inject the space-

craft into one of these trajectories that link the Earth to the Moon’s sphere of
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influence.

Starting at a circular Earth parking orbit of radius r0, a first thrust impulsive ∆v1 is

applied to the spacecraft to put it in a trajectory derived from the G Family. Figure

3.14 illustrates the quantities involved in the problem. The initial conditions in the

non-dimensional synodic frame are given in the form of Eq. (3.59):

x0 =
r0

dEM
− µ, (3.60)

ẏ0 =

(
v0

ωdEM

)
− x0 − µ. (3.61)

where v0 is the magnitude of the velocity at departure.

Figure 3.14 - Illustration of the quantities involved in the insertion of a spacecraft into a
periodic orbit of G Family. Orbit seen in the synodic frame (not to scale).

In a previous study, de Melo et al. (MELO et al., 2007), (MELO et al., 2009) established

a mathematical expression for the first ∆v1 as a function of the radius r0 of the initial

circular Earth parking orbit. This expression has the following form,

∆v1 =
vi
2

(
−2.3340× 10−6 (r0 − rE) + 0.08085± 0.0001

)
+ ϕ+ ϑ, (3.62)

where vi =
√
µE/r0. The term ϕ corresponds to disturbances to the dynamics of

the restricted three-body Earth-Moon-particle problem as Sun’s gravitational field,
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solar radiation pressure, Earth oblateness, the eccentricities of the Earth’s and the

Moon’s orbits, among others. Whether none is considered, ϕ = 0. The term ϑ

represents small increments in ∆v1 and its value will determine the magnitude and

the positioning of the periselenium vector, rp, relative to the Moon and the kind of

Trajectory G that will be generated. Values for ϕ that describe the actions of the

Sun’s gravitational field and the eccentricities of the Earth’s and the Moon’s orbits

can be found in (MELO et al., 2009).

Thus, it is possible to generate a G Trajectory from a periodic orbit of G Family

(ϕ = 0) in two ways. With a small increment in ∆v1 (ϑ 6= 0), or with the application

of a small ∆v in the orbit’s apogee prior the passage through the lunar sphere of

influence (MELO et al., 2007), (MELO et al., 2009). Any of these procedures is sufficient

to produce a swing-by with the Moon during the spacecraft passage through the

lunar sphere of influence. The second is more complex, because it requires a control

system to provide the correct direction to the small ∆v at the correct time. However,

there is not a significant difference in terms of the increment of the velocity due to

the inherent instabilities of the orbits when the objective is to reach L4 or L5. On the

other hand, a control system always will be required to keep the spacecraft in the

appropriated trajectory mainly due to the disturbances of the Sun’s gravitational

field in real missions. Therefore the magnitude of the velocity at departure v0 is

v0 = vi

(
1 +

1

2

(
−2.3340× 10−6 (r0 − rE) + 0.08085± 0.0001

))
+ ϑ. (3.63)

When the spacecraft reaches the Moon’s sphere of influence, the sign of the variation

of the spacecraft’s energy relative to the Earth due to the swing-by will depend on the

angle between the direction of the radius vector of the spacecraft’s periselenium, rp,

and the axis-x of the synodic frame that unites the Earth to the Moon (BROUCKE,

1988). This angle is denoted by Φ. These quantities are shown in Fig. 3.14. According

to Broucke (BROUCKE, 1988), for 0◦ ≤ Φ ≤ 180◦ the energy variation will be negative

and for 180◦ < Φ ≤ 360◦ the energy variation will be positive.

Considering the synodic frame, it is verified numerically that the spacecraft must

realize a swing-by passing by the Moon’s trailing side to reach an orbit around L4.

This implies 180◦ < Φ ≤ 360◦ and the energy increment is positive. On the other

hand, to deliver a spacecraft up to an orbit around L5, it must realize a swing-

by passing by the Moon’s leading side (0◦ < Φ ≤ 180◦) to get a negative energy

variation (SALAZAR et al., 2012). Figure 3.15 shows these two situations explored
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here. Once the swing-by is made, the spacecraft will reach the Lagrangian points L4

Figure 3.15 - Swing-by orbits: (a) Passing by the Moon’s trailing side to reach L4 (180◦ <
Φ ≤ 360◦) (b) Passing by the Moon’s leading side to reach L5 (0◦ < Φ ≤
180◦).

and L5.

In this manner whether the radius r0 of the initial parking orbit is fixed, the only

independent variable is the magnitude of the velocity at departure v0 as we can see

in initial conditions (3.62) and (3.63). The goal therefore is to find the value of v0

such that, making a swing-by with the Moon, the spacecraft’s trajectory intersects

the semi-major or semi-minor axis of the periodic orbits around L4 and L5. Now,

note that, if r0 is fixed, the only term in Eq. (3.63) that can be altered is the

parameter ϑ which defines exactly the spacecraft’s relative position to the Moon. The

other terms remain fixed. Therefore, the objective is to determine the value of the

parameter ϑ such that Eq. (3.4) or (3.5) is satisfied. Similarly, because the continuity

of the system of differential equations (2.47), Equations (3.4) and (3.5) can be solved

quickly using the Newton-secant method. Once the spacecraft intersects the elliptic

orbit, the stabilizing impulsive thrust ∆v2 is applied to place the spacecraft into the

periodic orbit. The total cost ∆vT of the transfer is computed by Eq. (3.19).
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3.5 Using Chaos for transference to L4 and L5 Earth-Moon System

In this section, we introduce a new low-cost orbital transfer strategy that oppor-

tunistically combine electric propulsion, chaotic and swing-by transfers to get a very

efficient strategy to place a spacecraft in Lagrangian points L4 or L5. This strategy

is not only efficient with respect to thrust requirement, but also its time transfer is

comparable to others known transfer techniques based on time optimization.

3.5.1 Entering the Connected Chaotic Component that leads to the

Moon

As we could see in Sect. 2.2, there exits a quantity that remains constant along the

trajectory of the particle in the CRTBP. This constant quantity is known as Jacobi

integral. In 1890, H. Poincaré showed that for a certain value of the Jacobi integral,

the trajectory of the third body presents an irregular behavior that now is know as a

‘chaotic behavior’ (LI; YORKE, 1975), i.e. sensitivity to initial conditions and param-

eters values. These ‘chaotic trajectories’, due to their sensitivity to initial conditions

can be exploit to allow low energy transfer of a spacecraft from a circular parking

orbit around the Earth to the Moon (SCHROER; OTT, 1997), (MACAU; GREBOGI,

2001), (MACAU; GREBOGI, 2006), (MACAU et al., 2011). However, the flight time for

this kind of transfer orbit may be too long compared with other transfer methods

studied in the previous sections.

The first step to transfer a spacecraft from an Earth circular parking orbit to the

Moon’s sphere of influence through the connected chaotic component is to place the

spacecraft at an altitude of 59, 669 km (BOLLT; MEISS, 1995b). However, using the

Hohmann transfer, the cost for this maneuver could be very high (approx. 4.1 km/s).

In this case, the cost of the mission must first be reduced for small levels. One of

the alternatives that have been used for many years, specially for Russian satellites,

is the electric propulsion which offers much higher specific impulse but the thrust is

much weaker compared to the chemical one. This technique offers the advantage of

consuming a quantity of propellant mass much smaller than the chemical propulsion

will consume for the same mission.

Space orbit transfers can be accomplished by using low thrust trajectories with

spacecrafts propelled by electric thrusters. A Permanent Magnet Hall Thruster

(PMHT) is an example of propulsion system that could be used. This kind of sys-

tem will be used in the ASTER Mission, the first Brazilian space exploration mission

which is to be launched in 2017 (MACAU et al., 2011),(SUKHANOV, 2010). Consider-
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ing this propulsion system in our mission, the performance expected for PMHT is

shown in Table 3.1

Table 3.1 - Performance expected for PMHT to be used in the ASTER spacecraft
From: (MACAU et al., 2011)

Propulsion Average Measured Propellant
System Measured Thrust Specific Impulse Consumption

(mN) (s) (kg/s)
PHMT 120 1, 600 1, 0× 10−6

Considering a transfer between two circular Earth orbits, the problem is to find

parameters of the spacecraft motion such that the transfer time must be minimum.

The following assumptions are taken:

a) The thrust and mass flow rate are constant

b) The thrust is assumed tangential

c) The thrust is not interrupted during the whole transfer

d) The external forces include only the Earth’s gravitational force

e) The initial and final orbits are circular

Under these assumptions, the low-thrust trajectory is spiral with instantaneous or-

bits close to circular ones at any time of the transfer as illustrated in Fig. 3.16. Let

us suppose an initial circular orbit of radius r0. The spacecraft must be transferred

to a higher orbit of radius rf = 59, 669 km.

In this manner, once the spacecraft is boosted to achieve the higher orbit, the mass

flow rate can be found as follows:

ṁ = − F

Ispg
, (3.64)

where F and Isp are the thrust and the specific impulse, respectively, g = 9.80665

m/s2 is the acceleration of free fall (GREENWOOD, 1988), (WERTZ; LARSON, 1991).

Therefore, if the spacecraft has an initial mass of m0, then the final spacecraft mass
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Figure 3.16 - Spiral trajectory to transfer a spacecraft between two circular Earth orbits
of radius r0 and rf using a constant tangential thrust.

mf , transfer time ∆t and number of spacecraft orbits N during the time ∆t can be

computed using the following equations (SCHAUB; JUNKINS, 2003)

mf = m0e

(
−

vf−vi
Isp

)
, (3.65)

∆t =
m0 −mf

ṁ
, (3.66)

N =
(Ispg)3

2πµEṁ
|L3| , (3.67)

where vi =
√
µE/r0, vf =

√
µE/rf and the integral

L3 =

∫ ∆t

0

(
vi
Ispg

+ ln s

)
ds, (3.68)

is calculated using the following relation:

Ln = mf

(
vf
Ispg

)n
−m0

(
vi
Ispg

)n
− nLn−1, (3.69)

with

L0 = mf −m0, (3.70)

and n = 1, 2, . . . (MACAU et al., 2011).
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3.5.2 Chaos in the CRTBP

H. Poincaré (POINCARÉ, 1890) showed that there exists a region of irregular behavior

in the phase space (x, y, ẋ, ẏ) of the system (2.47) at C = 3.17948. This irregular

behavior is called today as chaotic (LI; YORKE, 1975). To inject a spacecraft into

the chaotic phase space region, the particle must reach altitudes about 59, 669 km

from the Earth’s center. So, starting at a circular parking orbit of radius r0, an

electric propulsion system could transfer the spacecraft to a higher orbit of radius

rf = 59, 669 km. Once the spacecraft has reached this altitude, a first burn is required

to inject the spacecraft into the chaotic region such that the Jacobi integral (2.24)

must be equal to 3.17948. This burn represents a change in velocity of ∆v1 = 0.7444

km/s (BOLLT; MEISS, 1995b). A typical trajectory of the spacecraft after the first

burn is depicted in Fig. 3.17. The spacecraft moves freely in the chaotic region until

it reaches the Moon. However, in this particular case, the vicinity of the Moon is

reached for the first time after 25 years. This flight time is not compatible with a

real mission.

Figure 3.17 - Trajectory of the spacecraft in the chaotic region for the Earth-Moon system
(time of flight: 25 years).

Thus the first question at this point is the following: Why this time of flight is so long.

To answer this question, let us first introduce a Poincaré section on the phase space

(x, y, ẋ, ẏ) such that the trajectories intersect it. In this case, the section defined is

the set of points with y = 0. In this manner, given any trajectory, only the points, in
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which this trajectory intersects the x-axis with either ẏ > 0 or ẏ < 0, are obtained

and positioned properly on the Poincaré Section. So, the analysis of trajectories can

be undertaken just considering the points on this section. Notice that this is also just

possible because of the Jacobi constant, which by itself confines the dynamics in a

space of dimension equals to 3. As so, the dynamics of our problem can be analyzed

in a two dimensional phase space.

Figure 3.18a shows the Poincaré section of approximately 200 trajectories of the

CRTBP at C = 3.17948. The positions of the Earth and the Moon are (−µ, 0) and

(1− µ, 0), respectively. Figure 3.17b also shows the chaotic region in the middle

of periodic orbits represented by robust islands. Additionally, this chaotic region

extends to the vicinity of the Moon. Therefore this shows why it is possible to

transfer a spacecraft from the Earth to the Moon through the chaotic region.

Figure 3.18 - (a) Poincaré section of the CRTBP at C = 3.17948 for the Earth-Moon
system, (b) Chaotic region in the middle of periodic orbits represented by
robust islands.

Figure 3.19 shows the Poincaré section with negative ẏ of the trajectory shown in

Fig. 3.17. This section shows a 703 iterate orbit, where the last iterate reaches the

Moon at about 2, 472 km above its center and is denoted by (xN , ẋN). This orbit is

inside of the chaotic region and we can note that the orbit returns to points of the

same orbit very close and this happens many times as illustrated in Fig. 3.20. This

fact is known as recurrences and its existence is proved in the Poincaré recurrence
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theorem (POINCARÉ, 1890). This explains why the flight time of the trajectory is so

long.

Figure 3.19 - Poincaré section with negative ẏ of the chaotic trajectory of the spacecraft
shown in Fig. 3.17.

Figure 3.20 - Poincaré recurrences: the orbit returns to set A many times.
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3.5.3 Removing Recurrences

Bollt and Meiss (BOLLT; MEISS, 1995a) introduced an algorithm to remove recur-

rences of a chaotic orbit in the Poincaré section. This strategy is, firstly, to find

the recurrent loops and, finally, to cut them making small perturbations (controls)

along the stable and unstable manifolds in the phase space (x, ẋ). Therefore, this al-

gorithm permits constructing an Earth-Moon pseudo-orbit from a chaotic orbit such

that the flight time of the uncontrolled chaotic trajectory is reduced substantially.

