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Mesoscopic spin-orbit effect in the semiconductor nanostructure electron g factor
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The renormalization of the electron g factor by the confining potential in semiconductor nanostructures is
considered. A new effective k · p Hamiltonian for the electronic states in III–V semiconductor nanostructures in
the presence of an external magnetic field is introduced. The mesoscopic spin-orbit (Rashba type) and Zeeman
interactions are taken into account on an equal footing. It is then solved analytically for the electron effective
g factor in symmetric quantum wells (g∗

QW). Comparison with different spin quantum beat measurements in
GaAs and InGaAs structures demonstrates the accuracy and utility of the theory. The quantum size effects in
g∗

QW are easily understood and its anisotropy �g∗
QW (i.e., the difference between the in-plane and perpendicular

configurations) is shown to be given by a mesoscopic spin-orbit effect having the same origin as the Rashba one.
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I. INTRODUCTION

The Landé g factor is a fundamental physical quantity that
determines the spin splitting of the electronic states in response
to an external magnetic field, known as Zeeman effect. For
charge and spin carriers in semiconductors, the g factor is
renormalized from the bare value 2 by band structure effects
and is referred to as the effective g factor (g∗), in analogy
with the effective mass (m∗). In semiconductor nanostructures
g∗ is further renormalized by the confining mesoscopic
potential and can therefore be tuned. However, despite its great
scientific and technological interest, such effect is still not well
understood and, here, a simple solution is presented.

Among the III–V semiconductors, the electron g∗ varies,
for example, from ∼ −0.5 in GaAs to ∼ −50 in InSb. Such
variation is well explained by the celebrated Roth k · p formula

g∗ = 2

(
1 − me

m∗
�

3Eg + 2�

)
, (1)

(m∗/me being the electron effective mass in units of the
free-electron mass, � the valence-band SO splitting, and Eg

the fundamental energy gap). This expression was derived
by Roth, Lax, and Zwerdling1 with second-order perturbation
theory, including only the interaction with the valence-band,
and corresponds to the exact Kane model solution at the
conduction band edge.2

More recently, in semiconductor spintronics, there is great
interest in the electron g-factor control or tuning for spin
manipulation, which can be achieved with quantum confine-
ment effects in nanostructures. The electron effective g factor
in III–V QWs (g∗

QW) has been then much investigated both
experimentally3–11 and theoretically,12–19 and the overall g∗

QW
variation with the QW width L is well established. However,
for example, the well-width dependence of the basic anisotropy
�g∗

QW (the difference between in-plane and perpendicular
g∗

QW; see Fig. 1) is still not well understood.
Experimentally, g∗

QW has been studied with the coincidence
method in tilted magnetic fields,3,10 with spin flip Raman
scattering,7 and with spin quantum beats,5,8,9 which allowed
detailed measurements of �g∗

QW as a function of L. Such
anisotropy was predicted by Ivchenko and Kiselev12 with an

envelope-function theory based on the Kane model. The theory
has been used to study the electron g∗ in QWs of GaAs,5,8,9,12

strained InGaAs,9 CdTe,7,11,15 GaN,15 and with bias,13 and has
also been extended to quantum wires and dots.14 However,
its numerical results do not fit very well the quantum beat
data for �g∗

QW in GaAs8,9 and InGaAs9 QWs. The physical
picture for the anisotropy is also not very transparent; it is
ascribed to the difference between the light and heavy hole
effective masses, which are not well described by the Kane
model. Most importantly, it is also still not clear what is the
relation between g∗

QW and the Rashba SO coupling, for which
different indications exist.10,20,21 Finally, despite representing
the most natural QW extension of the analytical bulk result
in Eq. (1),22 the use of the theory in Ref. 12 requires instead
nontrivial numerical calculations.

Here we present an alternative solution for g∗
QW with none

of these problems. A simple and accurate expression is derived
that shows that the anisotropy �g∗

QW is given by a mesoscopic
SO term as the Rashba one. Based on standard envelope
function theory,23,24 we first derive an effective Hamiltonian
for a single electron in an undoped QW in the presence of an
external magnetic field, where the Rashba and the effective
Zeeman couplings appear on an equal footing. Then with
first-order perturbation theory we obtain our expressions for
g∗

QW(L) and �g∗
QW(L).

