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ABSTRACT 

An innovative, evolvable hardware method for the automatic design of optical 
systems is presented and verified. The proposed method is based on a multi-
objective memetic optimization algorithm. The multi-objective approach 
simultaneously, but separately, addresses the image quality, tolerance, and 
complexity of the system. The memetic technique breaks down the search for 
optical designs in three different parts or phases: optical glass selection, 
exploration, and exploitation. The optical glass selection phase is based on the 
unification of two previously published methods with new contributions to repair 
practical implementation issues and incorporates a multi-objective approach. 
This new glass selection method supports the choice of the most appropriate 
set of glasses for the system under design. The glass selection phase limits the 
available glasses from hundreds to just a few, drastically reducing the design 
space and significantly increasing the efficiency of the automatic design 
method. The exploration phase is based on an evolutionary algorithm (EA), 
more specifically, on a problem-tailored generalized extremal optimization 
(GEO) algorithm named optical GEO (O-GEO). The new EA incorporates many 
features customized for lens design such as optical system codification and 
diversity operands. The non-dominated systems found in the exploration phase 
are refined by a local search based on the damped least square method in the 
exploitation phase. As a result, the method returns a set of non-dominated 
solutions generating a Pareto front. Our method resulted in alternative and 
useful insights about the trade-off solutions for a lens design problem. The 
efficiency of the proposed method is verified through examples, showing 
excellent results for both simple systems and real-world problems. 
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UMA ABORDAGEM MEMÉTICA E MULTIOBJETIVO PARA O PROJETO 
AUTOMÁTICO DE SISTEMAS ÓPTICOS 

RESUMO 

Método inovador de hardware evolutivo para o projeto automático de sistemas 
ópticos é apresentado e validado. O método proposto se baseia em um 
algoritmo memético multiobjetivo de otimização. A abordagem multiobjetivo 
busca otimizar simultaneamente, mas de forma separada, a qualidade da 
imagem, a tolerância e a complexidade do sistema. A investida da técnica 
memética divide a busca por projetos de sistemas ópticos em três fases 
distintas: seleção de vidros ópticos, exploração e intensificação. A fase de 
seleção de vidros ópticos é baseada na unificação de dois métodos 
previamente publicados, incorporando novas contribuições que contornam 
problemas de implementação prática e faz uso de uma abordagem 
multiobjetivo. Este novo método de seleção de vidros auxilia na escolha ótima 
do conjunto de vidros mais apropriado para o sistema sendo projetado. A fase 
de seleção de vidros restringe os tipos de vidros ópticos disponíveis de 
centenas para alguns poucos tipos, desta forma, reduzindo drasticamente o 
espaço de projeto e consequentemente aumentando significativamente a 
eficiência do método de projeto automático. A fase de exploração é baseada 
em um algoritmo evolutivo, mais especificamente em uma versão customizada 
do algoritmo de otimização extrema generalizada (GEO), a qual foi nomeada 
O-GEO. Este novo algoritmo evolutivo incorpora várias características 
personalizadas para o projeto de lentes, como a codificação usada para 
representar um sistema óptico e os operadores de diversidade. Os sistemas 
não-dominados encontrados durante a fase de exploração são refinados por 
um algoritmo de busca local baseado no algoritmo de mínimos quadrados 
amortecidos durante a fase de intensificação. Como resultado, o método 
retorna um conjunto de soluções não-dominadas que formam a fronteira de 
Pareto. O método proposto retorna um conhecimento profundo, alternativo e 
extremamente útil acerca das soluções de compromisso envolvidas no projeto 
de sistemas ópticos. A eficiência do método proposto é comprovada através de 
exemplos que mostram excelentes resultados, tanto para o projeto de sistemas 
simples como para problemas reais.  
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1 INTRODUCTION 

Optical systems are arrangements of distinct optical elements that together are 

able to manipulate light (visible, ultraviolet, and/or infrared electromagnetic 

waves) aiming to accomplish a specific task. The scope of this thesis is limited 

to discussing image-forming optical systems. In this class of systems, the main 

optical elements are lenses and mirrors, which are capable of changing the 

direction of the light wavefront by means of the refraction and reflection 

phenomena, respectively. 

The task of the optical designer is to find the optical element shapes, materials, 

and arrangements that maximize the image quality as required. The optical 

designer must accomplish this optimization using the first-order optical 

requirements, such as the effective focal length, aperture, field of view, spectral 

range, object distance, and entrance and exit pupil position, while operating 

within the optical and mechanical constraints of the system. 

Optical design is a branch of science that is more than three centuries old. In 

order to truly design an imaging optical system, it is necessary to be able to 

perform the ray path calculation through optical surfaces. The physical and 

mathematical backgrounds needed for ray path calculation were already 

available in the first half of 17th century. (HECHT, 1987; VASILJEVIC, 2002). 

However, until the beginning of 20th century, almost all optical system 

developments were made based on the empirical loop method of constructing, 

testing, and changing. This development technique was preferred due to the 

difficulties and time required for performing ray trace calculations, which had to 

be performed using only a log table. To make matters worse, the lack of 

accuracy in measuring the surface radii and the refraction index of materials 

would make the theoretical calculations useless. 

With the simplification of the third-order aberration theory in the end of the 

nineteenth century, derived from the work of Philipp Ludwig von Seidel’s work 

presented in 1857, and with the popularization of mechanical computing 

machine in the early part of the twentieth century, ray tracing techniques 
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became more popular for designing optical systems. The typical time spent by a 

trained person to trace a single ray through an optical surface, with the help of a 

mechanical calculating machine, is about ten minutes. Based on this, it takes a 

whole week of labor (40 hours) to trace twenty rays through a twelve surface 

(six lens) system. Note that twenty is the minimum number of rays necessary to 

diagnose an optical system with moderate aperture and field of view, while six 

lenses is the number of elements in an average optical system (VASILJEVIC, 

2002). With this scenario, it would be nonsense to discuss the optimization of 

optical systems. 

The arrival of the digital computer in the 1940s was a turning point for scientific 

calculation, in general, and for ray tracing, in particular. In a very short period, 

the typical time for tracing a ray through a single optical surface improved from 

ten minutes to one second. From this time on, optical system optimization was 

investigated, developed, and applied (VASILJEVIC, 2002; MALACARA; 

MALACARA, 2004). 

Current personal computers are capable of tracing millions of rays per surface 

per second. For instance, the commercial optical design software ZEMAX 

running on an Intel Core 2 Quad6600 CPU can trace approximately thirty million 

rays per surface per second. With this considerable improvement in the speed 

of computation, evolutionary optimization (EO) methods, which are considered 

computationally heavy, have been used in optical design since the 1990s. This 

class of optimization algorithms has the potential to overcome some of the 

limitations faced by classical methods when applied to an optical design. The 

state of the art is to use EO methods not only for optimization but also for 

automatically designing systems from scratch. 

1.1. Objective 

The aim of this thesis is to present a novel evolvable hardware method for the 

automatic design of image-forming optical systems. The proposed methodology 

is based on a multi-objective (BRANKE, et al., 2008; ZITZLER, et al., 2004) 

memetic (MOSCATO, 1989; MOSCATO; COTTA, 2003) approach, which is 
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capable of addressing fabrication issues during the design phase such as the 

system complexity and tolerance, and which is able to determine the most 

appropriate glass materials for the system under design. 

1.2. Motivation 

The Brazilian National Institute for Space Research (INPE) has been working in 

the past decades to develop low orbit satellites for Earth observation. The main 

satellite programs currently under development are the China-Brazil Earth 

Resources Satellite (CBERS) and the Multi-Mission Platform (PMM), presently 

with the CBERS 3&4 and AMAZONIA-I missions, respectively. In both cases, 

Brazil plays an important role in the development of the payloads, which include 

remote sensing optical instruments that have been entirely developed in Brazil. 

The INPE has also invested in the development of satellite attitude optical 

sensors. One example is the Autonomous Star Tracker, currently under 

development at the Aerospace Electronics Division in the Institute. 

The future development of optical payloads and optical attitude control 

instruments is supported by the INPE Master Plan 2011-2015 (INPE, 2011) as 

well as by the PNAE-National Program of Space Activities 2012-2021 (AEB, 

2012) documents.  

SABIA-Mar and AMAZONIA-II are examples of future missions that will carry 

optical remote sensing payloads. Despite not explicitly mentioning CBERS 

future missions, both documents point in the direction of CBERS program 

continuation, which will probably include satellites with optical remote sensing 

instruments.  

Optical attitude sensors, as star trackers, are used on virtually any three-axis 

stabilized satellite. In this way, the missions foreseen in Brazilian space 

program provide a range of opportunities for the developments of this type of 

optical instruments. 

These space optical instruments are very complex and sophisticated. The INPE 

has invested more than a hundred million reais (R$) in the development of 
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multispectral (visible and near-infrared) medium spatial resolution remote 

sensing cameras MUX, WFI, and AWFI, which will be onboard the CBERS 3&4 

and AMAZONIA-I satellites, respectively. The amount of the investments 

demonstrates the complexity and sophistication of these subsystems. Based on 

the challenges that have been faced during the development of these cameras, 

it is possible to affirm, with confidence, that the optics of these instruments are 

one of the critical parts of the subsystem in terms of design, fabrication, 

assembling and testing.  

The MUX contract, for instance, has suffered considerable delays due to 

difficulties in making the optical system perform as specified. The MUX optical 

design performs extremely well “on paper,” but the design is so sensitive that 

the development of the physical system is very complicated. The fabrication for 

the MUX engineering model (EM) optics began around October 2005. Only in 

September 2007 were the first optical results obtained which complied with the 

requirements. Even now, with the experience obtained from the fabrication of 

the EM, the qualification model (QM) and the first flight model (FM), this still not 

a straightforward task. Therefore, the optical fabrication continues in the project 

critical path. 

Furthermore, to the best of our knowledge, there are no studies presenting 

design techniques that could address the issues and doubts faced during the 

developments of the mentioned projects in a complete, satisfactory, and 

accessible way. Therefore, we find it necessary to develop more effective 

optical design tools.  

Based on the foreseen future of optical instruments development at INPE, 

together with the issues faced during past and current projects in this area, 

associated with the lack of optical design methods addressing our problems, It 

seems reasonable to affirm that development of new effective optical design 

techniques will be relevant and useful for current and future projects at INPE 

and that this effort is aligned with the Institute interests.  
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1.3. Methodology and thesis structure 

This document is divided in two parts. The first part presents the necessary 

background for the comprehension of the proposed method. The second part 

presents the automatic design methodology, results, and conclusions.  

In Chapter 2, we discuss the basics for understanding the optical design 

problem. Chapter 3 provides a brief discussion about the classical and 

evolutionary methods applied to the lens design. In Chapter 4, we present the 

generalized extremal optimization algorithm and some of its variants.  

We used a top-down methodology to develop the automatic optical design 

methods presented herein. Based on a broad literature survey about the 

optimization methods applied in lens design with a special focus on evolutionary 

optimization methods, we identified some potential contributions to improve the 

current available methods.  

From these points, we selected the most important and relevant topics to be 

developed in this Ph.D. research. As a result, we formulated an overview of the 

automatic lens design method and delineated the key focal points and phases 

of the proposed method. The methodology overview is presented in Chapter 5.  

Our method is composed of three phases, which we describe in Chapter 6. All 

of these phases have relevant scientific contributions that are an important part 

of the method.  

In order to put the method to work, it was necessary to develop an environment 

for the optical system simulation as well as define and develop the metrics for 

each objective considered in the different phases. The simulator and objective 

function descriptions can be found in Chapter 7. 

The proposed method was verified step by step through examples, including a 

real case example. The description of each problem, the obtained results, and 

some comparisons and discussions about the obtained results are discussed in 

Chapter 8.  
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Chapter 9 brings discussions about the method limitations and insights for 

future work development, aiming to overcome the current method restrictions. 

Finally Chapter 10 wraps up this work with the conclusions. 

1.4. Contributions of this thesis  

This section provides a superficial overview of the scientific contributions of this 

thesis. The contributions cited at this point will be clarified and better 

understood along the development of the work. In the Conclusions Chapter, we 

get back to this topic where all the scientific contributions of this thesis will be 

summarized again. 

In the novel approach for the automatic design of optical systems proposed in 

this thesis, many new things were explored, resulting in original scientific 

contributions in different levels.  

The memetic and multi-objective approach is something not explored together 

before in lens design. The memetic line of attack is responsible for breaking the 

automatic design process in three phases: glass selection; exploration (global 

search) and exploitation (local search), as well as for incorporating in the 

exploration phase different problem domain knowledge.  

The use of a glass selection phase is one of the contributions of the proposed 

automatic design algorithm. Moreover, the developed glass selection 

methodology has its own original contributions as the generalized formulation 

proposed, the metric for color correction evaluation and the multi-objective 

approach used.  

The evolutionary optimization algorithm used in the exploration phase is based 

on the on Generalized Extremal Optimization algorithm (DE SOUSA et al., 

2003), but totally tailored for the problem of lens design. This algorithm named 

Optical GEO is one of the contributions of this work. One of the outstanding 

contributions of this algorithm is the possibility of changing the number of lenses 

in the system during the optimization.  
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The multi-objective approach used during the exploration phase takes into 

consideration fabrication aspects never explored before in this approach: 

system tolerancing and complexity (number of lenses used in the design).  

The image quality metric as well as the tolerancing metric used during the 

exploration phase were developed with evolutionary algorithms in mind and are 

also original contributions of this work.  

!  
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2 OPTICAL DESIGN PROBLEM  

As mentioned in Chapter 1, the goal of the optical designer is to find the optical 

elements arrangement, formats, and materials that provide the best possible 

image quality by complying with the system first-order optical requirements and 

imposed mechanical and optical constraints.  

Basically, two phenomena affect the image formation: diffraction and optical 

aberrations. Nothing can be done about the diffraction effects; its influence is 

fixed for a given system aperture. On the other hand, the optical aberrations are 

a function of the optical system construction parameters and can be changed. 

In this case, maximizing the image quality requires minimizing the optical 

aberrations.  

2.1. Optical aberrations  

Optical aberrations can be defined as the error or deviation in the interception 

position of a ray in the focal plane related to a specific reference coordinate, 

which is normally taken as the paraxial position of the principal ray (SHANNON; 

WYANT, 1980). 

Figure 2.1 shows the optical aberration rising for a single lens optical system. 

Note that rays coming from the infinitesimal point !!,!!  from the object plane 

do not collapse into a single infinitesimal point! !′! ,!′!  in the focal plane.  

If an optical system can be described by ! construction parameters, any ray 

traveling through the system can be specified by six parameters: three 

specifying the Cartesian coordinates !,!,!and !, and three specifying its 

direction cosines !,!,!and !. Moreover, each ray must satisfy the following 

conditions:  

1) !! + !! +!! = 1; 

2) The Cartesian coordinates shall satisfy the equation of the 

surface the ray belongs to, ! = ! !,! .  
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As a consequence of these conditions, the ray specification can be reduced to 

four parameters: !,!, !,! . 

If !!,!!  are the coordinates of an infinitesimal object point and if we have a 

perfect optical system, all rays traced through the system from this point will 

collapse in the coordinates !′,!′  in the image plane: 

 !! = !.!! (2.1) 

 !′ = !.!!!. (2.2) 

Here, ! is defined as the optical system lateral or transverse magnification. 

 

 

Figure 2.1 - Example of optical aberrations in the image formation of an infinitesimal 
object point.  

Nevertheless, as perfect optical systems do not exist, each ray traced through 

the system will suffer some deviation from its expected position in the focal 

plane. This can be mathematically written in the following form: 

 !′ = !!!! + !"′ !!!,!!, !!!, !!!, !!, !!,⋯ , !!  (2.3) 

 !′ = !!!! + !"′ !!!,!!, !!!, !!!, !!, !!,⋯ , !! !!! (2.4) 

where !!, !!,⋯ , !!! ! are the optical system construction parameters, 

and!!"′!and !"′ are so-called ray aberration functions. 

From Equations (2.3) and (2.4), we can see that the image quality of an optical 

system can be evaluated by the mean square sum of the aberrations for all 

Object'plane'
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possible rays that can be traced through the system. This can be written 

mathematically by the following equation (VASILJEVIC, 2002): 

 Ψ = !"′! + !"′! !!!!!!!!!!!!
!!!!!!!!!!!!

. (2.5) 

Consequently, optimizing the image quality of an optical system requires 

minimizing the function Ψ.  

Unfortunately, the function Ψ cannot be analytically computed. However, its 

value can be estimated through the trace of a set of ! rays. In practice, some 

object points (3 or 5) are chosen, from which a finite number of rays are traced 

through the system. Therefore, instead of an integral over a continuous 

function, we have a sum over a discrete set of values (VASILJEVIC, 2002): 

 Ψ = 1
! !"!′! + !"!′!

!

!!!
, (2.6) 

where ! represents a specific ray. The discrimination between !"!′ and !"!′ is 

not relevant, so we can write Equation (2.6) as follows (VASILJEVIC, 2002): 

 Ψ = 1
! !! !!, !!,⋯ , !!

!
!

!!!
. (2.7) 

However, the problem statement is still incomplete because the constructional 

parameters themselves are not entirely unconstrained. In this case, we need to 

minimize Ψ while fulfilling the boundary conditions represented by a set of ! 

inequalities of the form (VASILJEVIC, 2002): 

 

!! !!, !!,⋯ , !! ≥ 0
!! !!, !!,⋯ , !! ≥ 0
!! !!, !!,⋯ , !! ≥ 0

⋮
!! !!, !!,⋯ , !! ≥ 0.

!!! (2.8) 

These boundary conditions ensure that (i) all optical elements can be physically 

manufactured, (ii) the distance between successive optical elements is 
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physically feasible, (iii) the first-order optical requirements comply with the 

specified requirements, and (iv) the other optical, mechanical, and physical 

constraints are respected.  

2.2. Optical system design variables 

For an image-forming optical system, the most common construction 

parameters or design variables !!, !!,⋯ , !! ! are (i) the radius of curvature of 

each optical surface (lenses or mirrors). (ii) the lens central thicknesses, (iii) the 

air space between the optical elements, and (iv) the optical glass type used for 

the lens construction. Figure 2.2 shows examples of the most common design 

variables. 

 

Figure 2.2 - The most common design variables in an image forming optical system.  

Imaging optical systems may also have other variables including surface conic 

constants, coefficients of a polynomial equation describing a non-conic surface, 

decenter and tilt of the optical components in a non-rotationally symmetrical 

systems, and so on.  

In general, the variables are real numbers with the exception of the optical glass 

materials. On the other hand, the glass materials are discrete variables. There 

are a finite number of glass types commercially available (on the order of 

hundreds). The optical characteristics of each type of glass is fixed and very 

well defined by the supplier. Therefore, the optical design must be limited to the 

materials available. 

 

Central Air Thicknesses  
 Central glass Thicknesses 

Optical Glass Type 

Radius of Curvature 
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2.2.1. Chromatic aberration and glasses as variables 

Glasses are solid, isotropic, homogeneous, dielectric, or non-conducting 

materials, which are transparent to a specific wavelength range of 

electromagnetic light. These materials are excellent for manipulating light 

through diffraction and are widely used in the construction of optical elements. 

However, glasses have an undesirable characteristic for lens design: the speed 

of light inside materials depends on the frequency. Therefore, the index of 

refraction (or dielectric constant) of an optical material is a function of the light 

frequency (or wavelength). This variation occurs due to the interaction of the 

electromagnetic waves with electric dipoles present in dielectric materials or 

glasses (HECHT, 2002). This difference in the refraction index makes different 

light wavelengths experience slightly different deviations when passing through 

the same optical element. This phenomenon gives rise to the so-called 

chromatic aberration. In Figure 2.3, the chromatic aberration from a single 

lens is illustrated. We can easily observe that the different wavelengths, which 

experience different deviations, form images at different positions. 

The chromatic aberration in image-forming optical systems is a well-known 

issue studied since Isaac Newton’s time (17th century). Around 1730, Chester 

Moor Hall, an amateur astronomer, concluded that the chromatic aberration of 

refractive (dioptric) optical systems could be reduced if two different kinds of 

glasses were used in the construction of a telescope objective. Hall used crown 

and flint, which are low and high index dispersion glasses, respectively, and the 

resulting lens is known today as an achromatic doublet (POLASHENSKI, 2001). 

As pointed out by Sigler (1986), the control of chromatic aberration has been 

one of the most studied issues in optical design. 
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Figure 2.3 - Chromatic aberration schematic representation. 

Figure 2.4 illustrates the combination of two glasses reducing the chromatic 

aberration. The negative lens (or divergent lens) is made out of flint glass, 

producing dispersion higher than the one generated by the positive lens (or 

convergent lens) made out of crown glass. In this way, the negative lens can 

partially compensate for the dispersion produced by the positive lens, keeping 

the light convergent.  

 

Figure 2.4 - Schematic representation for the partial chromatic aberration correction in 
an achromatic doublet. 

In this way, glasses are very important design variables when a reduced 

achromatic aberration is desired, especially for systems covering a wide 

Chroma'c)Aberra'on))
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spectral range, as is the case in remote sensing cameras. The glass selection 

for optical design is a science apart. 

Glass materials in optical systems are discreet variables; therefore they cannot 

be directly optimized by classical methods, as we will show in the next chapter. 

For this reason, some optical design tools (ZEMAX, 2011a; ORA, 2009) and 

works in this area (RAYCES; ROSETE-AGUILAR, 1999) propose techniques 

for treating glasses as continuous variables. However, based on our own 

experience, this approach is not satisfactory, especially in the design of wide 

spectral range systems. 

!  
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3 OPTIMIZATION METHODS IN LENS DESIGN  

A lens system can be represented as a point !!, !!,⋯ , !! ! in an !-dimensional 

parameter space. Each point is associated with one objective function (OF) 

value, which is also called a merit function (MF) in optical design. The OF value 

defines the system performance. The optimization process of an optical system 

consists in transferring the initial point in the parameter space to another 

position that improves the MF, which, in our case, is a decrease in value. 

Repeating this process, the designer may eventually reach a satisfactory 

solution (RAYCES; ROSETE-AGUILAR, 2002). 

The way the solution walks in the parameter space during the optimization 

process depends on the optimization method used. Generally speaking, these 

methods can be divided in two families: deterministic and metaheuristic 

methods.  

Deterministic or classical optimization methods are analytical direct search-for-

optimum methods, generally driven by OF gradient information. Therefore, 

deterministic methods can be only directly applied to continuous and 

differentiable functions (COLAÇO; DULIKRAVICH, 2011; LIN et al., 2012; 

CAVAZZUTI, 2013).  

Metaheuristic methods, on the other hand, are non-deterministic, generally 

stochastic, optimization methods that make few assumptions about the 

optimization problem being solved. Metaheuristics are normally used for global 

search purposes, but a globally optimal solution is not guaranteed. Natural, 

organic processes inspire many of these methods. Metaheuristics are 

recommended for highly nonlinear, multimodal, discontinuous and multivariate 

problems. Some examples of methods of this class are: simulated annealing, 

tabu search, evolutionary optimization (genetic algorithms, evolution strategies, 

genetic programming), ant colonies, particle swarms, scatter search, immune 

systems, and so on (BLUM; ROLI, 2003; GONZALEZ, 2007; BIANCHI et al., 

2009; TALBI, 2009). 
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In this thesis, our discussion is restricted to the most used classical and 

metaheuristic methods of optimization applied in optical design. To the best of 

our knowledge, the most common metaheuristic methods used are evolutionary 

optimization methods. Therefore, we will restrict our discussion of metaheuristic 

methods to only evolutionary methods of optimization. 

3.1. Classical optimization methods in optical design  

Based on a broad literature study, the first optimization method used in the 

optical design field was the classical least square method, proposed by Rosen 

and Eldert (1954). However, this method was quickly abandoned due to 

numerical instability problems, which arise from the inversion of the near 

singular matrix present in all practical cases. Some years later, Girard (1958) 

was the first author to suggest the damped least square (DLS) method, also 

known as the Levenberg–Marquardt algorithm, for the optimization of optical 

systems. The DLS is the most used optimization method in lens design 

(RAYCES; ROSETE-AGUILAR, 2004; MALACARA; MALACARA, 2004; 

VASILJEVIC, 2002). Other classical methods as the Spencer optimization 

method (SPENCER, 1963; RAYCES; ROSETE-AGUILAR, 2004), Grey 

orthonormal optimization method (VASILJEVIC, 2002), and the Glatzel adaptive 

optimization method (GLATZEL; WILSON, 1968, RAYCES; ROSETE-

AGUILAR, 2002; 2004) have also been used in lens design.  

Since these methods were presented during the 1950s and 1960s, they are well 

established and have been widely used for more than half century in optical 

systems design. The DLS method, for instance, is the main optimization tool in 

most of the optical design software commercially available today. For this 

reason, this method was selected as the local search algorithm used in the 

exploitation phase in this thesis. A detailed description of the DLS method is 

given in the next section.  
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3.1.1. The damped least square method in lens design 

For all classical optimization methods, a valid initial input solution 

!! !!!", !!",⋯ , !!!  must be provided. To start the optimization, the variables (or 

design parameters) and the MF need to be defined.  