Let

(z0, . . . , zi, . . . , zN) , (3.71)

denote the points of the orbit shown in Fig. 3.18. In this case,

zi = (xi, ẋi) . (3.72)

A loop is said to be recurrent when given ε > 0, there exist positive integers i and

s such that

‖zi − zi+s‖ < ε, (3.73)

where ‖ ‖ denotes the Euclidean norm.

Therefore, given a ε > 0, the following algorithm described in Fig. 3.21 finds effi-

ciently the recurrences in the orbit (3.71):

Figure 3.21 - Algorithm to find efficiently recurrences.
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Given a ε > 0, suppose that the previous algorithm found a recurrent loop between

iterates i and i+s as shown in Fig. 3.22. Because the orbit (3.71) is hyperbolic, then

it has two invariant sets: a stable manifold and an unstable manifold associated to

this trajectory (OTT, 2002). The stable manifold is the set of points z such that the

forward iterated on time orbit starting from z approaches the orbit (3.71). Similarly,

the unstable orbit is the set of points z such that the backward iterated on time

orbit starting from z approaches the orbit (3.71).

Figure 3.22 - Illustration of a recurrent loop between iterates i and i + s. Stable W s and
unstable W u manifolds intersect each other at a point p.

Now, let W s and W u denote the stable and unstable manifolds of the orbit (3.71),

respectively. Since there exists a recurrent loop between iterates i and i+s and they

are on a hyperbolic set, then stable and unstable manifolds intersect each other at

a point p as shown in Fig. 3.22. Thus let

(p−m, p−m+1, . . . , p−1, p) , (3.74)

and

(p, p1, . . . , pn−1, pn) , (3.75)

be the pre-orbit and orbit of point p, respectively. By the definition of unstable

manifold, the pre-orbit of point p will approach the pre-orbit of iterate i before the
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recurrence. Similarly, the orbit of point p will approach the orbit of iterate i+s after

the recurrence as illustrated in Fig. 3.23.

Figure 3.23 - Iterates i and i+s intersect each other at a point p such that the pre-orbit and
orbit of p approach the pre-orbit and orbit of iterate i and i+s, respectively.

In other words

lim
m→+∞

‖p−m − zi−m‖ = 0, (3.76)

and

lim
n→+∞

‖pn − zi+s+n‖ = 0. (3.77)

From the above result follows that for a sufficiently large integers m,n, the (s− 1)-

step loop can be removed making a small perturbation ∆u1 in the iterate i−m,

zi−m + ∆u1 = z′0, (3.78)

such that, the orbit

(
z′0, . . . , z

′
n+m

)
, (3.79)

approaches the iterate i+s+n. Making a second small perturbation ∆u2 in the last

66



iterate of the orbit (3.79), it is possible to get back to the original orbit (3.71),

z′m+n + ∆u2 = zi+s+n, (3.80)

as illustrated in Fig. 3.24. Now, note that the perturbations (3.78) and (3.80) can

only be made in the ẋ component of the phase space (since teleportation is not

physical). Therefore, perturbation (3.80) requires that the two points have the same

x coordinate, thus

x′m+n − xi+s+n = 0. (3.81)

Thus, given a ε > 0 small enough so that a recurrent loop exists between iterates

i and i + s, then the (s− 1)-steep loop can be removed finding integers m and n

large enough and a perturbation (3.78) small enough such that Eq. 3.81 is satisfied.

These can be found using the Newton-secant method for some prescribed tolerance

(approx. 10−6).

Figure 3.24 - A small perturbation ∆u1 is made in the pre-orbit of iterate i such that the
new orbit approaches the orbit of iterate i + s and finally a second small
perturbation ∆u2 must be made to get back to the original orbit.
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3.5.4 Reaching L4 and L5

Once the recurrences have been removed the spacecraft will reach the Moon as

shown in Fig. 3.17, and it will be possible to use its gravitational force to change

the trajectory of the spacecraft and reach, for example, the Lagrangian points L4

or L5 in the Earth-Moon system (PRADO, 1993), (PRADO, 1996). However, in this

particular case, the Moon’s gravitational force is not enough and an impulsive thrust

is necessary to increase the energy such that the zero-velocity curves permit the

spacecraft to reach either L4 or L5.

Let

(xN , yN , ẋN , ẏN) (3.82)

be the final position of chaotic trajectory shown in Fig. 3.19. Thus yN = 0 and

ẏN < 0. Since the Jacobi integral C is equal to 3.17948 along the trajectory, a new

boost is required such that C < 2.9880. If C < 2.9880, the zero-velocity curves

disappear and the spacecraft can arrive at either L4 or L5 as illustrated in Fig. 3.25

(see Table 2.2). Therefore, applying an impulsive thrust ∆uN parallel to the y-axis

as shown in Fig. 3.25, the change in the velocity for arriving at equilibrium points

is given by Eq. 2.24:

∆uN =

(√
x2
N + 2

1− µ
ρE

+ 2
µ

ρM
− ẋ2

N − 2.9880 + ς

)
+ ẏN . (3.83)

Figure 3.25 - Swing-by maneuver to reach Lagrange equilibrium points L4 or L5 for the
Earth-Moon system.
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Note that Eq. (3.83) has the term ς. This term is a correction due to Eq. (2.24) is

the Jabobi integral and it only gives the necessary condition for the velocity curves

disappear, however, this does not guarantee that the spacecraft arrives at Lagrangian

points. So, a small correction is needed. The term ς depends on the characteristics

of the periodic orbit around the equilibrium point where the spacecraft has to be

placed, i.e. semi-major and -minor axes. Therefore the goal is to find the value of ς

such that Eq. (3.4) or (3.5) is satisfied. This can be done following a continuation

criterion. Once the spacecraft intersects the elliptic orbit, the stabilizing impulsive

thrust ∆v2 is applied to place the spacecraft into the periodic orbit. The total cost

∆vT of the transfer is

∆vT = ∆v1 +
∑

∆u1 +
∑

∆u2 + ∆uN + ∆v2, (3.84)

where
∑

∆ui denotes the sum of the all perturbations applied to eliminate the

recurrences.
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4 THE ZERO, MINIMUM AND MAXIMUM RELATIVE RADIAL

ACCELERATION FOR FORMATION FLYING

The transfer methods described in Chapter 3 permit to place a spacecraft in a peri-

odic orbit around L4 or L5. These methods can be applied to one or more spacecrafts,

placing them in different periodic orbits. In this manner, assume a constellations of

satellites flighting close a given nominal trajectory around L4 or L5 in the Earth-

Moon system in such a way that there is freedom in the selection of the geometry of

the constellation. We are interested in to avoid large variations of the mutual distance

between the spacecrafts. In this case, the existence of regions of zero and minimum

relative radial acceleration with respect to the nominal trajectory will prevent from

the expansion or contraction of the constellation. In the other case, the existence of

regions of maximum relative radial acceleration with respect to the nominal trajec-

tory will produce a greater expansion and contraction of the constellation. The goal

of this chapter is the study of theses regions using the linearized equations of motion

(2.51). At the end, the results will be compared with the dynamical behaviour of

the deviation of the constellation from a periodic orbit.

4.1 The Zero Relative Radial Accelerations Lines

In order to avoid expansion or contraction in the relative distance among the satel-

lites of the formation, we have studied the existence of regions with Zero Relative

Radial Acceleration (ZRRA). For a simple model, such as the CRTBP, it is possible

to compute an analytical expressions for the above regions if the radius of the for-

mation (largest separation between spacecrafts) is small, such that a linear approach

gives the relevant information about the local dynamics of the problem. For simplic-

ity, our model only considered motions on the plane of the orbit of the Earth-Moon

system. As reference solutions, we will only use a family of periodic orbits around

L4 in each case because the results obtained are the same for periodic orbits around

L5 due to the Theorem of Mirror applied in the Earth-Moon system (MIELE, 1960).

Assume two satellites flying in a formation in a periodic orbit around L4 as shown

in Fig. (4.1). Let Xh (t) and X (t) be the vectors corresponding to the trajectories

of the chief and deputy satellites, respectively. The vector ∆X (t) = X (t) −Xh (t)

represents the relative position and velocity vectors of the deputy satellite with

respect to the chief satellite at instant t. The coordinates of vector ∆X (t) are defined

in a coordinate system which is parallel to the rotating coordinate system x, y and

is centered at Xh (t). Writing the array ∆X as (r, ṙ)T , where r = (∆x,∆y)T , the
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linear system (2.51) becomes(
ṙ

r̈

)
=

(
0 I

F J

)(
r

ṙ

)
(4.1)

where

I =

(
1 0

0 1

)
, J =

(
0 2

−2 0

)
, F =

(
∂2U
∂x2

∂2U
∂y∂x

∂2U
∂x∂y

∂2U
∂y2∂x

)
.

Figure 4.1 - Chief and deputy satellites in a formation in a periodic orbit around L4.

The points with zero relative velocity are those such that ṙ = 0, and, in this case,

we have that the relative acceleration is given by

r̈ = Fr. (4.2)

Therefore, the radial component of the relative acceleration will be zero in the set

of points where the vectors r̈ and ṙ are perpendicular, in other words,

rTFr = 0. (4.3)

Equation (4.3) represents two lines which depend on the point Xh (t) selected along

the periodic solution of system (2.47) as illustrated in Fig. 4.2.

The Zero Relative Acceleration Lines (ZRRAL) can be also computed numerically

(GÓMEZ et al., 2006). Given a certain periodic orbit, we select a point on it: Xh (t) =
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Figure 4.2 - Illustration of Zero relative radial acceleration lines along a periodic solution

(xh (t) ,vh (t))T . Around this point, we consider a sphere in the configuration space,

of radius s and we set the velocity of all the points of the sphere equal to the

velocity of the chosen point, vh (t) (zero relative velocity condition) as shown in Fig.

4.3. Using polar coordinates, the set of points of the sphere will be the following

form: (
xh (t) + s (θ)

vh (t)

)
. (4.4)

Figure 4.3 - Illustration of a sphere of radius s for each point of the periodic solution Xh (t)
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Now, writing the equations of the motion (2.47) for Xh as(
ẋh

ẍh

)
=

(
f1 (xh,vh)

f2 (xh,vh)

)
, (4.5)

the relative acceleration can be evaluated by

a (t, θ) = f2 (xh (t) ,vh (t))− f2 (xh (t) + s (θ) ,vh (t)) , (4.6)

whose scalar product with s (θ) will be the desired relative radial acceleration for

each angle θ. In this manner, we denote by θ∗ the angle at which the scalar product

between a (t, θ∗) and s (θ∗) is equal to zero and therefore it will give us the relative

position vector r that belongs to ZRRAL as shown in Fig. 4.4.

Figure 4.4 - Illustration of the dot product between the relative position and relative ac-
celeration vectors for each point of the periodic solution Xh (t). The angle
θ∗ (t) defines the direction of the relative position vector r (t) that belongs to
ZRRAL at time t.

4.2 Residual Acceleration and Cost to Maintain a Spacecraft in a For-

mation

Given a certain nominal trajectory Xh (t) around L4, suppose that a spacecraft

follows an artificial trajectory around it, i.e. there exists an impulsive thrust (control)

applied on it as shown in Fig. 4.5. Denote by ra (t) the relative position at time t.

If there is no impulsive thrust applied on the spacecraft, then the function ra (t)

will satisfy Eq. (4.1). However, if a control is applied on the spacecraft, there is a
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residual acceleration as a consequence of the maneuvers applied on it (GÓMEZ et al.,

2006). In this manner, denoting by Ra the residual acceleration, it can be computed

using Equation (4.1):

Ra = r̈a − (Fra + J ṙa) . (4.7)

Therefore, the cost, denoted by ∆V , to maintain the spacecraft on an artificial

trajectory until a time T is simply:

∆V =

∫ T

0

Ra (t) dt. (4.8)

In this simple manner, we can evaluate the cost of maintaining two or more satellites

in formation along a periodic orbit around L4.

Figure 4.5 - Illustration of a spacecraft following an artificial trajectory ra (t) along a
periodic trajectory Xh (t) around L4.
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5 ANALYSIS AND RESULTS

In the first section of this chapter we show the periodic orbits around the equilibrium

points where the spacecraft will be placed. In the second section we present the

initial parameters, change in velocities, total cost and the time of flight of each

transfer orbit to the Lagrangian points L4 and L5 using the four methods described

in Chapter 3. In all the transfer orbits we started from an Earth circular parking

orbit of radius r0 = 6, 771 km (400 km above the Earth’s surface). Finally, in the

third section we compute the regions of maximum, minimum and zero relative radial

acceleration component along a family of periodic orbits around L4 as well as the

cost to maintain a formation flying on these regions or another configurations.

All the numerical simulations in this work were performed using C and the compiler

was the Microsoft Visual Studio 9.0. The method used to integrate numerically

all the trajectories shown in this chapter was the BulirschStoer algorithm (STOER;

BULIRSCH, 1980), (PRESS et al., 1992) obtaining a high-accuracy solutions to the

system of ordinary differential equations that describe the motion of the particle in

the Earth-Moon rotating frame system with minimal computation effort. We pick a

dimensionless step-size h = 1.0× 10−4 and set a tolerance of 1.0× 10−9.

