
3Z. Mahmood (ed.), Cloud Computing: Methods and Practical Approaches,
Computer Communications and Networks, DOI 10.1007/978-1-4471-5107-4_1,
© Springer-Verlag London 2013

 Abstract In the context of cloud computing, one server is usually responsible to
run multiple applications and a single application is spread across multiple servers.
On the one hand, the applications need to be able to determine how the cloud
environment should handle its execution, or even the execution of each one of its
components. Yet, on the other hand, the applications should be decoupled from
the middleware that executes them, enabling each one to evolve independently.
Based on this scenario, it is possible to state that metadata-based frameworks are
a suitable option for the interaction between the application and the services
provided by the cloud, since it decouples the application from the environment
and allows a transparent individual confi guration of each class. The goal of this
chapter is to describe the essence of metadata-based frameworks and how they
can be applied to cloud computing. It brings several examples of cloud computing
frameworks and describes some design practices for the framework structure,
scenarios that are suitable for the metadata-based approach and best practices for
metadata confi guration. As a result, after reading this chapter, the reader should
be able to understand the basic functioning of a metadata-based framework and
why it is suitable for cloud applications.

 Keywords Metadata • Metadata-based frameworks • Cloud-based services • Cloud
patterns

 Chapter 1
 Metadata-Based Frameworks in the Context
of Cloud Computing

 Eduardo Martins Guerra and Ednelson Oliveira

 E. M. Guerra (*)
 Laboratory of Computing and Applied Mathematics (LAC) ,
 National Institute for Space Research (INPE), P. O. Box 515 – 12227-010,
 São José dos Campos, SP , Brazil
 e-mail: eduardo.guerra@inpe.br

 E. Oliveira
 Department of Computer Science, Aeronautical Institute of Technology (ITA),
 Praça Marechal Eduardo Gomes, 50 Vila das Acassias ,
 São José dos Campos, São Paulo , Brazil
 e-mail: ednelsonoliveira@gmail.com

4

1.1 Introduction

 Cloud computing applications are executed across multiple servers, and this fact
should be transparent to the developers, especially when the platform is provided
as a service. Additionally, the application should interact with some cloud services,
such as persistence and session management. To allow this transparency, the appli-
cation should be decoupled from the cloud environment services. Since servers
also execute many applications, another important requirement is to enable each
application, or even each component, to confi gure how it should be handled by the
cloud. Combining these two requirements, it is possible to conclude that the cloud
provider should provide frameworks that, at the same time, abstract the cloud envi-
ronment and allow a fl exible confi guration of how each application class should be
handled.

 Many frameworks for developing cloud applications, such as Gaelyk [5], Objectify
[6], Play Framework [7] and Guice [8], use metadata to allow a fi ne- grained confi gu-
ration of the application classes in the cloud environment. Gaelyk is a Groovy toolkit
for web application development for Google App Engine (GAE) [5], which makes a
classic use of metadata to map classes to persistent entities. Objectify implements
the same mapping, but covering all features of the Google App Engine Datastore,
using metadata also to defi ne entities, relationships and listeners.

 Another very interesting use for metadata can be found in Play Framework [7] where
a web framework is deployed in GAE. It uses an annotation to schedule asynchronous
jobs, which can run periodically or in an instant defi ned by expressions. Google Guice
[8] uses metadata to inject dependencies from cloud services into application classes. It
allows implementation classes to be programmatically bound to an interface and then
injected into constructors, methods or fi elds using the @Inject annotation.

 Metadata-based frameworks can be defi ned as frameworks that consume custom
metadata from application classes to customize its behaviour [1]. Common
approaches for metadata defi nition are XML documents, code annotations, code
conventions and even databases. From the developer’s perspective , the focus is on
declarative metadata defi nition and not on method invocation or class extension.
Recent studies reveal that one benefi t in this approach is the decoupling between
framework and application compared to other techniques [2]. This characteristic
makes this kind of solution suitable for cloud application, where it is desirable to
decouple the business rules from the infrastructure.

 The goal of this chapter is to explore the characteristics of metadata-based
frameworks and how they can be used for the development of cloud applications,
considering the concept of platform as a service. Examples of real cloud frameworks
are used to illustrate the practices presented. Additionally, it also presents some
patterns that can be used to structure internally this kind of framework, architectural
scenarios where this approach is used in cloud applications and best practices for
metadata schema defi nition and metadata confi guration. In brief, this chapter
presents a complete set of practices considering distinct perspectives about meta-
data-based frameworks for cloud applications.

E.M. Guerra and E. Oliveira

5

1.2 Frameworks and Metadata

 To understand how a metadata-based framework can be useful on a cloud
 environment, it is important to understand the concepts about frameworks and
metadata defi nition. That knowledge is important to understand how frame-
works can be internally structured to allow behaviour specialization and exten-
sion using classic object-oriented techniques and metadata. This section also
explores the alternatives on metadata defi nition and the basic functioning of a
metadata-based framework.

1.2.1 Framework Concepts

 A framework can be considered an incomplete software with some points that can
be specialized to add application-specifi c behaviour, consisting in a set of classes
that represents an abstract design for a family of related problems. It is more than
well-written class libraries, which are more application independent and provide
functionality that can be directly invoked. A framework provides a set of abstract
classes that must be extended and composed with others to create a concrete and
executable application. Those classes can be application-specifi c or taken from a
class library, usually provided along with the framework [9].

 The main purpose of a framework is to provide reuse in the application, but in a
larger granularity than a class. This reuse of the design provided by a framework is
defi ned by its internal interfaces and the way that the functions are divided among
its components. It can be considered more important than the source code reuse.
According to Jacobsen and Nowack [10], the reuse in a framework is performed in
three levels: analysis, design and implementation. The fl exibility which makes pos-
sible the application behaviour specialization is important to enable its usage in
multiple contexts.