To apply the DLS method to the lens design problem, it is necessary to assume 

that the relationship between the design parameters !!, !!,⋯ , !! ! and the 

aberration functions !! !!, !!,⋯ , !!  is continuous, differentiable, and real inside 

the allowed parameter domain.  

In this case, the functions !! !!, !!,⋯ , !!  at !! can be approximated by a linear 

function using a truncated Taylor series: 

 !!(!!, !!,⋯ , !!) = !!! !! + !!!
!!! !!

!

!!!
⋅ !! − !!! .!!! (3.1) 

Equation (3.1) is an approximation valid only in the neighborhood of !!. In this 

case, it is necessary to limit the absolute increment !! − !!!  of each design 

parameter !! to keep the solution inside the valid region. As a consequence, our 

goal is to minimize the optical aberration while restricting !! − !!!  to a trusted 

region. Mathematically, this can be expressed by the following objective 

function: 

 Ψ = 1
!!!

!!!
!! !! !!, !!,⋯ , !! − !! !

!

!!!
+ ! ⋅ !! − !!!

!
!

!!!
. (3.2) 

The first part of Equation (3.2) is a general way of writing the merit function in 

Equation (2.7), where we included both the target values !! and weighting 

factors !!. The target values !! allow us to include the problem constraints into 

the OF. Each one of the ! inequalities shown in Equation (2.8) is transformed 

by an equation that assumes a zero value when the constraint is respected and 

that assumes a non-zero value when the constraint is violated. Therefore, the 

functions !! !!, !!,⋯ , !!  do not represent only the optical aberrations that are 
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related with the image quality but also represent the problem constraints of 

other physical natures. For optical aberrations, !! is normally zero. To overcome 

scaling problem from combining functions of different physical natures, the 

weighting factor !! is included.  

The second part of Equation (3.2) controls the change of the design variables, 

assuring the validity of the linearization of functions !! !!, !!,⋯ , !! . Here, ! is a 

positive real number called the damping factor. This number controls the 

compromise between minimizing the quadratic values of functions 

!! !!, !!,⋯ , !! − !! and limiting the step size of the design variables in the 

solution space. 

Substituting Equation (3.1) into Equation (3.2) we find: 

 Ψ = 1
!!!

!!!
!! !!! !! + !!!

!!! !!

!

!!!
⋅ !! − !!! − !!

!!

!!!
+ ! ⋅ !! − !!!

!
!

!!!
. (3.3) 

Now ! in Equation (3.3) is not just the number of traced rays to access the 

system aberrations, but it is the number of traced rays pus the number of 

constrains included in the merit function equation.  

It is possible to rewrite Equation (3.3) in a matrix form as follows: 

 Ψ = c ⋅ !! + ! ∙ Δ! !!! !! + ! ∙ Δ! + ! ⋅ Δ!! ∙ Δ!, (3.4) 

where ! = 1 ! !!!
!!!  and  

!! =
!! !! − !!
!! !! − !!

⋮
!! !! − !!

,!! =
!!! !!"
!!" !!!

⋯ !!!
⋯ !!!

⋮ ⋮
!!! !!!

⋱ ⋮
⋯ !!"

,Δ! =
!! − !!"
!! − !!"

⋮
!! − !!!

, 

!! =
!! 0
0 !!

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ !!
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and !!" = !!!
!!! !!

≃ !!!
!!! !!

. 

To minimize Ψ, we require !!!" = 0. Solving this equation, we find:  

 ΔX = − !! ⋅!! ⋅ ! + ! ⋅ ! !! ⋅ !! ⋅!! ⋅ !!, (3.5) 

where ! is the identity matrix. For full details of the calculation, see Appendix A. 

In practice, Equation (3.5) is applied successively in an iterative form. Matrixes 

!! and ! are recomputed at each iteration. The final point !! + Δ!  found in the 

current iteration is the initial point for the subsequent iteration. Normally, the 

iterations continue until there is no improvement in the OF or the algorithm has 

reached the maximum number of iterations.  

This method is very stable numerically. The damping factor is added to the 

diagonal of matrix !! ⋅!! ⋅ ! . This reduces the difference between the largest 

and smallest eigenvalues, avoiding numerical errors during the matrix inversion.  

A more general solution for the problem allows individual damping factors for 

each variable. In this case, a diagonal !×! damping matrix ! is used. The 

matrix elements !! are real, positive values. In this case, the solution of the 

problem becomes 

 ΔX = − !! ⋅!! ⋅ ! + ! ⋅ ! !! ⋅ !! ⋅!! ⋅ !!.!! (3.6) 

Many methods for calculating the individual damping factors have been 

proposed (VASILJEVIC, 2002). One of the simplest forms is given by 

 !! = !!"!
!

!!!
!. (3.7) 

With this definition, the higher the sensitivity of the function !! with respect to a 

construction parameter !!, the greater the damping factor !! !and the smaller the 

step of !! in the interaction. 
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The selection of the damping factors plays an important role in the DLS method 

because the damping factors can make the difference between good and bad 

convergence.  

3.1.2. Final considerations about the classical optimization methods in 
lens design 

As mentioned earlier, the classical methods are useful and have been used for 

a long time in optical design. However, they have some weaknesses that limit 

their performance: 

a) Classical methods are only able to find local minima. The methods are 

based on the gradient vector (or Jacobian matrix) asymptotically 

moving from the starting point to the local minimum in the design 

space that the starting point belongs to. 

b) The optical aberration functions are not linear with respect to the 

design construction parameters. This can cause numerical instability in 

methods that presume a linear behavior and can necessitate the 

definition of damping factors controlling the step variables in each 

iteration.  

c) The design space is complex. The problem is multimodal with many 

hills and valleys in the topography of the design space. Local valleys, 

which result in low performance optical systems, are traps in the 

design space for classical optimization methods. This complexity can 

also result in very close initial configurations having completely 

different solutions. 

d) It is necessary to provide an initial feasible solution before applying a 

classical optimization method. The final system performance depends 

on the initial solution provided. Normally, the system architecture does 

not change during the optimization process. 
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e) Classical methods require continuous and differentiable variables. In 

this case, they cannot directly deal with glass as variables. Also, the 

number of elements used in an optical system cannot be changed 

during the optimization process. 

f) Classical methods cannot directly solve multi-objective problems. 

3.2. Evolutionary optimization methods in optical design  

In the last decades, evolutionary algorithms (EA) have been used for problem 

solving in several fields of knowledge. An estimated 3,000 or more papers are 

published every year in this area (FOGEL, 2006). Though the first known 

research using EAs occurred in the 1950s, EAs remained relatively unknown in 

the scientific community for more than thirty years. Because these methods are 

computationally demanding, this delay can be explained in part by the lack of 

powerful computers. Originally, these algorithms were proposed as machine 

learning problems and for the simulation of biological evolutionary processes 

(BACK et al., 1997). In fact, in 1962, Hans-Joachim Bremermann was probably 

the first to claim that biological evolution is an optimization problem (EIBEN; 

SMITH, 2004). Currently, EAs are mostly applied for solving optimization 

problems (BACK et al., 1997). 

These algorithms attempt to mimic the evolution of living organisms using the 

natural selection theory proposed by Charles Darwin. According to the theory 

introduced in his 1859 book “On the Origin of Species”, individuals that are 

better adapted to their environment are more likely to survive and reproduce 

than other members of the species (LACERDA; CARVALHO, 1999). 

The basic principle of EA depends on the fact that the environmental pressure 

over the individuals of a species causes the natural selection that increases the 

quality of the population in subsequent generations. The basic elements of EA 

are (i) the process of individual selection based on the fitness in the 

environment, and (ii) the diversity operators (in general, recombination and 

mutation) responsible for generating new individuals (EIBEN; SMITH, 2003).  
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The generic flowchart for EA is shown in Figure 3.1. Generically speaking, EA 

starts by generating a random initial population. In the next step, the fitness of 

each individual in the population is computed. Then, a subset of individuals is 

selected stochastically to serve as parents. The parental selection is based on 

the individual fitness value; that is, individuals that are well adapted to the 

environment are more likely to be selected for the mating pool. Offspring are 

created by random variation of the parents in the form of mutations and/or 

genetic recombination. The fitness of each new individual is computed. From 

the population formed by parents and offspring, a subset of individuals is 

selected following a defined criterion. The selected subset forms the next 

generation. This process occurs repeatedly from generation to generation, 

which hopefully contains progressively better individuals, until a stopping 

criterion is satisfied (FOGEL, 2006). 

 
Figure 3.1 - Generic evolutionary algorithm flowchart. 
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When these algorithms are applied for optimization problems, the individuals in 

the population are, in fact, potential solutions for the problem, and the individual 

fitness is proportional to the merit function of the solution it represents.  

In the specific case of optical design, each individual carries, in a codified form, 

the information of each variable of the optical system, such as the radius of 

curvature, the air and glass thickness, and the material properties of each 

surface. Lens design optimization is a minimization problem. In this case, as the 

MF (or OF) decreases, the individual fitness increases.  

Evolutionary algorithms have some advantages over classical methods: 

a) Provide a much higher probability of finding the global minimum, 

b) Do not use either the gradient, Jacobian, or derivative information from 

the OF, 

c) Have large application domains requiring little to no information about 

the problem being solved, 

d) Can be applied in problems with any kind of variable: continuous, 

discreet, or a mix of both, 

e) Can be robust and well suited for complex search spaces without 

getting stuck in local minima, 

f) Do not require an initial solution for a good convergence, 

g) Are simple to implement and parallelize, and  

h) Can be applied to multi-objective problems without transforming them 

to a mono-objective problem. 

This class of algorithms is considered computationally demanding; however, 

this drawback may not be a huge problem for modern computational systems. 
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The fast evolution in the performance of computers in the last decades enabled 

the successful use of evolutionary methods to solve optimization problems in 

different areas. In optical design, these methods have been used since the 

1990s with the promise of addressing the limitations of classical methods.  

Different evolutionary optimization approaches have been used in lens design: 

genetic algorithms (VAN LEIJENHORST et al., 1996; ONO et al., 1998; 

MOORE, 1999; CHEN; YAMAMOTO, 2000; VASILJEVIC, 2002; BEAULIEU et 

al., 2002; SUKAMA; KOBAYASHI, 2005; FANG et al., 2007), evolution strategy 

(VASILJEVIC, 2002; THIBAULT et al., 2005; NAGATA, 2004), and genetic 

programming (BEAULIEU et al., 2002; KOZA et al., 2005; JONES et al., 2006). 

All of these studies have reported good results. 

However, by studying the previous research, we discovered an opportunity to 

improve the algorithms by designing from scratch, using a multi-objective 

approach, customizing the EA for the problem, and optimizing the glass 

selection before the system is optimized.  

The multi-objective approach is infrequently used in lens design, but in our 

opinion, there are a number of possible applications. Some studies have 

reported the use of multi-objective optimization approaches in lens design 

(JOSEPH et al., 2007; ONO et al., 1998; GAGNÉ et al., 2008). However, the 

previous research has not discussed the use of this technique in designing 

optical systems, foreseeing fabrication issues such as system sensitivity and 

complexity.  

Despite many papers claiming the possibility of designing a lens system from 

scratch, we found only a single implementation (KOZA et al., 2005; JONES et 

al., 2006) where the number of lenses is used as design variable in the search. 

For a true from scratch design, only the system requirements must be provided. 

When the number of lenses is preset, there is a huge constraint in the design, 

which restricts the exploration of the design space. 
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Many of the studies applying EA in lens design made few or no customizations 

to the algorithm for the specific problem (JOSEPH et al., 2007; BEAULIEU et 

al., 2002; GAGNÉ et al., 2008; THIBAULT et al., 2005; CHEN; YAMAMOTO, 

1996; MORRE, 1999; VAN LEIJENHORST et al., 1996; NAGATA, 2004). This 

lack of adaptation limits the algorithm performance. 

As we have already discussed, glasses are important design parameters for 

color correction, but they are discrete variables that cannot be directly optimized 

with classical methods. On the other hand, EAs have no limitations in dealing 

with discrete variables. In spite of that, many EO methods applied in lens design 

(CAGNÉ et al., 2008; THIBAULT et al., 2005; CHEN; YAMAMOTO, 1996; 

BEAULIEU et al., 2002; SAKUMA; KOBAYASHI, 2005) do not take advantage 

of this. Furthermore, the studies that do report the use of glasses directly as a 

discrete variable (ONO et al., 1999; FANG et al., 2007; LI et al., 2010; VAN 

LEIJENHORST et al., 1996; KOZA et al., 2005; VASILJEVIC, 2002) do not do 

so in an efficient way, as it will be pointed out in section 5.2.1. 

Based on the weaknesses found in the methods presented in the literature, we 

present a new method that addresses all these discussed issues. The proposed 

method makes use during the exploration phase of a variant of the generalized 

extremal optimization (GEO) algorithm. In the next chapter, we present the 

background of the GEO algorithm and some of its variations before we discuss 

our proposed version of the GEO algorithm in Chapter 6.  

!  
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4 GENERALIZED EXTREMAL OPTIMIZATION (GEO) ALGORITHM AND 
ITS VARIATIONS 

In this chapter, we present the GEO algorithm in its canonical form as well as in 

some of its proposed variations: M-GEO and GEOreal1. Other GEO variations do 

exist; however, this text is restricted to the mentioned algorithms because they 

are necessary and sufficient for understanding the method we propose in this 

thesis.  

4.1.  Canonical GEO 

De Sousa et al. (2003) presented the GEO as a generalization to the extremal 

optimization (EO) algorithm proposed by Boettcher (2000). Both are based on 

the simplified evolutionary model of Bak-Sneppen, which was developed to 

study self-organized criticality in ecosystems (BAK; SNEPPEN, 1993). 

The codification used in GEO is binary. In a similar method to that used in GA, all 
all design variables are stacked in a single sting of bits representing a candidate 

solution for the problem as shown in  

Figure 4.1. Nevertheless, GEO has some advantages over other evolutionary 

algorithms: it has only one free adjustable parameter !, its implementation is 

very simple, and its performance is competitive for test functions as well as for 

real problems (DE SOUSA et al., 2003; DE SOUSA et al., 2004; GALSKI et al., 

2005; GALSKI, 2006; ABREU et al., 2005; MURAOKA et al., 2006; ABREU et 

al., 2007; DE SOUSA et al., 2007; GALSKI et al., 2007; SWITALSKI; 

SEREDYNSK, 2008; CUCO et al., 2009; SCHNEIDER et al., 2009; CASSOL et 

al., 20011; SWITALSKI; SEREDYNSK, 2012a, 2012b). Figure 4.2 shows the 

flowchart of the canonical GEO. 

Unlike GA, the GEO bit string does not represent the chromosome of a 

candidate solution, but it represents different species coexisting in an 

ecosystem.  
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Figure 4.1 - GEO candidate solution representation. Each bit can be interpreted as a 

species within an ecosystem. Four bits representation were used here just 
as an example. The number of bits used by each variable can be defined 
according to the problem needs.  

 
Figure 4.2 - Canonical GEO flowchart.  

A fitness value is associated with each species of a candidate solution. The 

fitness is proportional to the gain or loss the objective function suffers when the 

bit is flipped. The bits are than ranked from the least adapted bit, ! = 1, to the 

most adapted bit, ! = !, where ! is the rank position and ! the number of bits in 

the string. Then, one bit is randomly selected with uniform probability. The 

selected bit has a probability of flipping given by 

 ! ! = !!!, (4.1) 

where ! must be a non-negative real value.  

 

 0 1 0 1 
 

1 1 0 1 
 

1 0 0 1 0 0 0 1 
 

x1 x2 x10 xn 

• • • • • • 

!1.!Randomly!initialize!a!string!of!bits!that!codifies!!!design!variables.!

2.!For!each!bit!assign!a!fitness!proportional!to!the!gain!or!loss!caused!in!
the!objective!function!when!the!bit!is!flipped.!

3.!Rank!the!bits!according!to!their!fitness!number!
from!! = 1!(least!adapted)!to!!.!

4.!Mutate!a!design!variable!according!to!the!probability!distribution!
!(!) ∝ !!!, !!!!1,2,… , !!

!

5.!Stop!criterion!met?!

6.!Return!the!best!solution!found!during!the!search.!

No!

Yes!



31!

If the selected bit is flipped, the resulting species set is transferred to the next 

generation where the fitness assignment, bit ranking, and random bit selection 

is repeated. Otherwise, a new bit is randomly selected until a bit is flipped. The 

process is repeated from generation to generation until the stopping criterion is 

fulfilled. The best bit configuration (solution) found during the search is saved 

and returned at the end of the data run. 

4.1.1. Multi-objective approach and M-GEO algorithm  

Before we introduce the multi-objective GEO version, it is necessary to explain 

some terms used in multi-objective approaches. Section 4.1.1.1 brings the 

basics of a multi-objective approach, while Section 4.1.1.2 explain the M-GEO 

algorithm.  

4.1.1.1. Multi-Objective Problems 

Despite being frequently considered as mono-objective, practical engineering 

optimization problems are normally of multi-objective nature. Many times these 

objectives or criteria are conflicting. In the design of a car engine for example, 

the main goal is to maximize performance and minimize fuel consumption 

simultaneously.  

The most used methods to deal with these kinds of problem are based on 

scalarization approaches, which transform multi-objective problems into mono-

objective. Among these scalarization methods the most common are the 

Weighted Sum Approach, the ε-Constraint Method, Goal Attainment, 

Lexicographic Ordering, Reference Point Approach and Goal Programming 

(BRANKE, et al., 2008).  

Scalarized methods are attractive approaches to deal with multi-objective 

problems due to the possibility of using one of the many available mono-

objective optimization methods and tools out there. This is perhaps the reason 

why multi-objective approaches have not been extensively explored in optical 

design.  
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When an optimization problem is treated as multi-objective, usually it returns a 

set of solutions as a result, different from what happens in mono-objective 

approaches, which return a single solution. Any solution in the resulting set 

cannot be considered, in principle, better or worse than another solution in the 

same set because any solution will be worse than another solution in at least 

one aspect or objective, but never at all of them at the same time. This resultant 

set of solutions is known as non-dominated solutions. When these solutions are 

plotted in the objective functions space they form the thus called Pareto front.  

Lets suppose we have a generic multi-objective problem where we want to 

minimize ! functions, !!,!!,…!!. We say that a feasible solution ! is non-

dominated if and only if there is no other solution ! in the feasible design space 

such that for all ! = 1,2,⋯ ,!, !!(!) !≤ !!(!). If at least one solution ! exists, 

then solution ! is dominated.  

To illustrate the ideas of dominance, non-dominance and Pareto front consider 

Figure 4.3, where blue and red dots represent feasible solutions of a multi-

objective min-min problem of two objective functions (!! and !!), plotted in the 

objective-function space. 

!
Figure 4.3- The graph shows solutions for a generic min-min multi-objective problem, 

plotted in the objective-functions space !1 and !2. Dominated solutions 
are represented in blue, while red dots represent non-dominated 
solutions. 
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Blue points represent the dominated solutions. Red points denote the non-

dominated ones. The set of red points form the Pareto front, represented by the 

dashed line in the graph. 

The goal in a multi-objective problem is to find the non-dominated solutions that 

form the Pareto Front. This gives the designers a very clear idea of the 

compromises that can be made in the design considering the used metrics. 

Evolutionary Optimization (EO) Algorithms are very powerful tools to directly 

solve multi-objective optimization problems. Multi-Objective Genetic Algorithm -

MOGA (FONSECA; FLEMING, 1993), Non-dominated Sorting Genetic 

Algorithm-NSGA (SRINIVAS; DEB, 1994) and NSGAII (DEB et al., 2002), 

Niched Pareto Genetic Algorithm-NPGA (HORN et al., 1994), Strength Pareto 

Evolutionary Algorithm-SPEA (ZITZLER; THIELE, 1999) and SPEA-II (ZITZLER 

et al., 2001), and Pareto Archived Evolution Strategy –PAES (KNOWLES; 

CORNE, 1999), can be quoted as the most outstanding multi-objective 

evolutionary algorithms.  

In this work we use the multi-objective approach in two situations: ii) in the glass 

selection phase, where an exhaustive search optimization method in applied, ii) 

in the exploration phase, where a M-GEO variant algorithm is used, which is a 

multi-objective method developed based on GEO;  

In the following section the M-GEO algorithm is presented. M-GEO is used as 

background for the explanation of the algorithm developed for the exploration 

phase of the automatic lens design method.  

4.1.1.2. The multi-objective GEO algorithm (M-GEO) 

In the last few years, variations of the canonical GEO have been suggested and 

have also shown competitive results for both test functions and real problems 

(GALSKI et al., 2005, 2009; GALSKI, 2006, 2012; MAINENTI-LOPES et al., 

2008, 2012; YANO et al., 2010; CUCO et al., 2011; GUO et al., 2012). Galski et 

al. (2005) presented the multi-objective version of GEO called M-GEO. The 

primary change in the multi-objective version of the algorithm occurs in the bit 



34!

fitness calculation. For each generation in M-GEO, a single objective function 

from the N objective functions used to drive the search is randomly selected 

with a uniform distribution. Only the selected function is used in the current 

generation to assign the bit fitness and ranking. Additionally, all of the candidate 

solutions found during a generation are checked for dominance. All non-

dominated solutions visited during the search are saved and returned at the end 

of the data run. 

The version of M-GEO presented by Galski (2006) re-initializes the seed 

solution after a defined number of function calculations as an intrinsic step in 

the algorithm. This technique increases the statistical robustness of the 

algorithm and helps to spread the solutions over the whole Pareto front 

(GALSKI, 2006). 

Figure 4.4 presents the M-GEO flowchart from Galski et al. (2005), which 

inspired our proposed algorithm. Despite not including the re-initialization 

intrinsically in our version, the proposed algorithm adopts independent re-

initialization of the exploration phase as we will see in the next chapter. 
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Figure 4.4 - M-GEO flowchart (GALSKI et al., 2005) 

 

4.1.2. Real-coded GEO (GEOreal1) 

Mainenti-Lopes et al. (2008) presented two variations of GEO using real 

codifications for the variables: GEOreal1 and GEOreal2. These variations perform 

better for some test functions than the canonical versions. We only discuss 

GEOreal1 herein because it provides the sufficient background for understanding 

the proposed method. 
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GEOreal1 has the same basic principles of GEO, but it uses real codification. In 

other words, the candidate solutions are represented by a linear string formed 

by the stack of all variables in a real format rather than in a binary format. In this 

way, the perturbation made in each one of the !!species (or variables) for a 

candidate solution is very similar to the perturbations used in the evolution 

strategy (ES), which is done by adding a random number !(0,!) to the variable 

!: 

 !!! = !! + !!! 0,! ,!!!! (4.2) 

where!!!!! is the value of the variable after the perturbation, and !(0,!) a 

random number with a Gaussian distribution, zero mean, and standard 

deviation !. Equation (4.2) is applied individually to all variables. For each 

perturbation, the objective function is calculated and the fitness of the species is 

assigned. Then, the variables are ranked from the least adaptable to the most 

adaptable. From this point on, the algorithm is performed like the canonical 

GEO. One of the species (or variables) is randomly selected with a uniform 

probability. The selected species of rank ! has a mutation probability given by 

Equation (4.1). 

If the mutation occurs, the resulting species set is transferred to the next 

generation, where the whole process is repeated. Otherwise, a new variable is 

randomly selected until a mutation occurs. The process is repeated from 

generation to generation until a stopping criterion is satisfied. The best 

configuration of variables found during the search is saved and returned at the 

end of the data run. GEOreal1 flowchart is presented in Figure 4.5. 

In this thesis, we introduce a new variation of GEO named O-GEO. The O-GEO 

is used in the exploration phase of the proposed method. It is a tailored version 

resulting from the mix between M-GEO (GLASKI, 2005) and GEOreal1 

(MAINENTI-LOPES et al., 2008) with the addition of specific diversity operand 

suitable for the problem of optical design. The O-GEO algorithm is explained in 

detail in Chapter 6. 
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Figure 4.5 - GEOreal1 flowchart (MAINENTI-LOPES et al., 2008). 
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5 AN OVERVIEW OF THE PROPOSED AUTOMATIC OPTICAL DESIGN 
METHOD 

In this chapter, we present an overview of the proposed automatic optical 

design method. As mentioned earlier, the method proposed in this thesis uses a 

multi-objective memetic approach. In addition to discussing the method 

overview, this chapter will discuss the key components of the method. 

5.1. The multi-objective approach  

The multi-objective approach proposed addresses the design, image quality, 

assembly tolerance, and system complexity. 

Tolerancing is a crucial issue in optical design field due to the high sensitivity of 

imaging optical systems with respect to fabrication errors. The goal of an optical 

designer is to determine an insensitive optical system that complies with the 

image quality requirements after fabrication. Furthermore, the production costs 

of insensitive systems are reduced without significantly compromising the image 

quality.  