5.1 Long and Short Period Orbits

We have chosen two elliptic orbits of different periods to implement each of the four

transfer methods. The first orbit belongs to a long period family and the second one

belongs to a short period family. Figure 5.1 show the two elliptic orbits centered at

L4 in the non-dimensional coordinate system x′′, y′′ defined in Eq. (3.1). The lengths

of the semi-major and -minor axes, denoted by a and b, respectively, as well as the

coordinates in the system x′′, y′′ of the velocity vectors va and vb at points (a, 0)

and (0, b), respectively, are shown in Table 5.1. Note that by the symmetry of the

elliptic orbits, we have that −va and −vb represent the velocity vectors at points

(−a, 0) and (0,−b), respectively. Additionally, there exist two elliptic orbits with the

same characteristics around L5 due to the Theorem of image trajectories (MIELE,

1960).

Note that in Table 5.1 we have used the conversion factors between the lengths

and velocities given in km and km/s, respectively, and the non-dimensional system

described in Sect. 2.1. They have been obtained considering the units of length and

time equal to dEM (see Appendix ) and 1/ω = 104.222 h (see Eq. (2.3), respectively.
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Table 5.1 - Lengths a and b of the semi-major and minor axes, respectively, and coordinates
in the system x′′, y′′ of the velocity vectors va and vb at points (a, 0) and (0, b)
of the elliptic orbits shown in Fig. 5.1

Family Period a b va vb

(days) (km) (km) (km/s) (km/s)

Long Period 92 11, 000 2, 150

(
0

−1.7972× 10−3

) (
8.7871× 10−3

0

)

Short Period 28 6, 400 3, 142

(
0

−8.0094× 10−3

) (
1.6261× 10−2

0

)

Figure 5.1 - Elliptic Orbits centered at L4 of (a) 92 and (b) 28 days period. These two
orbits have been chosen to implement the transfer orbits methods described
in Chapter 3.

5.2 Modified Hohmann Transfer

In this transfer method our goal was to obtain the value of the apocentre d of the

elliptic transfer orbit in such a way that this trajectory intersects the elliptic orbits

shown in Fig. 5.1 at points (±a, 0) or (0,±b). As we explained in Sect. 3.2, this can

be done by solving Eq. (3.4) or (3.5) by the Newton-Secant method.

78



Tables 5.2 and 5.3 show the value of d for each elliptic trajectory that reaches the

periodic orbits around L4 and L5 from an Earth circular parking orbit of radius r0.

Additionally, the phase angle at departure γ0, tangential change in velocity ∆v1,

stabilizing impulsive thrust ∆v2, total cost ∆vT and the time of flight ∆t for L4 and

L5 missions were also computed. Note that the values of these two impulses are sim-

ilar to the boosts required in the Apollo missions using Hohmann-like transfer which

gave ∆v1 = 3.2 km/s, ∆v2 = 0.8 km/s, and a time of flight of 3 days (WOODCOCK,

1985). Initial position and velocity coordinates (referred to the non-dimensional ro-

tating frame system) corresponding to departure geometries described in Tables 5.2

and 5.3 are presented in Tables 5.4 and 5.5, respectively.

Figure 5.2 shows the obtained trajectories in the synodic system. In the first and

second columns of Fig. 5.2 we can see the trajectories that guide the spacecraft

to the long and short period orbits, respectively. It can be noted that there is no

difference in the qualitative behaviour of trajectories that reach the long and short

period orbits. Additionally, Figure 5.3 shows the moment in which these trajectories

intersect the semi-minor axis of the elliptic orbits and it is applied the stabilizing

impulsive thrust to place the spacecraft around the equilibrium points. Figure 5.4

shows the trajectories corresponding to Fig. 5.2 in the Earth-centered inertial system

n̂1, n̂2.

Table 5.2 - Apocentre d, phase angle at departure γ0, change in velocity ∆v1, stabiliz-
ing impulsive thrust ∆v2, total cost ∆vT and time of flight ∆t for placing a
spacecraft into the long and short period orbits around L4

Period d γ0 ∆v1 ∆v2 ∆vT ∆t
Orbit (km) (degrees) (km/s) (km/s) (km/s) (days)

Long 387, 781 53.43 3.0848 0.8292 3.9140 5.05

Short 388, 768 53.18 3.0850 0.8248 3.9098 5.07

5.3 Swing-By Maneuver

Considering an Earth circular parking orbit of radius r0 and as target the two long

and short period orbits shown in Fig. 5.1, we have used the swing-by maneuver with

the Moon described in Sect. 3.3 to place a spacecraft into each of these periodic or-
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Table 5.3 - Apocentre d, phase angle at departure γ0, change in velocity ∆v1, stabiliz-
ing impulsive thrust ∆v2, total cost ∆vT and time of flight ∆t for placing a
spacecraft into the long and short period orbits around L5

Period d γ0 ∆v1 ∆v2 ∆vT ∆t
Orbit (km) (degrees) (km/s) (km/s) (km/s) (days)

Long 383, 810 174.43 3.0839 0.8169 3.9008 4.97

Short 384, 725 174.20 3.0841 0.8124 3.8965 4.99

Table 5.4 - Initial position and velocity coordinates for placing a spacecraft into the long
and short period orbits around L4 (referred to the non-dimensional rotating
frame system) corresponding to departure geometries described in Table 5.2

Period Orbit x0 y0 ẋ0 ẏ0

Long −0.0016550 −0.0141465 8.4183279 6.2451657

Short −0.0015934 −0.0141006 8.3911544 6.2819550

Table 5.5 - Initial position and velocity coordinates for placing a spacecraft into the long
and short period orbits around L5 (referred to the non-dimensional rotating
frame system) corresponding to departure geometries described in Table 5.3

Period Orbit x0 y0 ẋ0 ẏ0

Long −0.0296807 −0.00170967 1.0173072 −10.4315393

Short −0.0296737 −0.0017800 1.0591935 −10.4275657

bits. As shown in Sect. 3.3.2, once the apocentre d is defined, the only independent

variable is the angle λ0 at which the geocentric departure orbit intersects the lunar

sphere of influence (see Fig. 3.5) which is determined solving Eq. (3.4) or (3.5) by the

Newton-Secant method. In this manner, finding the value of angle λ0, the trajectory

is integrated in such a way that it intersects the semi-major or -minor axis of the el-

liptic orbits around the equilibrium points. At that instant, the numerical algorithm

stops and changes the coordinates of the velocity, applying the stabilizing impulsive

thrust ∆v2, so that the new trajectory describes the periodic orbits shown in Fig.
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Figure 5.2 - Hohmann transfer orbit to reach the long (first column) and short (second
column) period orbits in the synodic system.

5.1. Additionally, since the spacecraft intersects the lunar sphere of influence close

to apogee of the geocentric departure trajectory (see Fig. 3.11), the magnitude of

the velocity v1, when the spacecraft enters the lunar sphere of influence, is less than

the Moon’s velocity vM with respect to the Earth’s center, therefore the spacecraft

must cross the Moon’s sphere of influence in a point above the line that connects the

center of the Earth and the Moon as shown in Fig. 3.6. Otherwise, the spacecraft

will not approach the Moon following a hyperbolic trajectory with respect to the

Moon-centered reference frame system. Thus λ0 was defined between 0◦ and 90◦.

Now, using the distance dEM and the radius RS of the lunar sphere of influence,

we have considered three different values for the apocentre d. Table 5.6 shows the

interval for λ0 that contains the trajectories that intersect the interior region of the

elliptic orbits shown in Fig. 5.1. The trajectories integrated with λ0 that does not

lie in the intervals shown in Table 5.6, they do not cross the elliptic orbits or hit

the Moon. It is important to specify that we are only interested in trajectories that

make just one swing-by maneuver with to Moon to reach the elliptic orbits around

the equilibrium points.
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Figure 5.3 - Trajectories corresponding to Fig. 5.2 intersecting the semi-minor axis of the
elliptic orbits. At that moment it is applied the stabilizing impulsive thrust
to place the spacecraft around the equilibrium points.

In this manner, Tables 5.7 and 5.8 show the value of λ0 for each trajectory that

intersects the semi-major or -minor axis of the elliptic orbits around L4 and L5,

respectively. Additionally, the phase angle at departure γ0, the parameters that

describe the geometry of the swing-by maneuver (see Fig. 3.7) as well as the change in

velocity ∆v and energy ∆ε after the swing-by maneuver is completed and computed

in Eqs. (3.40) and (3.52) are also shown in Tables 5.7 and 5.8. It is interesting to note

that there exits an inverse relation between the magnitude of the periselene radius

rp and the change in velocity ∆v and energy ∆ε. The spacecraft can obtain more

energy (and therefore more velocity) whether it passes close enough of the Moon’s

surface.

Similarly, Tables 5.9 and 5.10 show the magnitudes of the first tangential impulse

∆v1 applied to inject the spacecraft into the trajectory, the stabilizing impulsive

thrust ∆v2 to place it into the elliptic orbits around L4 and L5, respectively, as

well as the total cost ∆vT and the time of flight ∆t of each transfer orbit. Initial

position and velocity coordinates (referred to the non-dimensional rotating frame

system) corresponding to departure geometries described in Tables 5.9 and 5.10 are
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Figure 5.4 - Trajectories corresponding to Fig. 5.2 in the Earth-centered inertial system
n̂1, n̂2.

presented in Tables 5.11 and 5.12, respectively.

From Tables 5.9 and 5.10 it is noted that the total cost of transfer a spacecraft

from an Earth circular parking orbit of radius r0 until it reaches the elliptic orbits

around L4 and L5 is less whether the apocentre d is equal to dEM −RS/2 and dEM ,

respectively. Additionally, the trajectories obtained to achieve L4 are more sensitive

whether the apocentre d is equal to dEM −RS/2 as shown in Table 5.6. In this case,

the length of the interval is 5◦ instead of 1◦ as we can see in the other trajectories.

Now, if we want to achieve L5, we obtain trajectories less sensitive, the length of

the interval is 2◦ when the apocentre d is equal to dEM + RS/2, as shown in Table

5.6. These results are important because in a real space mission, to intercept the

lunar sphere of influence at a specific point, the mission planners must look at the

motion of the Earth and Moon and plan their launch windows accordingly. The L4

mission, for example, not only spends less fuel when the apocentre is minimum but

the trajectory is more sensitive regarding L5 mission.

The trajectories corresponding to Tables 5.7 and 5.8 are shown in Figs. 5.5 and 5.6

in the synodic system, respectively. As we can see the spacecraft is injected into the
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lunar trajectory and as the spacecraft approaches the Moon, it is slung around the

Moon and leave with a different geocentric velocity direction and larger magnitude,

all of this without requiring more ∆v. Thus, the spacecraft leaves the Moon on an

elliptic orbit until to intersect the semi-major or -minor axis of the elliptic orbits

around L4 and L5 such that an impulsive thrust is applied to place it around the

target point. Figures 5.7 and 5.8, that correspond to Figs. 5.5 and 5.6, respectively,

show the moment when the second burn is applied. Note that Figures 5.5-5.8 only

show the trajectories that reach the long period orbit because the initial conditions

to guide the spacecraft to the short period orbit are practically equal as we can see in

Tables 5.7 and 5.8. Finally, Figures 5.9 and 5.10 show the trajectories corresponding

to Figs. 5.5 and 5.6 in the Earth-centered inertial system n̂1, n̂2, respectively.

Table 5.6 - Values of the apocentre d and interval for λ0 that contains the trajectories that
intersect either the long or short period orbits shown in Fig. 5.1

Center of the d λ0

Elliptic Orbits (km) (degrees)

L4 dEM − RS

2
[10, 15]
[46, 47]

L4 dEM [30, 31]

L4 dEM + RS

2
[10, 11]
[16, 17]

L5 dEM [7, 8]
[27, 28]
[45, 46]

L5 dEM + RS

2
[8, 10]

5.4 G Trajectories

Assuming an Earth circular parking orbit of radius r0 and as target the elliptic

orbits shown in Fig. 5.1, we have applied the first procedure described in Sect. 3.4.

Using the Newton-Secant method, we have found the values for ϑ in Eq.(3.63) that

solve Eq. 3.4 and will provide the most appropriated Trajectories G to reach the

elliptic orbits around L4 and L5 separately. The search algorithm considered a set of
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Table 5.7 - Apocentre d, angle λ0, phase angle at departure γ0, parameters that described
the geometry of the swing-by, and change in velocity and energy experimented
by the spacecraft after the swing-by maneuver is completed, of each trajectory
for placing a spacecraft into the long and short period orbits around L4

Period d λ0 γ0 ψ rp ∆v ∆ε
Orbit (km) (degrees) (degrees) (degrees) (km) (km/s) (km2/s2)

Long dEM − RS

2
10.8 136.9 38.2 48, 075 0.2412 0.1521

Long dEM − RS

2
46.6 123.6 30.4 27, 336 0.4269 0.2201

Long dEM 30.4 133.1 50.7 22, 068 0.4426 0.3489

Long dEM + RS

2
10.5 139.2 51.2 36, 297 0.2570 0.2039

Long dEM + RS

2
16.0 137.9 52.5 30, 600 0.3033 0.2450

Short dEM − RS

2
12.6 136.4 38.2 46, 703 0.2488 0.1570

Short dEM − RS

2
48.2 122.7 29.0 27, 305 0.4282 0.2112

Short dEM 30.3 133.1 50.7 22, 178 0.4408 0.3473

Short dEM + RS

2
10.3 138.6 46.5 36, 541 0.2553 0.2024

Short dEM + RS

2
16.1 137.9 52.5 30, 464 0.3046 0.2462

initial conditions as defined in Eqs. (3.59)-(3.61), but with the v0 obtained from the

small variations in ϑ in Eq. (3.63). From each initial condition, the search algorithm

integrates a trajectory in the direction of the Moon in such a way that it enters the

lunar sphere of influence and passes by either the Moon’s trailing side to reach a

vicinity of L4 or the Moon’s leading side to reach a vicinity of L5, selecting finally the

trajectory with the lowest ∆vT that intersects the spacecrafts into the semi-major

axis of the elliptical target orbits. Tables 5.13 and 5.14 show the values of the term

ϑ, initial impulsive thrust ∆v1, stabilizing impulsive thrust ∆v2, total cost ∆vT ,

time of flight ∆t spent of these missions, as well as the angle Φ between the transfer

trajectories periselenium vector, rp, and the x axis of the synodic frame that unites

the Earth to the Moon for those trajectories with the lowest ∆vT . Note that the

difference between the first impulsive thrust made for L4 and L5 mission is very

small (≈ 0.5 m/s). This shows how sensitive is the behaviour of the G trajectories
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Table 5.8 - Apocentre d, angle λ0, phase angle at departure γ0, parameters that described
the geometry of the swing-by, and change in velocity and energy experimented
by the spacecraft after the swing-by maneuver is completed, of each trajectory
for placing a spacecraft into the long and short period orbits around L5

Period d λ0 γ0 ψ rp ∆v ∆ε
Orbit (km) (degrees) (degrees) (degrees) (km) (km/s) (km2/s2)

Long dEM 7.7 137.1 47.4 35, 540 0.2868 0.2151

Long dEM 27.4 134.0 49.8 24, 833 0.4001 0.3113

Long dEM 45.7 128.3 59.8 9, 311 0.8061 0.7098

Long dEM + RS

2
9.8 139.4 51.0 37, 064 0.2518 0.1992

Short dEM 6.8 139.4 45.9 42, 282 0.2297 0.1681

Short dEM 27.5 133.9 49.9 24, 723 0.4016 0.3127

Short dEM 45.6 128.3 59.8 9, 139 0.8057 0.7093

Short dEM + RS

2
10.0 139.3 51.0 36, 852 0.2532 0.2005

with respect to small variations in the initial velocity in the Earth-Moon system.