II. EFFECTIVE HAMILTONIAN

We first consider the magnetic field in the QW plane, along
y, i.e., �B = (0,B,0), and use the Landau gauge with �A =
(zB,0,0). Then in the 8 × 8 k · p Hamiltonian we set ky = 0
(i.e., consider the bottom of the subband), add the bare Zeeman
interaction, make the fundamental substitution �k → �k + e

h̄
�A

(−e being the electron charge), and following Ref. 24, perform
the projection into the conduction band. Finally, by writing the
conduction band envelope function as F = fkx

(z)eikxx ,25 we
obtain

Heff = H0 + HR + HZ,

i.e., an effective Hamiltonian for electrons in a QW with in-
plane magnetic field given by the sum of three terms: a spin-
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independent term,

H0 = −h̄2

2

d

dz

1

m∗(z,ε)

d

dz
+ h̄2(kx + z/l2)2

2m∗(z,ε)
+ Ec(z), (2)

l = √
h̄/eB being the magnetic length; a Rashba SO coupling

term,

HR = −σykx

d

dz
β(z,ε), (3)

h̄
2σy being the y component of the spin operator; and an
effective Zeeman term,

HZ = 1

2

[
g∗

bulk(z,ε) − 4me

h̄2 z
d

dz
β(z,ε)

]
μ0σyB, (4)

μ0 = eh̄/2me being the Bohr magneton and

g∗
bulk(z,ε) = 2 − 4me

h̄2 β(z,ε) + δgrem. (5)

In the above equation, δgrem represents the correction due to
all the remote bands not included in the Kane model.26 The
effective mass and the SO β parameter are given by

1

m∗(z,ε)
= P 2

h̄2

[
2

ε − Ev(z)
+ 1

ε − Ev(z) + �(z)

]
, (6)

and

β(z,ε) = P 2

2

[
1

ε − Ev(z)
− 1

ε − Ev(z) + �(z)

]
; (7)

P being the momentum matrix element. Note that by mea-
suring the electron energy from the bottom of conduction
band of the well material, one has Ec = 0 in the well and
Ec = v0 (= Qc�Eg , Qc being the conduction band offset) in
the barrier; while Ev = −Ew

g and −Eb
g + v0 in the well and in

the barrier, respectively.
First, it is easy to check that the above obtained Heff

reduces exactly to well-known effective Hamiltonians in three
important limits: (1) zero magnetic field24,27—the Kane QW
effective Hamiltonian, with Rashba SO coupling, is recovered,
note that for B = 0 the quantum number kx , which gives
the center of the cyclotron orbit z0 = −l2kx , turns into the
usual in-plane (or parallel) electron wave-vector, and the usual
Rashba term is recovered. (2) No SO interaction (� = 0)25

-Heff for the in-plane QW Landau levels is recovered; and (3)
the bulk limit2—the Kane nonparabolic bulk conduction band
Heff with the effective Zeeman interaction is recovered. Our
Heff generalizes then these models and allows the study of the
interplay between the Rashba and Zeeman effects in QWs, with
an accurate multiband description of the bulk bands around the
semiconductor fundamental gap, without requiring elaborate
numerical calculations.

III. QW g FACTOR

The Zeeman term [Eq. (4)] is seen to be made of a bulk
plus an interface contribution.28 Despite the same coupling
parameter αR = d

dz
β,24 this g-factor interface contribution has,

however, different behavior than HR . For example, while there
is Rashba spin splitting only in asymmetric QWs (in symmetric
QWs the contributions of the two interfaces cancel out), in the
effective g factor the contributions of the two interfaces have

y

x

z

x

z

FIG. 1. (Color online) Illustration of the in-plane and perpendic-
ular magnetic field configurations in a QW with growth direction
along z. The arrow indicates the direction of the field and is seen
from the top in the upper panel. The corresponding classical (real
space) cyclotron orbit is also sketched, illustrating the fact that an
in-plane magnetic field drives the electrons across the QW interfaces
contrary to the perpendicular configuration.