Classical approaches for the design of insensitive optical system are based on 

a two-part interactive method. The first part is the design itself, which can be 

performed using first-order and third-order analysis, lens systems databank and 

optimization tools. As the second task, a tolerance analysis is carried out in 

order to determine the system error budget and the expected as-built 

performance. For high-performance optical systems, designers usually realize 

that some modifications to the system architecture are needed to improve the 

as-built system performance within the desired tolerances. In this way, an 

interactive process of design and tolerance analyses is performed to find an 

acceptable trade-off solution between the as-designed and the as-built system 

performance.  

Some authors suggest that metrics estimating the system sensitivity should be 

included in the merit function (MF) as a penalty (ISSHIKI et al., 2004; JEFFS, 

2002). The challenge with this approach is balancing the weight between the 
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image quality and the sensitivity metrics in a single MF due to their differing 

physical meaning and units. 

Other studies have used a multi-configuration approach to design insensitive 

system (FUSE, 2003). In this method, each configuration represents the 

nominal system with one of the design parameters perturbed. The final MF is 

formed by the average of the merit function of each configuration. In this way, 

the tolerancing can be considered during optimization process. This seems to 

be a very interesting and practical solution. However, the methodology quickly 

collapses as the number of elements in the system increases due to the 

increasing number of configurations needed to account for the fabrication errors 

of each surface. 

Some approaches have taken advantage of global optimization algorithms to 

find many local minimums (MCGUIRE, 2006; ISSHIKI et al., 2006). Then, the 

systems are ranked according to the sensitivity, which is accessed by means of 

a simple metric or a complete tolerance analysis. The drawback to these 

methodologies is that the optimization algorithm is not driven by the sensitivity 

but only by the image quality metric. 

Epple and Wang (2008) suggested that aspherical surfaces should be included 

to reduce sensitivities in optical design. However, aspherical surfaces might 

have their own tolerance problems, which can conflict with the desensitization 

process. 

Another important characteristic in the fabrication of an optical system is the 

system complexity. Herein, the system complexity is taken as the number of 

optical elements used in the system.  

Normally, more complex systems require more expensive production in terms of 

man-hours and material. Likewise, increasing the number of optical elements in 

a system increases the number of degrees of freedom available to correct the 

optical aberrations, making better image correction possible. Furthermore, 

increasing the number of elements used in the system potentially lowers the 
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power of each element, making the system more insensitive to fabrication errors 

of each element. On the other hand, with more elements, the system has more 

potential sources of errors in the fabrication.  

With this explanation, we see that defining the optimum number of elements 

used in an optical system is not a straightforward task even for an experienced 

optical designer, especially for high performance optical systems. As our 

research has determined, the variation of the number of optical elements during 

the automatic optimization is rarely explored. 

A single study reports an optimization tool for optical systems, based on a 

genetic programming algorithm, where the number of lenses is considered as a 

design variable (KOZA et al., 2005). In spite of that, the number of lenses is 

controlled by a penalty in the merit function, the more elements, the higher the 

penalty. In our opinion, the EO method used, as well as the way they control the 

number of lenses, result in a drawback to their implementation. The penalty to 

control the number of lenses restricts the exploration of the design space and 

genetic programming approach limits the method application and/or 

performance due to its computationally demanding nature. To execute his 

method, Koza et al. (2005) mention the use of a cluster with thousands of 

CPUs.  

In this thesis, we explore a multi-objective approach for the lens design 

optimization problem. In this way of handling the problem, the image quality, 

system sensitivity, and number of lenses are simultaneously taken into 

consideration and drive the search. Furthermore, unlike any previously 

published methods in lens design, these criteria are not fused in a single merit 

function. As a result, non-dominated solutions can be obtained to generate the 

corresponding Pareto Front. This method yields better insight into the available 

trade-off solutions for the problem.  
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5.2. The memetic approach  

Our method is characterized as a memetic approach (MOSCATO, 1989; 

MOSCATO; COTTA, 2003) because it breaks the search into three parts: (i) 

glass selection, (ii) exploration, and (iii) exploitation phases. 

The glass selection phase is based on a detailed and general mathematical 

formulation of the residual chromatic aberration resultant from the combination 

of different types of glasses. The aim of this phase is to select the most 

appropriate set of glasses for the system under design. This information is then 

used as a priori knowledge into the exploration phase. The glass selection 

method uses a multi-objective approach and the final selection of the best set of 

glasses depends on the designer choice.  

The exploration phase is based on a multi-objective metaheuristic algorithm, 

which is responsible for the global search aspect of the method. This algorithm 

incorporates problem-knowledge in the candidate solutions codification and in 

the diversity operands.  

The exploitation phase on the other hand, consists of an exact deterministic 

algorithm, which is responsible for the local search or intensification of the 

candidate solutions.  

In this section, we elucidate each one of these phases of the method. The 

details are then provided in Chapter 6.  

5.2.1. Glass selection 

According to Rayces and Rosete-Aguilar (2001), two barriers limit optical 

system performance: light diffraction and chromatic aberration. As pointed out in 

Chapter 2, glasses are important variables for correcting the chromatic 

aberration in optical systems. However, as we saw in Chapter 3, glasses are 

discrete variables and cannot be handled in a direct or effective manner using 

classical methods of optimization.  
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On the other hand, EO methods have no problems dealing with discrete 

variables. In spite of this, not all EO methods applied in lens design take 

advantage of this feature of the algorithm. In some studies (GAGNÉ et al., 

2008; THIBAULT et al., 2005; CHEN; YAMAMOTO, 1996), glasses are 

transformed to continuous variables using glass model equations. This is the 

same technique used by classical optimization methods that consider glasses 

as variables; however, as already mentioned, these techniques do not produce 

satisfactory results. In other studies, glasses are not considered as variables 

(BEAULIEU et al., 2002; SAKUMA; KOBAYASHI, 2005).  

Indeed, it is possible to find lens design studies using EO that take advantage of 

the method to optimize glasses in a direct discrete way (ONO et al., 1999; 

FANG et al., 2007; LI et al., 2010; VAN LEIJENHORST et al., 1996; KOZA et 

al., 2005; VASILJEVIC, 2002). Despite reporting excellent results, the 

dimensionality of the glass selection problem is huge, even for a reasonably 

simple optical system, as pointed out by Tesar (2000). Moreover, these 

methods do not guarantee that the best set of glasses has been found. 

Furthermore, the success of the design, especially for broadband systems, 

depends on a specific combination of glasses. In this way, the performance of 

the EO algorithm can be significantly increased if the number of glasses is 

constrained. This is confirmed by Tesar (2000) and Van Leijenhorst et al. 

(1996).  

For this reason, in the proposed automatic design algorithm, we treat the glass 

selection as a separate optimization problem. Our proposal is to reduce the 

number of available glasses for a design from hundreds of glasses to just a few. 

The resulting information about the most appropriate glasses for a specific 

design will then be used as input for the exploration phase of the algorithm. The 

glasses in the exploration phase are then considered as discrete variables, but 

with significantly reduced number of possibilities.  

Several graphical and mathematical methods have been proposed for the 

selection of optimal glass combinations for correcting chromatic aberration 

(RAYCES; ROSETE-AGUILAR, 2001; SINGLER, 1986; GRUESCU et al., 2008; 
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HARIHARAN, 1997, 1999; MERCADO; ROBB, 1993; ROBB, 1985; LESSING, 

1970; SLOAN, 1970; HERZBERGER; McCLURE, 1963; WILLEY, 1962; 

STEPHEN, 1960). However, the problem of glass selection is wide in scope, 

and in our opinion, the glass selection problem is not completely solved. 

Even a recent study about optimal glass selection for doublets (SUN et al., 

2009) does not provide relevant contributions to the subject. The method used 

in Sun et al. (2009) is based on the chart of partial dispersion vs. abbe number 

for selecting the potential glass pairs, and on the use of secondary spectrum for 

evaluating the glass pair chromatic correction, which were presented by Ernst 

Karl Abbe more than 140 years ago (RAYCES; ROSETE-AGUILAR, 2000). 

Furthermore, the equations presented for the thin aplanatic doublet solution are 

well known (RAYCES; ROSETE-AGUILAR, 2000). The new metric suggested 

in the paper for evaluating the residual chromatic aberration, which is given by 

the area under the chromatic focal shift curve, does not, in fact, contribute any 

additional information that what we can determine from the standard secondary 

color metric. The only possible contribution in Sun et al. (2009) is the technique 

of thickening the thin design, which does not help in the glass selection process 

itself. 

Fischer et al. (2004) mention that the glass selection in optical design has a 

mystique and tends to be both a science and an art. Our goal in this thesis is 

not only to use a glass selection technique in our automatic design method but 

also to present a new method that objectively systematizes the task of glass 

selection for the design of color corrected optical systems.  

5.2.2. Exploration 

As we discussed in Chapter 3, multi-objective optimizations and discrete 

variables can be easily handled with evolutionary methods of optimization, 

which have been successfully applied in lens design problems.  

Despite studies reporting the use of multi-objective optimization approaches in 

lens design (JOSEPH et al., 2007; ONO et al., 1998; GAGNÉ et al., 2008), 
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these works do not apply this technique in designing optical systems 

considering the sensitivity to fabrication errors and system complexity as 

proposed herein. Joseph et al. (2007) used a multi-objective method to optimize 

optical systems using three criteria: spherical aberration, distortion, and 

transverse ray aberration function. Ono et al. (1998) also applied a multi-

objective optimization in lens design using both the image resolution and the 

distortion as attributes. Finally, Gagné et al. (2008) employed a multi-objective 

optimization in lens design by taking into account the glass material cost and 

image quality.  

Very few studies in the use of EO in lens design customize the algorithm to the 

problem. In fact, most studies on this subject (JOSEPH et al., 2007; BEAULIEU 

et al., 2002; GAGNÉ et al., 2008; THIBAULT et al., 2005; CHEN; YAMAMOTO, 

1996; MORRE, 1999; VAN LEIJENHORST et al., 1996; NAGATA, 2004) simply 

apply EO methods to lens design without adapting the algorithm to the problem.  

In this work, we propose a variant of the generalized extremal optimization 

(GEO) algorithm introduced by De Sousa et al. (2003). More precisely, the 

exploration algorithm suggested herein is a customized version resulting from a 

mix between the multi-objective version of GEO (M-GEO) (GLASKI, 2005) and 

the real codification version of GEO (GEOreal1) (MAINENTI-LOPES et al., 2008) 

with an additional specific diversity operand suitable for the problem. By 

customizing the algorithm to the problem, we expect better performance from 

our method.  

5.2.3. Exploitation 

While the EO methods are useful for exploring different regions in the design 

space, without getting stuck in local minima, they are not efficient for tuning the 

design to determine a final solution. This occurs because optical design is a 

high-dimensional strong epistasic problem.  

EO algorithms converge very slowly to the optimal solution in comparison with 

classical optimization methods. For this reason, many studies applying EO in 
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lens design use hybrid methods, combining both local search and EO methods 

to find good solutions (CHEN; YAMAMOTO, 1996; MORRE, 1999; JOSEPH et 

al., 2007; GAGNÉ et al., 2008; LI et al., 2010). This hybridization combines the 

best characteristics of each method and overcomes their weaknesses. 

In a hybridized process, the EO method is used for finding regions of solution 

space that are good candidates for locating the optimum candidate, and the 

classical optimization methods are used to actually find the optimum candidate. 

This means that the EO methods are used to find a set of good starting points 

and the classical methods use these identified starting points to find the 

optimum solution. 

Our proposed method takes advantage of the EO and classical method 

hybridization. The local search conducted in the exploitation phase is applied to 

all feasible non-dominated solutions found in the exploration phase. The 

algorithm used in the exploitation phase is based on DLS method presented in 

Chapter 3.  

5.3. The method overview 

Now that we have identified each of the features of the proposed method, we 

present an overview of the proposed algorithm. Figure 5.1 illustrates the 

flowchart of the proposed method.  

As input for the proposed method, the designer must provide only the optical 

system requirements and constraints. At first, the glass selection phase is 

executed. As a result, the most suitable set of optical glasses is selected for the 

problem and used as input for the next phase. The glass selection phase helps 

to reduce the design space, limiting the set of available glasses from hundreds 

to just a few, making the search for solutions more efficient. 

Next, the exploration phase starts with a random solution and runs for a 

specified number of generations. The feasible non-dominated solutions found 

during the latest independent execution of this phase are transferred to the 

exploitation phase.  
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Figure 5.1 - Overview flowchart of the global search algorithm proposed for the 

automatic design of optical systems.  

In the exploitation phase, a local search algorithm is applied for each one of 

input solutions until the stopping criterion is fulfilled. The non-dominated 

solutions found in this interaction are compared with the Pareto front solutions 

found by previous iterations of the algorithm. The remaining non-dominated 

solutions resulting from this comparison are used to develop a new Pareto front. 

If the stopping criterion is not reached, the algorithm returns to the exploration 

phase and the cycle is repeated until the stopping criterion is fulfilled.  

In the next chapter, we present a more detailed description of each phase of the 

algorithm, following a discussion of the method overview starting with the glass 

selection phase, followed by the exploration phase, and concluding with the 

exploitation phase.   
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6 DETAILING THE METHOD PHASES  

6.1.1. The glass selection phase  

We only present a summary of the method for glass selection here. For more 

details, the readers are encouraged to study Appendix C which contains the full 

paper about the method published in the high-impact journal Optics Express 

Albuquerque et al. (2012).  

The glass selection phase is performed first, and it is independent of the two 

subsequent phases in the process of automatic design. However, the results 

are very important in providing the input glass materials for the Exploration 

phase. This phase supports the selection of the most appropriate optical glass 

to be used in a specific design based on the input system requirements given 

by the designer.  

The selection of the most appropriate glass materials significantly reduces the 

design space, decreasing the number of available glasses from hundreds to a 

few and increases the efficiency of the whole automatic design method as a 

consequence.  

The method presented lies on the compatibility of the glass materials to 

minimize the chromatic aberration while simultaneously controlling other 

specific difficult-to-correct monochromatic aberrations.  

6.1.2. Background for the method of glass selection 

The proposed method is based on the unification of two methods proposed in 

the literature (RAYCES; ROSETE-AGUILAR, 2001; MERCADO; ROBB, 1993) 

with some additional contributions. We also developed a multi-objective 

approach for the problem.  

After surveying many methods of glass selection available in the literature, we 

determined that the method proposed by Mercado and Robb (1993) is the most 

theoretically rigorous and general. The Mercado-Robb method allows different 

number of glasses in the set as well as different number of wavelengths for 
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which the minimization of chromatic aberration is desired. Despite the general 

formulation of the Mercado-Robb method and the excellent discussion provided 

in their work, Mercado and Robb only demonstrate a few practical examples of 

the solution technique.  

The method of color correction proposed by Rayces and Rosete-Aguilar (2001) 

was limited to two glasses and three wavelengths. In spite of these limitations, 

the Rayces and Rosete-Aguilar method establishes and utilizes metrics, which 

have never been reported before in glass selection theory. These metrics are 

not related to color correction, but they verify if a set (in their case, a pair) of 

glasses has the potential to provide a successful design. In contrast to other 

glass selection methods, the Rayces and Rosete-Aguilar method uses not only 

the wavelength as input but also the desired focal length and the numerical 

aperture of the designed system.  

The method presented in this thesis improves the Mercado-Robb method by 

addressing some of the practical implementations issues. It also incorporates 

the metrics proposed by Rayces and Rosete-Aguilar (2001). Because each 

possible glass arrangement has different metrics with dissimilar physical 

natures, we further included a multi-objective approach in the glass selection 

method. This is useful for filtering out the non-dominated solutions and 

organizing them with different Pareto rankings, assisting the selection of the 

most appropriate glass combination solution for the problem. 

6.1.2.1. The Mercado and Robb method with some new contributions 

The index of refraction of optical materials is a function of the wavelength. 

Several mathematical models have been proposed to describe this 

dependence. One of these models, proposed by Buchdahl (ROBB; MERCADO, 

1983), is given by the following power series:  

 ! ! = !! + !!! ! + !!! ! ! +⋯+ !!! ! !. (6.1) 
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Here,!! represents the refractive index for wavelength !, !! is the refractive 

index for a reference wavelength !!. The chromatic coordinate ! is a function of 

!: 

 ! = !"
1+ !"# (6.2) 

where !" = ! − !!, and ! is a universal constant taken to be 2.5 (MERCADO; 

ROBB, 1993). The dispersion coefficients !! are specific to a given glass. 

If a set of glasses is needed to minimize the chromatic aberration for ! 

wavelengths, Equation (6.1) is expanded up to the ! − 1!! order.  

Moving !! to the left side of Equation (6.1) and dividing both sides by the 

constant !! − 1, we obtain  

 ! ! = !!
!!!

!!!
! ! ! , (6.3) 

where ! ! = !" ! !! − 1 , !" ! = ! ! − !!, and !! = !! !! − 1 . The 

term ! !  is called the dispersive power. The method presented by Mercado 

and Robb (1993) is based on Equation (6.3)  

The optical power ! !  of a single lens for wavelength ! is defined as the 

inverse of its focal length at the same wavelength ! ! . For a system of ! thin 

lenses in contact, the resulting optical power Φ for the reference wavelength !! 
is computed by 

 Φ !! = !! !!
!

!!!
. (6.4) 

Using Equations (6.3) and (6.4) and the lens maker equation it is possible to 

write: 
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 Φ ! = Φ !! + !! !! !! ! .
!

!!!
 (6.5) 

Assuming that each of the ! lenses is made from a different glass, where ! ≥ 2, 

it is possible to show that the conditions for an achromatized optical system in ! 

wavelengths, where ! ≥ 2, can be given in a matrix form by (MERCADO; 

ROBB, 1993) 

 ΔΩ ∙ ! ∙Φ = 0, (6.6) 

where ΔΩ is a square matrix of order !! − 1×! − 1: 

 ΔΩ =
!! − !! ⋯ !!!!! − !!!!!

⋮ ⋱ ⋮
!!!! − !! ⋯ !!!!!!! − !!!!!

, (6.7) 

Here, ! is a matrix of order ! − 1×! 

 ! =
!!! ⋯ !!!
⋮ ⋱ ⋮

! !!! ! ⋯ ! !!! !
, (6.8) 

while Φ is a matrix of order!!×1, 

 Φ =
!! !!
⋮

!! !!
, (6.9) 

Finally, 0 is a matrix of order ! − 1×1: 

 0 =
0
⋮
0
. (6.10) 

Matrix ΔΩ is a square and doubtless nonsingular. In this case, Equation (6.6) 

can be reduced to  

 ! ∙Φ = 0. (6.11) 
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Equation (6.11) has a nontrivial solution (i.e., Φ ≠ 0) if and only if the rank of 

matrix ! is lower than ! (i.e., ! is not a full rank matrix). This happens when 

there is a perfectly linear dependence among the columns of matrix !. 

Nevertheless, for any practical and meaningful situation where ! ≤ ! − 1, the 

linear dependence is virtually never mathematically exact. As a consequence, 

the rank of matrix ! will always be equal to !. This result makes the rank of 

matrix ! an inefficient metric either to identify sets of glasses that are free from 

chromatic aberration in the defined wavelengths or to compare the residual 

chromatic aberration among the different possible glass combinations.  

To solve this problem, Mercado and Robb provide a geometrical interpretation 

of Equation (6.11). In this way, they suggest a geometric metric to verify how 

well a set of glasses correct the chromatic aberration for a given set of 

wavelengths. The metric is easy to understand and visualize for the case of two 

glasses. Nevertheless, for more than two glasses the interpretation changes 

and becomes complicated. Furthermore, the metric has no physical meaning. 

We propose a different metric for verifying how well a specific set of glasses 

minimizes the chromatic aberration for a given set of wavelengths. This metric 

has a general form, which does not depend on the number of glasses used in 

the combination, and it has a direct physical meaning. This new metric is 

presented and explained in the following paragraphs. 

To minimize or correct the chromatic aberration, we must not only select a 

specific set of compatible glasses but also use the right optical power for the 

lenses made with each one of these materials. To calculate the optimum power 

of each glass that minimizes the chromatic aberration, both Equations (6.4) and 

(6.6) are used. To simplify the computation, we normalize the optical power of 

the system for !! and write Equation (6.4) in its matrix form 

 ! ∙Φ = 1,!! (6.12) 

where ! is a row vector of order 1×! with all elements equal to one.  

Combining Equations (6.12) and (6.6) we obtain: 
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 ! ∙Φ = !, (6.13) 

where ! = !
ΔΩ ⋅ ! !!and ! is a column vector of order !×1 where the first 

element is equal to one and the other elements are equal to zero. 

Solving Equation (6.13) for Φ using the least square method results in the 

following equation:  

 Φ = !! ⋅ ! !! ⋅ !! ⋅ !. (6.14) 

Equation (6.14) computes the optimal power of the lenses made with each of 

the glasses considered in the set that minimizes the square sum of the 

chromatic change of power for the ! defined wavelengths. It is important to note 

that the equations provided by Mercado and Robb (1993) used to compute the 

optical powers are only related to some specific situations and do not use all of 

the glass information available. In contrast, the equation presented herein is 

general, uses all of the glass dispersion coefficients available, and provides the 

minimum chromatic aberration for the glass set considered in the ! given 

wavelengths. 

Now, it is possible to use the vector Φ in Equation (6.6), to obtain the minimum 

chromatic change of power !"":  

 CPP = ΔΩ ⋅ ! ⋅Φ. (6.15) 

Our metric to verify how suitable a specific set of glasses is for minimizing 

chromatic aberration for a given set of ! wavelengths is now established as the 

modulus of the vector CPP. 

An excellent approximation for the chromatic focal shift is given by multiplying 

the vector CPP by the desired effective focal length ! for the optical system: 
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! !! − ! !!

⋮
! !! − ! !!!!

= !"" ⋅ !. (6.16) 

Because the chromatic focal shift is proportional to CPP, it clearly gives physical 

meaning to our metric. 

6.1.2.2. The Rayces and Rosete-Aguilar Method 

Rayces and Rosete-Aguilar (2001) proposed a method of glass selection where 

not only the chromatic correction is considered but also aberrations that, 

according to the authors, cannot be corrected, namely spherochromatism and 

fifth order spherical aberration.  

The Rayces and Rosete-Aguilar method is based on an exhaustive search of 

glass pairs able to minimize the chromatic aberration for three wavelengths. All 

possible arrangements of glasses derived from a glass catalog are tested. For 

each glass set possibility, the power of the glasses is computed to produce a 

thin achromatic doublet solution for two extreme wavelengths considered. Then, 

the chromatic aberration for the middle wavelength, also called the secondary 

spectrum, is computed. Based on the power of the elements of the doublet and 

on the desirable aperture of the system, the first set of potentially useless 

solutions are removed. This eliminates solutions with steep curves that are an 

indicator of high-order monochromatic aberrations, which are difficult to correct 

or balance. In the next step, the radius of each surface is computed to produce 

an aplanatic solution to the third-order approximation using structural aberration 

coefficients. Paraxial rays are then traced to compute third–order 

spherochromatism and fifth-order spherical aberration. Based on the magnitude 

of these aberrations, a second set of glass arrangements is eliminated.  

The Rayces and Rosete-Aguilar method produces an output table containing 

solutions that comply with the limits imposed for each aberration ranked 

according to the secondary spectrum value. The first rows in the table supply 

glass combination pairs that potentially are able to provide successful optical 

systems design. 
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6.1.3. The synthesis method of glass selection 

With the background presented in the last section, the explanation of our glass 

selection method is straightforward. Its implementation involves several steps. 

Step 1. As input, the designer must provide the effective focal length !, the f 

number !/#, the ! wavelengths covering the desired spectral range, and the 

number of the primary wavelength !!. A glass catalog and the number of 

glasses ! used in the combination (i.e., 2, 3, 4, etc) must also be specified.  

Step 2. At the outset, the first ! − 1 dispersion coefficients !! are calculated for 

each glass in the catalog. For the calculation, the ! specified wavelengths and 

their respective refractive indexes in the corresponding glass are used in 

Equation (6.3). This results in a system of ! − 1 linear equations with ! − 1 

unknowns, which when solved provides the !! dispersion coefficients. With the 

specified wavelengths, the matrix ΔΩ is then calculated using Equation (6.7). 

Step 3. Next, all possible arrangements for the glasses from the specified 

catalog are checked. For each possibility, the optimum normalized power of 

each glass is computed using Equation (6.14). The sum of the absolute power 

of each arrangement, which is given by Equation (6.17) below, is used as a 

metric for the first reduction of the solution set:  

 !! = !! !! .
!