Initial position and velocity coordinates (referred to the non-dimensional rotating

frame system) corresponding to departure parameters described in Tables 5.13 and

5.14 are presented in Tables 5.15 and 5.16, respectively.

Figure 5.11 show the Trajectories G with lowest ∆vT , their energies relative to the

Earth as a function of the time and the magnitudes of their velocities in the geo-

centric and synodic coordinates systems for L4 (left column) and L5 (right column)

missions, respectively. Again, we have only considered the trajectories to the long

period since the qualitative behaviour between the trajectories that reach the long

and short period orbits is the same. Regarding the trajectories, a ∆ϑ ≈ 0.5 m/s is

sufficient to produce a trajectory that passes by the Moon’s trailing side (mission

to L4) and another by the Moon’s leading side (mission to L5). This difference is

crucial with respect to the spacecrafts’ energy variations relative to the Earth with

the swing-by. These energies, shown in dimensionless units, were computed from

the osculating Keplerian orbits of the transfer trajectories to L4 and L5 Lagrangian

points. In other words, from the vis-viva equation and the dynamics of the two-body
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Table 5.9 - Impulsive thrust ∆v1, impulsive stabilizing thrust ∆v2, total cost ∆vT and
time of flight ∆t of each trajectory for placing a spacecraft into the long and
short period orbits around L4

Period d λ0 ∆v1 ∆v2 ∆vT ∆t
Orbit (km) (degrees) (km/s) (km/s) (km/s) (days)

Long dEM − RS

2
10.8 3.0752 0.7133 3.7885 26.0

Long dEM − RS

2
46.6 3.0752 0.6960 3.7712 27.0

Long dEM 30.4 3.0840 0.8257 3.9097 29.0

Long dEM + RS

2
10.5 3.0914 0.9167 4.0081 28.0

Long dEM + RS

2
16.0 3.0914 0.9168 4.0082 53.0

Short dEM − RS

2
12.6 3.0752 0.7207 3.7959 26.0

Short dEM − RS

2
48.2 3.0752 0.7210 3.7962 27.0

Short dEM 30.3 3.0840 0.8212 3.9052 29.0

Short dEM + RS

2
10.3 3.0914 0.9124 4.0038 28.0

Short dEM + RS

2
16.1 3.0914 0.9125 4.0039 53.0

Earth-particle problem (SCHAUB; JUNKINS, 2003). Still with reference to the second

row of Fig. 5.11, note that the variation of the energy relative to the Earth for L4

transfer trajectory is positive, since Φ = 209.8◦, which corresponds to a periselenium

behind the Moon relative to the Earth, in synodic frame, as described in Fig.3.15.

Additionally, after the swing-by maneuver, the energy of the spacecraft is positive;

therefore, its trajectory can escape from the Earth-Moon system. In the case of L5

mission, the change in energy of the transfer trajectory relative to the Earth is neg-

ative and its magnitude is much smaller than the change computed for the transfer

trajectory of L4 mission. This is because the change in energy is proportional to

sin Φ (BROUCKE, 1988). For L5 transfer trajectory, Φ = 179◦, and for L4 transfer

trajectory, Φ = 209.8◦; which implies in the smaller variation of the energy for L5

trajectory and in the bigger variation for the trajectory of L4 mission.

In the third row of Fig. 5.11, we can see the magnitude of the velocities of the
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Table 5.10 - Impulsive thrust ∆v1, impulsive stabilizing thrust ∆v2, total cost ∆vT and
time of flight ∆t of each trajectory for placing a spacecraft into the long and
short period orbits around L5

Period d λ0 ∆v1 ∆v2 ∆vT ∆t
Orbit (km) (degrees) (km/s) (km/s) (km/s) (days)

Long dEM 7.7 3.0840 0.8260 3.9100 9.0

Long dEM 27.4 3.0840 0.8257 3.9097 35.0

Long dEM 45.7 3.0840 0.8256 3.9096 63.0

Long dEM + RS

2
9.8 3.0914 0.9167 4.0081 34.0

Short dEM 6.8 3.0840 0.8227 3.9097 9.0

Short dEM 27.5 3.0840 0.8213 3.9053 35.0

Short dEM 45.6 3.0840 0.8200 3.9040 63.0

Short dEM + RS

2
10.0 3.0914 0.9124 4.0038 34.0

spacecraft in the geocentric and synodic frame. Note that, in the case of L4 transfer

trajectory, it is observed an increment in the velocity of the spacecraft relative to

the Earth after the swing-by maneuver, whereas for the L5 transfer trajectory is

observed a decrease in velocity as expected. However, the magnitude of the velocities

for each trajectory in the synodic frame varies very little after the swing-by. This

can explain, in a simple way, why the change in velocity ∆v2 required to place the

spacecraft into the periodic orbits around L4 and L5 is practically the same. They

need to be practically stopped in this frame.

Figures 5.12(a) and 5.12(b) show the instant when the spacecraft intersects the semi-

major axis of the long period orbits around L4 and L5, respectively, and a second

thrust is made such that the spacecraft can be placed around L4 and L5, respectively.

Missions with multiple objectives can also be exploited considering the Trajecto-

ries G and their inherent instability, for example, using only a launcher to deliver

spacecrafts to L4 and L5. In this scenery, two spacecrafts follow coupled as far as

the apogee of a G Trajectory, in general, it is located between 540, 000 and 600, 000

km from the Earth. In the apogee, the spacecrafts are separated. So one of them
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Table 5.11 - Initial position and velocity coordinates for placing a spacecraft into the long
and short period orbits around L4 (referred to the non-dimensional rotating
frame system) corresponding to departure geometries described in Table 5.9

Period d λ0 x0 y0 ẋ0 ẏ0

Orbit (km) (degrees)

Long dEM − RS

2
10.8 −0.0250109 −0.0120353 7.1556091 −7.6466507

Long dEM − RS

2
46.6 −0.0218972 −0.0146713 8.7227976 −5.7954129

Long dEM 30.4 −0.0241850 −0.0128612 7.6529217 −7.1614775

Long dEM + RS

2
10.5 −0.0254835 −0.0115095 6.8533019 −7.9396266

Long dEM + RS

2
16.0 −0.0252190 −0.0118091 7.0316668 −7.7820999

Short dEM − RS

2
12.6 −0.0249054 −0.0121471 7.2220654 −7.5839158

Short dEM − RS

2
48.2 −0.0216655 −0.0148226 8.8127519 −5.6576862

Short dEM 30.3 −0.0241850 −0.0128612 7.6529217 −7.1614775

Short dEM + RS

2
10.3 −0.0253623 −0.0116485 6.9360682 −7.8674250

Short dEM + RS

2
16.1 −0.0252190 −0.0118091 7.0316668 −7.7820999

follows its way to one of the previously chosen point, L5, for instance, while the

other one receives a small ∆v that will put it in direction to L4 after a swing-by

with the Moon. This is possible due to the instability of the Trajectories G and the

small magnitudes of the spacecrafts’ velocities (of the order of 0.150 km/s) when

they reach the apogee of a G Trajectory prior the passage through the lunar sphere

of influence.

We present a study about this sort of mission considering the same G Trajectory

shown in Fig. 5.12 (first row, right column). That is, considering to send a spacecraft

to L5 directly. However, now, it will guide two spacecrafts with equal masses up to

its apogee. In this case, the apogee is located 557, 029.68 km from the Earth. It is

reached in 8.74 days after the departure from Low Earth Orbit (LEO) and with

velocity of 0.145 km/s. After the separation, the first spacecraft follows its way to

L5, and the second one receives a small ∆v = 0.027 km/s to change its velocity
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Table 5.12 - Initial position and velocity coordinates for placing a spacecraft into the long
and short period orbits around L5 (referred to the non-dimensional rotating
frame system) corresponding to departure geometries described in Table 5.10

Period d λ0 x0 y0 ẋ0 ẏ
Orbit (km) (degrees) (km/s) (km/s) (km/s) (days)

Long dEM 7.7 −0.0250528 −0.0119904 7.1347202 −7.6778733

Long dEM 27.4 −0.0243855 −0.0126706 7.5394900 −7.2808009

Long dEM 45.7 −0.0230666 −0.0138232 8.2253389 −6.4959812

Long dEM + RS

2
9.8 −0.0255236 −0.0114629 6.8255456 −7.9635007

Short dEM 6.8 −0.0255236 −0.0114629 6.8208456 −7.9580171

Short dEM 27.5 −0.0243634 −0.0126920 7.5521859 −7.2676309

Short dEM 45.6 −0.0230666 −0.0138232 8.2253389 −6.4959812

Short dEM + RS

2
10.0 −0.0255036 −0.0114862 6.8394342 −7.951576

vector, because it must pass by the Moon 2.5 hours after the first one to guarantee

a swing-by with energy increment. Figure 5.13 shows the G Trajectory up to the

apogee and the trajectories followed by each spacecraft after the separation in a

geocentric coordinate system. Note that only ∆v1 = 3.1124 km/s is applied to put

the spacecrafts (coupled) into the G Trajectory. To insert the first spacecraft around

L5 is required a ∆v2 = 1.1370 km/s, and a ∆v2 = 1.1412 km/s to insert the second

around L4 (plus ∆v = 0.027 km/s to change its velocity vector at the apogee).

In this way, G Trajectories open the possibility of planning missions with multiple

objectives and reduction in launch costs. In addition to the mission that we have just

described, there are other possibilities, for example, the use of the same launcher

to send spacecrafts to the Lagrangian equilibrium points and the Moon, or back

to the Earth (MELO et al., 2007), (MELO et al., 2009). These types of missions are

not possible starting from conventional transfers as Patched-conic or Hohmann-like

(minimum energy ellipse).

In real missions, in which the Sun’s gravitational field, the solar radiation pres-

sure and other perturbations act on the spacecrafts continuously, the application of
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Figure 5.5 - Swing-By maneuver to reach the long period orbit around L4 in the synodic
system. The apocentre of the geocentric departure orbit and the angle at
which it intersects the lunar sphere of influence are: (a) d = dEM − RS/2,
λ0 = 10.8◦, (b) d = dEM − RS/2, λ0 = 40.6◦, (c) d = dEM , λ0 = 30.4◦, (d)
d = dEM +RS/2, λ0 = 10.5◦, and (e) d = dEM +RS/2, λ0 = 16.0◦.

small ∆v in the apogee of the G Trajectories must be considered to correct these

trajectories in order to minimize the fuel consumption.

5.5 Targeting Chaotic Orbits to the equilibrium points L4 and L5

through recurrence

Using Eqs. (3.65)-(3.67) and the electric propulsion parameters given in Table 3.1

(F = 120 mN, Isp = 1600 s), the final spacecraft mass mf , consumed propellant

mass ∆m = m0 − mf , transfer time ∆t1 and number of spacecraft orbits N are

computed for different initial mass values m0 an the results are shown in Table 5.17.

Notice that a small spacecraft with 300 kg or 400 kg of total mass could be trans-

ferred to a higher orbit of radius rf = 59, 669 km in five months approximately. This

transfer time is compatible with a real mission. Additionally, if the initial mass m0

is between these values, the final spacecraft mass will be between 200 kg and 300

kg, this quantity of mass is enough to use chemical propulsion. Remember that the
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Figure 5.6 - Swing-By maneuver to reach the long period orbit around L5 in the synodic
system. The apocentre of the geocentric departure orbit and the angle at
which it intersects the lunar sphere of influence are: (a) d = dEM , λ0 = 7.7◦,
(b) d = dEM , λ0 = 27.4◦, (c) d = dEM , λ0 = 45.7◦, (d) d = dEM + RS/2,
λ0 = 9.8◦.

spacecraft uses a hybrid propulsion system, where the first part of the mission was

made using electric propulsion, but once the spacecraft has reached the altitude of

59, 669 km, a chemical propulsion is used to inject the spacecraft into the chaotic

region (see Fig. 3.16).