 Another important characteristic of a framework is the inversion of control [11].
Framework runtime architecture enables the defi nition of processing steps that can
call applications handlers. This allows the framework to determine which set of
application methods should be called in response to an external event. The common
execution fl ow is an application to invoke the functionality on an external piece of
software and not the opposite. On the other hand, using the inversion of control
approach, the framework, and not the application, is responsible for the main
execution fl ow. This is also known as the Hollywood Principle [12]: Don’t call us,
we’ll call you .

 A framework can contain points, called hot spots, where applications can cus-
tomize their behaviour [13]. Each type of behaviour which can be customized in a
framework is called variability, and they represent domain pieces that can change
among applications. Points that cannot be changed are called frozen spots. Those
points usually defi ne the framework general architecture, which consists in its basic

1 Metadata-Based Frameworks in the Context of Cloud Computing

6

components and the relationships between them. This section presents the two
different types of hot spots that respectively use inheritance and composition to
enable the application to add behaviour. New approaches in framework develop-
ment can use other kinds of hot spots, such as refl ective method invocation [14] and
metadata defi nition [1].

1.2.2 Metadata Defi nition

 Metadata is an overloaded term in computer science and can be interpreted differently
according to the context. In the context of object-oriented programming, metadata
is information about the program structure itself such as classes, methods and
attributes. A class, for example, has intrinsic metadata like its name, its superclass,
its interfaces, its methods and its attributes. In metadata-based frameworks, the
developer also must defi ne some additional application-specifi c or domain-specifi c
metadata.

 Even in this context, metadata can be used for many purposes. There are several
examples of this, such as source code generation [15], compile-time verifi cations
[16 , 17] and class transformation [18]. The metadata-based components consume
metadata at runtime and use it for framework adaptation. This distinction is impor-
tant because the same goal could be achieved using different strategies [19].

 The metadata consumed by the framework can be defi ned in different ways.
Naming conventions [20] use patterns in the name of classes and methods that
have a special meaning for the framework. To exemplify this, there are the
JavaBeans specifi cation [21], which uses method names beginning with ‘get’
and ‘set’, and the JUnit 3 [22], which interprets methods beginning with ‘test’
as test cases implementation. Ruby on Rails [23] is an example of a framework
known by the naming conventions usage. Other information can also be used
on conventions, such as variable types, method parameters and other class
characteristics.

 Conventions usage can save a lot of confi gurations, but it has a limited expres-
siveness. For some scenarios, the metadata needed are more complex and naming
conventions are not enough. An alternative can be setting the information program-
matically in the framework, but it is not used in practice in the majority of the
frameworks. Another option is metadata defi nition in external sources, like XML
fi les and databases. The possibility to modify the metadata at deploy time or even at
runtime without recompiling the code is an advantage of this type of defi nition.
However, the defi nition is more verbose because it has to reference and identify
program elements. Furthermore, the distance that confi guration keeps from the
source code is not intuitive for some developers.

 Another alternative that has become popular in the software community is the
use of code annotations, which is supported by some programming languages like
Java [24] and C# [25]. Using this technique, the developer can add custom metadata

E.M. Guerra and E. Oliveira

7

elements directly into the class source code, keeping this defi nition less verbose and
closer to the source code. The use of code annotations is a technique called attribute-
oriented programming [26].

 Fernandes et al. [4] presented a study about how the different types of metadata
defi nition are suitable for different framework requirements. Their study analyses
how simple it is to use and develop a framework with some requirements about
metadata. The requirements considered are metadata extension, existence of more
than one metadata schema per class in different contexts and runtime metadata
modifi cation.

1.2.3 Metadata-Based Frameworks

 Metadata-based frameworks can be defi ned as frameworks that process their logic
based on the metadata of the classes whose instances they are working with [1]. In
these frameworks, the developer must defi ne, into application classes, additional
domain-specifi c or application-specifi c metadata to be consumed and processed by
the framework.

 The use of metadata changes the way frameworks are built and how they are used
by software developers. In an interview motivated by the 15 years of the book
 Design Patterns: Elements of Reusable Object-Oriented Software [27], when asked
about how the metadata approach replaces or complements the patterns in the book,
Erich Gamma answered the following [28]:

 While they complement the patterns in DP (referring to the patterns in the book) it can
indeed be the case that meta-programming can replace the design pattern used in a design.
The evolution of JUnit 3 to JUnit 4 comes to mind. JUnit 3 was a small framework that used
several patterns like Composite, Template Method and Command. JUnit 4 leverages the
Annotations meta-programming facilities introduced in J2SE 5.0. The use of the patterns
disappeared and the framework evolved into a small set of annotations plus a test runner
infrastructure that executes the annotated Java code.

 In metadata-based frameworks, some variable points in the framework process-
ing are determined by class metadata. Refl ective algorithms must be generic and, in
some cases, they cannot be applied due to more specifi c requirements for some
classes. Metadata can be used to confi gure specifi c behaviours when the framework
is working with that class.

 The developer’s perspective in the use of those frameworks has a stronger inter-
action with metadata confi guration than with method invocation or class specializa-
tion. In traditional frameworks, the developer must extend its classes, implement its
interfaces and create hook classes for behaviour adaptation. He also has to create
instances of those classes, setting information and hook class instances. Using
metadata-based frameworks, programming focus is on declarative metadata con-
fi guration and the method invocations in framework classes are smaller and
localized.

1 Metadata-Based Frameworks in the Context of Cloud Computing

8

 Figure 1.1 presents the basic processing steps in a metadata-based framework.
It starts with the framework main component being called by the application and
passing an application object as a parameter. It is important to notice that this fi rst
step can be triggered more transparently using aspects or dynamic proxies. Then,
the framework reads class-intrinsic metadata using introspection and additional
metadata, like in annotations or in XML fi les. Cached information can also be used
to avoid unnecessary readings.