!!!
 (6.17) 

As pointed out by Rayces and Rosete-Aguilar (2001), high power elements 

have steep surfaces resulting in large monochromatic aberrations that involve 

higher orders of aberration. This first cut eliminates potentially useless 

solutions. The metric used here is different from the one presented in Rayces 

and Rosete-Aguilar (2001). Our metric, first suggested by Herzberger and 

McClure (1962), is more general in terms of the number of glasses used in the 

combination.  
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The user must set the maximum value for !!. Glass arrangements with !! 
values larger than the specified value are discarded. This metric is used to 

eliminate potential useless solutions; moreover, this metric can be used as one 

of several metrics in the multi-objective approach proposed for this glass 

selection method. The next steps and calculations are performed only for 

arrangements that comply with the imposed !! limit.  

The vector CPP is then calculated by Equation (6.15). The modulus of this 

vector, called !! (!! = CPP ), can also be used in the multi-objective analysis. 

The smaller the value of !! the better the color correction the set of glasses 

provides.  

Step 4. Then, a thin lens aplanatic solution for wavelength !! is found for each 

candidate glass arrangement. To find the aplanatic solution, the system 

structural coefficients for spherical aberration Ξ and coma Χ are set equal to 

zero, using the power of each glass element calculated by Equation (6.14). We 

developed the following set of equations:  

 Ξ = !!
!

!!!
= 0, (6.18) 

 Χ = !!
!

!!!
= 0, (6.19) 

 

!! !! − 1 1
!!
− 1
!!

= !! !!
!

⋮
!! !! − 1 1

! !! !!
− 1
!!!

= !! !!
! .

 (6.20) 

To find the aplanatic solution, it is necessary to solve the above set of equations 

from !! to !!!. 

For the case of a doublet, or ! = 2, there are four equations and four unknowns 

which result in a straightforward solution. Because Equation (6.18) has a 
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quadratic dependence as a function of the radius (see Appendix A in RAYCES; 

ROSETE-AGUILAR, 2000), we can obtain two different aplanatic solutions for 

each glass arrangement. The best solution is retained when the definition for a 

better solution is based on the metric !! as explained ahead. 

For ! ≥ 3, there are more unknowns than equations. For quickly and 

analytically solving the set of equations, we add constraint equations to make 

the number of unknowns equal the number of equations. For example, in the 

case where ! = 3 (triplet), there are two possible options for the constraint: 

!! = !! or !! = !!. The system can then be solved for both cases, and in each 

case two solutions exist, resulting in four total possible solutions. Once more, 

we only retain the better solution. We can expand the technique for ! > 3. 

Unfortunately, the solution for the set of equations where ! ≥ 3 is not trivial and 

must be determined with a computer.  

For each one of the possible retained solutions, the fifth-order spherical 

!!"! !!  and the spherochromatism !!"!!" !!⋯ !!  wave aberration 

coefficients are calculated according to the algorithm presented in Rayces and 

Rosete-Aguilar (2000). The fifth-order spherical coefficient is calculated for the 

reference wavelength !!. The sphero-chromatism coefficient is calculated for all 

possible combinations of the input wavelengths, and the worst case is assigned 

to the set. 

Step 5. The third and last metric used in the multi-objective analysis is 

computed by summing the normalized fifth-order spherical !!"! and normalized 

spherochromatism !!"!!" wave aberration coefficients according to the 

following equation:  

 !! = !!"!!" +!!"! , (6.21) 

where Rayces and Rosete-Aguilar (2001) define 

 !!"! =
14!!"! !!

20 7 !!! (6.22) 
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and  

 !!"!!" =
14!!"!!" !!⋯ !!

6 5 .!! (6.23) 

As mentioned above, we also use the metric !! to define which of the possible 

aplanatic solutions for a specific glass set is the best one. 

Step 6. For all of the possible sets of glass arrangements complying with the 

maximum allowed metric !!, the best aplanatic solution is stored in a table with 

its respective !!,!!!, and !! metric values. The data are organized in the table 

as shown in Figure 6.1. The ! values are the radius of curvature of each 

surface, and the ! values are the normalized optical power of each thin lens.  

 

Figure 6.1 - Format of the table used to store the best aplanatic solution data for each 
glass arrangement. 

Step 7. The solutions are then organized into different Pareto ranks using the 

metrics !!,!!!, and !!. 

Step 8. Finally, a post-Pareto analysis is applied to the first Pareto ranks, 

organizing the solutions in the output table from the best to the worse trade-off 

solutions.  

In summary, we can treat the glass selection for the design of optical systems 

with reduced chromatic aberration as a multi-objective optimization problem. 

The goal is to simultaneously minimize the objective functions !!,!!!, and !!, 
subjected to !! ≤ !"#$%&#%, to Equations (6.18), (6.19), and (6.20), and to 

additional constraints as necessary when ! ≥ 3 (e.g., !! = !! or !! = !! for the 

! = 3 case). To solve the problem, we used an exhaustive search method, 

testing all possible glass arrangements.  
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The glass selection method overview can be represented by the flowchart in 

Figure 6.2. 

 
Figure 6.2 -. Flowchart of the proposed method of glass combination selection. 

6.1.4. Post-Pareto analysis 

The Pareto front, or Pareto rank 1, specifies the global non-dominated trade-off 

solutions for the problem. In practice, the designer has to choose one solution 

from this set as input for the exploration phase. Though one solution in the 

Pareto front may not, in principle, be considered better than another solution in 

the same front, it is possible to discriminate between the less satisfactory trade-

offs and the most promising ones. This process of selecting a solution is called 
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decision making. There are many methods for supporting this post-Pareto 

analysis process, which can be found in the literature (LOPEZ et al., 2011; 

AGUIRRE et al., 2011; ZIO; BAZZO, 2011; BLASCO et al., 2008; FERREIRA et 

al., 2007; VENKAT et al., 2004; COELLO COELLO, 2000).  

The post-Pareto analysis is not easy, especially when the number of candidate 

solutions is large and the number of objectives is greater than two, which is 

often the case. Depending on the number of glasses in the catalog and the 

number of glasses used in the combination, hundreds of solutions are usually 

obtained in the Pareto front.  

We recommend two techniques for the Post-Pareto analysis in this glass 

selection method. A detailed description of these techniques and a suggestion 

when each technique should be used is provided in Albuquerque et al. (2012). 

The final selection of the set of glasses used as input for the exploration phase 

is the only manual process made by the designer in the optical design method 

suggested in this thesis. 

6.2. Exploration phase algorithm for optical GEO (O-GEO) 

In this section, we present the GEO version developed for the exploration phase 

algorithm proposed for the automatic design method of optical systems. This 

version of the algorithm was named optical GEO or O-GEO. 

The primary steps in O-GEO are similar to the steps followed by the M-GEO 

algorithm. We use real codification, and one of the many diversity operands is 

similar to the perturbations used in GEOreal1 given by Equation (4.2).  

With the specific problem of lens design in mind, other diversity operands were 

suggested for O-GEO aiming for a better exploration of the design space. The 

proposed diversity operands work to change some parameters in the optical 

system that normally are not considered as variables during the optimization 

process such as the number of lenses in the system, the lens glass type, and 

the aperture stop position. We discuss each of these diversity operands in this 

section. 
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6.2.1. O-GEO candidate solution representation 

The candidate solution representation in O-GEO was customized for the 

problem allowing the application of the different diversity operands. A candidate 

solution in O-GEO has a string representation of the form shown in Figure 6.3.  

The first two cells in the string provide general information about the optical 

system. The first cell contains the number of lenses in the system. The second 

cell provides the surface number where the system aperture stop (system 

diaphragm) is located.  

We are not aware of any commercial optical design software that uses the 

number of lenses as a design variable. However, in our case, because we 

intend to design optical systems from scratch, a wide-ranging search in the 

design space, which returns all potential trade-off solutions, is necessary. 

Therefore, in this case, the number of lenses becomes a crucial variable. The 

aperture stop position is also not normally used as a variable; nevertheless, it 

can be converted into a continuous variable in commercial optical design 

software with some tricks. In our case, we treat the aperture stop position as a 

discrete variable.  

Figure 6.3 - O-GEO solution representation. 

After the general system information, the codification string provides the data for 

each lens in the system starting with the lens position in the set, which is given 

by an integer number indicating its rank in the system, followed by its 

construction parameters: the first surface radius of curvature (R1), second 

!

N. Lenses Stop position  i lens position R1i R2i T1i T2i M1i M2i  j lens position R1j R2j ⋯ 

System Inf.  i lens data  j lens data 

!

! ! ! ! !! ! ! ! ! ! ! ! ! ! !T1j T2j M1j M2j k lens position R1k R2k T1k T2k M1k M2k L lens position R1L R2L ⋯ 

 L lens data  k lens data Cont.  j lens 
data 

N. Lenses Stop position  i lens position R1i R2i T1i T2i M1i M2i  j lens position R1j R2j ⋯ 

System Inf.  i lens data  j lens data 

!

! ! ! ! !! ! ! ! ! ! ! ! ! ! !T1j T2j M1j M2j k lens position R1k R2k T1k T2k M1k M2k L lens position R1L R2L ⋯ 

 L lens data  k lens data Cont.  j lens 
data 
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surface radius of curvature (R2), central thickness of the lens (T1) (the distance 

from the first lens surface to the second lens surface), central distance to the 

next lens (T2) (the distance from the second lens surface to the first surface of 

the following lens), lens material (M1), and medium material between the 

current lens and the following lens (M2).  

Note that the lens position information has nothing to do with the lens sequence 

in the codification string. The lens position cell is important for facilitating the 

application of diversity operands proposed in the method such as the variation 

of the number of lenses in the system and the lens switching position as 

presented later in Section 6.2.4. 

The lens radii and central thickness are real values, normally defined within a 

certain boundary provided by the designer. An integer number corresponding to 

a real glass in the catalog represents the material variables. If the material is set 

to zero, it is interpreted to be air.  

Figure 6.4 provides an example of the O-GEO codification. In this example, the 

data represent the lens system shown in Figure 6.5. Note that the radius of the 

object, the radius of the image plane, and the distance from the object to the 

first lens is not codified in the string. These parameters are not considered to be 

variables and must be defined by the designer.  

Figure 6.4 - O-GEO codification of the triplet lens shown in Figure 6.5. 

 
Figure 6.5 - Layout representations for the lens system codified in the string shown in. 

Figure 6.4 

!

3! 5! 2! %4.502e%02! 4.928E%02! 1.000E+00! 4.750E+00! 43! 0! !
!

1! 4.543e(02! (2.295e(03! 3.259e+00! 6.008e+00! 301! 0! !

!

3! 1.255E(02! (5.436E(02! 2.952E+00! 4.221E+01! 301! 0!
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6.2.2. O-GEO steps 

An overview of the O-GEO algorithm is shown in Figure 6.6. 

 
Figure 6.6- O-GEO flowchart. 
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The algorithm performs the following steps: 1) randomly generate a set of 

species representing an optical system, 2) perturb the system applying the 

diversity operands to all species, once at a time, 3) compute all objective 

functions for each solution resulting from the application of the diversity 

operands, 4) check the dominance criteria among the perturbed systems and 

the Pareto front for the current execution of O-GEO, saving all of the non-

dominated solutions of this execution in a new Pareto front, 5) randomly select 

one of the objective functions, 6) sort the perturbed systems according to their 

fitness from the least to the most adaptable given by the selected objective 

function, 7) randomly select one of the perturbed systems and use this system 

as a seed for the next generation with the probability given by Equation(4.1), 

and 8) check if one of the stopping criteria is fulfilled. If one of the stopping 

criteria is verified, the algorithm stops and returns the last Pareto front of this 

independent execution of O-GEO. This Pareto front is sent to the exploitation 

phase as input. Otherwise, a new generation starts with the system selected in 

step 6, and the algorithm repeats steps 2 to 7. 

6.2.3. O-GEO Step 1 

The first set of species codifying an optical system is randomly generated in 

every independent execution of O-GEO. The first variable defines the number of 

lenses, which is randomly selected with a uniform distribution between the 

maximum and minimum number of lenses delimited by the designer (or user).  

Next, the aperture stop position is set. The aperture stop position is also 

generated randomly with a uniform distribution by selecting any whole number 

between 2 and !" − 1, where !" is the number of surfaces in the system. The 

system aperture stop cannot be placed at the first or the last surfaces in the 

system corresponding to the object and image, respectively.  

Then, the two radii of curvature and the central thicknesses of each lens are 

defined randomly with a uniform distribution between the maximum and 

minimum values defined as a constraint by the designer. The radii constraints 
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are given in the form of a positive or negative real number, allowing the 

surfaces to be either concave or convex, respectively.  

The glass central thickness and the air central thickness have different 

boundaries. Cemented lenses are avoided in the proposed optimization 

algorithm. In this way, the thickness corresponding to the distance from the 

second surface of a lens to the next lens (T2) is always considered to be the air 

central distance. As a consequence, the filling material between the current lens 

and the following lens (M2) is not a variable; it is always set to zero.  

The glass material for each lens (M1) is randomly selected with a uniform 

distribution from one of the glasses available in the catalog considered.  

The second radius of curvature of the last lens in the system as well as the 

related second central distance are not treated as variables. In both cases, a 

solver is used to calculate the value of these parameters. The last radius of 

curvature is solved to maintain the effective focal length of the system, while the 

central distance of the last lens is set to keep the image plane in the paraxial 

focus position. These solvers are applied after a random system is generated 

as well as after the application of any diversity operand. 

6.2.4. O-GEO Step 2  

In Step 2, the diversity operands are applied to the current candidate solution, 

once at a time, for each one of the species (or variables). Based on our 

knowledge of the problem, six diversity operands were developed for O-GEO. 

Each one of the operands actuates one type of variable. O-GEO has the 

following diversity operands: 1) continuous variable mutation, 2) lens flipping 

mutation, 3) lens position mutation, 4) glass mutation, 5) aperture stop shift 

mutation, and 6) number of lenses mutation. 

1) Continuous variables mutation 

This operand is applied to the continuous variables of the candidate 

solution string: radii of curvature (R1 and R2), glass thickness (T1), and 
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lens air separation (T2). The continuous variable mutation works in a 

similar way to the diversity operand used in GEOreal1 implementations. 

We applied a small change because the continuous variables can 

represent different classes of physical parameters, which may have 

different numerical ranges and magnitudes. The perturbation for each 

one of the continuous variables is then given by Equation (6.24). 

 !!! = !! + !!! 0, !! !, (6.24) 

where!!!!! is the value of variable ! after the perturbation, and !(0, !!) a 

random number with a Gaussian distribution, zero mean, and standard 

deviation !!. The standard deviation is different for each class !!of 

variables given by 

 !! = ! ∙ !"#$%&! , (6.25) 

where !"#$%&! is the numerical range for the variables of class !. The 

range is calculated by finding the difference between the maximum and 

minimum value allowed for each class of variables, which are defined as 

a constraint by the designer. Defining the standard deviation in this way 

avoids the use of different adjustable parameters for each variable class 

in the algorithm. In this case, it is only necessary to define !. 

If, after the perturbation, the continuous variable is outside of the 

constraints defined, the algorithm fixes the value of the variable to the 

closest boundary.  

The application of this operand will generate 4!" − 2 different systems, 

where !" is the number of lenses in the input system. The −2 comes 

from the fact that the second radius of curvature of the last lens in the 

system as well as the related second central distance are not treated as 

variables. 

2) Lens flipping mutation 
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The lens flipping operand mimics a method used by optical designers to 

escape from local minima. Smith (2004) suggests the technique of 

flipping over a lens in his book in one or more of the design examples.  

With this operand, we can automate this technique applying it to all of the 

lenses in the system, one at a time. The implementation of this algorithm 

is very simple. For a specific lens in the system, the numerical values of 

R1 and R2 are swapped and their signal is changed. In this case, for a 

system with !" lenses, the application of this operand generates !" new 

systems, with each system containing one flipped lens.  

3) Lens position mutation 

This operand actuates the lens position cell of the codification string. The 

objective of this operand is to swap the lens positions in the system.  

The lens position mutation operand works in the following way. The 

position of the first lens appearing in the codification string is swapped 

with the position of the second lens in the string. The position of the first 

lens in the string is swapped with the third lens in the string, and so on 

until it is swapped with the last lens in the string. Then, the second lens 

in the string is swapped with the position of the third, forth, and so on 

until it is swapped with the last lens in the string. This process is 

repeated until the next-to-last lens in the string is swapped with the last 

lens in the string.  

When this operand is used it generates !"!
! !"!! ! new systems. Two things 

shall be noticed: (i) this operand does not generate all the possible lens 

permutation because this would be too costly, and (ii) the position a lens 

occupies in the string has nothing to do with its position in the system.  

4) Glass mutation 

The lens glass material is a very important variable in the design and 

optimization process. However, glass materials are not continuous 
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variables, and the designer is limited to the hundreds of glass types 

available from the vendors. Consequently, the use of descendent 

optimization methods is not suitable for glass optimization.  

Some of the commercially available optical design software utilizes 

mathematical models to simulate the glasses, in this way transforming 

them into continuous variables. This technique together with a set of the 

glass parameters constraints allows the use of descendent methods to 

optimize the glass. However, before the designer can finish the drawing, 

all of the model glasses must be converted back to real (discrete) 

glasses. Many times, this process ruins the design, especially when 

glasses play an important role in the system performance, which is the 

case in broadband systems.  

EO methods are advantageous because they can easily deal with 

discrete variables. In this way, the glasses can be used as variables, and 

we can always assume real glass data.  

In the automatic design method present in this thesis, the selection of the 

most suitable glasses for the specific design is the first task executed as 

shown in Figure 5.1. In doing so, we can vary the glass while drastically 

reducing the design space. The number of glasses is reduced from 

hundreds to a few, and the glass mutation operand takes advantage of 

this. The mutation operand changes the glass type of each lens for each 

one of the available glasses selected by the method. This is done one 

lens at a time. With the application of this operand, !!"#$$ − 1 !" new 

systems are generated, where !!"#$$ is the number of glasses selected 

by the glass selection method.  

5)  Aperture stop shift mutation 

This operand is applied to the aperture stop position cell, which is the 

second cell in the codification string. The aperture stop position cell is 

given in terms of the surface number, which is counted from the first 
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surface (the object) to the last surface (the image). The aperture stop can 

be placed at any surface but the object and image position. Because the 

possibilities are small and finite, this operand changes the aperture stop 

position by placing it at all possible surfaces. This operand produces a 

total of 2!" possible positions generating 2!" − 1 new systems.  

6) Number of lens mutation 

This operand adds or deletes lenses in the system. To do that, it 

actuates the first cell of the codification string, increasing or decreasing 

the number. The perturbation in this variable was limited to plus or minus 

one lens. 

For the case when one lens is added, the parameters of the new lens 

(R1, R2, T1, T2, and M1) are randomly generated. This new lens is then 

placed in all possible lens positions from 1 to !" + 1, where !! is the 

number of lenses before the application of this operand. For each 

position!!" occupied by the new lens, the position of each one of the 

lenses with an index greater than or equal to !" is changed to their 

original position plus one. 

For the case when one lens is deleted, all possibilities are also tested. All 

of the system lenses are deleted, one at a time. When the lens with index 

!" is deleted, all of the lenses with an index greater than !" are 

changed to their original position minus one.  

Working in this way, the lens mutation operand generates 2!" + 1 new 

systems with one more lens and !" new systems with one less lens.  

6.2.5. O-GEO Step 3  

Three objective functions drive the O-GEO search: one function measures the 

image quality, one function measures the sensitivity to alignment error, and the 

final function identifies the number of lenses in the system, interpreted as the 

system complexity.  
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We will discuss the image quality used in the exploration phase as well as the 

sensitivity objective functions in Chapter 7 given by Equation (7.3) and (7.34), 

respectively. The third objective function does not need to be computed, it is 

given directly by the number of lenses in the system, which is obtained from the 

first cell of the candidate solution codification string. The smaller the number of 

lenses, the more adapted the solution is in terms of this parameter.  

All three functions are computed for every candidate solution that results from 

the application of the diversity operands. The numerical values of the three 

functions are assigned to the candidate solution.  

6.2.6. O-GEO Step 4  

In this step, the algorithm checks the dominance criteria between the systems 

created during the current generation and the systems saved in the Pareto front 

of the current independent execution of O-GEO. The resulting non-dominated 

solutions from this dominance check are saved as the new Pareto front to be 

used during the dominance check in next generation.  

6.2.7. O-GEO Step 5  

Though all three objective functions are computed for every solution visited 

during the current generation, only one of them is randomly selected with a 

uniform distribution to drive the search. The numerical value of the selected 

function computed for each candidate solution is used to calculate the 

adaptability or fitness of each candidate solution. The adaptability of a specific 

species is given by the current value of the selected objective function for the 

specific candidate subtracted from the value of the same objective function for 

the seed solution of this generation, i.e., the input system of this generation 

before the mutation in any species is applied.  
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6.2.8. O-GEO Step 6  

The solutions are then sorted according to their fitness from the least 

adaptable!! = 1 to the most adaptable ! = !, where ! is the rank position and ! 

is the number of candidate solutions.  

6.2.9. O-GEO Step 7  

A solution with rank ! is randomly selected with a uniform distribution. The 

probability of the selected solution becoming the seed for the next generation is 

given by Equation (4.1). If the selected solution is not assigned as the seed for 

the next generation, a new solution is randomly selected. This continues until 

one selected solution becomes the next generation seed. 

6.2.10. O-GEO Step 8  

The stopping criterion adopted for O-GEO is assigned as the number of 

generations. The maximum number of generations assumed for each O-GEO 

independent execution is linearly proportional to the number of lenses in the 

system produced in step 1. 

In this step, the algorithm checks if the stopping criterion is fulfilled. If the 

stopping criterion is verified, the algorithm stops and returns the last Pareto 

front of this independent execution of O-GEO. This Pareto front is then used as 

input for the exploitation phase. Otherwise, a new generation starts with the 

system selected in step 6, and the algorithm repeats steps 2 through 7. 

6.3. Exploitation phase  

The exploitation phase, also known as the intensification phase, begins after 

each independent execution of the exploration phase terminates. The non-

dominated solution found during the previous independent execution of O-GEO 

is used as input in this phase. A local search is conducted for every non-

dominated system for which real rays can be traced.  
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The local search is based on a descendent optimization method. In the 

exploitation phase, the objective function contains only the image quality metric, 

given by the root square of Equation (7.12), and the static internal constraint 

penalty function. The image quality function was chosen in this phase because 

it is the most important objective function. 

Because the method can only deal with continuous variables, the optimization in 

the exploitation phase only affects the radii (R1 and R2) and the thicknesses 

(T1 and T2) of all lenses in the system. All other parameters, i.e., the glass 

material, aperture stop position, number of lenses, lens sequence, etc., are 

fixed during this local optimization. 

The local search is done with an embedded MATLAB function: lsqnonlin, which 

is in fact based on the Levenberg–Marquardt algorithm. The local optimization 

algorithm runs for each feasible system until a stopping criterion is reached.  

Once the local search has been applied for all the feasible input solutions, the 

algorithm checks the dominance criteria. The dominance is verified between the 

current systems after the local search and the non-dominated solutions found 

so far by the automatic design algorithm. The new set of non-dominated 

solutions is saved in a file with the codification used by O-GEO.  

!  
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7 SIMULATOR AND MERIT FUNCTIONS 

In order to automatically design and optimize optical systems, we need to use 

an optical simulator. An optical simulator is defined herein as software capable 

of simulating the sequential light propagation through a set of optical elements, 

emulating the image formation of an optical system.  

We also need to define a metric, or metrics, used to evaluate the system 

performance. As described earlier, the optimization process consists of 

changing the design parameters with the goal of minimizing or maximizing the 

metric or metrics provided while simultaneously respecting the constraints 

imposed by the problem. 

This section presents the concept of the simulator, metrics, and merit functions 

used in this work for the automatic design of optical systems. 

7.1.  The simulator 

In our first approach, we used a commercial lens design software program as 

the simulator. The lens design software was linked to preliminary versions of the 

automatic lens system design algorithm. We tested this methodology by linking 

the Zemax lens design software to the optimization algorithm coded in Matlab. 

Unfortunately, we found some limitations with this approach. In particular, we 

determined some of the weaknesses to be the low speed performance in the 

change of information between Zemax and Matlab and the inability to easily 

change the number of lenses in Zemax during the optimization processes. 

These, and other issues, led us to abandon the idea of using commercial lens 

design software for ray tracing proposes and develop our own simulator (ray 

tracing software) in Matlab.  

The simulator we developed is intended only for research purposes and was not 

developed as a sophisticated tool like commercial optical design software 

solutions. Our simulator is only capable of simulating light propagation by 

means of a sequential geometrical ray trace through axial symmetrical systems 
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containing only spherical surfaces, which is satisfactory for the development of 

the thesis presented herein.   

We used Matlab to developing the simulator because of its simplicity in 

programming and debugging and due to our familiarity with the language. We 

also transcribed a small part of the code to C for functions where higher speed 

performance was necessary. 

The optical design software was developed following a component-based 

architectural design method, also known as the building block method. With this 

kind of architecture, the software is decomposed into independent subroutines 

(functions), which can be combined to execute specific and complex tasks. This 

architecture is flexible, facilitating debugging, integration, evolution, and 

extension. A small part of the code developed was based on subroutines 

developed by Dr. John S. Loomis from the University of Dayton, which are 

available on the web (http://www.johnloomis.org/eop601/). Dr. Lin-Yao Liao also 

collaborated on this work with the development and improvement of some 

subroutines under author supervision.  