Now to find the recurrent loops in the Poincaré section of the chaotic trajectory

shown in Fig. 3.19 we have fixed ε = 0.05 and applied the algorithm described in

Fig. 3.21 in orbit zi = (xi, ẋi) (see Eq. (3.71)). Three recurrent loops were found,

which were removed achieving a 31 iterate pseudo-orbit and requiring a maximum

perturbation of 0.2705 km/s as shown in Table 5.18. The chaotic trajectory shown in

Fig. 3.17 and its corresponding controlled chaotic trajectory, plotted in the synodic

system x, y are shown in Fig. 5.14.

Thus, starting from circular Earth orbit 59, 669 km above the Earth’s center, a first

impulsive thrusts is applied to inject the spacecraft into the chaotic region with C =

3.17948. The chaotic transfer requires an initial change in velocity of ∆v1 = 0.7444

92



Figure 5.7 - Trajectories corresponding to Fig. 5.5 intersecting the semi-minor axis of the
elliptic orbit. At that moment it is applied the stabilizing impulsive thrust to
place the spacecraft around the equilibrium points.

Table 5.13 - Term ϑ, impulsive thrust ∆v1, stabilizing impulsive thrust ∆v2, total cost
∆vT , time of flight ∆t and angle Φ of each trajectory for placing a spacecraft
into the long and short period orbits around L4

Period ϑ ∆v1 ∆v2 ∆vT ∆t ψ
Orbit (km/s) (km/s) (km/s) (km/s) (days) (degrees)

Long 1.418837× 10−2 3.1129 1.1412 4.2541 18.2 209.8

Short 1.418636× 10−2 3.1129 1.1352 4.2481 18.2 209.8

km/s. Additionally, six perturbations are made to reduce the flight time. The total

thrust required for controlling the chaotic trajectory is (
∑

∆u1 +
∑

∆u2) = 0.5075

km/s. The overall thrust requirement for this chaotic orbit transfer is

∆v1 +
∑

∆u1 +
∑

∆u2 = 1.2519
km

s
. (5.1)
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Figure 5.8 - Trajectories corresponding to Fig. 5.6 intersecting the semi-minor axis of the
elliptic orbit. At that moment it is applied the stabilizing impulsive thrust to
place the spacecraft around the equilibrium points.

Table 5.14 - Term ϑ, impulsive thrust ∆v1, stabilizing impulsive thrust ∆v2, total cost
∆vT , time of flight ∆t and angle Φ of each trajectory for placing a spacecraft
into the long and short period orbits around L5

Period ϑ ∆v1 ∆v2 ∆vT ∆t ψ
Orbit (km/s) (km/s) (km/s) (km/s) (days) (degrees)

Long 1.372652× 10−2 3.1124 1.1370 4.2494 18.7 179.0

Short 1.372543× 10−2 3.1124 1.1350 4.2474 18.6 179.0

Using the resulting trajectory, the spacecraft reaches the Moon after 311 days, which

is approximately 40% of the transfer time obtained by E. M. Bollt and James D.

Meiss (BOLLT; MEISS, 1995b).

The final position of the chaotic trajectory in the phase space (x, y, ẋ, ẏ) is

(xN , yN , ẋN , ẏN) = (0.981417, 0,−0.303013,−1.859802) . (5.2)
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Figure 5.9 - Trajectories corresponding to Fig. 5.5 in the Earth-centered inertial system
n̂1, n̂2.

Table 5.15 - Initial position and velocity coordinates for placing a spacecraft into the long
and short period orbits around L4 (referred to the non-dimensional rotating
frame system) corresponding to departure geometries described in Table 5.13

Period Orbit x y ẋ0 ẏ0

Long 0.0054646 0.0 0.0 10.5093303

Short 0.0054646 0.0 0.0 10.5093303

In this manner, a change in velocity ∆uN is necessary for arriving at equilibrium

points as shown in Sect. 3.5.4. The change in velocity is parallel to the velocity

component ẏN as shown in Fig. 3.25. Therefore, applying Eq. (3.83) in the final

position (5.2), Tables 5.19 and 5.20 show the magnitude of the the required boost

∆uN , the correction term ς and the time of flight ∆t2 since the change in velocity

is applied until to reach the periodic orbits around L4 and L5, respectively.
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Figure 5.10 - Trajectories corresponding to Fig. 5.6 in the Earth-centered inertial system
n̂1, n̂2.

Table 5.16 - Initial position and velocity coordinates for placing a spacecraft into the long
and short period orbits around L5 (referred to the non-dimensional rotating
frame system) corresponding to departure geometries described in Table 5.14

Period Orbit x y ẋ0 ẏ0

Long 0.0054646 0.0 0.0 10.5088423

Short 0.0054646 0.0 0.0 10.5088423

When the spacecraft arrives near the Lagrangian point, an stabilizing impulsive

thrust ∆v2 is required to placed the spacecraft into the elliptic orbits around equilib-

rium points. The final transfer trajectories as well as the instant when the spacecraft

intersects the semi-major axis of the long period orbits around L4 (left column) and

L5 (right column) are shown in Fig. 5.15. Thus, the stabilizing impulsive thrust ∆v2,

the total cost ∆vT and the transfer time ∆t = ∆t1 + ∆t2 since the first impulse is
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Figure 5.11 - Spacecrafts’ transfer trajectories, energy variations relative to the Earth as a
function of the time and velocities in the geocentric and synodic coordinates
systems also as a function of the time for L4 mission (left column) and for
L5 mission (right column).

applied until to reach the elliptic orbits around L4 and L5 are shown in Tables 5.21

and 5.22, respectively.

Finally, suppose that a small spacecraft with 300 kg of total mass will be transferred

from a LEO with an altitude of 400 km to the Lagrangian point L4. Using the strat-

egy proposed in this work, the spacecraft will reach an altitude of 59, 669 km with

a final mass mf = 216.91 kg (see Table 5.17). In this first part, the electric propul-

sion is used and the time of flight will be 126 days. Now, suppose that the specific

impulse for the chemical thruster is 300 s (a value achievable with this technology).

After the use of chemical propulsion to inject the spacecraft into the chaotic region

and direct the spacecraft to the long period orbit around L4, the time of flight for

this chaotic transfer will be 342 days. In this manner, assuming a structural mass of
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Figure 5.12 - Trajectories corresponding to Fig. 5.11 intersecting the semi-major axis of
the elliptic orbit. At that moment it is applied the stabilizing impulsive thrust
to place the spacecraft around (a) L4 and (b) L5.

25 kg (approx. 15% of the propellant mass), a small spacecraft with 300 kg of total

mass and 100 kg of payload could be transferred to the Lagrangian equilibrium point

L4 spending 170 kg of propellant mass and a time of flight of 468 days (1.28 years).

In contrast, chemical propulsion requires two boosts of ∆v1 = 4.1 km/s to place

the spacecraft into the chaotic region from a LEO (MELO et al., 2007) and a total

change in velocity of ∆vT = 0.7699 km/s (see Tables 5.21) to direct the spacecraft

to the Lagrangian point L4 through the connected chaotic component between the

Earth and Moon. Therefore, the total boost required for this transfer will be 4.8699

km/s. Assuming an spacecraft with the same characteristics described previously,

Equations (3.64)-(3.65) show that the maximum payload mass should be 30 kg. In

other words, combining electric and chemical propulsion we are able to transfer 70

kg more payload.

5.6 The Zero Relative Acceleration Lines in a Long and Short Period

Family

In this section we have determined the existence of the Zero Relative Accelera-

tion Lines (ZRRAL) along periodic orbits around L4. The existence of the ZRRAL

along any nominal trajectory is determined by the sign of the discriminant of the

sub-matrix F in Eq. (4.3) which represents, in general, a quadratic form. If the dis-

criminant of F is negative at a certain point of the nominal trajectory, therefore the

ZRRAL at this point is represented by an ellipse of radius zero, i.e. there is no region
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Figure 5.13 - The same initial path of the previously G-trajectory (that appears here in
geocentric reference coordinate system) can be used to place a spacecraft
into periodic orbits around L4 or L5. As so, if an appropriate low thrust is
applied in the apogee of this G-trajectory, the spacecraft ends up of in L4

or in L5. Both situations are depicted here. Observe in the last row of Fig.
5.11, also in geocentric system, the large difference between the spacecrafts’
velocities after the swing-by.

with Zero Relative Radial Acceleration (ZRRA). Otherwise, the ZRRA at this point

is represented by two lines (in the planar case).

Firstly, we begin by computing the value of the discriminant of the sub-matrix F

associated to the points Xh (t) along the long and short period orbits shown in Figs.

5.1(a) and 5.1(b), respectively. As we can see in Fig. 5.16, the sign of the discriminant

in both trajectories are negative for every point Xh (t), this means that there are no

regions with ZRRA along these specific periodic orbits.

The previous fact can be verified when we compute numerically the ZRRA at some

points on these periodic orbits. Thus considering a sphere of radius s equal to 1

km (see Fig. 4.3), the first row of Figure 5.17 shows the scalar product between

the relative acceleration a (t, θ) and vector s (θ) as a function of angle θ at three

different points Xh (t) along the long period orbit, where t = 22, 45 and 68 days.

Similarly, the second row of Figure 5.17 shows the scalar product at three different

points Xh (t) along the short period orbit, where t = 7, 14 and 22 days.
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Table 5.17 - Parameters of a low-thrust transfer between two circular Earth orbits of radius
r0 = 6, 771 km and r1 = 59, 669 km, and using electric propulsion with
continuous constant acceleration (F = 160 mN, Isp = 1600 s)

m0 mf ∆m ∆t1 N
(kg) (kg) (kg) (days)

200 144.61 55.39 84 519

250 180.76 69.24 105 649

300 216.91 83.09 126 779

350 256.06 93.94 147 909

400 289.22 110.78 168 1039

450 325.37 124.63 189 1169

500 361.52 138.48 210 1268

Table 5.18 - Perturbations ∆ui required for removing the three recurrent loops found be-
tween the iterates zi and zi+s in the chaotic orbit (3.71)

i i+ s m n ∆u1 ∆u2

(km/s) (km/s)

1 577 0 1 0.00741 0.08560

578 669 0 5 0.10353 0.27591

686 696 5 2 0.00234 0.03268

Now, if we make a zoom around the maximum point of each dot product function

corresponding to Fig. 5.17, the scalar product function between the relative acceler-

ation and relative position vectors never crosses the horizontal axis for any angle θ

at each of these three points Xh (t) as we can see in Fig. 5.18. Therefore, the radial

component of the relative acceleration a (t, θ) is different from zero for any angle θ

at each of these three points. In this part it is important to comment that the dot

product computed in this work is dimensionless because we are using the normalized
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Figure 5.14 - (a) Chaotic trajectory and (b) Controlled chaotic trajectory to the Moon
starting from a circular parking orbit 59, 669 km above the Earth’s center
(time required for transfer: 311 days).

Table 5.19 - Required boost ∆uN , correction term ς and time of flight ∆t2 since the change
in velocity is applied until to reach the periodic orbits around L4

Period ς ∆uN ∆t2
Orbit (km/s) (km/s) (days)

Long 1.04076× 10−2 0.06222 30.9

Short 1.04267× 10−2 0.06224 30.9

system. If we want to obtain the scalar product in units of time and length, i.e. me-

ters and second, we have to multiply the previous results by a factor of 1.0469× 106

m/s2. In any the case, the qualitative behavior of the scalar product function shown

in Fig. 5.17 will remain the same. Additionally, in Fig. 5.17 we can see that the

scalar product function is periodic (period equal to 180◦) and has two maxima and

two minima. Thus, the radial component of the relative acceleration a (t, θ) has also

two maxima and two minima at the same previous optimal values of θ. In Fig. 5.19

we show the angle θ for each point Xh (t) where the relative radial acceleration has

a maximum and minimum value along the long (first row) and short (second row)

period orbits shown in Fig. 5.1.

In this manner, from this first case, we can affirm that there is no regions with ZRRA
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Table 5.20 - Required boost ∆uN , correction term ς and time of flight ∆t2 since the change
in velocity is applied until to reach the periodic orbits around L5

Period ς ∆uN ∆t2
Orbit (km/s) (km/s) (days)

Long 2.54958× 10−2 0.07731 58.6

Short 2.55234× 10−2 0.07733 58.6

Figure 5.15 - Final trajectory arriving at Lagrangian points L4 (left column) and L5 (right
column). The time required for L4 and L5 transfer is 342 and 370 days,
respectively.

along the periodic orbits that are close enough to L4. The next step, therefore, is

to explore the existence of regions with ZRRA along periodic orbits that are farther

from L4. Remember that the transfer methods implemented in this work could also

be used to guide the spacecrafts to this kind of orbits.
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Table 5.21 - Stabilizing impulsive thrust ∆v2, total cost ∆vT and transfer time ∆t =
∆t1 + ∆2 since the first impulse is applied until to reach the elliptic orbits
around L4

Period ∆v2 ∆vT ∆t
Orbit (km/s) (km/s) (days)

Long 0.2002 1.5143 342

Short 0.1948 1.5089 342

Table 5.22 - Stabilizing impulsive thrust ∆v2, total cost ∆vT and transfer time ∆t =
∆t1 + ∆2 since the first impulse is applied until to reach the elliptic orbits
around L5

Period ∆v2 ∆vT ∆t
Orbit (km/s) (km/s) (days)

Long 0.3150 1.6442 370

Short 0.3113 1.6405 370

Figure 5.20 shows two periodic orbits around L4, which belong to the long (92 days)

and short (21 days) period families, respectively, in the non-dimensional coordinate

system x′′, y′′. Both are much farther from L4 with respect to the periodic orbits

shown in Fig. 5.1.