 This information is somehow stored inside the framework for a further use. It can
store the meta-information or create and confi gure hook classes based on them.
After that, the framework calls its main logic, which uses the read metadata to adapt
its behaviour and introspection to access and modify the application object. Not all
the metadata-based frameworks follow exactly this process, but it captures a good
abstraction of how they work.

 In the metadata-based approach, the metadata can be considered as one kind of
 hot spot since the framework changes its behaviour based on it. Usually a frame-
work has only one defi ned behaviour for each instantiation; however, using meta-
data it can have a distinct behaviour for each application class received. Internally,
the framework can use the other presented techniques for behaviour adaptation, but
it confi gures them based on each class metadata. One advantage of this approach is
to allow a granular and manageable confi guration of the framework variabilities.

 An important drawback of such kind of framework is the indirection caused by
the usage of metadata. Since the behaviour is generated by metadata confi guration,
an error or inconsistence in class metadata can cause an unexpected result. Since
metadata has a declarative nature, this error is hard to debug and fi nd if the frame-
work does not provide a comprehensive error message.

 Fig. 1.1 Basic execution process of a metadata-based framework

E.M. Guerra and E. Oliveira

9

1.3 Cloud Framework Examples

 The goal of this section is to present some examples of metadata-based frameworks
that can be applied to cloud architectures to exemplify the usage of metadata for
such frameworks. It is not in the scope of this chapter to perform a comparative
study about these frameworks or to present all their features.

 Among many metadata-based frameworks and APIs designed for regular enter-
prise applications, there are some that are not supported by GAE. However, there
are others that are supported with restrictions, such as JPA [40], and those that work
fully without any change, such as Guice [8].

 Because of the wide use of GAE, frameworks for the exclusive use of this platform
raised, such as Gaelyk and Objectify. But there is a trend of creating frameworks that
abstracts the particularities of a cloud architecture and work also in other environ-
ments, such as Play Framework. The following sections present some existing meta-
data-based frameworks used for cloud architectures, focusing on how metadata is
used in the client code and how they are consumed.

1.3.1 Gaelyk

 Gaelyk Framework [5] is a Groovy Web Framework for GAE, which makes use of
metadata to map classes to persistent entities and inject various services in client
classes. Listing 1.1 illustrates the usage of annotation @GaelykBinding, which
indicates this class should be injected by the framework.

 The framework uses dynamic features of the Groovy Language to get all classes with
@GaelykBinding and, at compile time, injects GAE services, such as DatastoreService,
MemcacheService and MailService. Gaelyk implements Active Record Pattern [29],
which adds the data access logic in the domain object. As it is shown in Listing 1.2 , for
an ordinary class to become a persistent entity, it needs to add annotations in the client
class and in their fi elds, identifying keys, not indexed and transient fi elds. The @Entity
 annotation is consumed by the compiler, which injects CRUD methods, such as save,
delete, fi nd and others. When some of these methods are called, the framework uses the

 Listing 1.1 Usage example of @GaelykBinding

1 Metadata-Based Frameworks in the Context of Cloud Computing

10

fi eld annotations to convert the object into a Google DataService entity. Only after this
conversion, the persistence operation is really executed.

1.3.2 Objectify

 An alternative to develop a persistence layer at GAE is the framework Objectify [6],
which implements a metadata mapping between classes and the GAE persistent
storage. Its main differential is that it covers all the Google DataService features. As
previous example, it is necessary to add annotations in client code to identify fi elds
with a distinct behaviour from default. Listing 1.3 shows an example of entities
defi ned with Objectify. In this example, it is possible to observe that annotations are
used to indicate how the framework should handle each fi eld on persistence opera-
tions. It is also possible to defi ne callback methods, which are called at certain times
by the framework. In Listing 1.3 , the method with the @PrePersist annotation will
be called before it is saved on the data storage.

 Listing 1.2 Example of how to defi ne an entity using Gaelyk

 Listing 1.3 Example of how to defi ne an entity using Objectify

E.M. Guerra and E. Oliveira

11

 To confi gure a class as an entity, it is not necessary to add an annotation in the
class, nor to confi gure the class name in an XML fi le. On Objectify the class needs
to be registered previously to its usage. This registration can be done by the invoca-
tion of the method register() in the class ObjectifyService.

 When the application code registers a persistent class, ObjectifyService reads all
 annotations and stores them in memory. When a CRUD method is called, the frame-
work uses the metadata to convert the client entity into a data store entity. After that,
Objectify invokes the Google DataService methods passing the parameters according
to the metadata retrieved.

1.3.3 Play Framework

 Play Framework [7] is Java and Scala [30] web framework that enables to deploy
applications on the cloud application platforms Heroku [31] and GAE. This
framework abstracts the characteristics of the cloud environment, allowing the
application to be deployed also on dedicated servers. Regardless of the deployment
option, it provides a single way to schedule asynchronous jobs with annotations.
Listing 1.4 shows examples of how to do that. For instance, to schedule a job to run
at start time, it is necessary to mark the class with @OnApplicationStart annotation.
It is also possible to schedule a job to run at a specifi c instance, like the example
presented in Listing 1.4 that creates a daily report at 6:00 AM.