The main simulator subroutines are the material refractive index computation, 

surface paraxial ray trace, and the surface real ray trace. These subroutines are 

virtually called directly or indirectly from any other function. For instance, the 

surface paraxial ray trace is used to compute the basic characteristics of the 

optical system such as the effective focal length and the entrance and exit pupil 

position and diameter, which are the basic quantities necessary to simulate and 

compute the system performance. The real ray trace is essential to accurately 

compute the system image quality performance based on either the spot size or 

wavefront error. For any ray trace, the refraction index of the materials in each 

wavelength is necessary. Both the paraxial and real ray trace subroutines were 

implemented based on the equations provided respectively in Chapter 3 and 

Appendix A.3 from Smith (2007). 

The simulator took about one year of work to become fully functional. Every 

function implemented was verified. Whenever possible, the results of the 
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functions were compared to reported quantities given by Zemax or other 

commercial optical design software. 

7.1.1. Lens system and glass catalog representation in the simulator 

In the developed code, the lens system is represented by a Matlab structure, 

which contains all of the information necessary for the system simulation.  

Figure 7.1 shows the lens system variable representation. The values 

presented in Figure 7.1 are associated with the Cooke triplet lens shown in 

Figure 7.2. In the structure, the lens construction parameters are defined in 

LensData, which has three fields R, T, and M, containing the data for the radius 

of curvature, thickness, and optical material of each surface, respectively.  

Figure 7.1 - Lens system variable representation in the Matlab simulator. 
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The Stop field contains the surface position in which the lens aperture stop 

(diaphragm) is located counting from the object (system surface number 1). The 

field of view (FOV) informs the maximum half-field angle of the system in 

degrees.  

The entrance pupil diameter (EPD) defines the system aperture in millimeters. 

The wavelength defines the wavelength of the light in microns that will be 

propagated through the system during the simulation. Any number of 

wavelengths can be assigned. The field PrimaryWavelength provides the 

wavelength number taken as reference. The primary wavelength is used to 

compute the effective focal length, F/#, exit pupil position and diameter, and 

other paraxial quantities.  

 
Figure 7.2 - Layout representation for the lens system data shown in the Matlab 

simulator variables in Figure 7.1. 

The lens prescription is defined by the data in the LensData and Stop fields, 

and these parameters are changed during the optimization process. The 

LensData is recorded in millimeters. The LensData fields contain information 

about each surface in the system such as the radius of curvature thickness and 

material, going from the object to the image plane surface. 

We can easily connect the data shown in Figure 7.1 with the system layout in 

Figure 7.2. The radius of the first surface, which represents the object (not 

shown in Figure 7.2), is infinity suggesting that the surface is flat. The first line in 

the T thickness field gives the distance from the object to the first optical surface 

in the optical system. Infinity represents a very far distance, which results in a 
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lack of divergence of rays coming from the same object point. The optical 

material filling the space between the object and the first optical surface is air.  

Following the same rationale, the first optical surface (second surface of the 

system) has a radius of curvature of 22.014 mm, and the positive radius 

denotes a center of curvature to the right of the surface. The axial distance 

between the first and the second optical surfaces (third surface of the system) is 

3.26 mm, which is filled with SK16, an optical glass from Schott AG. The 

second optical surface radius is -435.76 mm, and the negative radius indicates 

a center of curvature to the left of the surface. The material of the second 

surface is air, and its distance to the third optical surface (fourth surface of the 

system) is 6.01 mm. We can clearly see that the first and second optical 

surfaces, represented by the second and third surfaces in LensData, result in a 

biconvex singlet lens made of SK16 glass, and the axial distance to the next 

lens is 6.01 mm.  

We represent the construction parameters of optical systems in the standard 

way used by most of optical design software. The representation in our 

simulator is not the same representation used by the evolutionary optimization 

algorithm discussed in section 6.2.1. 

The remaining fields in the lens system structure (i.e., FOV, EPD, Wavelength, 

and PrimaryWavelength) identify the lens system specifications and are not 

variables of the problem. 

Note that the material information in LensData is given by the actual glass 

name. To make this possible, we created glass catalogs in Matlab for the 

simulator. The glasses are also represented as a structure variable similar to 

the lens variable. All possible information for the glass is available in this 

structure. The glass catalog is given by an array of structures with each 

structure representing a glass. To trace rays for a specific wavelength, the glass 

name is interpreted, and the refractive index for the specific wavelength is 

computed using the dispersion equation data and coefficients available for the 

glass in the catalog.  
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We intend to share the codes implemented in the future.  

7.2. The Optimization Metrics  

In this section, we present the metrics used in the optimization algorithm 

proposed in this thesis. The developed algorithm uses a hybrid evolutionary 

multi-objective optimization approach, simultaneously, but separately, 

addressing the image quality, tolerance, and complexity of the system. In this 

case, we require three classes of metrics to evaluate the solutions: the image 

resolution, the system sensitivity to fabrication errors, and the system 

complexity. The system complexity is simply taken as the number of optical 

elements used. However, the other two metrics involve more elaborate 

considerations and computations, which we explain in detail in the following 

sections of this chapter. 

7.2.1. Image resolution metrics 

For the image resolution metric, we suggest two different merit functions: one 

for the exploration phase and one for exploitation phase. Each merit function 

has special characteristics that are appropriate to the phase where they are 

applied.  

Both metrics are based on an estimation of the optical system wavefront error. 

In Chapter 2, we explained and derived the optical aberrations in terms of the 

ray aberrations !"′ and!!"′ (see Equations (2.3) and (2.4)), which are given by 

the error in the intersection coordinate of the ray related to the reference point 

!!′ !!;!′  on the focal plane. However, optical aberrations can also be 

expressed in terms of the optical path difference (OPD), described by the 

wavefront error function !. The rays are infinitesimally thin slices of waves, 

pointing in the direction of the energy flow, which is perpendicular to the 

wavefront. Therefore, a perfectly spherical wavefront will cause the rays 

collapse to a single point and no aberration will occur. In this way, the OPD is 

given by the difference between the actual (aberrated) wavefront !!" produced 

by the optical system and the ideal spherical wavefront S at each point of the 
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exit pupil (EXP) of the system. Figure 7.3 shows the definition of the OPD, and 

its relation to the ray aberration.  

 
Figure 7.3 - Relationship between the OPD and ray transverse aberration. 

The relation between the ray transverse aberration function and the wavefront 

error function is given by the following equations (MAHAJAN, 1998; KIDGER, 

2002; SMITH, 2007): 

 !!! = − !
!!
!"
!" , (7.1) 

 !!! = − !
!!
!"
!" . 

(7.2) 

where !! is the refractive index in the image space.  

7.2.1.1. Exploration phase image resolution metric 

One of the key points for determining the performance and feasibility of 

evolutionary optimization methods applied to engineering problems is related to 

the computational cost necessary for calculating the merit function. These 

optimization methods are stochastic and must calculate the MF repeatedly for a 

large number of times to evolve the solution to a good point.  
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When personal computers were not available or when computers were not 

available at all, optical designers developed simple and fast methods to verify 

the quality of an optical system design. Perhaps the most efficient and famous 

is the Seidel aberration coefficients. These coefficients are calculated using a 

paraxial trace of only two meridional rays through the system. Several famous 

systems were designed using the Seidel coefficients, such as the Cooke triplet, 

Ritchey–Chrétien telescope, and others.  

With the invention and evolution of computers, the design and optimization of 

optical systems using the Seidel coefficients declined. Since computers became 

fast enough to calculate real skew rays through an optical system, the traces of 

many rays has been preferred to construct the MF of optical systems because 

ray tracing is a more accurate image quality assessment technique that Seidel 

coefficients. However, even with very fast computers to trace rays, speed 

improvements in the MF computation are welcome for evolutionary optimization 

of optical systems, resulting in a better and faster exploration of complex design 

spaces intrinsic to the problem. 

Another important issue in applying evolutionary optimization (EO) methods in 

the problem of lens design is related to feasibility of the systems. Many systems 

generated during the search are unfeasible, especially during random 

generation of the first population and by diversity operands (e.g., crossover or 

mutation) during early stage of the optimization. This issue is aggravated in 

large-scale problems (systems with many lenses). This is a consequence of the 

complex constraints involved in optical design problems. For unfeasible 

systems, standard image quality metrics, which depends on the trace of real 

rays such as spot size and wavefront error, are impossible to calculate due to 

the failure of real ray trace through the system.  

These feasibility problems have been reported in several studies along with 

methods to circumvent these issues. Ono et al. (1998) proposed a method that 

systematically changes system variables until all of the necessary real rays can 

be traced through the system, allowing calculation of spot size. In order to 

accomplish this, marginal rays are traced from different FOV positions. Surfaces 
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causing the ray trace to fail are identified and the parameters from those 

surfaces are changed until a feasible system is achieved. Other studies, such 

as Chen and Yamamoto (1996) and Gagné et al. (2008), use a two-layer MF 

where one MF is used when the rays cannot be traced through the system and 

other MF is used when the system is feasible.  

With speed and feasibility issues in mind, we proposed an image quality metric 

for the exploration phase given by Equation (7.3). This metric is computed by 

the square root of the sum of the root mean square (RMS) wavefront error for 

the whole FOV for each wavelength λ: 

 !!"# = !!"#! !
!!

!!!
. (7.3) 

The RMS wavefront error for the whole field (!!"#) is calculated for each 

wavelength using the following equation: 

 !!"#(!)! =
! !′, ! !!"′!

!
!′!"!

!
. (7.4) 

Here, !′ is the normalized image height, and ! !′, !  is given by Equation (7.5), 

which is the RMS wavefront error for a specific image position !′ for wavelength 

!: 

 !(!′, !)! = 1
! !! !′, !, !, ! !"!"#

!

!

!!

!
− 1
!! ! !!, !, !, ! !"!"#

!

!

!!

!

!
. (7.5) 

The wave aberration function ! at the exit pupil can be written as an infinite 

power series in terms of the normalized image height !′ and the exit pupil 

coordinates. Considering a rotationally symmetric system with circular exit 

pupils for which the normalized polar coordinates are !,! , the wave aberration 

function can be written in the form: 
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! !!,!,!, ! =!!!! ! !!! cos! +!!"! ! !! +!!"! ! !!

+!!"! ! !′!! cos!
+!!!! ! !!!!! cos! ! +!!!" ! !!!!!

+!!"" ! !!!! cos! +!!"# ! !′!!!

+!!!" ! !′!!! cos! +!!"" ! !′!!! cos! !
+!!"# ! !′!!! +!!"" ! !′!! cos! +!!"! ! !!

+!!"! ! !′!! cos!
+!!"! ! !′!!! cos! !
+!!!! ! !′!!! cos! ! + higher&order&terms 

(7.6) 

The !!"# are peak-normalized wave aberration coefficients, which are 

normalized in image height and exit pupil. The first-order coefficients !!!! and 

!!"! are known respectively as the lateral magnification and defocus. The 

coefficients from !!"! to !!"" are the third-order (Seidel) coefficients and are 

called the third-order spherical, coma, astigmatism, field curvature and 

distortion, respectively. The fifth-order terms range from !!"# to !!!!. The first 

seven fifth-order terms are named: oblique spherical, fifth-order coma, 

astigmatism, field curvature, distortion, and spherical. The last three fifth-order 

coefficients have no formal or widely recognized names (SASIAN, 2010).  

For the proposed metric, the wave aberration equation is expanded up to the 

fifth-order coefficients. The third-order coefficients in Equation (7.6) are the 

Seidel terms, and their calculations can be found in any optical design book. 

The algebraic equations used to calculate the fifth-order wave aberration 

coefficients were presented by Sasian (2010) in a recent publication. The fifth-

order coefficient computation uses only the data from the two paraxial rays used 

to calculate the Seidel coefficients. 

We ignore the distortion coefficients !!"" to !!"" in our metric because the 

distortion does not influence the image resolution. Furthermore, !!"! and !!!! 

are taken to be zero for the principal wavelength !! because the lateral 

magnification is not an aberration, and the paraxial focal plane of !! is taken as 

the observation plane. However, the chromatic change of magnification (known 
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as the lateral color) and the chromatic change of focus (also known as the axial 

color or simply chromatic aberration) are important aberrations and shall be 

considered in the calculation. In this way, for other wavelengths !, !!"! and 

!!!! are given by the following two equations, respectively (MAHAJAN, 1998):  

 !!"! !, !! = −!′Δ! !, !!2!! !!, (7.7) 

 !!!! !, !! = −!′Δ!′ !, !!R !, (7.8) 

where !′ is the index of refraction in the image space, !′ is the exit pupil semi-

diameter, ! is the radius of curvature for the reference sphere !, !"(!, !!) 
represents the difference in distance from the exit pupil position to the paraxial 

image plane respectively between the wavelengths !! and !, and !"′(!, !!) is 

the difference in image height between paraxial principal (or chief) rays coming 

from the edge of the FOV respectively for !! and !.  

With the proposed metric for image quality based on the third- and fifth-order 

aberration coefficients, we can obtain a very robust and fast technique for 

computing the metric. Because no trigonometric rays are traced, the metric is 

robust. The paraxial rays used to compute the desired coefficients are not 

subject to failure due to a ray missing a surface or encountering total internal 

reflection (SMITH, 2004). Only two paraxial rays from each wavelength are 

necessary to calculate the coefficients, resulting in a very computationally 

efficient function in the exploration phase of the algorithm. 

7.2.1.2. The exploitation phase image resolution metric 

For the exploitation phase, we use a different model to represent the wavefront 

error. For a given point object and wavelength, the aberration function of a 

optical system can be represented in terms of a complete set of Zernike circle 

polynomials as follows (MAHAJAN, 1998): 
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 ! !′,!,!, ! = !!" !!, !
!

!!!
!!!

!

!!!
! cos!", (7.9) 

where !!"  are the Zernike coefficients that depend on the image height !′ and 

on the wavelength !. The values ! and ! are positive integers (including zero), 

and (! −!) must be a non-negative even number. Finally, !!!(!) is given by 

 !!! ! = 2 ! + 1
1+ !!!

! !
∙ −1 ! ! − ! !

!! ! +!2 − ! ! ! −!2 − ! !

!!!
!

!!!
!!!!!, (7.10) 

where !!" is the Kronecker delta. Note that Equation (7.10) has no explicit 

dependence on the image height !′, and the coefficients change for every field 

point unlike Equation (7.6). 

The Zernike polynomial presented in Equation (7.9) is an orthonormal 

polynomial over a unit circle. Therefore, the square RMS wavefront error for a 

specific field point !′ and wavelength ! is given by the sum of squares of all of 

the Zernike coefficients except the piston (!!!):  

 !(!′, !)! = !!"!
!

!!!
!′, ! .

!

!!!
 (7.11) 

In this way, the square of the RMS wavefront error can be approximated by 

 !!"#
! = !!"!

!

!!!
!′, !

!

!!!

!!

!!!!

!!

!!!!!
 (7.12) 

where ! and ! are the number of field points and number of wavelengths used 

to evaluate the system, respectively. The root mean square of Equation (7.12) 

is used as an image quality metric for the local search algorithm. Note that this 

equation can be easily modified to account for different wavelengths and field 

points using relative weights if necessary.  
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To calculate the Zernike coefficients, the polynomial must be truncated at some 

point ! = !!"#, and a set of real rays for each field position and wavelength 

defined must be traced through the system. The optical path difference (OPD) 

at the exit pupil with respect to the centroid is computed for each ray. The 

average polychromatic tilt is removed from the OPD data for each field point, 

leaving only the chromatic differential tilt. The tilt itself does not influence the 

image quality, but the chromatic differential tilt is the lateral color aberration 

(chromatic change of magnification). 

With the OPD and the coordinate !,!  of each ray !!in the exit pupil, a 

weighted least square fitting method is used to compute the Zernike coefficients 

for each field and wavelength: 

 ! !′, ! = !! ∙!! ∙ ! !! ∙ !! ∙!! ∙ !"# !!, ! ,! (7.13) 

where  

 ! !′, ! =

!!! !′, !
!!! !′, !
!!" !′, !

⋮
!!!"#!!"# !′, !

!, (7.14) 

!

 ! =
1 !!! !! !"# !! !!! !!
1 !!! !! !"# !! !!! !!

!!! !! !"# 2!! ⋯ !!!"#
!!"# !! !"# !!"#!!

!!! !! !"# 2!! ⋯ !!!"#
!!"# !! !"# !!"#!!

⋮ ⋮ ⋮
1 !!! !! !"# !! !!! !!

⋮ ⋱ ⋮
!!! !! !"# 2!! ⋯ !!!"#

!!"# !! !"# !!"#!!

, (7.15) 

!

 !! =
!! ⋯ 0
⋮ ⋱ ⋮
0 ⋯ !!

, (7.16) 

!
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 !"# !!, ! =
!"#! !!, !

⋮
!"#! !!, !

. (7.17) 

The weighting !! is used in the Equation (7.13) because the Gaussian 

quadrature (GQ) ray distribution scheme was chosen to sample the pupil. 

Despite GQ being the most efficient sampling method to estimate either the 

wavefront error or the spot size, it uses different relative weights for each ray 

traced. With this scheme, only a few rays are necessary to obtain good 

accuracy for the image quality metrics. The number of rays used in a GQ 

scheme is defined by the number of rings !!  and the number of arms !! , 

where the total number of rays is given by the multiplication of these values 

!! ∙ !!  for plane symmetrical systems or by 1 2 !! ∙ !!  for rotational 

symmetric systems. The efficiency of the GQ sampling scheme can be verified 

by the following comparison: if 30 rays !! = 5, !! = 6 !are used with GQ 

scheme for an optical system assessment, 106 rays would be necessary in the 

Cartesian uniform gridding sampling scheme to get the same accuracy. The GQ 

and the Cartesian uniform gridding ray distribution schemes are shown in 

Figure 7.4 and Figure 7.5, respectively (FORBES, 1988). 

 
Figure 7.4 - Gaussian quadrature ray distribution scheme for !! = 3 and !! = 6 

(FORBES, 1988). 
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Figure 7.5 - Uniform Cartesian ray distribution scheme (FORBES, 1988). 

The matrix !! ∙!! ∙ !  is frequently ill conditioned (close to singular). To avoid 

problems inverting the matrix, we implemented the method described in (RILEY, 

1955).  

The RMS wavefront error of the system could be easily computed by the square 

root of the direct weighted square sum of the OPD of each ray. However, 

according to Rayces (2009), the relationship between the optical system 

variables and the Zernike coefficients is more linear than the relationship 

between the optical system variables and the OPD of each ray. In this way, 

utilizing the Zernike coefficients to compute the wavefront metric simplifies the 

design space topography. This results in better convergence when gradient-

based optimization algorithms are used in the local search, which is the case for 

the DLS method used in this phase of the algorithm. 

7.2.2. System sensitivity metrics 

For the sensitivity metric, we followed the same principles used to define the 

image quality metric for the exploration phase. Therefore, the metric must be 

quickly evaluable, provide a good metric for tolerance, and computed in any 

situation. 

In the literature it was possible to find some metrics that would work for our 

application, such as the power distribution metric proposed by Sasian and 

Descour (1998), the two sensitivity metrics proposed by Wang and Sasian 

(2010), and the metric proposed by Isshiki et al. (2004). All of these metrics can 

be calculated with paraxial rays. However, though the selected metrics are 

validated in an empirical way, there is a lack of theoretical background in the 
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metric derivations. In this way, we propose a new metric for the system 

sensitivity that fulfills our requirements and has a theoretical derivation.  

In our case, our primary concern is the assembly tolerance, specifically related 

to the tilts and decentering of the surfaces or elements. These problems are the 

most pernicious, difficult to control, and the most difficult to debug when the 

system does not perform according to the image quality requirements.  

When there are tilts and/or decenters, the system symmetry is broken, and the 

system might be completely asymmetric. Nevertheless, to simplify the metric 

without loss of generality, the decenter and/or the tilt are considered only for 

one direction (in our case, the tangential plane). This results in a plane-

symmetric system, which is easier to treat than an asymmetric system. Once 

the estimated performance of a plane-symmetric system is known, the 

estimated performance of an asymmetric system can be computed by 

multiplying the estimated performance of a plane-symmetric system by the 

square root of two (SASIAN, 2011).  

According to Mahajan (1998), if the contribution to the primary aberration 

function (third-order aberration) of a system by an unperturbed surface ! is 

given by Equation (7.18), the change in the aberration function due to its 

decenter Δ! (in the y-direction) or its tilt !! (about the vertex in the tangential 

plane) is given by Equation (7.19). 

 
!! ℎ!!, !! , !! , ! = !!! ! !!! + !!! ! ℎ!!!!! cos !! + !!! ! ℎ!!

!!!! cos! !! +!!

!!! ! ℎ′!
!!!! + !!! ! ℎ′!

!!! cos !! !,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
(7.18) 

!

 

!"! ℎ!!, !! , !! , ! = − Ε!!!! ! + 4!!!!! ! !! cos !! ! −!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!2 Ε!!!! ! + !!!!! ! ℎ!!!!! !"#! !! −!!

!!!!!!!!!!!!!!!!!!!!!!!! 2Ε!!!! ! + !!!!! ! ℎ!!!!! −!

!!!!!!!!!!!!!!!!!!!!!! 3Ε!!!! ! + 2!! !!! ! + !!! ! ℎ!!!!! cos !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

(7.19) 
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where the !! values are the third-order coefficients for the exit pupil of surface ! 
(not for the exit pupil of the system), !! and !! are the polar coordinates in exit 

pupil of surface !, ℎ′! is the object image height produced by surface !. Here, !! 
and Ε! are given for decenter and tilt cases respectively by 

 Ε! = !!Δ!, (7.20) 

 
 ε! = !!Δ!, (7.21) 

 
 Ε! = !!S!β! , (7.22) 

 
 !! = !!!!β!. (7.23) 

Here, !! and !! are the object and exit pupil lateral magnification produced by 

surface !, respectively, and !! and !! are the axial distances of object and 

entrance pupil from the surface !, respectively. 

We can rewrite Equation. (7.19) in the form:  

 
!"! ℎ!!, !! ,!! , ! = !!!! ! !!! cos!! !+ !!"! ! ℎ!!!!! !"#! !! +!

!!!!!!!!!!!!!!!!!!!!!!!!!"! ! ℎ
!
!!!! + !!"! ! ℎ

!!
!!! cos!!, 

(7.24) 

where 

 !!!! ! = − Ε!!!! ! + 4!!!!! ! !, (7.25) 

 !!"! ! = −2 Ε!!!! ! + !!!!! ! , (7.26) 

 !!"! ! = − ! 2Ε!!!! ! + !!!!! ! , (7.27) 

 !!"! ! = − 3Ε!!!! ! + 2!! !!! ! + !!! ! !. (7.28) 

The coefficients !!!!, !!"!, !!"!, and !!"! are named, respectively, the constant 

or uniform coma, linear astigmatism, field tilt, and quadratic distortion 
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(MAHAJAN, 1998, SASIAN, 1994). The prefix adjective in the coefficient names 

gives the dependence of the aberration with the field, such as uniform, linear, or 

quadratic.  

According to Mahajan (1998), for a multisurface system, the perturbation of a 

surface not only affects its aberration contribution but also the aberration 

contribution of the surfaces that follow it, even if the following surfaces are not 

perturbed. This happens because the location of the image point and the center 

of the exit pupil change for the perturbed surface, which are the object point and 

entrance pupil of the next surface. However, to simplify the definition of the 

metric and to increase the computation speed, we made the following 

assumptions. If the decenters and/ or tilts are considered small, on the order of 

the assembly errors (tens of microns), it is reasonable to assume that the 

change to the position of the image and exit pupil of the perturbed surface are 

so small that the aberrations induced by the unperturbed surfaces are 

unchanged when compared with the unperturbed system. In other words, only 

the intrinsic aberrations of a perturbed surface are considered, and the extrinsic 

aberrations of the following surfaces are ignored. 

By making this assumption, we can perform a change of variables in Equation 

(7.24), rewriting it in terms of the system of normalized exit pupil coordinates 

and normalized field coordinates as follows:  

 
!"! !!,!,!, ! =!!"#! ! !!! cos!!+!!""! ! !!′!! !"#! ! +!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#! ! !!′!! +!!""! ! !!′!! cos!,!!!!!!!!!!!!!!!!!!!!!!!!!! 
(7.29) 

where  

 !!"#! ! = !!!! ! !!!
!!!

!
!!!!!

!,!!!!!!!!!!!!!!!!!!!!!!!! (7.30) 

 !!""! ! = !!"! ! !ℎ′!"#!!!
!!!!

!!
!!!!!

,!!!!!!!!!!!!!!!!!!!!!!!!!! (7.31) 
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 !!"#! ! =
!!"! ! !ℎ′!"#!!

!

!!!!
!!