Similarly, Figures 5.21(a) and 5.21(b) show the value of the discriminant of the

sub-matrix F associated to the points Xh (t) along the long and short period orbits

shown in Fig. 5.20. Unlike the previous case, the sign of the discriminant in both

trajectories are negative and positive, this means that although there does no exits

regions with ZRRA at certain points along the periodic orbits, there does exist a

set of points along these periodic orbits where the radial component of the relative

acceleration is equal to zero. This fact can be seen if we compute numerically the

ZRRA at three different points Xh (t) along the previous periodic orbits, considering

a sphere of radius s equal to 1 km as shown in Fig. 5.22.

The qualitative behaviour of the scalar product function is practically the same for

all the values of t where there appear two maxima and two minima, respectively.
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Figure 5.16 - Discriminant of the sub-matrix F associated to the points Xh(t) along the
(a) long and (b) short period orbits shown in Fig. 5.1

Figure 5.17 - Scalar product between the relative acceleration a (t, θ) and vector s (θ) as a
function of angle θ at three different points Xh (t) along the long (first row)
and short (second row) period orbits shown in Fig. 5.1

However, there is a set of points in these trajectories where the radial component of

the function a (t, θ) is zero with vertex at xh (t) for two different values of θ which

we have denoted by θ∗ and θ∗∗, where θ∗ ≤ θ∗∗ (since the scalar product function

is periodic with respect to θ, the other two zeros represent the same situation).

Therefore, in principle, a set of aligned spacecrafts placed in one of them will keep

fixed their mutual distances. Thus, Figures 5.23(a) and 5.23(b) show the function θ

associated to point Xh (t) such that the relative radial acceleration is maximum for
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Figure 5.18 - Scalar product between the relative acceleration a (t, θ) and vector s (θ) as a
function of angle θ at three different points Xh (t) along the long (first row)
and short (second row) period orbits shown in Fig. 5.1

all values of t along the long and short period orbits shown in Fig. 5.20, respectively.

Similarly, Figure 5.24 shows the function θ for the values where the relative radial

acceleration is minimum or zero for the long (first row) and short (second row)

period orbits. As we can see in Fig. 5.24, when we only compute the values of θ

where the scalar product function has a minimum, the function θ is smooth. But,

when we compute the points where the scalar product function has a minimum or a

zero, there are two points where this function is not smooth. This fact will produce

a higher cost to maintain fixed the constellation as we will show later.

Now, Figures 5.25(a) and 5.25(b) show a family of long (92 days) and short (28

days) period around L4. Similarly, we compute the discriminant of the sub-matrix

F along each periodic orbit as shown in Fig. 5.26. This result supports a fact that

was shown in the previous section. If the periodic orbit is close enough to L4, there

do not exit ZRRAL. However, if the periodic orbit is far enough from L4, it begins

to appear a set of points where there exist the ZRRA regions, in a such way that,

this set is larger whether the periodic orbit is farther from L4. Note that the size of

this set has a limit in both family of periodic orbits.

It was computed the value of θ for every point Xh (t) along each orbit that belongs

to the long and short period family where the radial component acceleration is

maximum, minimum or zero (in the cases where the discriminant is positive). Figures
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Figure 5.19 - Angle θ for each point Xh (t) where the relative radial acceleration has a
maximum and minimum value along the long (first row) and short (second
row) period orbits shown in Fig. 5.1

5.27(a) and 5.27(b) show the value of θ such that the radial acceleration component

is maximum for the long and short period family, respectively. Note that the range

of function θ is bigger whether the periodic orbit is farther from L4.

In the same manner, the periodic orbits that are far enough from L4 the function θ

has a minimum and two zeros. Figure 5.28 shows the value of θ such that the radial

acceleration component is minimum or zero (denoted by θ∗ and θ∗∗) for the long

(first row) and short (second row) period families, respectively. Similarly, note that

the range of function θ is also larger if the periodic orbit is farther from L4 and the

function θ is not smooth.

5.7 Cost to Maintain a Spacecraft on the regions of Zero, Minimum and

Maximum Relative Radial Accelerations

We begin by supposing a spacecraft placed in an artificial trajectory around the

periodic orbits shown in Fig. 5.1. Considering a radius s, in the configuration space

(see Fig. 4.3), equal to 1 km and 2 km, and a time T = 1 year, Tables 5.23 and

5.24 show respectively the cost of maintaining the spacecraft when the artificial

trajectory follows the direction in which the relative radial acceleration component

is maximum (see left column in Fig. 5.19) and minimum (see right column in Fig.

5.19). It is interesting to note the costs of Table 5.24 are twice the costs of Table
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Figure 5.20 - (a) Long and (b) short period orbits around L4.

Figure 5.21 - Discriminant of the sub-matrix F associated to the points along the (a) long
and (b) short period orbits shown in Fig. 5.20

5.23, i.e. there exists a linear relation with respect to the distance from Xh (t).

Additionally, the costs between the long and short period orbits are almost equal.

Now, we suppose a spacecraft placed in an artificial trajectory around the periodic

orbits shown in Fig. 5.20. Similarly, considering a radius s equal to 1 km and 2 km,

and a time T = 1 year, Table 5.25 shows the cost of maintaining the spacecraft when
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Figure 5.22 - Scalar product between the relative acceleration a (t, θ) and vector s (θ) as a
function of angle θ at three different points Xh (t) along the long (first row)
and short (second row) period orbits shown in Fig. 5.20

Figure 5.23 - Angle θ for each point Xh (t) where the relative radial acceleration has a
maximum value for the (a) long and (b) short period orbits shown in Fig.
5.20

the artificial trajectory follows the direction in which the relative radial acceleration

component is maximum (see Fig. 5.23). Similarly, note that the costs of Table 5.25

follows a linear relation with respect to the radius and that, between these two long

and short period orbits, the costs are approximately equal.

On the other hand, Tables 5.26 and 5.27 show the cost of maintaining the space-

craft when the artificial trajectory follows the direction in which the relative radial

acceleration component is minimum or zero (see Fig. 5.24) considering a radius s
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Figure 5.24 - Angle θ for each point Xh (t) where the relative radial acceleration has a
minimum or zero value for the long (first row) and short (second row) period
orbits shown in Fig. 5.20

Table 5.23 - Cost of maintaining a spacecraft during 1 year considering a radius of 1 km
with respect to periodic orbits shown in Fig. 5.1 and the direction in which
the relative radial acceleration component is maximum and minimum

Period Cost Cost
Orbit Maximum Minimum

Radial Acceleration Radial Acceleration
(m/s) (m/s)

Long 6.5777× 10−1 6.0422× 10−3

Short 6.2989× 10−1 6.1713× 10−3

Table 5.24 - Cost of maintaining a spacecraft during 1 year considering a radius of 2 km
with respect to periodic orbits shown in Fig. 5.1 and the direction in which
the relative radial acceleration component is maximum and minimum

Period Cost Cost
Orbit Maximum Minimum

Radial Acceleration Radial Acceleration
(m/s) (m/s)

Long 1.3153 1.2084× 10−2

Short 1.2598 1.2343× 10−2
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Figure 5.25 - (a) Long and (b) short period families around L4.

Table 5.25 - Cost of maintaining a spacecraft during 1 year considering a radius of 1 km
and 2 km with respect to periodic orbits shown in Fig. 5.20 and the direction
in which the relative radial acceleration component is maximum

Period Cost Cost
Orbit Maximum Maximum

Radial Acceleration Radial Acceleration
s = 1 km s = 2 km

(m/s) (m/s)
Long 6.6074× 10−1 1.3215

Short 6.3015× 10−1 1.2603

equal to 1 km and 2 km, respectively. Similarly, there exits a linear relation between

the cost and the radius of the artificial trajectory. However, the cost of maintaining

the spacecraft, on the direction when the relative radial acceleration is minimum,

is much less (almost ten times) than the cost to maintain the spacecraft on the

direction when the relative radial acceleration is minimum or zero. This fact can be

understood whether we compute the components x and y of the relative position,

velocity and acceleration vectors described in Eq. (4.7). For example, Figure 5.29
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Figure 5.26 - Discriminant of the sub-matrix F associated to the points along the (a) long
and (b) short period families shown in Fig. 5.25

Figure 5.27 - Angle θ for each point Xh (t) where the relative radial acceleration has a
maximum value for the (a) long and (b) short period families shown in Fig.
5.25

shows the components x (left column) and y (right column) of the relative position

ra (first row), relative velocity ṙa (second row) and relative acceleration r̈a (third

row) of the artificial trajectory that follows the direction such that the relative radial

acceleration component is minimum with respect to the long period orbit shown in

Fig. 5.20. Similarly, Figure 5.30 shows the components of these vectors such that

the relative radial acceleration component is minimum or zero with respect to the

long period orbit shown in Fig. 5.20. Note that in Fig. 5.29 the two components

for ra, ṙa, r̈a, are smooth functions. Nevertheless, in Fig. 5.30 we can see that the

components for each vector are not. In fact, the function ra is not smooth at time t

when the regions of ZRRA appear and disappear (see Fig. 5.24). Therefore, we see

in the functions ṙa and r̈a two big jumps at these two instants in such a way that
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Figure 5.28 - Angle θ for each point Xh (t) where the relative radial acceleration has a
minimum or zero value for the long (first row) and short (second row) period
families shown in Fig. 5.25

the function Ra is bigger in the region where the ZRRA exists as shown in Fig. 5.31.

As a consequence, the cost ∆V will be less than if the artificial trajectory follows

the direction where the relative radial acceleration is minimum but not zero.

Table 5.26 - Cost of maintaining a spacecraft during 1 year considering a radius of 1 km
with respect to periodic orbits shown in Fig. 5.20 and the direction in which
the relative radial acceleration component is minimum or zero

Period Cost Cost Cost
Orbit Minimum Minimum and Zero (θ∗) Minimum and Zero (θ∗∗)

Radial Acceleration Radial Acceleration Radial Acceleration
(m/s) (m/s) (m/s)

Long 7.0033× 10−3 6.4182× 10−2 6.5106× 10−2

Short 2.1255× 10−2 1.3563× 10−1 1.3635× 10−1

Finally, suppose that we denote the family of periodic orbits as shown in Fig. 5.32,

where Orbit 1 denotes the smallest one and Orbit 8 denotes the largest one. Con-

sidering a radius equal to 1 km and a time T = 1 year, Tables 5.28 and 5.29 show

the cost of maintaining a spacecraft with respect to each orbit of the long and short

period family and the direction in which the relative radial acceleration component

is maximum, minimum and zero, respectively.
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Table 5.27 - Cost of maintaining a spacecraft during 1 year considering a radius of 2 km
with respect to periodic orbits shown in Fig. 5.20 and the direction in which
the relative radial acceleration component is minimum or zero

Period Cost Cost Cost
Orbit Minimum Minimum and Zero (θ∗) Minimum and Zero (θ∗∗)

Radial Acceleration Radial Acceleration Radial Acceleration
(m/s) (m/s) (m/s)

Long 1.4007× 10−2 1.2836× 10−1 1.3021× 10−1

Short 4.2510× 10−2 2.7126× 10−1 2.7270× 10−1

Figure 5.29 - Components x (right column) and y (left column) of relative position ra
(first row), relative velocity ṙa (second row) and relative acceleration r̈a
(third row) of the artificial trajectory that follows the direction such that
the relative radial acceleration component is minimum with respect to the
long period orbit shown in Fig. 5.20

5.8 Cost to Maintain a Spacecraft on a Fixed Configuration

In the previous section, we studied the cost of configurations that follows the direc-

tion in which the relative radial acceleration is maximum, minimum or zero. Now,

we study the case when the geometry of the configuration remains constant, i.e. the

angle θ is fixed (see Fig. 4.3).
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Figure 5.30 - Components x (right column) and y (left column) of relative position ra
(first row), relative velocity ṙa (second row) and relative acceleration r̈a
(third row) of the artificial trajectory that follows the direction such that
the relative radial acceleration component is minimum or zero with respect
to the long period orbit shown in Fig. 5.20

In this manner, Figures 5.33(a) and 5.33(b) show the cost of maintaining a spacecraft

with respect to previous long and short period family, respectively, such that the

angle θ is fixed and considering a radius of 1 km. The cost was computed until a

time T = 1 year.

Note that the cost function in Fig. 5.33 has a period of 180◦. Additionally, the

function has two maxima at θ ≈ 60◦ and 240◦, and two minima at θ ≈ 150◦ and

330◦. These values practically coincide with the direction in which the relative radial

acceleration component is maximum and minimum (see Fig. 5.19) for the periodic

orbits shown in Fig. 5.1. In fact, the costs compared with these cases are similar.

In this way, we will study a triangular geometry around the periodic orbits shown

in Figs. 5.1 and 5.20. In this configuration, we consider a formation flying of three

satellites, such that their positions and distances with respect to periodic orbit are

fixed and form an equilateral triangle. There are three cases we have analyzed in

this formation as shown in Fig. 5.34:

(a) The periodic solution Xh (t) remains in the center of the equilateral trian-
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Figure 5.31 - Radial Acceleration of the artificial trajectory that follows the direction such
that the relative radial acceleration component is minimum or zero with
respect to the long period orbit shown in Fig. 5.20

Figure 5.32 - Family of periodic orbits shown in Fig. 5.25, where Orbit 1 denotes the
smallest one and Orbit 8 denotes the largest one

gle.

(b) The periodic solution Xh (t) remains in the middle of one of the sides.