the same sign and are added together in both symmetric and
asymmetric QWs. Since HZ is already explicitly linear with
B, the in-plane g∗

QW can then be obtained with the coefficient
calculated at B = 0. In first-order perturbation theory it means:

g∗
QW =< f (0)|g∗

bulk(z,ε0) − 4me

h̄2 z
d

dz
β(z,ε0)|f (0) > , (8)

where the unperturbed problem H0(B = 0)f (0) = ε0f
(0) cor-

responds to the Kane QW problem.29

Considering now a symmetric QW with interfaces at z =
±L/2 and recalling that β is a step function in z at the interfaces
(where it changes from βw to βb), one finds

g∗
QW = ḡ∗

bulk + 4me

h̄2 δβ L |f (0)(L/2)|2, (9)

where δβ = βw − βb and ḡ∗
bulk = g∗

wPw + g∗
bPb is the QW

averaged bulk g factor, Pi (= ∫
i
|f (0)(z)|2dz) being the

probability to find the electron in the region i = barrier or
well, and we have used |f (0)(L/2)|2 = |f (0)(−L/2)|2. So we
get a g∗

QW, which is given by the averaged bulk g∗ plus an
interface mesoscopic SO contribution, which goes to zero both
for L = 0 and for L going to infinity. In these limits, Eq. (1)
is recovered (except for δgrem).

By rotating the magnetic-field to align it with the growth
direction (i.e., �B = Bẑ), one restores the QW axial symmetry
and the g-factor interface SO term goes to zero (similarly
to the Rashba coupling when the parallel wave-vector goes to
zero). One then obtains the perpendicular g∗

QW simply given by

ḡ∗
bulk, and the anisotropy �g∗

QW = 4me

h̄2 δβ L |f (0)(L/2)|2, i.e.,
equal to the obtained g-factor interface SO contribution. This
result provides a simple physical interpretation for the g∗

QW
anisotropy. From the sketch in Fig. 1, it is indeed intuitively
clear that only for in-plane fields the cyclotron orbit drives the
electrons across the interfaces, so to feel the mesoscopic SO
coupling there.
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FIG. 2. (Color online) Calculated effective electron g factor as a
function of the GaAs quantum well width. The inset compares the
obtained anisotropy with the measurements in Refs. 8 (empty red
symbols) and 9 (filled black symbols). The parameters being m∗

w =
0.067 me, Ew

g = 1.52 eV, �w = 0.34 eV, δgw
rem = −0.50, Eb

g = 1.94
eV, �b = 0.32 eV, δgb

rem = 0.13, and v0 = 0.277 eV.

IV. EXAMPLES

As specific examples, we consider now the g factor in
GaAs and InGaAs QWs and compare with quantum beat
measurements. All one has to do is to calculate ε0 and f (0)(z)
as a function of L (see Appendix) and substitute them in
Eqs. (5) and (9). Figures 2 and 3 show the results obtained
for the electron g factor in lattice matched AlGaAs/GaAs and
InP/InGaAs QWs.30 Besides the in-plane g∗

QW(L) [Eq. (9)],
we plot also g∗

w(ε0), ḡ∗
bulk, and g∗

b (ε0). For L = 0, as expected,
g∗

QW = ḡ∗
bulk = g∗

b (v0) = g∗
b , while for large values of L, both

g∗
QW and ḡ∗

bulk slowly tend to g∗
w. The anisotropy in the smaller

gap InGaAs QW is larger due to the stronger SO coupling and
leads to a corresponding larger range of well-widths in which

FIG. 3. As described in the legend of Fig. 2, obtained g∗
QW

for lattice-matched InGaAs QWs. The parameters used are m∗
w =

0.041 me, Ew
g = 0.813 eV, �w = 0.326 eV, δgw

rem = −1.36, Eb
g =

1.424 eV, �b = 0.108 eV, δgb
rem = 0.24, and v0 = 0.244.