!!!!!
!,!!!!!!!!!!!!!!!!!!!!!!!!! (7.32) 

 !!""! ! =
!!"! ! !ℎ′!"#

!!!
!!

!!
!!!!! !!

!.!!!!!!!!!!!!!!!!!!!!!!!! (7.33) 

Here, ! is the number of surfaces in the system, ! is the exit pupil semi-

diameter, and ℎ′!"# is the image height produced by the system.  

With Equation (7.29), the sensitivity metric can be defined by the root square 

sum (RSS) of the RMS change in aberration function for wavelength !!, which 

is induced by each surface tilt independently as follows:  

 !"!"" = !"!"#!!
!

!!!
, (7.34) 

where 

 !"!"#!! =
!! !′ !!"′!

!
!′!"!

!
, (7.35) 

!

 !!(!′)! =
1
! !"!

! !′, !, !, !! !"!"#
!

!

!!

!
− 1
!! !"! !!, !, !, !! !"!"#

!

!

!!

!

!
. (7.36) 

For the metric computation, only the surface tilts are considered, and the 

amount of tilt is assumed to be the same for all of the surfaces. The decenter is 

equivalent to a thickness change and a surface tilt, where the thickness change 

is very small, normally negligible and below the tolerances. Therefore, the 

surface decenters are best treated as a surface tilt (SASIAN, 2011). The 

distortion coefficients !!""! are assumed to be zero for the sensitivity metric. As 

mentioned before, the distortion does not affect the resolution of the image. The 

field tilt coefficients !!"#! may also be ignored if the focal plane tilt can be 

considered as a compensator 



94!

It is also possible to perform a change of variables in Equation (7.19), rewriting 

it in terms of a system of normalized exit pupil coordinates and normalized field. 

This gives rise to the following relationship between the aberration coefficients 

!!"# and the peak normalized aberration coefficients !!"#:  

 !!"!! ! = !!" !
!!
!!!

!
!!!!!

,!! (7.37) 

 

 !!"!! ! = !!" !
ℎ′!"#!!

!!!!!
!
!!!!!

, (7.38) 

 

 !!!!! ! = !!" !
ℎ′!"#!!!

!!
!!!!

!
!!!!!

, (7.39) 

 

 !!!"! = !!"
ℎ′!"#!!!

!!
!!!!

!
!!!!!

, (7.40) 

 

 !!""! = !!"
ℎ′!"#!!

!!
!!!

!
!!!!!

. (7.41) 

Now, we can substitute the Equations (7.37) to (7.40) into Equations (7.25) to 

(7.27), and we can substitute the results into Equations (7.30) to (7.32). These 

substitutions make it possible to write the wavefront peak normalized aberration 

coefficients from Equation (7.29) (!!"#! ! , !!""! !  and !!!"#! ! ) in terms of 

the Seidel wavefront peak normalized aberration coefficients of each surface 

from the non-perturbed system as follows: 

 !!"#! ! = − !!"!! Ε!!!
!!! + 4!!!"!! ! ε! !ℎ′!"#!

!!!
ℎ′!"#!!

, (7.42) 
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 !!""! ! = −2 !!!!! Ε!!!
!!! +!!"!! ε! !ℎ!!"#!

!!!
ℎ!!"#!!

, (7.43) 

 

 !!"#! ! = − 2!!!"! Ε!!!
!!! +!!"!! ! ε! !ℎ′!"#!

!!!
ℎ′!"#!!

. (7.44) 

From these substitutions, we defined the sensitivity metric so that it is only 

dependent on the Seidel wavefront peak normalized aberration coefficients of 

each surface. These coefficients are a subset of the coefficients used in the 

image quality metric defined for the exploration phase. Therefore, our outlined 

metric complies with all of the defined requirements. 

!  
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8 EXPERIMENTS RESULTS AND VERIFICATIONS 

In this chapter, we describe the test of the global search algorithm developed 

for the automatic design of optical system. The results presented herein verify 

the efficiency of the algorithm, proving our proposed thesis.  

We systematically tested and verified the algorithm. At first, the design of a very 

simple optical system is performed using a subset of the algorithm tools. We 

incrementally turned on the algorithm tools and the example optical system 

used became progressively more complicated. In this way, the experiments 

conducted range from a simple Cooke triplet design, which we tested with fixed 

number of lenses and a mono-objective approach, to an optical system design 

intended for a multi-spectral remote sensing camera, which we tested with a 

multi-objective approach, a variable number of lenses, and the glass selection 

tool. 

8.1. The Cooke triplet problem  

The Cooke triplet is a classical lens system designed for photographic cameras. 

H. Dennis Taylor proposed this design in 1893. It is an especially interesting 

design because it is the simplest lens system with the enough effective degrees 

of freedom to control or correct all seven third-order or Seidel aberrations 

(KIDGER, 2004; SMITH, 2004).   

Due to the nonlinearity of the relationships between the aberrations and design 

variables, there are at least eight potential solutions (local minima) for the third-

order aberrations, if a given choice of glass for each lens is assumed. By adding 

glass variables and high-order aberrations to balance the third-order 

aberrations, the number of local minima becomes enormous (KIDGER, 2004; 

SMITH, 2004). 

The classical Cooke triplet solution, which provides the best aberration 

balancing, is a negative (diverging) flint glass lens between two positive 

(converging) crown glass lenses with the aperture stop located near the 

negative lens. Figure 8.1 shows three optimized Cook triplet examples. All of 
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examples were scaled to a 50 mm focal length set to F/5 and FOV +/-20 degree 

with no vignetting. 

 
Figure 8.1 - Example of Cooke triplet solutions obtained from the following sources: a) 

Kidger (2004), b) Moore (1999), and c) ZEMAX (2011b). 

The Cooke triplet solutions shown in parts a), b), and c) of Figure 8.1 were 

taken from Kidger (2004), Moore (1999), and Zemax (2011b), respectively. 

Figure 8.1b is the result of a global search algorithm. Figure Figure 8.1c was 

taken from a ZEMAX samples data bank (ZEMAX, 2011b). All of the solutions 

are well-corrected systems, having polychromatic (F-d-C) RMS wavefront error 

equal to: 0.624, 0.464 and 0.453 waves, respectively. It is interesting to note 

that the second and third designs use the same glasses and have very similar 

performances in terms of RMS WFE. However, they have different shapes that 

can be visually detected, demonstrating that they are located in two different 

local minima in the design space. 

Our goal in this first experiment is to test the performance of the proposed 

algorithm in designing a triplet system with the same optical requirements of the 

ones shown in Figure 8.1. In this first example, the proposed automatic design 

algorithm is set to work with a fixed number of lenses in the mono-objective 
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mode, optimizing only the image quality. Further, we bypass the glass selection 

phase limiting the available glasses in this design to the glasses used in the 

systems presented in Figure 8.1b and Figure 8.1c, which are SK16 and F2 from 

Schott Inc. By restricting our algorithm to work in the mono-objective mode with 

fixed number of lenses, the obtained results can be compared with the results 

obtained with the ZEMAX global search algorithm.  

In Table 8.1, the system requirements and constraints used as input for the 

design are presented. 

Table 8.1 - Triplet system requirements and constraints. 
ITEM REQUIREMENT 

Effective Focal Length (EFL) 50 mm 
F- Number (F#) 5 
Field of View (FOV)  +/- 20 deg 
Spectral band  Visible uniform weighting F 

(486,13nm), d (587.56nm) 
and C (656,27nm). 

Available glasses  SK16 and F2 
Minimum air edge thickness 2 mm 
Minimum air central thickness  2 mm 
Maximum air central thickness (excluding the back focal 
length ) 

25 mm 

Minimum glass edge thickness  1 mm 
Minimum glass central thickness 1 mm 
Maximum central glass thickness 7.5 mm 
Maximum system length (excluding the back focal length ) 50 mm 
Maximum total system length  75 mm 
 

8.1.1. Tuning the exploration phase  

Before running the experiment, it is necessary to tune the adjustment 

parameters used in the exploration phase algorithm. O-GEO has two adjustable 

parameters: ! and !. The curves developed during the tuning studies also help 

to define the number of generations used in the exploration phase before 

entering the exploitation phase. 

Once the best tradeoff combination for ! and ! is determined using the triplet 

design problem, these parameters will be fixed for all other optical design 
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experiments conducted herein. On the other hand, we assume that the number 

of generations used during the exploration has a linear relationship with the 

number of design variables and a quadratic relationship with the number of 

objective functions. In this case, the best tradeoff number of generations found 

for the triplet mono-objective example is used as a reference to calculate the 

number of generations for other experiments.  

In the tuning experiment, ! was tested with the following values: 0.25, 0.5, 0.75, 

1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. For each value assumed for !, σ was changed 

from 0.1 to 1 in increments of 0.1. The collected data was plotted and analyzed 

where we concluded that the best values for ! and ! are 1 and 0.6, respectively, 

and the number of generations for the mono-objective triplet is around 100±50. 

All of the details, data, graphs, and discussions about the tuning studies can be 

found in Appendix B.  

8.1.2. Triplet experiment results  

Due to the stochastic behavior of EA, we performed twenty independent 

executions of the proposed algorithm for this experiment. The stopping criterion 

for each run was established as when the RMS WFE gets smaller than 0.4 

waves. 

The algorithm found four types of systems that can be visually discriminated. 

The layout of each system is shown in Figure 8.2 and the results are shown in 

Table 8.2. All system types follow the classical triplet solution with a negative 

flint glass lens between two positive crown glass lenses and the aperture stop 

located near the negative lens. The difference between them is the shape of the 

lens and the exact position of the aperture stop. Systems of the same type, 

found in different executions of the algorithm, are not exactly the same but have 

very similar numerical values.  
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Figure 8.2 - Layout of the triplet system types found by the automatic lens design 

algorithm.  

Table 8.2 - Cooke triplet experiment results using the automatic lens design algorithm. 
From left to right, the columns contain the execution number, the 
number of merit function evaluations in the exploration phase, the 
number of merit function evaluations during exploitation phase, the total 
number of merit function evaluations, the RMS WFE achieved in waves, 
and the system type obtained.  

 GMFC LMFC TMFC MF Type 
1 1.03E+05 4.39E+04 1.47E+05 0.366 1 
2 4.80E+04 1.84E+04 6.64E+04 0.361 2 
3 3.60E+04 1.45E+04 5.05E+04 0.384 3 
4 5.52E+04 2.82E+04 8.34E+04 0.361 2 
5 1.56E+05 6.91E+04 2.25E+05 0.384 3 
6 3.29E+05 1.44E+05 4.72E+05 0.361 2 
7 2.78E+05 1.17E+05 3.96E+05 0.361 2 
8 2.64E+04 1.00E+04 3.64E+04 0.409 4 
9 4.13E+05 1.84E+05 5.97E+05 0.409 4 

10 1.44E+04 4.69E+03 1.91E+04 0.400 3 
11 1.20E+04 4.68E+03 1.67E+04 0.384 3 
12 2.09E+05 9.38E+04 3.03E+05 0.400 3 
13 4.22E+05 1.92E+05 6.14E+05 0.384 3 
14 2.64E+05 1.22E+05 3.86E+05 0.384 3 
15 9.84E+04 4.18E+04 1.40E+05 0.409 4 
16 1.06E+05 4.56E+04 1.51E+05 0.409 4 
17 2.95E+05 1.26E+05 4.21E+05 0.384 3 
18 8.40E+04 4.32E+04 1.27E+05 0.384 3 
19 1.03E+05 4.15E+04 1.45E+05 0.384 3 
20 6.72E+04 3.55E+04 1.03E+05 0.409 4 

Average 1.56E+05 6.90E+04 2.25E+05 0.387 - 
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The same exact experiment was also conducted in ZEMAX using the built-in 

global search algorithm (Zemax, 2011a). According to Moore (1999), the 

ZEMAX global search is based on a hybrid GA. 

In ZEMAX, a RMS WFE merit function was built with all of the system 

requirements and constraints. All of the lens parameters were set as variables 

and the glasses were set as substitution. A glass catalog containing only the 

allowed glasses for this design was defined. Solvers were used on the last 

surface curvature and air thickness in order to control the desired focal length 

and image plane positions, respectively.  

Despite not using the user-provided starting point in the global search algorithm 

(MORRE, 1999), ZEMAX requires a feasible start solution in order to run the 

search. The initial solution defined is a set of plane parallel plates with 2 mm 

thickness and 2 mm air spacing. Due to the solvers, the last curvature of the 

system was set to preserve the desired focal length, and the distance to the 

image was set to 50 mm.  

ZEMAX does not have an automatic stopping criterion for the global search 

algorithm; it keeps running until the user hits the STOP button. While running, 

ZEMAX informs the ten best MF found, the number of evaluated systems, and 

the elapsed time.  

On this experiment, to compare ZEMAX results with the obtained results from 

the proposed algorithm, the user visually checks the best systems MF found by 

ZEMAX until the minimum required image quality is achieved. At that point, the 

user manually stops the ZEMAX search. The number of systems tested by 

ZEMAX, interpreted as the number of times the objective function was 

computed, is recorded. Likewise, the best system found is saved, and its RMS 

WFE is also recorded. Table 8.3 shows the obtained results for all twenty 

executions performed in ZEMAX.  
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The global search algorithm in ZEMAX found three visually distinct systems. 

The layout of each system is shown in Figure 8.3. All of the triplet systems 

found by ZEMAX also have the classical Cooke triplet architecture.  

Table 8.3 - Cooke triplet experiment results using ZEMAX global search. The columns, 
from left to right, describe the execution number, the number of 
evaluations of the objective function, the RMS WFE value achieved in 
waves, and the system type. 

 TMFC MF Type 
1 3.65E+05 0.367 1 
2 1.40E+05 0.367 1 
3 2.75E+05 0.367 1 
4 3.13E+06 0.367 1 
5 1.89E+05 0.364 2 
6 1.42E+06 0.367 1 
7 6.64E+05 0.367 1 
8 3.65E+05 0.367 1 
9 7.49E+04 0.367 1 

10 1.29E+06 0.367 1 
11 4.52E+05 0.367 1 
12 6.85E+05 0.364 2 
13 1.38E+06 0.364 2 
14 8.28E+05 0.364 2 
15 5.49E+04 0.367 1 
16 4.00E+05 0.367 1 
17 1.27E+05 0.367 1 
18 1.04E+06 0.367 1 
19 1.83E+06 0.390 3 
20 4.18E+05 0.367 1 

Average 7.56E+05 0.368 - 
 

A standard way of comparing the efficiency of EA is given by means of the 

average computation cost required to meet the defined stopping criterion. The 

average total number of the objective function evaluations provides the best 

metric for the computation cost. This metric is independent of the hardware, 

programming language, and the algorithm structure. 

In this way, despite providing systems with slightly better average performance, 

the proposed algorithm was approximately 3.3 times more efficient than ZEMAX 

in terms of computation cost. Table 8.4 provides a summarized comparison for 

the experiment. 
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Figure 8.3 - Layout of the triplet system types found by ZEMAX.  

Table 8.4 - Summarized results comparison for Cooke triplet experiment where TMFC 
describes the total number of merit function evaluations and MF describes 
the RMS WFE value achieved in waves.  

 Proposed Method ZEMAX 
TMFC MF TMFC MF 

Maximum 6.14E+05 0.409 3.13E+06 0.390 
Minimum 1.67E+04 0.361 5.49E+04 0.364 
Average 2.25E+05 0.387 7.56E+05 0.368 

 

The obtained results for the triplet experiment provide us with the necessary 

confidence to attempt a more complicated experiment.  

8.2. The telephoto lens problem  

The telephoto system is a classical photographic lens design characterized by 

the ratio between its overall length ! and its focal length !, called telephoto ratio 

(!/!), which must be less than one and which is typically from 0.6 to 0.85. In 

other words, the system length is smaller than the effective focal length. The 

smaller the telephoto ratio, the more difficult the design. Normally, these 

systems have a long focal length. However, not all long-focal-length systems 

are telephoto designs, as they are frequently commercially misclassified 

(SMITH, 2004).  
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The classical design of a telephoto lens consists of two lens groups separated 

by a substantial air distance, where the first group is positive and the second 

group is negative. Therefore, the simplest telephoto designs could contain only 

one element in each group. In practice, however, more than one element is 

used in each group in order to control the various aberrations.  

The telephoto design problem is interesting for this stage of tests for our 

proposed algorithm. In terms of number of lenses, telephoto systems can be 

much more complex optical systems than Cooke triplets, but depending on the 

first-order requirements, they might not be extremely complex systems. In 

optical design texts (KIDGER, 2004; SMITH, 2004; LAIKIN, 1995), telephoto 

designs contain from four to seven or more lenses, sometimes for systems with 

very similar first-order specifications. In this way, we can test the ability of the 

algorithm for finding solutions to a more complex problem than the earlier tested 

Cooke triplet. Furthermore, this problem can be used in subsequent 

experiments to test the algorithm expertise in finding trade-off solutions in terms 

of the number of lenses, image quality, and sensitivity. 

A total of three experiments will be conducted with the telephoto problem. At 

first, the number of lenses is fixed, and the problem is executed in the mono-

objective mode considering only the image quality. Second, the number of 

lenses is still fixed, but the problem is executed in the multi-objective mode 

considering both the image quality and tolerance. Finally, the number of lenses 

is allowed to vary, and the multi-objective approach considers the image quality, 

tolerance, and the number of lenses in the optimization process. 

Table 8.5 shows the telephoto lens requirements and constraints used in this 

experiment. A commercial lens from Canon gave us the inspiration for the 

requirements and constraints in this problem. The Canon lens taken as a 

reference is the model EF 400 mm f/5.6L USM classified by Canon as a Super 

Telephoto Lens (CANON, 2013).  
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Table 8.5 - Telephoto system requirements and constraints. 
ITEM REQUIREMENT 

Effective focal length (efl) 400 mm 
F- number (f#) 5.6 
Field of View (FOV)  +/- 3 deg 
Maximum telephoto ratio  0.75 
Spectral band  Visible uniform weighting 

F (486,13nm), d 
(587.56nm) and C 

(656,27nm). 
 
 
 
 

Available glasses  N-LASF40 and N-PSK53A 
Maximum RMS wavefront error 0.20 waves 
Minimum air edge thickness 0 mm 
Minimum air central thickness  0 mm 
Maximum air central thickness (excluding the back focal 
length ) 

150 mm 

Minimum glass edge thickness  2 mm 
Minimum glass central thickness 4 mm 
Maximum central glass thickness 15 mm 
Minimum back focal length 44mm 
Maximum system length (excluding the back focal length ) 256 mm 
Maximum total system length  300 mm 

 

Some requirements are taken directly from the model specifications, while 

others are derived from the available information on the model. Likewise, some 

constraints are also derived from the Canon specifications, while others are 

simply defined by the rules-of-thumb used in lens design.  

The glasses for the design were chosen using the glass selection method 

described above. The image quality in terms of the RMS wavefront error in 

waves was derived from an image quality in terms of the modulated transfer 

function (MTF) used as a rule-of-thumb for photographic objectives.  

To perform the glass selection method, the newest available Schott glass 

catalog was used (SCHOTT, 2013). To avoid glasses with prohibitive cost, we 

applied an upper limit of 10 for the glass relative cost value. Glasses with no 

relative cost information in the catalog were not taken into account.  

The three wavelengths shown in Table 8.5 were used as input to the glass 

selection method. The primary wavelength selected was d (587.56 nm). At first, 

arrangements of two glasses (! = 2) were used. The upper value for !! was set 
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as 10. The post-Pareto method used in this example was the minimum distance 

to the origin (ALBUQUERQUE et al., 2012), where the distance metric g!  was 

computed using only !! and !!. The normalization factor !!" for each function 

was set as the value that accumulates 80% of the solutions in the Pareto front 

(ALBUQUERQUE et al., 2012). Table 8.6 shows the first 10 output lines of the 

glass selection Pareto front organized from the lowest to the highest g! .  

Table 8.6 - Telephoto lens problem output table from the glass selection method for 2 
glasses sorted by g! . 

N° Glass 1 Glass 2 F1 F2 F3 
2189 N-LASF40 N-PSK53A 3.81 4.77E-04 1.07 
2423 N-LASF46A N-PSK53A 2.92 5.33E-04 0.92 
2582 N-PSK53A N-LASF46A 2.92 5.33E-04 0.94 
244 LAFN7 N-PSK53A 3.42 4.68E-04 1.17 

2557 N-PSK53A LAFN7 3.42 4.68E-04 1.17 
2569 N-PSK53A N-KZFS8 3.38 4.69E-04 1.20 
1362 N-KZFS8 N-PSK53A 3.38 4.69E-04 1.21 
2359 N-LASF45 N-PSK53A 3.42 5.18E-04 1.09 
2602 N-PSK53A SF4 2.51 5.69E-04 0.93 
2599 N-PSK53A SF1 2.71 5.54E-04 1.00 

 
Based on the !!!values, we notice that none of the glasses combinations found 

are able to give a diffraction limited color correction. In this case, for diffraction 

limited designs, more than two glasses should be used in combination. 

However, as the system requirements do not impose diffraction-limited quality, 

the glass pair in the first row of Table 8.6 was picked for the design. According 

to the applied post-Pareto analysis, the pair N-LASF40 and N-PSK53A provides 

the best tradeoff solution.  

A rule-of-thumb for the image quality of photographic optical systems is given 

by the thirty-fifty, fifty-thirty rule. In other words, the MTF at thirty line pairs per 

millimeter (30 lp/mm) should be around fifty percent (50%), while at 50 lp/mm, it 

should be around 30% (SASIAN, 2011). However, the image quality metric 

used in our automatic design algorithm is given in terms of the RMS wavefront 

error. Shannon (1997) provides an approximate empirical equation to calculate 

the MTF curve for a given RMS wavefront error. Using this equation, the 

minimum MTF required is obtained when the RMS wavefront error is 
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approximately 0.2 waves. As this equation is empirical and provides only an 

approximation, this value for the RMS WFE is used as a reference only. 

8.2.1. First telephoto design experiment 

At this first telephoto experiment, the number of lenses is kept fixed and the 

algorithm is executed in the mono-objective mode. The number of lenses is set 

to seven, which is more than the double the number of lenses used in the first 

experiment. In this way, we can confirm the ability of the algorithm for finding 

competitive solutions in a much more complex design space and compare the 

results with the same experiment conducted using ZEMAX. Furthermore, the 

Canon commercial objective taken as reference for this experiment uses seven 

lenses as well.  

The only things changed from the Cooke triplet experiment were the input 

requirements and constraints, the number of generations used during the 

exploration, and the stopping criterion.  

As mentioned in Section 8.1.1, the necessary number of generations is 

assumed to be linear with the number of variables and quadratic with the 

number of objective functions. For this experiment, the number of generations is 

set to 300. The stopping criterion defined is 107 evaluations of the objective 

function, which includes both the exploration and exploitation objective 

functions. For this experiment, the objective function evaluation rate is 396.88 

per second per core in an Intel quad core i5-2500 CPU.  

A total of twenty independent executions of the algorithm were executed in 

order to obtain an average performance to compare with ZEMAX results. The 

total running time was 35 hours using the mentioned CPU running four 

instances in parallel. Table 8.7 shows the results for each execution of the 

proposed automatic design algorithm.  

The image quality of the systems found is reasonable. Though the RMS WFE is 

slightly worse than desired, the MTF complies with the 30–50, 50–30 rule in 

almost all cases. 
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Table 8.7 - Results for each independent execution of the Telephoto problem using he 
proposed automatic design algorithm. From left to right, the columns 
describe the independent execution number, the number of exploration 
merit function evaluations, the number of exploitation merit function 
evaluations, the total number of merit functions required to determine the 
best solution, and the RMS WFE achieved in waves. 

 GMFC LMFC TMFC MF 
1 4.16E+06 8.41E+05 5.00E+06 0.216 
2 6.86E+06 2.08E+06 8.94E+06 0.240 
3 3.54E+06 1.47E+06 5.01E+06 0.208 
4 6.16E+06 3.33E+06 9.49E+06 0.213 
5 1.51E+06 4.04E+05 1.91E+06 0.201 
6 3.71E+06 1.09E+06 4.80E+06 0.206 
7 6.37E+06 2.00E+06 8.37E+06 0.207 
8 1.78E+06 5.18E+05 2.29E+06 0.207 
9 1.89E+06 5.62E+05 2.45E+06 0.234 

10 4.80E+06 1.50E+06 6.29E+06 0.209 
11 3.97E+06 1.22E+06 5.19E+06 0.218 
12 2.82E+06 8.04E+05 3.62E+06 0.212 
13 4.55E+06 1.30E+06 5.85E+06 0.201 
14 8.44E+05 2.37E+05 1.08E+06 0.221 
15 2.40E+06 6.86E+05 3.08E+06 0.241 
16 8.88E+05 2.78E+05 1.17E+06 0.207 
17 1.73E+06 5.30E+05 2.26E+06 0.217 
18 7.48E+06 2.29E+06 9.77E+06 0.226 
19 4.66E+05 1.50E+05 6.16E+05 0.207 
20 2.02E+06 5.65E+05 2.59E+06 0.225 

Average 3.40E+06( 1.09E+06( 4.49E+06( 0.216(
 

Figure 8.4 and Figure 8.5 show the layout of each system found by the 

proposed automatic design algorithm. These designs have nice layouts; in 

general, we cannot identify unusually shaped lenses. It is important to note that 

the layouts and the image quality presented are exact from the systems 

determined by the automatic design software. We did not fix, change, or further 

optimize these designs. Almost all of the systems found by the algorithm have a 

positive group of lenses followed by a negative group as expected in a 

telephoto lens design, but they also have a group of lenses close to the image 

plane working as a field corrector. 
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Figure 8.4 - Layout of the telephoto system found by the proposed automatic design 

algorithm during executions 1–10.  