(c) One of the satellites remains on the periodic solution Xh (t).
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Table 5.28 - Cost of maintaining for 1 year a spacecraft with respect to long period family
shown in Fig. 5.32 and the direction in which the relative radial acceleration
component is maximum, minimum and zero

Period Cost Cost Cost Cost
Orbit Maximum Minimum Minimum and Minimum and

Radial Radial Zero (θ∗) Zero (θ∗∗)
Acceleration Acceleration Radial Radial

Acceleration Acceleration
(m/s) (m/s) (m/s) (m/s)

1 6.5750× 10−1 6.0286× 10−3

2 6.5792× 10−1 6.0881× 10−3 1.5004× 10−2 1.5062× 10−2

3 6.5850× 10−1 6.2313× 10−3 3.3591× 10−2 3.3850× 10−2

4 6.5925× 10−1 6.4562× 10−3 4.5180× 10−2 4.5567× 10−2

5 6.6014× 10−1 6.7676× 10−3 5.5834× 10−2 5.6401× 10−2

6 6.6116× 10−1 7.1855× 10−3 7.3302× 10−2 7.4046× 10−2

7 6.6230× 10−1 7.7586× 10−3 8.3866× 10−2 8.4787× 10−2

8 6.6360× 10−1 8.6312× 10−3 8.7558× 10−2 8.8503× 10−2

In these three cases, the orientation of the formation is defined by the angle θ which

denotes the direction of the relative position of satellite 1. Once the angle θ is fixed,

the other angles that define the relative positions of satellites 2 and 3 are easily

computed by basic geometry. The cost to maintain the formation flying is simply

the sum of the costs of maintaining each satellite in the fixed position. Figures 5.35(a)

and 5.35(b) show the cost function of the triangular formation along the long and

short period orbits around L4 shown in Fig. 5.1, respectively, for 0◦ ≤ θ ≤ 180◦ (the

cost function has a period of 180◦) and a time T = 1 year. The length of the side of

the equilateral triangle is equal to 2 km. As we can see in Fig. 5.35, for the long and

short period orbits, the minimum cost is obtained when the formation flying follows

the configuration (c) whether the angle θ = 90◦ and θ = 150◦. However, we can note

that the cost of configuration (b) is almost the same whether the angle θ = 60◦.

Therefore, it can be said that the minimum cost is obtained when the formation

flying follows the configuration (b) and (c) and one of the satellites is placing along

the direction of angle θ = 150◦.

116



Table 5.29 - Cost of maintaining for one year a spacecraft with respect to short period
family shown in Fig. 5.32 and the direction in which the relative radial accel-
eration component is maximum, minimum and zero

Period Cost Cost Cost Cost
Orbit Maximum Minimum Minimum and Minimum and

Radial Radial Zero (θ∗) Zero (θ∗∗)
Acceleration Acceleration Radial Radial

Acceleration Acceleration
(m/s) (m/s) (m/s) (m/s)

1 6.4023× 10−1 5.9153× 10−3

2 6.4013× 10−1 7.4009× 10−3 6.4286× 10−2 6.4920× 10−2

3 6.4025× 10−1 1.0242× 10−2 9.1027× 10−2 9.1375× 10−2

4 6.4054× 10−1 1.3850× 10−2 9.9301× 10−2 1.0013× 10−1

5 6.4092× 10−1 1.7736× 10−2 1.2289× 10−1 1.2372× 10−1

6 6.4137× 10−1 2.1740× 10−2 1.3883× 10−1 1.3987× 10−1

7 6.4189× 10−1 2.5826× 10−2 1.4365× 10−1 1.4685× 10−1

8 6.4255× 10−1 2.9996× 10−2 1.8064× 10−1 1.8140× 10−1

Finally, Figures 5.36(a) and 5.36(b) show the cost function of the triangular for-

mation along the long and short period orbits around L4 shown in Fig. 5.20. The

results show that the minimum cost is obtained when the formation flying follows

the configuration (c) whether the angle θ = 103◦ and θ = 143◦ for the long and short

period orbits, respectively. Additionally, it is interesting to see that the configuration

(c) is not only the case which we obtain the minimum cost but also the maximum

cost.

5.9 Dynamical Behaviour of Different Kinds of Solutions

In this last section we analyze the dynamical behaviour of the different kinds of

solutions with initial conditions along a sphere centered at the point Xh (0). The

goal is to study the initial conditions for a spacecraft with respect to the periodic

orbitXh (t) such that the separation between the spacecraft and the periodic solution

is optimal.
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Figure 5.33 - Cost of maintaining a spacecraft during 1 year with respect to the long
(a) and short (b) period family shown in Fig. 5.25 fixing the angle θ and
considering a radius of 1 km

Figure 5.34 - Formation flying of three satellites such that their positions and distances
with respect to periodic orbit are fixed and form an equilateral triangle

Firstly, suppose a spacecraft around a periodic orbit of L4 where the initial relative

position is defined by the magnitude of the radius r and the value of the angle θ.

This sphere is centered at Xh (0) as shown in Fig. 5.37. In this case, we are interested

in to determine the initial conditions (r (0) , θ (0)) in such a way that the deviation

of the spacecrafts from the initial conditions over the time must be minimum. Using
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Figure 5.35 - Cost of maintaining during 1 year a Formation flying of three satellites con-
sidering configurations (a), (b) and (c) around the long and short period
orbits shown in Fig. 5.1

polar coordinates, the set of initial conditions will be the form:

(xh (0) + r (0) ,vh (0)) .

Figures 5.38 and 5.39 show the maximum separation (in km) for different values of

(r (0) , θ (0)) computed in nine points Xh (0) along the long and short period orbits

shown in Fig. 5.1, respectively. For each solution with initial condition (r (0) , θ (0))

the maximum magnitude during 2 years of the vector ∆X (t) = (X (t)−Xh (t)) is

computed. These results show that, given a solution close enough to these periodic

orbits, the maximum separation obtained is less than 10 km whether the angle

θ (0) ≈ 150◦. On the other hand, the maximum separation is greater than 40 km

whether θ (0) ≈ 60◦. This fact practically does not depend on the initial point Xh (0)

taken along the periodic orbits and the maximum separation function has a period

of 180◦ as shown in Figs. 5.38 and 5.39. Note that this fact coincides with the

cost of maintaining a spacecraft along the minimum and maximum relative radial

acceleration.
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Figure 5.36 - Cost of maintaining during 1 year a Formation flying of three satellites con-
sidering configurations (a), (b) and (c) around the long and short period
orbits shown in Fig. 5.20

Now, given an initial condition (r (0) , θ (0)), we want to study the dynamical be-

haviour of the distance function, denoted by d (Xh (t) , X (t)), between the spacecraft

and the periodic orbits around L4 at each time t. First, Figure 5.40 shows the value

of the maximum separation during 2 years for 0◦ ≤ θ (0) ≤ 360◦ and r (0) = 1,

2 km along the long period orbit shown in Fig. 5.1. Similarly, Figure 5.41 shows

the value of the maximum separation during two years along the short period orbit

shown in Fig. 5.1. We have integrated these two initial conditions and, as it could be

seen previously, the best and worst cases occur when θ (0) = 150◦ and θ (0) = 60◦,

respectively. Therefore, the distance function will be computed when θ (0) = 150◦

and θ (0) = 60◦ to compare the difference between the quantitative behaviour of

d (Xh (t) , X (t)).

For the first case, we have taken four relative initial vectors r1 (0) , r2 (0) , r3 (0) , and

r4 (0) along the direction of θ (0) = 150◦ associated to the initial condition Xh (0)

of the periodic orbit around L4 (see Fig. 5.37). The vectors have been distributed

symmetrically with respect to Xh (0): r1 (0) and r3 (0) being at an initial distance

of 1 km from Xh (0) and, r2 (0) and r4 (0) being at an initial distance of 2 km. We

have integrated these trajectories during three years and the results are shown in

the first row of Fig. 5.42. As can bee seen, the maximum deviation from the starting
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Figure 5.37 - Illustration of the relative position of a spacecraft around a periodic orbit of
L4

separations is less than 1.5 km for the orbits with initial vectors ri (0) . The distance

function d (Xh (t) , Xi (t)) is a periodic function with period equal to 460 days. Addi-

tionally, there is no difference between the qualitative and quantitative behaviour of

the distance function for the trajectories starting at the same distance from Xh (0) :

d (Xh (t) , X1 (t)) ≈ d (Xh (t) , X3 (t)) and d (Xh (t) , X2 (t)) ≈ d (Xh (t) , X4 (t)).

Now, for the second case, we take four relative initial vectors q1 (0) , q2 (0) , q3 (0) ,

and q4 (0) along the the direction of θ (0) = 60◦ corresponding also to the initial

condition Xh (0) of the periodic orbit around L4, distributed in a similar fashion to

the previous case. In the second row of Fig. 5.42 we show the results for the distance

function d (Xh (t) , Xi (t)). Now, although the qualitative behavior is also periodic

(period equal to 460 days) and there is no difference between the qualitative and

quantitative behaviour of the distance function for the trajectories starting at the

same distance from Xh (0), the deviations from the periodic orbit are larger (they

are increased by a factor of 40) than the ones obtained for the ri (0) initial vectors

taken along the direction of θ (0) = 150◦.

Finally, the same study is made along the long and short period orbits shown in

Fig. 5.20. The purpose is also to analyze the dynamical behaviour of the distance

function for periodic orbits that are far enough from L4. In Fig. 5.43 it can be seen

that the best position to minimize the deviation is along the direction of θ (0) = 149◦

associated to the initial condition of the long period orbit. In the same way, the

position that maximize the deviation is along the direction of θ (0) = 59◦. Practically,

the difference with respect to the previous results is only 1◦. Similarly, Figure 5.44
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Figure 5.38 - Maximum separation (in km) during 2 years for different values of r (0) and
θ (0) computed in nine points Xh (0) along the long period orbit shown in
Figure 5.1

shows that the position to minimize and maximize the deviation is along the direction

of θ (0) = 157◦ and θ (0) = 67◦, respectively, associated to the initial condition of the

short period orbit. In this case, the difference with respect to the previous results is

7◦.

Similarly, we take four relative initial vectors along the the direction of minimum

and maximum deviation corresponding also to the initial condition Xh (0) of the

periodic orbit around L4, distributed in a similar fashion to the previous cases. The

results are shown in Fig. 5.45. In the first row we can see that the distance function

is periodic (period equal to 460 days for the long period orbit and 545 for the short

period orbit) and that the maximum deviation from the starting separations is less

than 2 km. Now, in the second row it can be seen that the distance functions are

periodic (period equal to 460 days for the long period orbit and 545 for the short

period orbit) and the deviations from the periodic orbit are also increased by a factor

of 40. Additionally, there is no difference between the qualitative and quantitative

behaviour of the distance function for the trajectories starting at the same distance

from Xh (0) .

As final point, it can be seen in Figs. 5.42 and 5.45 that there exits a linear behaviour
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Figure 5.39 - Maximum separation (in km) during 2 years for different values of r (0) and
θ (0) computed in nine points Xh (0) along the short period orbit shown in
Figure 5.1

between the distance functions for the trajectories starting at 1 km and 2 km from

Xh (0), i.e, the deviation for the trajectories starting at 1 km is half for the trajec-

tories starting at 2 km from Xh (0). Remember that this linear behaviuour was also

noted in the case of the cost of maintaining a spacecraft along the direction of zero,

minimum and maximum relative radial acceleration. Therefore, there is no difference

in the qualitative behaviour of the distance function for the trajectories starting at

1 km and 2 km from Xh (0), and the spacecrafts that start at those points probably

remains aligned during the time span. To verify this fact, we compute the difference

between the angles θ1 and θ2 at each instant t for the all previous trajectories start-

ing at 1 km and 2 km from Xh (0) as shown in Fig. 5.46. In Figs. 5.47(a) and 5.47(b)

we can see the results associated to the initial condition of the long and short period

orbits shown in Fig. 5.1, respectively. Similarly, Figs. 5.48(a) and 5.48(b) shows the

results associated to the initial condition of the long and short period orbits shown

in Fig. 5.20, respectively. As we can note, the difference of the angles θ1 and θ2 at

each instant t is practically zero, consequently, the spacecrafts remain aligned along

the periodic orbits around L4, but their distances from the solution Xh (t) oscillate

periodically as illustrated in Fig. 5.49.
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Figure 5.40 - Maximum separation (in km) during 2 years for 0◦ ≤ θ (0) ≤ 360◦ and
r (0) = 1, 2 km along the long period orbit shown in Fig. 5.1

Figure 5.41 - Maximum separation (in km) during 2 years for 0◦ ≤ θ (0) ≤ 360◦ and
r (0) = 1, 2 km along the short period orbit shown in Fig. 5.1
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Figure 5.42 - Distance function d (Xh (t) , Xi (t)), between the trajectories of r1, r2, r3, r4
(first row), and q1, q2, q3, q4 (second row), and the long and short period
orbits shown in Figure 5.1

Figure 5.43 - Maximum separation (in km) during two years for 0◦ ≤ θ (0) ≤ 360◦ and
r (0) = 1, 2 km along the long period orbit shown in Figure 5.20
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Figure 5.44 - Maximum separation (in km) during two years for 0◦ ≤ θ (0) ≤ 360◦ and
r (0) = 1, 2 km along the short period orbit shown in Figure 5.20

Figure 5.45 - Distance function d (Xh (t) , Xi (t)), between the trajectories of r1, r2, r3, r4
(first row), and q1, q2, q3, q4 (second row), and the long and short period
orbits shown in Figure 5.20
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Figure 5.46 - Difference between the angles θ1 and θ2 for trajectories starting at 1 km and
2 km from Xh (0)

Figure 5.47 - Difference between the angles θ1 and θ2 at each instant t starting at 1 km
and 2 km from Xh (0) associated to the initial conditions of the long (a) and
short (b) period orbits shown in Fig. 5.1
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Figure 5.48 - Difference between the angles θ1 and θ2 at each instant t starting at 1 km
and 2 km from Xh (0) associated to the initial conditions of the long (a) and
short (b) period orbits shown in Fig. 5.20

Figure 5.49 - Illustration of a constellation of satellites remaining aligned along the peri-
odic orbits around L4
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6 CONCLUSIONS

In this work minimum energy transfers orbits have been computed for L4 and L5

missions in the Earth-Moon system. The model that was used is the Circular Re-

stricted Three Body Problem. In the first step, the lunar gravity was neglected and

the transfer orbit followed an elliptic trajectory given by the Hohmann transfer such

that the independent variable was the apocentre of the orbit. In this approach, we ob-

tained trajectories that reach the equilateral equilibrium points spending practically

the same amount of fuel (∆vT = 3.91 km/s) than is required to place a spacecraft

around the Moon. In the second approximation, we used the Moon’s gravity to gain

enough energy such that the trajectory intersect the elliptic orbits around L4 and

L5. In this second step, the independent variables were the apocentre of the elliptic

transfer orbit and the angle at which the departure trajectory intersects the lunar

sphere of influence. Once the spacecraft left the Moon’s sphere of influence, the

spacecraft experimented a change in the arrival velocity and energy with respect

to the Earth such that the new geocentric trajectory reached the periodic orbits

around L4 or L5. It was shown for the L4 mission that using the Moon’s gravity

we could reach the target spending 3% less total fuel than the Hohmann transfer.