FIG. 4. Obtained effective electron g factor for strained InGaAs
QWs as a function of the well width. The inset shows the calculated
g-factor anisotropy for varying conduction band-offset Qc together
with the experimental results of Ref. 9. The parameters used are
m∗

w = 0.062 me, Ew
g = 1.394 eV, �w = 0.333 eV, δgw

rem = −0.43 for
the InGaAs well and Eb

g = 1.53 eV, �b = 0.34 eV, δgb
rem = −0.50

for the GaAs barrier.

the in-plane (g∗
QW) and perpendicular (ḡ∗

bulk) QW effective g

factors have opposite signs.
It is interesting to note the following hierarchy of ap-

proximations to g∗
QW: first, g∗

w[ε0(L)], which considers and
gives only the nonparabolicity correction to g∗

w,2 due to the
QW zero-point energy; then, ḡ∗

bulk, which includes the barrier
penetration effects and gives the perpendicular g∗

QW (including
nonparabolicity corrections also in g∗

b ), and finally, the in-plane
g∗

QW, which includes also the SO interface contribution.
Another interesting example is the strained GaAs/InGaAs

QWs. First, because for small In concentrations, g∗
w and

g∗
b are similar and the interface contribution becomes then

particularly important; and second, because �g∗
QW in these

QWs has been measured.9 Figure 4 shows that in these QWs
the SO interface contribution plays indeed an important role,
to the point that for L � 10 nm, g∗

QW � g∗
b and presents a

soft maximum near L = 3 nm. In the inset, the results for the
anisotropy calculated with different conduction-band offsets
(i.e., Qc = 0.4,0.5,0.6, and 0.7) are compared with the exper-
imental data. Considering also the uncertainties (not shown)
in the sample In content and well width, the inset becomes an
indication that the band offset in these QWs is closer to 0.4
than to 0.7, in accord to the last entries in this dispute.31

V. CONCLUSIONS

We have presented an envelope-function theory for the
renormalization of the electron g factor by the confining
mesoscopic potential in semiconductor nanostructures. The
obtained results, in particular regarding the solution for the
problem of the electron g factor in semiconductor QWs, give
us enough ground to believe that the theory can be very useful
in the nanostructure electron g factor tuning effort. It provides
a simple analytical expression for g∗

QW(L) [Eq. (9)], which
applies to general III–V QWs and also an intuitive physical
picture for the mesoscopic spin-orbit effect in these structures.
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For instance, the well-known QW g-factor anisotropy is shown
to be due to such mesoscopic spin-orbit (Rashba type) effect
and is then simply explained.

A new effective Hamiltonian has been introduced for
the calculation of the nanostructure electronic states in the
presence of an external magnetic field; which can be used in
the study of the electron g factor and of the interplay between
Rashba and Zeeman interactions in asymmetric QWs, double-
barrier structures, and superlattices as well. The mesoscopic
spin-orbit (Rashba) and Zeeman effects are taken into account
on an equal footing; and the good agreement with independent
spin quantum beat measurements in GaAs and InGaAs QWs
demonstrates the accuracy and potential utility of the theory.
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APPENDIX

In this Appendix, we give the solution used here for the
energy and envelope function of an electron confined in a

square QW, described by the Kane model. It is an exact solution
where the envelope function for the first subband is given
by:

f (0)(z) =
{

Abe
−kb|z| , |z| � L/2

Aw cos kwz , |z| � L/2
(A1)

where kw =
√

2mwε0/h̄
2 and kb =

√
2mb(v0 − ε0)/h̄2 (v0

being the QW barrier height, i.e., the interface conduction band
offset). From the normalization and boundary conditions, one
then obtains

Ab =
{

e−kbL

kb

[
1 + kb

2kw

sin(kwL) + kwL

cos2(kwL/2)

]}−1/2

, (A2)

Aw = Ab

e−kbL/2

cos(kwL/2)
(A3)

and that the subband energy ε0 is given by the lowest solution
of the following transcendental equation:

tan(kwL/2) =
√

mw

mb

(
2mwv0

h̄2k2
w

− 1

)
. (A4)

Recall that the effective masses mw and mb are energy
dependent, i.e., mw,b = mw,b(ε0) as given by Eq. (6).
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