 
Figure 8.5 - Layout of the telephoto system found by the proposed automatic design 

algorithm during executions from 11–20.  
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Though each independent run of the algorithm stopped after 107 merit function 

calculations, the best solutions were found much earlier as reported in Table 

8.7. The average number of merit function calculations to determine the best 

solution was approximately 4.49×106, less than half of the stopping criterion.  

To express the image quality of these systems in terms of the MTF, Figure 8.6 

shows two polychromatic MTF curves up to 50 lp/mm for two different systems 

found. The left curve represents the MTF of the system with the lowest RMS 

WFE found. The right curve corresponds to the system with the highest RMS 

WFE.  

 
Figure 8.6 - Layout and MTF curves for the best and worse telephoto systems found 

during the twenty independent executions of the algorithm. The left-hand 
side corresponds to the worst system found and the right-hand 
corresponds to the best system.  

For comparison purposes, the same experiment with the same requirements, 

constraints, glasses, and stopping criterion was also executed in ZEMAX using 

its Global Search algorithm. To set the input system in ZEMAX, we used the 

same approach applied in the Cooke triplet problem.  

The global search algorithm in ZEMAX does not have an automatic stopping 

criterion and keeps running until the user pushes the STOP button. Therefore, 

we estimated the approximate time it would take ZEMAX to reach the desired 
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number of MF calculations based on the elapsed time and the corresponding 

number of evaluated systems in the beginning of the search.  

It is virtually impossible to stop ZEMAX global search with exactly 107 

executions. The executions were stopped manually slightly after the defined 

stopping criterion. In some executions, the time was underestimated and the 

number of MF calculations became significantly higher. In ZEMAX, it is not 

possible to know when the algorithm found the best system.  

Twenty independent executions were performed with ZEMAX global search. 

The results from this experiment using ZEMAX global search can be found in 

Table 8.8.  

Table 8.8 - Results for each independent execution of the telephoto problem in 
ZEMAX. From left to right, the columns identify the independent execution 
number, the approximately number of MF calculations reported, and the 
best RMS WFE found during the execution. 

! TMFC( MF(
1( 1.19E+07! 0.408!
2( 1.00E+07! 0.308!
3( 1.00E+07! 1.237!
4( 1.00E+07! 1.127!
5( 1.00E+07! 0.921!
6( 1.00E+07! 0.347!
7( 1.00E+07! 0.772!
8( 1.00E+07! 0.782!
9( 1.20E+07! 0.707!
10( 1.20E+07! 0.634!
11( 1.00E+07! 0.373!
12( 1.00E+07! 0.522!
13( 1.00E+07! 0.856!
14( 1.00E+07! 0.365!
15( 1.00E+07! 0.877!
16( 1.00E+07! 0.561!
17( 1.00E+07! 0.587!
18( 1.00E+07! 0.397!
19( 1.30E+07! 1.293!
20( 1.30E+07! 0.513!

Average( 1.06E+07( 0.679(
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For this first telephoto lens problem, the image quality was the only goal in the 

optimization. In terms of image quality, the performance of ZEMAX was 

significantly worse than the performance of our proposed automatic design 

algorithm. Even permitting ZEMAX algorithm to continue above the stopping 

criterion in some runs, the average RMS WFE for the best systems found was 

approximately 0.679 waves, more than three times higher than the mean value 

found with our automatic design algorithm. Moreover, for our algorithm, it was 

not necessary to perform 107 MF calculations in any one of the experiments to 

reach the best lens systems found.  

Figure 8.7 and Figure 8.8 show the layouts of the best systems achieved with 

each independent ZEMAX execution. By comparing the lens formats and 

design architectures between the ZEMAX solutions and our proposed method 

solutions, we conclude that our algorithm not only found much better image 

quality systems but also generated more feasible lens system layouts. Note that 

many of the ZEMAX solutions do not follow the typical telephoto lens 

architecture. 

 
Figure 8.7- Layout of the telephoto system found by ZEMAX global search algorithm 

during executions 1–10.  
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Figure 8.8- Layout of the telephoto system found by ZEMAX global search algorithm 

during executions 11–20.  

For easy comparison, Table 8.9 summarizes the results for the current 

experiments executed by both tools. 

Table 8.9 - Summarized results comparison for the first telephoto experiment.  
 Proposed Method ZEMAX 

TMFC MF TMFC MF 
Maximu

m 

9.77E+06 0.241 1.30E+07 1.293 
Minimum 1.08E+06 0.201 1.00E+07 0.308 
Average 4.49E+06 0.216 1.06E+07 0.679 

 

To demonstrate how poor the image quality is for the systems found by ZEMAX, 

Figure 8.9 shows the MTF curve for one of the ZEMAX telephoto lens systems. 

This system has an RMS WFE of 0.6344, which is the closest to the average 

RMS WFE value. 
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Figure 8.9 - Layout and MTF curve for the telephoto system found by ZEMAX with the 

RMS WFE closest to the average RMS WFE value. 

8.2.2. Second telephoto design experiment 

With the success in the previous experiments, we now take a step further. In the 

current experiment, we introduce the multi-objective approach taking into 

account both the image quality and tolerance.  

The experiment is conducted on the exact same telephoto problem defined in 

the previous section. The only difference is that the automatic design algorithm 

is set to work in the multi-objective mode. As expected, the number of 

generations used during the exploration phase is increased from 300 

generations to 1400 generations. Finally, the stopping criterion was changed so 

that the algorithm will run until the user stops the execution.  

For this experiment, it is not possible to compare the performance with any 

commercial optical design software that we are aware of because no 

commercially available software utilizes a multi-objective approach. 



116!

Six instances of the algorithm were executed in parallel. The Pareto fronts 

resulting from each instance were combined and the non-dominated solutions 

were filtered out. As a result, we generated the Pareto front shown in Figure 

8.10. To get these results it was necessary a total of 8.533E+08 merit function 

calculations. For this experiment, the merit function evaluation rate is 357.2255 

per second per core in an Intel quad core i5-2500 CPU. The total experiment 

time was around 5 ½ days, running the algorithm on 2 different computers. 

Each dot in the graph of Figure 8.10 represents a trade-off solution. For some of 

the trade-off solutions, the respective system layout is displayed. The abscissa 

represents the image quality in terms of the RMS wavefront error, and the 

ordinate shows the tolerancing metric. The abscissa was truncated at 0.35 

waves.  

The best tradeoff solutions are located around the Pareto front knee region, 

circled in red. The layout and respective MTF and Seidel diagram plots of three 

systems inside the red circle are shown in Figure 8.11, Figure 8.12, and Figure 

8.13. 

 
Figure 8.10 - Pareto front for the telephoto experiment using image quality and 

tolerance to drive the search.  
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Figure 8.11 – Layout, MTF and Seidel diagram plots for one of the non-dominated 

telephoto designs close to the knee region in the Pareto front. This system 
has an image quality metric of 0.207 waves and a tolerancing metric of 
0.619 waves.  

 
Figure 8.12 - Layout, MTF and Seidel diagram plots for one of the non-dominated 

telephoto designs close to the knee region in the Pareto front. This system 
has an image quality metric of 0.221 waves and a tolerancing metric of 
0.612 waves. 
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Figure 8.13 - Layout, MTF and Seidel diagram plots for one of the non-dominated 

telephoto designs close to the knee region in the Pareto front. This system 
has an image quality metric of 0.229 waves and a tolerancing metric of 
0.578 waves.  

The best image quality system, pointed by a blue arrow in of Figure 8.10, is also 

detailed in Figure 8.14 for comparison purposes. 

 
 Figure 8.14 - Layout , MTF and Seidel diagram plots for the best image quality system 

found during the experiment. This system has an image quality metric of 
0.185 waves and a tolerancing metric of 10.09 waves.  
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8.2.3. Third telephoto design experiment 

In this last telephoto experiment, we use all of the automatic lens design 

software tools proposed in this thesis. The multi-objective approach considering 

image quality, tolerance and number of lenses is applied. The problem 

requirements and constraints are kept exactly the same as the previous two 

telephoto lens experiments. However, the number of lenses is now treated as a 

design variable and used as a third objective function.  

We allow the number of lenses to vary from 4 to 9. The number of generations 

during the exploration phase is calculated from the number of lenses used in 

the randomly generated system at the beginning of each algorithm loop. No 

automatic stopping criterion is used in this experiment; the algorithm is allowed 

to run until the user stops the execution. 

Eight instances of the algorithm were executed in parallel. The Pareto fronts 

resulting from each instance were combined and the non-dominated solutions 

were filtered out, resulting in the final Pareto front shown in Figure 8.15. Each 

bubble in this graph represents a trade-off solution in terms of the image quality 

(abscissa), tolerance (ordinate), and number of lenses (third axis represented 

by the dot color). The number of lenses used by the system is also printed 

inside the bubble representing its locus in the objective function space. Note 

that the bubble size is also proportional to the number of lenses.  

This resultant Pareto front was obtained after 1.51E+9 merit function 

calculations, including the exploration and exploitation phases from all 

instances. For this experiment, the merit function evaluation rate is 309.57 per 

second per core in an Intel quad core i5-2500 CPU. The total experiment time 

was around 7 days, running the algorithm on 3 different computers. 

Some solutions close to the knee region of the Pareto front, which are 

considered to be preferable trade-offs, were picked visually. Red arrows in 

Figure 8.15 identify these selected solutions. The layout, MTF and Seidel 
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diagram plots of these selected solutions can be found in Figure 8.16, Figure 

8.17, and Figure 8.18. 

 
Figure 8.15 - Pareto front for the telephoto experiment using the image quality, 

tolerance, and number of lenses to drive the search. 

For comparison purposes, we also show in Figure 8.19 the layout, MTF and 

Seidel diagram plots for the best image quality system resulting from this 

experiment, which is pointed in Figure 8.15 by a blue arrow.  

In Figure 8.15, we observe a significant relative improvement between the 

solutions composed of four lenses with the solutions composed of five lenses. 

The distance from the front formed by the four lenses to the front formed by the 

five lenses solutions in the sensitivity by image quality Pareto front projection 

makes this clear. For systems with more than five lenses, the relative 

improvements are subtle. For solutions with more than six lenses, the 

compromises start to become very significant. Therefore, we conclude that 

systems with five to six lenses are the best trade-off solutions available for this 

problem.  
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Figure 8.16 – Layout, MTF and Seidel diagram plots for one of the non-dominated 

telephoto designs selected from the Pareto front. This 6-lens system has 
an image quality metric of 0.207 waves and a tolerancing metric of 1.5616 
waves.  

 
Figure 8.17 – Layout, MTF and Seidel plots for one of the non-dominated telephoto 

designs selected from the Pareto front. This 5-lens system has an image 
quality metric of: 0.212 waves and a tolerancing metric of 2.106 waves.  
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Figure 8.18 – Layout, MTF and Seidel diagram plots for one of the non-dominated 

telephoto designs selected from the Pareto front. This 5-lens system has 
an image quality metric of: 0.231 waves and a tolerancing metric of 0.537 
waves. 

 
Figure 8.19 – Layout, MTF and Seidel diagram for the system pointed by a blue arrow 

in Figure 8.15. This nine-lens system corresponds to the best image 
quality system found in this experiment, with an image quality metric of: 
0.19 waves and a tolerancing metric of 81.32 waves. 
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From the results of this experiment, we can observe the vast number of trade-

off designs available for a single lens design problem. The multi-objective 

approach provides the designer with great visibility of the available possibilities. 

Knowing the available possibilities and the compromises involved is important 

for developing a solution to any engineering problem. This allows the designer 

to systematically choose the optimal solution. Consequently, this example 

illustrates the power of the automatic multi-objective design approach proposed 

in this thesis.   

If one of these systems had to be selected for mass production, the system 

shown in Figure 8.18 would be a strong candidate. The image quality is fair for 

a photographic system, it requires only five lenses, and the system has loose 

tolerances. In addition, the fourth and fifth lenses in this system can be 

converted into a doublet, further reducing the system assembly tolerances and 

mounting costs.  

8.3. The MUX lens design problem  

In this experiment, we apply all of the automatic lens design software tools 

proposed in this thesis to a real case problem. The obtained results are then 

compared with the actual optical design of the instrument.  

MUX is a multispectral optical remote sensing instrument that will be onboard 

the China Brazil Earth Resources Satellite (CBERS) 3&4. It is a medium special 

resolution camera (20 m on the ground) intended for natural resources 

monitoring. The instrument has four spectral bands ranging from 0.45 to 0.89 

µm, covers a swath of 120 km using a push-broom scanning principle, and has 

an intended revisiting period of twenty-six days.  

The MUX subsystem design, fabrication, and tests were contracted by INPE 

from a Brazilian company. The development has been a huge challenge to the 

local industry and has advanced the available technology in several different 

areas, especially in optics. The MUX is the most complex spaceborne 

subsystem ever contracted in the Brazilian industry. 
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The MUX contract is now reaching a successful end. The contracted company 

has already delivered the Qualification Model and two of the three Flight 

Models. Nevertheless, it has been challenging to this point. Many delays in the 

development were caused by the malfunction of the fabricated optical system. 

The designed optical system has a very high image quality; however, it is 

complex and very sensitive to fabrication and assembly errors. This sensitivity 

was responsible for a significant number of the problems and contract delays.  

With this experiment, we intend to explore the design trade-off possibilities for 

the MUX optical system and to compare our results with the current MUX 

optical system design. Because the automatic design algorithm accounts for the 

tolerancing and system complexity during the design phase, we expected to find 

potentially better trade-off solutions for the problem. Further, by using the glass 

selection tool, we expect to reduce number of glass types used in the design 

without compromising the image quality, which can potentially reduce the 

system production cost, time, and complexity.  

The primary MUX first-order optical requirements were gathered from INPE 

(2006) and are presented in Table 8.10. 

Table 8.10 - Primary MUX first-order requirements from INPE (2006). 
ITEM REQUIREMENT 

Effective focal length (efl) 505.8mm 
F- number (f#) 4.5 
Field of View (FOV)  +/- 4.4 deg 
Nominal Spectral bands (central wavelength ± half 
bandwidth). 

485±35µm; 555±35µm; 
660±30µm and 830±60µm.  

 
 

Modulation Transfer Function (MTF) > 0.65 at 38.5 lp/mm 
 

The first step in our proposed automatic design method is the selection of the 

most appropriate set of glasses for the design. We used the newest available 

Schott glass catalog (SCHOTT, 2013); however, we discarded some specific 

glasses: Lithotec-CAF2, N-PK51, N-PK52A, N-FK51A, P-PK53, N-PSK53A and 

N-PSK53. While these glasses were very good options for color correction, they 

were rejected due to their undesirable thermal behavior. Optical systems 



125!

designed with these glasses are potentially sensitive to temperature changes. 

Normally, for small changes of temperature, the effect can be compensated with 

refocusing; however, MUX cannot afford a real-time automatic refocusing 

mechanism. 

The central wavelengths for the four spectral bands shown in Table 8.10 were 

used as input for the glass selection method. The primary wavelength selected 

was 0.660 µm, which is near the median of the instrument spectral range. Due 

to the width of the instrument spectral range, we executed the glass selection 

method with three glasses (! = 3). The upper value for !! was set to 12. The 

post-Pareto method used in this problem was the minimum distance to the 

origin (ALBUQUERQUE et al., 2012), where the distance metric g!  was 

computed using only !! and !!. The normalization factor !!" for each function 

was set to the value that accumulates 90% of the solutions in the Pareto front 

(ALBUQUERQUE et al., 2012). Table 8.11 shows the first 10 output lines of the 

glass selection Pareto front organized from the lowest to the highest g! .  

Table 8.11 - First 10 lines of the glass selection method output table applied to the 
MUX design using 3 glasses sorted by g! . 

N° Glass 1 Glass 2 Glass 3 F1 F2 F3 
6175 N-KZFS11 N-BASF2 N-SK16 11.46 2.945E-05 2.33 
7593 N-KZFS11 SF1 N-SK14 10.65 7.731E-05 2.64 
906 KZFS12 N-SF66 N-SK2 9.62 2.540E-05 2.91 

21909 N-SK5 SF57 N-KZFS11 10.68 2.394E-05 3.46 
6703 N-KZFS11 N-SF1 N-SK14 10.86 1.616E-05 3.66 

20450 N-SK14 N-SF4 N-KZFS11 10.63 1.744E-05 4.34 
6721 N-KZFS11 N-SF10 N-SK14 10.75 1.535E-05 4.34 

20437 N-SK14 N-SF14 N-KZFS11 10.60 1.188E-05 4.39 
7534 N-KZFS11 P-SF69 N-SK14 10.89 9.942E-06 4.51 
6834 N-KZFS11 N-SF5 N-SK14 11.11 3.178E-06 4.66 

 

To achieve a potentially diffraction-limited color correction, !!!must be less than 

5.3×10-5. The glass combination in the first row complies with this limit, and this 

would be the best trade-off choice of glasses according to the applied post-

Pareto method. Therefore, to design the MUX system, we selected the following 

glasses: N-KZFS11, N-BASF2 and N-SK16. 
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The requirements in Table 8.10 were combined with some rules-of-thumb in 

optical design and together with the results from the glass selection method, we 

established the requirements and constraints for the MUX design as shown in 

Table 8.12.  

Using the requirements and constraints shown in Table 8.12 as input, we 

executed eight instances of the algorithm in parallel. The Pareto fronts resulting 

from each instance were combined and the non-dominated solutions were 

filtered out, resulting in the final Pareto front shown in Figure 8.20. For a better 

visualization of the most promising designs, we truncated the image quality 

metric scale at 0.2 waves.  

This resultant Pareto front in Figure 8.20 was obtained after 5.8E+8 merit 

function calculations, including the exploration and exploitation phases from all 

instances. The merit function evaluation rate for this experiment is 188.3 per 

second per core running on an Intel quad core i5-2500 CPU. The total MUX 

experiment time execution was around 5 days, running the algorithm on 3 

different computers. 

Table 8.12 - MUX System Requirements and constraints. 
ITEM REQUIREMENT 

Effective focal length (efl) 505.8mm 
F- number (f#) 4.5 
Field of View (FOV)  +/- 4.4 deg 
Spectral bands central wavelengths. 485µm; 555µm; 660µm 

and 830µm.  
 
 

Available glasses  N-BASF2, N-KZFS11 and 
N-SK16 

Maximum RMS wavefront error 0.14 waves 
Allowed number of lenses  From 7 to 13. 
Minimum air edge thickness 3 mm 
Minimum air central thickness  0.5 mm 
Maximum air central thickness (excluding the back focal 
length ) 

150 mm 

Minimum glass edge thickness  3 mm 
Minimum glass central thickness 5 mm 
Maximum central glass thickness 25 mm 
Minimum back focal length 100mm 
Maximum system length (excluding the back focal length ) 650 mm 
Maximum total system length  750 mm 
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Each bubble in Figure 8.20 represents a trade-off solution in terms of the image 

quality (abscissa), tolerance (ordinate), and number of lenses (third axis is 

represented by the dot color). The number of lenses used by each system is 

also printed inside the bubbles, and the bubble size is proportional to the 

number of lenses. For comparison, we also plot the actual MUX design 

characteristics from the engineering and qualification models in Figure 8.20 

using diamonds. The number of lenses reported for the MUX QM and EM 

models excludes the floating/sliding lens used in the focusing mechanism.  

 
Figure 8.20 - Pareto front for the telephoto experiment using the image quality, 

tolerancing, and number of lenses to drive the search. 

It is easy to see that both the MUX QM and EM designs are dominated by the 

designs found with the methodology proposed in this thesis. The designs 

located to the left of the dashed line are considered to be diffraction limited 

according to Strehl ratio criterion (SHANNON, 1997). The automatic design 

algorithm has identified 10 diffraction-limited solutions that comply with MUX 

first-order optical requirements. The upper limit for the image quality that 
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complies with the minimum MTF required for MUX optical system is an RMS 

WFE of 0.14 waves. We identified 19 systems with an RMS WFE better than 

0.14 using the proposed methodology.  

The red arrows in Figure 8.20 identify solutions that are considered to be good 

trade-offs. These solutions were visually selected by the position they hold in 

the Pareto front. The layout and respective MTF and Seidel diagram plots of 

these selected trade-off solutions are shown in Figure 8.21, Figure 8.22, Figure 

8.23, and Figure 8.24. Note that the polychromatic MTF is very high in all cases.  

For comparison purposes, we show in Figure 8.25 and Figure 8.26 the data for 

the best image quality system composed of less than twelve lenses, and for the 

least sensitive system, which complies with MUX image quality requirement, 

respectively. These two systems are identified in Figure 8.20 by the blue and 

green arrows respectively.  

 
Figure 8.21 – Layout, MTF and Seidel diagram plots for one of the non-dominated 

MUX designs selected from the Pareto front. This 10-lens system has an 
image quality metric of 0.039 waves and a tolerancing metric of 2.944 
waves. 
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Figure 8.22 - Layout, MTF and Seidel diagram plots for one of the non-dominated MUX 

designs selected from the Pareto front. This 9-lens system has an image 
quality metric of 0.049 waves and a tolerancing metric of 3.179 waves. 

 
Figure 8.23 - Layout, MTF and Seidel diagram plots for one of the non-dominated MUX 

designs selected from the Pareto front. This 8-lens system has an image 
quality metric of 0.0529 waves and a tolerancing metric of 4.328 waves. 
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Figure 8.24 - Layout, MTF and Seidel diagram plots for one of the non-dominated MUX 

designs selected from the Pareto front. This 9-lens system has an image 
quality metric of 0.057 waves and a tolerancing metric of 3.056 waves. 

 

Figure 8.25 - Layout, MTF and Seidel diagram plots for the best image quality MUX 
system composed of less than twelve lenses. This 10-lens system has an 
image quality metric of 0.035 waves and a tolerancing metric of 5.26 
waves. 
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Figure 8.26 – Layout, MTF and Seidel plots for the least sensitive system that complies 
with MUX image quality requirement. This 9-lens system has an image 
quality metric of 0.0795 waves and a tolerancing metric of 1.86 waves. 

Indeed some lenses shapes in these designs are unusual. Some of the 

negative lenses are too thick, some positive and low power meniscus lenses 

are too thin, and some of the edge space between the lenses is too small. 

However, the designer can fix these small problems manually without 

significantly compromising either the image quality or the system sensitivity. 

These unusual lens shapes can be avoided by imposing more elaborate 

constraints during the automatic design.  

Also for comparison purposes, we show the design layout and respective 

polychromatic MTF curves for both the MUX EM and QM in Figure 8.27 and 

Figure 8.28, respectively. Both the MUX EM and QM were designed using usual 

design methodologies: lens systems data banks, first and third order analysis 

and   optimization tools from commercially available optical design software, 

combined with designer intervention as needed during the process. The 

company contracted to develop the MUX subsystem took many months to fully 

accomplish the design. In fact, the MUX optical design used in the EM was 

released in the September 2005 MUX monthly report (OPTO ELETRONICA SA, 

2005) approximately eight months after the contract start.  
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Figure 8.27 – Layout, MTF and Seidel diagram plots for the MUX EM design. This 10-

lens system has an image quality metric of 0.085 waves and a tolerancing 
metric of 7.633 waves. 

 

Figure 8.28 - Layout, MTF and Seidel diagram plots for the MUX QM design. This 11-
lens system has an image quality metric of 0.060 waves and a tolerancing 
metric of 5.035 waves. 

On the other hand, with our proposed automatic design method running for 

approximately one week on three different computing systems, we determined 

approximately ten diffraction-limited systems that comply with the MUX first-
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order optical requirements. These systems are not final designs and the 

compliance with all the MUX subsystem requirements was not verified, for 

instance the thermal stability requirement, which was one of the important 

drivers in the MUX QM and EM designs. However, they provide great starting 

points for further optimizations by presenting an excellent overview for the 

designer about the available tradeoffs in terms of image quality, sensitivity and 

number of lenses. The potential systems are not dominated in terms of the 

image quality, sensitivity, and number of lenses by the actual MUX designs. 

Furthermore, our designs require only three glasses, while the MUX EM, for 

instance, requires eight different glasses from two different suppliers. When 

compared with a three glass system, the production of the eight glass system is 

more complicated, expensive, and time consuming.  