Additionally, the stability of certain trajectories for the L4 mission was greater than

all trajectories for L5 mission. However, the transfer time was less for the L5 mission

(about 9 days).

Similarly, another two new alternative methods to transfer spacecrafts from an Earth

circular parking orbit in the direction of the equilateral equilibrium points have also

been implemented.

The first alternative combined trajectories derived from the G Family and swing-

by maneuvers such that the spacecrafts were able to reach the Moon’s sphere of

influence and, using the lunar gravity, arrive at L4 and L5. Once the altitude of the

initial parking orbit and the value of the semi-major and -minor axes of the elliptic

orbits around L4 and L5 were defined, a small perturbation in the initial impulsive

thrust and in the spacecrafts’ velocities at the apogee of the G Trajectories had to

be determined numerically to place the spacecraft exactly into these stable orbits.

The simulations showed that a spacecraft needs to perform a swing-by with the

Moon’s trailing side to reach L4 and by the Moon’s leading side to reach L5. In the

case of L4 mission, there is an increase in the energy of the spacecraft relative the

Earth after the swing-by maneuver in such a way the energy becomes positive. This

fact implies that whether our goal is to arrive at L4, one possibility is to put the
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spacecraft in a trajectory, derived from the G Family, that escape the Earth-Moon

system. On the other hand, L5 mission showed a decrease in the energy of the space-

craft after the swing-by and remaining negative along the trajectory. Now, it was

interesting to note that the variation of the energy of the spacecraft for L5 mission

is much smaller compared to L4 mission but enough to reach L5. Additionally, the

magnitude of the velocities of the spacecrafts in the synodic frame was practically

the same along the L4 and L5 trajectories.

The G Trajectories approach has the advantage with respect to Hohmann-like trans-

fer orbits that few small spacecrafts could be placed into periodic orbits around L4

and L5 (or around the Moon) using the fact that this trajectories pass just a few

dozen kilometers from the Moon’s surface and that, although the spacecrafts are in-

jected in the trajectory that leads to L5, a low impulse applied in the apogee could

place one of them into another Trajectory G that leads to L4. The fuel spent in this

case would be less than a Hohmann-like transfer.

The second alternative studied in this work combined the chaotic and swing-by

transfers in such a way that the spacecraft was able to reach the Moon and use

the lunar gravity field to arrive at L4 or L5. However, there are two problems with

this kind of transfer: cost and time of flight. Firstly, the chaotic region is located at

59, 669 km above the Earth’s center. Hohmann transfer could be used to reach this

altitude. On the other hand, an additional boost is necessary to inject the spacecraft

into the chaotic region. If all of these boosts were applied using chemical propulsion,

the cost of the maneuver would not be economically viable. For example, a small

spacecraft with total mass of 300 kg could only transfer a maximum payload mass

of 30 kg. In this case, the maneuver presented in this work combined electric and

chemical propulsion such that the transfer orbit, between a LEO with an altitude

of 400 km and a circular orbit of radius 59, 669 km around the Earth, was made

using electric propulsion where the thrust was constant and tangential. Once the

spacecraft reached the higher orbit, the chemical propulsion was used to inject it

into the chaotic region. The result was a smaller fuel requirement that allowed the

transfer of a larger payload (100 kg if the total were 300 kg).

Once the cost of the mission was reduced, the transfer time represented another

challenge. For this kind of transfer, the time of flight is very long because the

chaotic trajectory has some recurrent loops and therefore the transport between

the connected chaotic component could be 25 years. Nevertheless, these loops can

be removed applying low impulsive thrusts along the stable and unstable manifolds
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of the trajectory projected in the Poincaré section. The result was a considerable

reduction of transfer time from 25 years to 1.3 years approximately. In this manner,

once that the spacecraft reached the Moon, it was necessary only two more low

impulsive thrusts to arrive at Lagrangian points. The swing-by transfer required a

boost of ∼ 0.077 km/s and a correction maneuver of ∼ 0.3 km/s to place it into

the elliptic orbits around L4 and L5 points. This shows that the chaotic transfer

is an interesting alternative to transfer a spacecraft without requiring large rocket

thrusts.

It is important to note that for the four techniques implemented, the period of the

two periodic orbits around L4 and L5 did not affected practically the magnitude of

the stabilizing impulsive thrust required to place the spacecraft into the periodic

orbits.

Finally, once the spacecrafts are placed in a periodic orbit around the equilibrium

points we have that the Zero Relative Radial Acceleration Lines (ZRRAL) determine

the relative position, represented by an angle θ, of a satellite with respect to a

nominal trajectory, such that the radial component of the relative acceleration is

null. This fact implies that once the satellite is placed in this region, the separation

from the nominal trajectory would be shorter than if the relative acceleration of

the satellite had radial component. In principle, the cost to maintain it along the

nominal trajectory would be minimum.

In the case of periodic orbits close enough to L4, the ZRRAL do not exist. For these

orbits, the relative position of the satellite has values for the angle θ such that its

relative acceleration has either maximum or minimum radial component. On the

other hand, the ZRRAL only exist when the periodic orbit is far enough to L4.

However, for these orbits, the ZRRAL do not exist for every point of the periodic

orbit. Therefore, in these cases, the relative position of the satellite has values for

the angle θ such that its relative acceleration has maximum, minimum or zero radial

component.

The cost to maintain a satellite following an artificial trajectory was determined by

the integral of the Residual Acceleration. In the case of periodic orbits around L4,

it was shown that the cost is less when relative position of the satellite points out

in the direction such that the radial component of the relative acceleration is mini-

mum although the ZRRAL do exist. Due to the fact that these regions appear and

disappear along the periodic orbit, this produces a discontinuity in the components

of the relative velocity and acceleration and therefore a higher cost. Similarly, it
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was computed the cost to maintain a satellite when the relative position was fixed,

i.e. the angle θ remained constant along a family of periodic orbits around L4. The

function cost had a maximum at θ ≈ 60◦ and a minimum at θ ≈ 150◦.

In this manner, a formation flying of three satellites was studied. The configuration

was a triangular geometry, such that the relative position along the periodic orbit

was fixed and formed an equilateral triangle. The cost to maintain this configuration

was minimum when one of the satellites remained at the periodic orbit.

Note that in the force model defined by the Circular Restricted Three Body Problem,

the cost to maintain the satellites in these configurations (ZRRAL, maximum or

minimum radial acceleration, fixed angle) was very low. This fact is due to the

stability of the periodic orbits around L4 in such a way that a particle that begins

very close to a periodic orbit, their mutual distances will keep practically fixed, so

the control applied in the spacecraft must be almost zero.

The dynamical behaviour of the distance function between a constellation of satel-

lites and the periodic orbits around L4 was also determined. It could be seen that

the the maximum separation function does not depend on the initial condition taken

along the periodic orbits and that this function has a period of 180◦. Similarly, the

best position to reduce the maximum separation is about θ = 150◦. In the other

case, the position that increase the maximum separation is about θ = 60◦. Thus,

placing satellites along the directions of either minimum or maximum deviation from

the starting separations, the distance from the periodic orbit behaved as a periodic

function in such a way that the satellites remained aligned. Therefore, if we want

to maintain fixed the configuration, a thrust would be necessary only to control the

separation. In the case of minimum deviation, since the deviation in some cases was

less than 2 km, the cost of maintaining the distance fixed would be very small.

In addition, it is interesting to note that in all the cases studied in this work: rel-

ative radial acceleration, cost of maintaining a spacecraft with angle fixed, cost of

maintaining a triangular constellation and deviation of the constellation from the

starting separations, the minimum and maximum value were obtained whether the

spacecrafts were placing approximately along the direction of the major and minor

axes of the elliptic orbits around L4.
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APPENDIX: ASTRODYNAMIC CONSTANTS

Table A.1 - Astrodynamic constants

Constant Symbol Value

Constant of Gravitation G 6.673× 10−20 km3 kg−1 s−2

Earth gravitational constant µE 398, 658.37 km3 s−2

Moon gravitational constant µM 4, 902.87 km3 kg−1 s−2

Earth mass mE 5.9742× 1024 kg

Moon mass mM 7.3477× 1022 kg

Mean Earth radius rE 6, 371 km

Mean Moon radius rM 1, 737 km

Mean Earth-Moon distance dEM 384, 405 km

Moon’s angular speed ωM 2.649× 10−6 rad s−1
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quanto cient́ıfica, cujo ńıvel seja com-
pat́ıvel com o de uma publicação em
periódico nacional ou internacional.

Propostas e Relatórios de Projetos
(PRP)

Publicações Didáticas (PUD)

São propostas de projetos técnico-
cient́ıficos e relatórios de acompan-
hamento de projetos, atividades e con-
vênios.

Incluem apostilas, notas de aula e man-
uais didáticos.

Publicações Seriadas Programas de Computador (PDC)

São os seriados técnico-cient́ıficos: bo-
letins, periódicos, anuários e anais de
eventos (simpósios e congressos). Con-
stam destas publicações o Internacional
Standard Serial Number (ISSN), que é
um código único e definitivo para iden-
tificação de t́ıtulos de seriados.

São a seqüência de instruções ou códi-
gos, expressos em uma linguagem de
programação compilada ou interpre-
tada, a ser executada por um computa-
dor para alcançar um determinado obje-
tivo. Aceitam-se tanto programas fonte
quanto os executáveis.

Pré-publicações (PRE)

Todos os artigos publicados em periódi-
cos, anais e como caṕıtulos de livros.


	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	EPIGRAPHY
	DEDICATORY
	ACKNOWLEDGEMENTS
	RESUMO
	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	1 INTRODUCTION
	1.1 Objectives
	1.2 Transfer Orbits Methods
	1.2.1 Hohmann Transfer Orbit
	1.2.2 Swing-By Maneuver
	1.2.3 G Trajectories
	1.2.4 Chaos Control

	1.3 Natural Configurations and Controlled Motions Suitable for Formation Flying

	2 DYNAMICS IN THE CIRCULAR RESTRICTED THREE BODY PROBLEM
	2.1 Formulation of the Circular Restricted Three Body Problem and Equations of Motion
	2.2 The Jacobi integral
	2.3 Lagrangian Equilibrium Points
	2.4 Zero-Velocity Curves
	2.5 The Stability of the Lagrangian Equilibrium Points
	2.6 Equations of Local Dynamics of Satellite Formation Flying
	2.7 Newton's Method to find Periodic Orbits

	3 TRANSFER ORBITS
	3.1 Stabilizing Impulsive Thrust
	3.2 Modified Hohmann Transfer Orbit
	3.3 Using the gravitational field of the Moon
	3.3.1 The Mathematical Description of the Swing-By
	3.3.1.1 The Geocentric Departure Orbit
	3.3.1.2 The Selenocentric Arrival Orbit
	3.3.1.3 Swing-By Maneuver

	3.3.2 Initial Conditions

	3.4 G Trajectories for L4 and L5
	3.5 Using Chaos for transference to L4 and L5 Earth-Moon System
	3.5.1 Entering the Connected Chaotic Component that leads to the Moon
	3.5.2 Chaos in the CRTBP
	3.5.3 Removing Recurrences
	3.5.4 Reaching L4 and L5


	4 THE ZERO, MINIMUM AND MAXIMUM RELATIVE RADIAL ACCELERATION FOR FORMATION FLYING
	4.1 The Zero Relative Radial Accelerations Lines
	4.2 Residual Acceleration and Cost to Maintain a Spacecraft in a Formation

	5 ANALYSIS AND RESULTS
	5.1 Long and Short Period Orbits
	5.2 Modified Hohmann Transfer
	5.3 Swing-By Maneuver
	5.4 G Trajectories
	5.5 Targeting Chaotic Orbits to the equilibrium points L4 and L5 through recurrence
	5.6 The Zero Relative Acceleration Lines in a Long and Short Period Family
	5.7 Cost to Maintain a Spacecraft on the regions of Zero, Minimum and Maximum Relative Radial Accelerations
	5.8 Cost to Maintain a Spacecraft on a Fixed Configuration
	5.9 Dynamical Behaviour of Different Kinds of Solutions

	6 CONCLUSIONS
	REFERENCES
	 APPENDIX: ASTRODYNAMIC CONSTANTS