1.3.4 Miscellaneous

 The examples of metadata-based framework presented in the previous sections have
focused at persistence, dependence injection and scheduling in framework designed
specifi cally to execute in cloud architectures. This section enumerates some other
examples that can be applied to cloud application. Jersey [32], for instance, can be used
to map using metadata class methods to restful web services that can be accessed

 Listing 1.4 Example of how to schedule jobs in Play Framework

1 Metadata-Based Frameworks in the Context of Cloud Computing

12

remotely. On the web tier, the framework VRaptor [33] can be used in the development
of web controllers, using annotations to determine which requests each method should
handle. Hibernate Validator [34] uses metadata, defi ned as annotations or XML docu-
ments, to defi ne constraints to validate application class instances. At last, JAXB [35]
is an API which maps application classes to XML documents, also using metadata.

 Finally, it is important to emphasize that the main goal of the Java EE 7 specifi ca-
tion [36], which is in development, is to allow enterprise applications to be deployed
in dedicated servers or in cloud environments. It is for this reason it is possible to
speculate that some specifi cations that already integrate the stack will be adjusted,
and others will be created in order to support the cloud requirements. It is expected
that applications that follow the standard should be able to be ported between differ-
ent application servers and cloud providers. Since the current Java EE specifi cation
provides a metadata-based API, the techniques presented in this chapter will be very
important to develop its features for cloud providers.

1.4 Internal Structure

 The internal architecture of a framework is composed of hot spots and frozen spots
which respectively represent points with fi xed functionality and points where
behaviour can be extended and adapted. The potential of reuse of a framework is
directly related to its capacity to adapt to different requirements and applications.
This is achieved by providing hot spots at the right places, allowing the application
to extend its behaviour when necessary.

 In frameworks that aim to provide functionality for cloud-based applications, the
fl exibility requirements can cover different kinds of needs. The fi rst one is to enable
each application to adapt the framework behaviour to its needs, considering that
many applications will share the same resources. The second is to enable an application
to be built independently from the cloud providers, allowing each one to adapt the
implementation according to its infrastructure. And fi nally, the third is to enable
the evolution of the cloud services without affecting the deployed applications.

 This section is based on a pattern language that studied several metadata-based
frameworks and identifi ed recurrent solutions on them [1]. The practices pre-
sented focus mainly on metadata reading and processing, providing alternatives to
extend behaviour on each mechanism. It is important to state that, despite all
practices can be used successfully on the same framework, they should be intro-
duced according to the framework needs.

1.4.1 Metadata Reading and Processing Decoupling

 Some metadata-based frameworks consume metadata and execute its behaviour at
the same time. The coupling between these two concerns can prevent the introduc-
tion of extensions on both mechanisms. So, when designing this kind of framework,

E.M. Guerra and E. Oliveira

13

the fi rst requirement to be considered is the decoupling between metadata reading
and execution. To achieve this, a solution can be the introduction of a class that
represents metadata at runtime and is used to exchange data between these two
mechanisms. A representation of this solution is presented in Fig. 1.2 .

 The MetadataReader is the class responsible to read metadata wherever it is
defi ned and to create an instance of MetadataContainer representing metadata.
Further, the MetadataContainer is accessed by the FrameworkController, which in
this scenario has the role to receive the framework client calls and execute the main
functionality. The MetadataContainer became the protocol between the other com-
ponents, allowing their decoupling.

 This decoupling is also important to allow the MetadataContainer to be stored
and reused, avoiding unnecessary metadata readings. In Fig. 1.2 this solution is
represented by the class Repository, which can intermediate the communication
between FrameworkController and MetadataReader. This class can create a cache
of the instances of MetadataContainer already retrieved, improving framework per-
formance after the fi rst call. The Repository can also be a central component where
metadata can be retrieved easily by all the framework components.

1.4.2 Flexibility on Metadata Reading

 By the introduction of a component responsible to read metadata, it is possible to apply
solutions to this mechanism transparently from the other parts of the framework.
As presented previously in this chapter, there are several ways to defi ne metadata, such
as code conventions, code annotations and external sources (XML documents, data-
bases). Depending on the application requirements, a different metadata defi nition
strategy can be more suitable. For instance, the usage of code annotations are less ver-
bose and closer to the source code, but an external source should be used when you
need to be able to change confi gurations at deploy time without recompiling the code.

MetadataContainer

+getMetadataContainer()

MetadataReader

create

+execute()

FrameworkController

*

1

use +getInstance()

+getMetadata()

«singleton»
Repository

use

use

 Fig. 1.2 Decoupling between metadata reading and processing

1 Metadata-Based Frameworks in the Context of Cloud Computing

14

 To allow the fl exibility on metadata reading, the metadata reader can be defi ned
by an interface which can have more than one implementation. Each implementa-
tion can provide logic to read metadata from a different kind of source or with a
distinct data schema. The structure of this solution is presented in Fig. 1.3 . The
interface AbstractMetadataReader represents an abstraction of a metadata reader
component, and the ConcreteMetadataReader represents an implementation of it.

 Based on the presented structure, it is also possible to create a chain of metadata
readers, enabling more than one metadata source to be considered at the same time.
In Fig. 1.3 , the pattern Composite [27] is used on the class CompositeMetadataReader
to implement this reading sequence. A Chain of Responsibility [27] is another
option for this implementation. That solution enables the introduction of metadata
readers that reads only a partial portion of metadata. This enables the application to
create metadata readers that can consider domain-specifi c code conventions to infer
part of the information. That also allows the existence of classes like the
AdapterMetadataReader, which obtain metadata from the Repository of other
frameworks, avoiding metadata redundancy and duplication.

1.4.3 Metadata Schema Extension

 An important fl exibility requirement that a metadata-based framework can have
is to enable the extension of the metadata schema associated to an extension on
the framework behaviour. In other words, the application should be able to create
new types of metadata elements and to execute application classes when that

+populateMetadataContainer()

«interface»
AbstractMetadataReader

+populateMetadataContainer()

ConcreteMetadataReader

+populateMetadataContainer()

CompositeMetadataReader

*

+populateMetadataContainer()

AdapterMetadataReader

+getOtherContainer()

«singleton»
OtherRepository OtherMetadataContainer

use

MetadataContainercreate

 Fig. 1.3 Providing fl exibility on metadata reading

E.M. Guerra and E. Oliveira

15

piece of metadata is processed by the framework. The structure necessary to
enable metadata extension as a hot spot is presented in Fig. 1.4 .

 During the metadata reading process, a ConcreteMetadataReader should delegate
the metadata reading of each piece of metadata to an associated class, which in this
work is called ReaderDelegate. The concept of metadata piece can vary with the con-
text and with the metadata defi nition strategy. For instance, if code annotations are
being used, the metadata piece can be a single annotation. As another example, if meta-
data is defi ned in an XML document, a metadata piece can be an XML element.

 Listing 1.5 presents an example of how an annotation can be associated to its
delegate metadata reader. A framework annotation, in this example @Associated-
DelegateReader, can be used to defi ne the ReaderDelegate implementation which

+populateMetadataContainer()

ConcreteMetadataReader

+readMetadata()

ConcreteReaderDelegate

+ readMetadata()

«interface»
ReaderDelegate

use

populate

+getMetadataProcessor()

MetadataContainer

+execute()

FrameworkController

+process()

«interface»
MetadataProcessor

+process()

DefaultMetadataProcessor

+process()

ConcreteMetadataProcessor

create

 Fig. 1.4 Framework structure to enable metadata extension

 Listing 1.5 Example of association between annotation and ReaderDelegate

1 Metadata-Based Frameworks in the Context of Cloud Computing

16

should be used to interpret the metadata. To fi nd these custom annotations, the
ConcreteMetadataReader should search on all class annotations searching for the
ones annotated with @AssociatedDelegateReader. Then, an instance of the asso-
ciated delegate reader class should be created and used to interpret the
 annotation.

 As a result, the DelegateReader should return an instance responsible to
execute the behaviour associated with that piece of metadata, which is called a
 MetadataProcessor. This MetadataProcessor is added to the MetadataContainer
associated to its respective code element. During the metadata processing, part of
the framework execution is delegated to the Metadata Processor.

 So, based on this solution, an application which needs to extend metadata should
defi ne the new metadata type, a metadata reader delegate and a Metadata Processor.
The created metadata type should be associated to the metadata reader delegate,
which should return the Metadata Processor as the result of the reading.

1.4.4 Metadata Processing Layers

 The behaviour extension by defi ning new metadata types can be appropriate for
some scenarios, but in other situations it can be necessary to add application- specifi c
logic on the entire metadata processing. There are also some framework domains in
which it is hard to isolate the processing for each piece of metadata. In these cases,
it is important to provide an extension point that can interfere with the whole meta-
data processing.

 A solution to this issue found for some frameworks is to divide the processing
logic on different layers. Each layer is responsible for part of the framework
logic, and the FrameworkController is responsible to coordinate their execution.
The solution is represented in the diagram in Fig. 1.5 . The interface
ProcessingLayer should be implemented by the ConcreteProcessingLayers and
represent a framework extension point. Following this structure, new layers with
application-specifi c logic can be easily introduced, and their execution order can
also be customized.

+execute()

FrameworkController

+executeLayer()

ConcreteProcessingLayer

+executeLayer()

«interface»
ProcessingLayer

1*

MetadataContainer use

+getInstance()
+getMetadata()

«singleton»
Repository

access

access

 Fig. 1.5 Metadata processing layer structure

E.M. Guerra and E. Oliveira

17

1.5 Architectural Scenarios

 As presented in the previous section of this chapter, there are several frameworks
for cloud architectures which use the metadata-based approach. This section pres-
ents some architectural scenarios where the usage of metadata as a hot spot is a
suitable solution. Some of the scenarios presented here are based on documented
architectural patterns for metadata-based frameworks [3], but contextualized for
cloud environments.

 The uses presented here are not only based on the existing frameworks designed
for cloud architecture but also for other kind of software. Even if the usage of some
of these solutions is restricted to the cloud environment, their successful usage in
similar scenarios but on other reference architectures can indicate a potential usage
in cloud frameworks.

1.5.1 Dependency Injection Indication

 Dependency injection [37] is a pattern where the object dependencies are injected
externally by some class that creates the instance or manages its life cycle. Common
ways of dependency injection are by constructor, by assessor or by an interface
method. This practice decouples the class for its dependence, since the concrete
instance that is injected is defi ned and created externally.

 Metadata can be used to indicate which fi elds should be injected in a class.
Additionally, metadata can also be used to indicate characteristics of the instance
that should be injected. Spring framework [38] uses metadata defi ned in an XML
fi le to inject the dependencies; however, new versions also support annotation-based
injection. Java EE specifi cation [39] also uses annotations to indicate the fi elds
which should be used for injection. An example of the cloud environment is Gaelyk
[5], which uses annotations to indicate that a class should receive instances that
represent the GAE services.

 The decoupling is a consequence of dependency injection that is enhanced by the
usage of annotations, which defi nes which fi elds should be injected. That strategy
can be very useful for cloud frameworks to enable different ways for creating and
making available to the application classes the services provided by the cloud, such
as for sending emails and connecting to data stores.

 As a consequence, the provider can have the same application deployed in differ-
ent environments and inject in its classes different implementations of the same
service. Additionally, the cloud provider can evolve the implementation which is
injected in the application class without impacting on it. In brief, this practice allows
the cloud framework to use different strategies to create and handle the life cycle of
its services instances.

 Figure 1.6 illustrates how the metadata-based dependency injection happens.
 The cloud service should provide an interface which should be referenced by the
components in the application. The fi elds which should receive the service injection

1 Metadata-Based Frameworks in the Context of Cloud Computing

18

use metadata to indicate that to the framework. In turn, the framework reads the
application class metadata, obtains a cloud service instance by the most appropriate
way and injects it in the application class instances in their initialization.

1.5.2 Entity Mapping

 It is very common for applications to have different representations of the same
domain entity. For instance, a business concept represented as a class at runtime can
be persisted in a database, presented in a user interface or sent to other applications
on web services. The conversion between the different entity representations can
generate a very repetitive and error-prone code for the several entities of the system.
This practice also couples the application to the other specifi c representation, for
instance, a database schema or an XML format.

 Metadata can be associated with one representation of an entity, confi guring how
it can be mapped to another representation. It should add information about how
each characteristic is mapped and converted to the other representation. The most
common use is to map between classes and databases, following the pattern meta-
data mapping [29]. Examples of cloud frameworks which use this kind of mapping
are Gaelyk [5] and Objectify [6]. The framework Spring Data [41] also proposes the
mapping between interface methods to database queries using code conventions.

 It is important to state that this solution is not exclusive for mapping to persis-
tence storages. For instance, when mapping to a web service, a method could be
mapped to a service and an entity could be mapped to a parameter.

 Cloud providers usually support persistence by using nonrelational databases.
The mechanisms of such storages may be different according to different kinds of

Cloud Environment

Cloud Service

Cloud
Framework

Application
Component

service
interface

annotated
field

read metadata
and inject the

service

 Fig. 1.6 Dependency injection based on metadata

E.M. Guerra and E. Oliveira

19

parameters. Metadata can confi gure the persistent classes with constraints about
how it should be persisted, such as which fi elds are unique identifi cations, which
should not be persisted and even the data format that each one should be stored.
That mapping can help in the decoupling between the cloud application and how the
data is actually stored. As a consequence, it can improve application portability
among cloud providers.

 Figure 1.7 depicts the characteristic of an architecture that uses a metadata-based
entity mapping. The class that represents an entity in the application should be con-
fi gured with custom metadata, which maps it to the other representation. When the
application components need to access the information from the other representa-
tion, they invoke functionality in an API provided by the framework. The EntityClass
is used by the application to interact with the framework. After, the framework
should access the API from a component which interacts with the other representa-
tion, making calls according to the entity metadata to set and retrieve information.
For instance, the component called Representation Interface could be a native driver
to access a database.

1.5.3 Confi gured Callback Methods

 When an application executes embedded on a server, sometimes it needs to know
about events that happen on the server. A design pattern appropriate for this sce-
nario is Observer [27], in which an application class needs to realize an interface
and receives invocations on its methods when the events happen. That can be a
solution to enable application classes to receive notifi cations from events that hap-
pen on the cloud provider side. The problem of this approach is that the application
needs to be coupled with the cloud framework interface, and consequently with the
parameter types of its methods. That is specially a problem when this interface
needs to evolve and when the application needs to be adapted to different kinds of
cloud environments.

Cloud Environment

Representation
InterfaceCloud

Framework

to access entity
representation

API

Entity
Representation

Application
Services

EntityClass

set and
retrieve data

read metadata
and access
information

mapped using
metadata

interact
with

 Fig. 1.7 Metadata-based entity mapping

1 Metadata-Based Frameworks in the Context of Cloud Computing

20

 Another common use of metadata is to indicate callback methods in the
 application classes. By using an annotation or other kind of metadata, the applica-
tion class indicates which methods should be invoked, instead of implementing an
interface. Then the framework looks into the class methods and invoked the
confi gured ones when appropriate.

 A very common use of this solution is in application frameworks that handle
HTTP requests, such as JSF [42] and VRaptor [33], which were initially designed
for regular web applications but can also be used in cloud architectures. This solu-
tion is also applied on persistence frameworks, such as Objectify [6], to callback
application classes before or after persistence operations, such as saving or loading.
 Play Framework [7] uses annotations in classes to execute them when the applica-
tion starts or on scheduled jobs. The scheduling specifi cation is an instance of how
metadata can defi ne fi ne-grained conditions for method execution.

 Usually cloud applications abstract the environment in which it is deployed,
since it does not have much knowledge about where it is located. For instance, it can
use the data storage service available on the cloud provider without actually know-
ing what the implementation is used. However, sometimes it is important for the
application to know when some events happen on the server. For instance, the events
can be related to persistence operations, like loading and persisting, or to session
migration, like when a session is transferred among servers.

 By using a metadata-based approach, the application classes became decoupled
from the framework interfaces and only need to handle necessary events. That
increases the application portability and even allows the cloud provider to evolve its
event model without breaking existing applications. The usage of metadata also
allows the addition of constraints, which enables a granular model for event han-
dling. For instance, suppose that a method should be invoked before the migration
of a session to another server, the addition of constraints in the metadata can confi g-
ure for that method to be invoked only when the session attribute “logged” is true.

 Figure 1.8 illustrates the structure of this solution. The framework should read
the metadata from the application classes and identify which methods should be

Cloud Environment

Cloud
Framework

send
events

Cloud
Infrastrucuture

+callbackMethod()

ApplicationClass

read metadata
and invoke
methods

configured
with metadata

 Fig. 1.8 Invoking callback methods confi gured with metadata

E.M. Guerra and E. Oliveira

21

invoked and in what conditions. After that, the framework should observe the cloud
infrastructure events and delegate the execution to the application class method
when appropriate.

1.5.4 Other Architectural Uses

 The previous sections presented the uses of metadata for frameworks developed
specifi cally for cloud architectures. However, there are other scenarios where meta-
data can be applied that are found more often on general purpose framework or on
the ones design for other kind of architecture. The goal of this section is to describe
more briefl y these other scenarios, which can potentially be applied in cloud frame-
works in the future.

 Sometimes, requirements demand that the application iterates through the fi elds
of some classes, executing some logic for each one. In this context, metadata can be
applied to allow the creation of a general algorithm, which processes each fi eld
according to the metadata found for each one. Examples of this are Hibernate
Validator [34], which validates the constraints of each fi eld from an instance, and
 Esfi nge Comparison [43], which compares all the fi elds from two instances of the
same class. Metadata is used respectively in each framework to defi ne each fi eld
constraint and to defi ne the comparison criteria.

 On server-based applications, it is common for a class to be managed by the server,
having its life cycle controlled by it. In these scenarios, usually it is used as a proxy, a
decorator [27] or even an aspect to intercept the method invocation and transparently
add some kind of functionality. Accordingly, metadata can be used to confi gure
parameters about the functionality that should be executed. For instance, in Java EE
standard [36], annotations are used to confi gure constraints about security and trans-
action management. For cloud providers, for instance, metadata could confi gure a
method-level cache which should use the memory cache available as a cloud service.

 Finally, metadata can also be used in application classes to enable an automatic
generation of customized graphical interfaces. Metadata can be used to defi ne con-
straints about how each fi eld should be represented on screen. This use is appropri-
ate when the service model is “application as a service” and the user is able to edit
the domain entities structure. This is often enabled in dynamic languages and on
 Adaptive Object Model architectural style [44]. SwingBean [45] is an example of a
framework that uses metadata to generate tables and forms.

1.6 Final Considerations

 One cloud computing service model is known as platform as a service. In this
model, it is provided a computing platform and a solution stack where applications
should be deployed. The cloud provider should have available tools, libraries and

1 Metadata-Based Frameworks in the Context of Cloud Computing

22

frameworks, which should be used by the applications to access services and
resources.

 This chapter presents how metadata-based frameworks can be used in the con-
struction of cloud-based applications, helping to decouple the application from
cloud provider details. Many examples of cloud framework which use metadata
were presented, along with some details about how metadata is consumed and how
it is used. A set of practices to develop the internal structure of this kind of frame-
work were also presented, in order to introduce the main kinds of hot spots which
can be provided. At last, the chapter presented some architectural scenarios in which
the usage of metadata is suitable to.

 Despite the metadata approach used in several frameworks designed for the
cloud, there are many applications that can still be explored. The goal to make trans-
parent for the application the environment where it is deployed is far from being
reached. However, some advances were made, like the some features from Play
Framework [7]. The new standard for Java enterprise applications [36], which when
this chapter was written was a work in progress, represents another effort to achieve
this goal. In this context, to use metadata to defi ne framework hot spots can be a
good strategy to achieve the decoupling needed for this portability.

 References

 1. Guerra, E., Souza, J., Fernandes, C.: A pattern language for metadata-based frameworks.
In: Proceedings of the 16th Conference on Patterns Languages of Programs, Chicago, 28–30
August 2009

 2. Guerra, E.: A conceptual model for metadata-based frameworks. Ph.D. thesis, Aeronautical
Institute of Technology, São José dos Campos (2010)

 3. Guerra, E., Fernandes, C., Silveira, F.: Architectural patterns for metadata-based frameworks
usage. In: Proceedings of the 17th Conference on Pattern Languages of Programs, Reno,
16–18 October 2010

 4. Fernandes, C., Guerra, E., Nakao, E., Ribeiro, D.: XML, annotations and database: a compara-
tive study of metadata defi nition strategies for frameworks. In: XML: Aplicações e Tecnologias
Associadas (XATA 2010), Vila do Conde, 19–20 May 2010

 5. Zahariev, A.: Google app engine. In: Seminar on Internetworking, Espoo, 27 April 2009
 6. Google: Objectify Framework. http://code.google.com/p/objectify-appengine/ (2012).

Accessed 9 June 2012
 7. Reelsen, A.: Play Framework Cookbook. Packt Publishing, Birmingham (2011)
 8. Venbrabant, R.: Google Guice: Agile Lightweight Dependency Injection Framework. Apress,

New York (2008)
 9. Johnson, R., Foote, R.: Designing reusable classes. J. Object-Oriented Program 1 (2), 22–35 (1988)
 10. Jacobsen, E., Nowack, P.: Frameworks and patterns: architectural abstractions. In: Fayad,

M., Schmidt, D., Johnson, R. (eds.) Building Application Frameworks: Object-Oriented
Foundations of Frameworks Design. Wiley, New York (1999)

 11. Fayad, M., Schmidt, D., Johnson, R.: Application frameworks. In: Fayad, M., Schmidt, D., Johnson,
R. (eds.) Building Application Frameworks: Object-Oriented Foundations of Frameworks Design.
Wiley, New York (1999)

 12. Bosch, J., et al.: Framework problems and experiences. In: Fayad, M., Schmidt, D., Johnson,
R. (eds.) Building Application Frameworks: Object-Oriented Foundations of Frameworks
Design. Wiley, New York (1999)

E.M. Guerra and E. Oliveira

http://code.google.com/p/objectify-appengine/

23

 13. Pree, W.: Design Patterns for Object-Oriented Software Development. Addison Wesley, Reading
(1995)

 14. Foote, B., Yoder, J.: Evolution, architecture, and metamorphosis (Chap. 13). In: Vlissides, J.,
Coplien, J., Kerth, N. (eds.) Pattern Languages of Program Design 2, pp. 295–314. Addison-
Wesley Longman, Boston (1996)

 15. Damyanov, I., Holmes, N.: Metadata driven code generation using .NET framework.
In: International Conference on Computer Systems and Technologies, 5, 2004, Rousse.
pp. 1–6 (2004)

 16. Quinonez, J., Tschantz, M., Ernest, M.: Inference of reference immutability. In: 22nd European
Conference on Object-Oriented Programming, 2008, Paphos. pp. 616–641 (2008)

 17. Ernest, M.: Type annotations specifi cation (JSR 308). http://types.cs.washington.edu/jsr308/
specifi cation/java-annotation-design.pdf (2011). Accessed 15 May 2012

 18. Hel, J., Eichhorn, P., Zwitserloot, R., Grootjans, R., Spilker, R., Koning, S.: Project Lombok.
 http://projectlombok.org/ (2012). Accessed 15 May 2012

 19. Fowler, M.: Using metadata. IEEE Softw. 19 (6), 13–17 (2002)
 20. Chen, N.: Convention over confi guration. http://softwareengineering.vazexqi.com/fi les/pat-

tern.html (2006). Accessed 15 May 2012
 21. Java Community Process: JavaBeans(TM) specifi cation 1.01 Final release. http://download.

oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/ (1996). Accessed 15 May 2012
 22. Massol, V., Husted, T.: JUnit in Action. Manning, Greenwich (2003)
 23. Ruby, S., et al.: Agile Web Development with Rails, 3rd edn. Pragmatic Bookshelf, Raleigh (2009)
 24. Java Community Process: JSR 175: a metadata facility for the java programming language.

 http://www.jcp.org/en/jsr/detail?id=175 (2003). Accessed 15 May 2012
 25. Miller, J.: Common Language Infrastructure Annotated Standard. Addison-Wesley, Boston (2003)
 26. Schwarz, D.: Peeking inside the box: attribute-oriented programming with Java 1.5. http://missing-

manuals.com/pub/a/onjava/2004/06/30/insidebox1.html (2004). Accessed 15 May 2012
 27. Gamma, E., et al.: Design Patterns: Elements of Reusable Object-Oriented Software.

Addison- Wesley, Reading (1994)
 28. O’Brien, L.: Design patterns 15 years later: an interview with Erich Gamma, Richard Helm and

Ralph Johnson. InformIT. http://www.informit.com/articles/article.aspx?p=1404056 (2009).
Accessed 15 May 2012

 29. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, Boston (2002)
 30. Odersky, M. et al.: An overview of the Scala programming language. Technical report IC/2004/640.

EPFL, Lausanne (2004)
 31. Heroku: Heroku cloud application platform. http://www.heroku.com/ (2012). Accessed 9 June 2012
 32. Java.net: Jersey API. http://jersey.java.net/ (2012). Accessed 9 June 2012
 33. Freire, A., Silveira, P.: Vraptor – simple and quick web framework. In: Anais do 5o Workshop

sobre Software Livre, Porto Alegre, pp. 39–42 (2004)
 34. RedHat: Hibernate validator. http://www.hibernate.org/subprojects/validator.html (2012). Accessed

8 June 2012
 35. Java Community Process: JSR 222: JavaTM Architecture for XML Binding (JAXB) 2.0.

 http://jcp.org/en/jsr/detail?id=222 (2009). Accessed 8 June 2012
 36. Java Community Process: JSR 342: JavaTM Platform, Enterprise Edition 7 (Java EE 7)

specifi cation. http://jcp.org/en/jsr/detail?id=342 (2012). Accessed 8 June 2012
 37. Fowler, M.: Inversion of control containers and the dependency injection pattern. http://www.

martinfowler.com/articles/injection.html (2004). Accessed 8 June 2012
 38. Walls, C., Breidenbach, R.: Spring in Action, 2nd edn. Manning, Greenwich (2007)
 39. Java Community Process: JSR 318: Enterprise JavaBeansTM 3.1. http://jcp.org/en/jsr/

detail?id=318 (2010). Accessed 8 June 2012
 40. Java Community Process: JSR 317: JavaTM Persistence 2.0. http://jcp.org/en/jsr/detail?id=317

(2009). Accessed 8 June 2012
 41. Spring Source: Spring projects – Spring data. http://www.springsource.org/spring-data (2012).

Accessed 8 June 2012
 42. Java Community Process: JSR 344: JavaServerTM Faces 2.2. http://jcp.org/en/jsr/detail?id=344

(2011). Accessed 8 June 2012

1 Metadata-Based Frameworks in the Context of Cloud Computing

http://types.cs.washington.edu/jsr308/specification/java-annotation-design.pdf
http://types.cs.washington.edu/jsr308/specification/java-annotation-design.pdf
http://projectlombok.org/
http://softwareengineering.vazexqi.com/files/pattern.html
http://softwareengineering.vazexqi.com/files/pattern.html
http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
http://www.jcp.org/en/jsr/detail?id=175
http://missingmanuals.com/pub/a/onjava/2004/06/30/insidebox1.html
http://missingmanuals.com/pub/a/onjava/2004/06/30/insidebox1.html
http://www.informit.com/articles/article.aspx?p=1404056
http://www.heroku.com/
http://jersey.java.net/
http://www.hibernate.org/subprojects/validator.html
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=342
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=317
http://www.springsource.org/spring-data
http://jcp.org/en/jsr/detail?id=344

24

 43. Esfi nge: Esfi nge Framework. http://esfi nge.sf.net/ (2012). Accessed 15 May 2012
 44. Yoder, J., Johnson, R.: The adaptive object-model architectural style. In: Proceedings of the

IFIP 17th World Computer Congress – TC2 Stream/3rd IEEE/IFIP Conference on Software
Architecture: System Design, Development and Maintenance, Montreal, 25–29 August 2002

 45. Sourceforge: SwingBean. http://swingbean.sf.net/ (2012). Accessed 15 May 2012

E.M. Guerra and E. Oliveira

http://esfinge.sf.net/
http://swingbean.sf.net/