With the success in applying our automatic design method to the MUX lens 

design, we can clearly see the great potential of our method when it is applied 

to real-world optical problems.  

! !
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9 LIMITATIONS OF THE METHOD AND FUTURE WORK IDEAS. 

The main goal of this thesis was to propose, develop and test a new 

methodology to automatically design optical systems from scratch that 

considers, during the design process, fabrication aspects. To achieve this goal 

in a time-limited scheduling, without loss of generality, it was necessary to 

restrict the implementation of the method to deal with only rotationally 

symmetrical optical systems composed of singlet spherical lenses, which are 

the most traditional kind of systems.  

Now, that we have verified the efficiency of the new proposed methodology 

through the carried out experiments, it is time to discuss the method expansion 

and improvements ideas and insights for future work in order to incorporate 

more elaborated aspects to overcome the current restrictions: aspherical 

surfaces, reflective and catadioptric systems, non-rotationally symmetrical 

systems and cemented lens.  

Some of these expansion and/or improvements are easy and straightforward to 

perform, others, on the other hand, requires significant amount of work to be 

implemented. In the following sections, each one of these aspects is discussed 

and ideas for future work are presented. Implementing or testing any of the 

improvements, extensions and upgrades of the method discussed in the 

following paragraphs, is out of the scope of this work. 

9.1. Aspherical Surfaces  

Aspherical lens is a lens with at least one of the surfaces with a non-spherical 

profile. Generally, the non-spherical profile is described by a conic or a 

polynomial with rotational symmetry but not necessarily. Aspherical lenses and 

mirrors are helpful for controlling aberrations in optical systems. The use of this 

type of surface can improve system performance and/or reduce the number of 

optical elements needed in a system. High quality aspherical surfaces are more 

complicated and expensive to fabricate as well as test, when compared to 

spherical lenses. Improvements in the fabrication and test techniques in the last 
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years made aspherical elements popular in commercial high-mass production 

products. Therefore, it is very important to consider aspherical surfaces in the 

future versions of the method.  

The foreseen effort necessary for considering aspherical surfaces in the 

automatic design method presented herein is not huge. At least two different 

approaches can be tested in considering aspheres.  

In the first approach, the aspherical surfaces are considered from the very 

beginning of the search to the end, going from the random first candidate 

solution creation, passing through the exploration phase and going to the 

exploitation phase of the method.  

In this case, standard aspherical surfaces, described by even asphere 

polynomial, are preferable. The metrics used in the exploration phase are valid 

for aspherical surfaces of this type with order equal or lower than six, limited by 

the image quality metric (SASIAN, 2010). For this reason, the aspherical 

surfaces during the exploration phase have to be limited to sixth order, what is 

more than enough for finding rough solutions, which is the purpose of this 

phase. For the exploitation phase, such restriction does not exist, and the order 

of the polynomial can be increased if necessary.  

In this approach, the representation of the candidate solutions in O-GEO needs 

to be changed. Each lens of the system in the candidate string representation 

(see Figure 6.3) shall be capable of bringing the aspherical information of each 

surface: conic constant (2nd order), 4th and 6th order coefficients. This can 

increase each lens codification in six cells, three for each surface.  

During the exploration phase the change in the aspherical coefficients can be 

made by the continuous variables mutation diversity operand. Normally, the 

number of aspherical surfaces used in a system is limited due to cost. In such 

case, it might be necessary constraints to control the number of aspherical 

surfaces in the system and also other specific diversity operands to deal with 
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the aspherical surfaces, for instance, to transform a spherical surface in 

aspherical and vice-versa.  

The second possible approach is considering aspherical surfaces only in the 

exploitation phase. In this approach, an automatic method to select the most 

appropriate surfaces to place an asphere can be used, something similar to the 

method described by Yabe, (2005; 2010) but customized for the method. This 

approach seems more straightforward and simpler to be implemented. It also 

makes easier the control of the number of aspheric surfaces and makes 

possible the use of any polynomial to describe aspherical surfaces, including 

the recently introduced orthogonal polynomial basis (FORBES, 2010).  

9.2.  Catoptric and Catadioptric Systems. 

Catoptric and catadioptric optical systems are the ones who take advantage of 

mirrors with optical power. Catoptric systems are only composed of mirror 

elements. On the other hand, catadioptric combines mirrors and lenses in a 

single system.  

Normally, catoptric systems are composed of just few elements, typically from 

one to four, each one with a single optical surface. Designs of this kind have 

representative closed-form analytical solutions in terms of image quality. They 

also involve complex constraints to guarantee the real path of the rays and to 

avoid mechanical interference of non-consecutive elements. Moreover, many of 

the useful catoptric designs take advantage of aspherical elements and non-

rotational symmetric construction, complicating even more the physical 

constraints involved.  

Catadioptric systems are normally formed by a subset with few elements 

containing reflective surfaces, one or two typically, and a dioptric group, which 

can be composed by many lenses. The subset containing the reflective 

surfaces normally has a specific architecture to perform a specific task, which 

can many times involve double pass ray path. As well as catoptric systems, this 
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group in the catadioptric system implicates complex constrains of the same 

nature.  

The complexity required in the constrains definition, double-pass modeling and 

aspherical surfaces treatment, associated with small number of reflective 

elements and possible closed-form analytical solution, discourage the coverage 

of catoptric and catadioptric systems by the method proposed herein in this first 

stage of the development. 

The expansion of the method to treat catoptric system would require the change 

in the solution representation in O-GEO, exclusion of the glass selection phase, 

and exclusion of the glass mutation diversity operand, which might not be 

complex tasks to accomplish. The biggest foreseen challenge is to write generic 

rules in the form of codes to control or even just to check the violation of the 

complex constrains involved in such systems.  

The effort necessary to change the method in order to cover the design of 

catadioptric system might be considerable, if all the tools of the method are 

desired to work in this class of systems. For instance: i) the codification in O-

GEO has to be changed to codify refractive and reflective elements in a single 

system; ii) the de-codification function that takes the O-GEO system to the 

simulator needs to be able to automatic identify double pass surfaces and 

model them properly in the simulator; iii) diversity operands needs to have the 

capability to transform a refractive element into a reflective element and vice-

versa; iv) it is necessary to create functions to control the number of reflective 

surfaces in the system as well as the complex mechanical and ray path 

constrains involved in such systems; etc. 

Nevertheless, if we sacrifice the exploration range of the method for catadioptric 

systems, the effort to cover such class of systems might be significantly 

reduced. In this case, a rough initial configuration for the system has to be 

supplied by the designer and the subgroups of the design containing the 

reflective surfaces and double pass elements have to be identified. In this 

approach, these identified subgroups are not allowed to suffer radical changes, 
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that mean: the number of elements and the type of surface (reflective or 

refractive) cannot be changed. For the other subgroups in the system, 

containing only refractive elements, the method can be applied with no 

restriction.  

9.3. Non-rotationally Symmetrical Systems. 

In optical design, a specific class of non-rotationally symmetrical system that 

has a particular interest is the plane-symmetric kind. In these systems there is 

at least one plane of symmetry, that is, one half of the system is a mirror image 

of the other. This includes: off-Axis, tilted, and decentered systems, and 

combination of them.  

An off-axis optical system is an optical system in which the aperture stop or/and 

the field of view are shifted in relation to the mechanical center of the system 

surfaces. Tilted and decentered systems are the ones where the surfaces are 

tilted and/or decenter in relation to each other in the plane of symmetry. The 

main applications of non-rotationally optical systems are to avoid obstruction of 

the primary aperture by secondary optical elements and provide access to the 

image.  

In order to make the method able to cover this class of optical system, it is 

necessary to change at least two things: the optical system representation in O-

GEO; and the objective functions used in the exploration phase, either the 

Image quality and system sensitivity.  

The representation of the candidate solutions in O-GEO needs to codify the 

surface tilt and decenter. As the systems of interest are plane symmetrical, two 

new fields for each surface would be necessary in the codification, that means 

four new fields for the refractive elements (two for each surface) and two for the 

reflective surface. These new fields in the system codification can be treated as 

continuous variables within a range defined by the designer, being perturbed by 

the continuous variables mutation. 
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These merit functions in the exploration phase were derived from the wave 

aberration function for the specific case of a rotationally symmetrical systems 

therefore, are not valid for non-rotational systems. In this case, new merit 

functions have to be defined. Fortunately there are some papers that discuss 

the wave aberration function coefficients for non-rotationally symmetrical 

systems (SAND, 1972; SASIAN, 1994; THOMPSON, 2005; MOORE et al, 

2008; WANG et al, 2012).  

Scanning these papers, it seems that the work from Thompson (2005) is a good 

point to start from. According to his developments and the works he uses as 

reference, the total system aberration field holds the same property for either 

rotationally or non-symmetrical optical systems. In both cases the total system 

aberration field is given by the sum of individual surfaces contributions. The 

difference is that in rotationally symmetrical systems, the centers of the 

aberration field contribution for each surface coincide with the optical axis in the 

image, and in non-symmetrical system they don’t, being each surface ! 
centered at a different point in the image, specified by the vector !!. This point 

in the image plane is a function of the tilt and decenter of each surface, given by 

the projection of a line connecting the center of the pupil for the surface of 

interest with the center of curvature of that surface to the image plane.  

It seems very reasonable that the image quality and sensitivity metric, for the 

exploration phase, can both be derived from Thompson (2005) work. In his 

paper he also derives, for non-symmetrical system, an expression for the RMS 

wave front error for a field point. This is one of the steps necessary to define the 

image quality metric following the same rationally used in the proposed method.  

To finally get the image quality metric for the exploration phase, it is necessary 

to integrate the RMS wave front error over the whole field, which is not 

necessarily symmetric in this case. The sensitivity metric, on the other hand, 

can be derived through the differentiation of the wave front error function with 

respect to the vector !!.  
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9.4. Cemented Lens. 

Cemented lens are literally lenses that are stick together using a common 

radius of curvature surface as interface. The adhesives used are optically 

transparent. The most usual cemented lenses are doublet (composed of two 

lenses) and triplets (composed of three lenses). The glass materials used in two 

subsequent cemented lenses are different. Lenses are cemented mainly to 

reduce aberration (in most cases chromatic), surface reflection and assembling 

tolerance and costs.  

Cemented lens are not allowed to happen in the automatic lens design method 

presented herein. However, as discussed in Chapter 8, Section 8.2.3, it was 

possible to observe some solutions that came out from the method, which 

suggests the cementing between some lenses in the system. These lenses are 

the ones that ended up becoming both, very close in distance and consecutive 

curvatures. In many of these cases the designer, in a later stage of the project, 

can change the lenses to cement without impacting the design performance and 

architecture.  

Nevertheless, in some cases, cemented lens are used to bend relatively high 

angle optical rays without introducing too much aberration and avoiding total 

internal reflection of the light. In these cases, the cemented lens shall be 

considered since the beginning of the design process. To cover for these cases, 

the method needs some changes. The necessary modification on the method to 

cover for cemented lens doesn’t seems to be very complex. Probably, there is 

more them one way of doing this but, here the method that seems the most 

straightforward is discussed. 

If in the O-GEO codification the second surface material (M2) of a lens is 

allowed to assume values different to zero, that means, it is allowed to assume 

optical materials different from air (vide section 6.2.1), we immediately get 

cemented lenses, triplets in this case. To get doublets, it would be necessary, 

apart from letting the M2 assume different values, to force T2j to be zero and 

R2j to be equal to R1L, for M2j≠0, where j and L represent two consecutive 
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lenses in the system (not necessarily consecutive in the O-GEO lens 

codification). 

New diversity operands are necessary to transform the lenses in the system in 

doublet or triplets and vice-versa. Also, it is necessary to control by penalty 

constrains the total allowed number of cemented lenses in a system. 

9.5. System Thermal Stability 

A very important aspect in optical design, mainly for spaceborne and infrared 

optical system, is the thermal image quality stability. The changes in the 

temperature modify not only the system geometry dimensions, but also change 

the index of refraction of the glasses. Depending on the design of the system 

and the optical material used, the changes caused by few degrees can 

drastically drop the image quality. For this reason, the thermal stability must be 

considered in the design of optical systems. The method proposed herein does 

not consider these aspects during the search. Nevertheless, there is the 

possibility of including these considerations in future versions of the method 

during the search process for uniform temperatures intervals (not considering 

gradients). 

The thermal effects can be considered in all phases of the method. Starting in 

the glass selection, the thermal stability for each glass combination can be 

computed and used as a new metric in the multi-objective approach used for 

choosing the glasses combinations. The stability can be computed for each 

possible combination using the equations presented in Jamieson (1992) for two 

and three glasses, and if necessary, expanded for more glasses with the same 

rationally presented in the paper.  

During the exploration phase, the equation also derived in Jamieson (1992) that 

gives the defocusing term in waves with respect to the temperature variation for 

a multiple lens system, can be used. The defocussing term !!"! in the wave 

aberration function (vide Section 7.2.1.1; Equation. 7.6) is then not anymore 

considered zero for the principal wavelength !! but is a function of the 
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temperature change. The designer needs to provide the temperature interval for 

which the system shall work. Half of this temperature range can be used as the 

delta in temperature to compute the defocussing term !!"!. As the image 

quality metric during the exploration phase is calculated from the wave 

aberration function, it will then consider the temperature effects in the image 

quality metric.  

During the exploitation phase, a multi-configuration approach can be used for 

the temperature effects consideration; just like is done in some commercial 

optical design software. In this approach two (or more) systems dependent to 

each other, are modeled and simulated at once. The temperature effects give 

the differences among these systems in each configuration. The radii, 

thicknesses and refractive index in each one of the configurations is slightly 

different, given as a function of the temperature in each configuration. The 

image quality metric can be then computed as the average of the individual 

image quality in each temperature or configuration. Doing so, the temperature 

effects are used during the exploitation optimization process. 

!  
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10 CONCLUSIONS  

Problems faced during the fabrication of high-performance optical systems for 

space applications motivated not only the investigation of available methods 

and techniques for fabrication and assembling, but also the exploration of 

methods and techniques of designing lens systems for fabrication by 

considering the final system as-built performance.  

Studying the available methods of optical design and optimization, we realized 

that all presented approaches had drawbacks or missing points that could be 

improved or better explored. We selected several important points to investigate 

in this thesis: (i) design from scratch, (ii) multi-objective approach considering 

not only the image quality, but also the system complexity and sensitivity, (iii) 

optimum choice of lens materials for color correction, and (iv) broad exploration 

of the design space to find the best possible trade-off solutions.  

With these points in mind, a novel automatic optical design method was born. 

The new automatic design method is based on a multi-objective memetic 

optimization algorithm. The multi-objective approach simultaneously, but 

separately, optimizes the image quality, tolerance, and complexity of the 

system. The memetic technique divides the search for optical designs into three 

different phases: glass selection; exploration; and exploitation. In this thesis, we 

concentrated the majority of our effort in the development of the glass selection 

and exploration phases.  

The application of the automatic lens design method presented in this thesis 

only need the system requirements as input. As a result, our method provides a 

family of trade-off designs supplying the designer with a complete picture of the 

available possibilities.  

The proposed method includes several scientific contributions on a number of 

different levels. The overall design strategy has particular characteristics: (i) the 

three phases involved, their sequences and loops (see Figure 5.1); the design 
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from scratch and the multi-objective approach considering fabrication issues are 

some of these particularities.  

The glass selection method presented herein, merges two pre-published 

methods and integrates significant original contributions: (i) generalize the glass 

selection techniques in terms of number of glasses and wavelengths, (ii) repair 

practical implementation issues, (iii) and incorporates a multi-objective 

approach. This gives rise to a new method of glass selection that offers 

significant advantages, leading to an optimal choice of optical glasses for 

specific problems as demonstrated in Section 6.1.1 and verified in Chapter 8 

and in Albuquerque et al. (2012). 

The novel EO algorithm developed for the exploration phase was based on a 

customization of the GEO algorithm. The newly developed O-GEO algorithm 

incorporates many features into a single algorithm. The search is driven by 

three different metrics in a multi-objective approach: image quality, tolerance, 

and number of lenses. Our method allows variation of the number of lenses 

during the search, which has only been explored once before in a 

computationally demanding study (KOZA et al, 2005). Furthermore, our O-GEO 

method is one of few EO algorithms customized for optical design, incorporating 

different diversity operands suitable for the problem by mimicking techniques 

that are traditionally applied manually by optical designers, which is a new 

strategy for EO algorithms applied to lens design problems. The codification 

proposed for the solutions in O-GEO makes many of the algorithm features 

possible. 

The image quality and sensitivity metrics applied during the exploration phase 

are other major contributions to this work. These computationally efficient 

metrics provide a good approximation of the system characteristics and robustly 

handle the situation when a real ray cannot be traced through the system. 

As we presented in Chapter 8, our proposed method is capable of finding 

competitive optical designs from scratch. It is a powerful method for designing 

simple, insensitive systems, providing the designer with many trade-off options 
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with systems presenting different architectures. In addition to providing great 

results, our method was demonstrated to be computationally efficient when 

compared to commercial optical design software.  

Despite the proposed method has shown excellent results for the experiments 

carried out, it does have limitations and room for improvements. In Chapter 9 

we discussed in details these limitations and gave ideas for future work 

implementations in order to improve the method and overcome its current 

restrictions. As shown, it is feasible to expand the method to incorporate: 

• Aspherical Surfaces; 

• Catoptric and catadioptric systems; 

• Non-rotationally symmetrical systems; 

• Cemented lenses; 

• Thermal stability aspects. 

During the whole Ph.D. program, the author participated in the publication of a 

total of seven papers, three conference papers and four journal papers. From 

these, three are directly related with the theme of this thesis, including a high 

impact journal paper. A list of the publications is given below in chronological 

sequence. The papers directly related with the thesis subject are marked with *. 
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GLOSSARY 

The definitions is this glossary were taken from the glossary in Smith, 2008. 

Abbe V-number The reciprocal relative dispersion of an optical material. For visual work 
! = !! − 1 / !! − !! , where !, ! and ! indicate the Fraunhofer wavelengths: 
0.5876, 0.4861, and 0.6563 µm, respectively. Often called !-value or υ-value, 
or !"-number. 

aberration An image defect whereby all rays from a point source do not converge to a 
point image at the desired location. An aberrated wave front departs from a 
perfect sphere centered on the desired image point. The primary aberrations 
are: spherical, coma, astigmatism, field curvature, distortion, axial chromatic 
(axial color), and lateral color. Relative to the ideal paraxial image, the 
aberration of a ray may be measured as a transverse displacement, a 
longitudinal displacement, an angular deviation, or a wavefront deformation. 

achromat An optical system free of primary chromatic aberration. Usually defined as a 
system where two different wavelengths (e.g., !- and !-light) are brought to a 
focus at the same location. Usually accomplished by the use of materials of 
differing !-numbers. 

Airy disk The central bright patch of the diffraction pattern which is formed as the image 
of a point source. The disk size is defined by the diameter of the first dark ring 
of the pattern, equal to 1.21!/!" (or, very approximately, equal to the f-number 
in microns). Usually implies a perfect or near-perfect lens with a circular 
aperture. 

anastigmat Strictly, without astigmatism. The term is usually applied to a lens system where 
an effort has been made to flatten the field and reduce the third-order spherical 
coma and astigmatism aberration to zero. 

aperture stop That feature of an optical system which most severely limits the diameter of the 
axial light beam which can pass through the system. The feature is usually the 
clear aperture of a lens element or a mechanical aperture, such as the iris 
diameter in a camera lens. The chief or principal ray crosses the axis at, and 
passes through the center of, the aperture stop. In many compound optical 
systems (e.g., a telescope or microscope) the aperture stop is located at the 
objective lens. Note that for off-axis object points the beam size may be limited 
(vignetted) by more than one physical feature of the system. 

aplanat(ic) A lens or surface which is free of both spherical aberration and coma. 

aspheric 
surface 

A surface which departs from a true spherical shape. The conic section 
surfaces (paraboloid, ellipsoid, and hyperboloid) are aspherics, as are more 
general aspheric surfaces. Aspheric surfaces are often used to correct 
aberrations. 

axial chromatic An aberration which causes light of different wavelengths to be focused at 
different distances from the lens. 

axis, optical The common axis of rotational symmetry for an optical system. For an 
spherically surfaced lens element, the line connecting the centers of curvature 
of the surfaces. 

back focal The distance from the vertex of the last surface of a system to the second focal 
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length (bfl) point. 

Cassegrain A two-mirror objective with a concave primary mirror (classically a paraboloid) 
and a convex secondary mirror (a hyperboloid), corrected for spherical 
aberration. 

catadioptric and 
catoptric 

Optical systems consisting of only mirrors (catoptric), or of mirrors and 
refracting surfaces (catadioptric). A purely refracting system is called dioptric. 

chief or 
principal ray 

Theoretically the oblique ray which passes through the center of the aperture 
stop, entrance and exit pupil.  

chromatic 
aberration 

An aberration which results from the dispersion of the materials used in an 
optical system. See axial chromatic (axial color) and lateral chromatic. 

coma An off-axis aberration where annular zones of the aperture have different 
magnifications. The resulting image of a point looks like a comet.  

concave 
surface 

A hollow curved surface, i.e., one which is lower in the center, sunken. The 
inner surface of a hollow sphere. 

converging lens 
or 
surface(positive 
lens or surface) 

One which bends rays toward the optical axis. A positive lens or surface. 

convex surface A surface which is higher at the center than at the edge, outward curving, and 
bulging. The outer surface of a sphere. 

Cooke triplet A triplet anastigmat with two outer positive crown elements and an inner 
negative flint element, all spaced apart. 

cosine fourth The illumination in the image plane of a nominal optical system varies 
approximately as the fourth power of the cosine of the angle of obliquity of the 
chief ray. Assumes no distortion of the image or of the pupil, and a small NA. 

crown glass A low dispersion glass. A glass with a !-value of more than 50 (for an index 
1.6) or more than 55 (for an index 1.6). 

curvature of 
field 

The departure of the image surface from a desired flat surface. Measured 
longitudinally, or as the Petzval radius. 

curvature of 
field 

The departure of the image surface from a desired flat surface. Measured 
longitudinally, or as the Petzval radius. 

decentered lens A lens whose the line connecting the centers of curvature of its surfaces are 
displaced from the optical axis. 

decentered 
surface 

A surface the center of curvature or axis of symmetry of which is not on the 
optical axis. 

diffraction The cause of the spreading or divergence of a wave front which occurs when it 
encounters an obstruction such as an aperture or an opaque edge. The Airy 
disk and the associated rings are caused by the diffraction resulting from the 
aperture of the optical system. 

diffraction Strictly, when system performance is limited solely by diffraction. Often 
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limited colloquially applied to a system with a Strehl ratio of 0.8 or more, or an OPD of 
one quarter wave or less. 

dispersion The change of index with wavelength. For visual work it is usually taken as the 
index difference between the red and blue Fraunhofer hydrogen lines ! (656.3 
nm) and ! (486.1 nm), thus !! − !! . This is total or principal dispersion. See 
also partial dispersion. 

distortion An aberration in which the magnification varies over the field of view. It is called 
pincushion or positive if the magnification increases toward the edge of the 
field, and barrel or negative if it decreases. Note that distortion reverses sign if 
the object and image are interchanged. 

diverging lens 
or surface 
(negative lens 
or surface) 

One which bends light rays away from the optical axis. A negative lens or 
surface. A lens with a negative focal length. A surface where !′ − ! /! is 
negative, ! and !′ are the refraction indices of media in which the incident and 
refracted rays travel respectively and ! is the surface radius of curvature. 

doublet lens A closely spaced or cemented pair of elements, 

one positive and one negative. 

effective focal 
length (efl) 

See focal length. 

element A lens which is a single piece of glass (or a mirror). 

entrance or exit 
pupil 

The image of the aperture stop which is seen from object or image space. All 
light rays passing through the system must enter through the entrance pupil and 
exit through the exit pupil. The principal ray passes through the center of both 
pupils. 

exit pupil The image of the aperture stop as seen from image space. All light rays passing 
through the optical system must emerge through the exit pupil. In a visual 
system, the eye must be placed at the exit pupil to see the full field of view. 

f-number The “speed” or relative aperture of a lens system. The ratio of the effective focal 
length to the diameter of the entrance pupil. A measure of the illuminating 
capability of a lens. Usually written !/! where ! is the f-number, e.g., f/6.3; or 
1:6.3, or f:6.3. Sometimes abbreviated as !/# or !/!". For an aplanatic system 
with the object at infinity, the f-number equals 0.5/NA.  

field curvature The departure of the image surface from a plane, when the image is formed as 
a curved surface due to astigmatism and/or Petzval aberrations. See curvature 
of field. 

field of view The area or angle visible through an optical system. 

flint glass An optical glass with a !-value less than 50 (for index  
1.6), or less than 55 (for index 1.6). Named for the broken flints added to the 
melt in making fine glass for tableware. 

floating lens An element or component which moves independently of the balance of the 
system, usually to maintain good aberration correction while focusing, or as a 
focusing device. 
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focal length The effective (or equivalent) focal length, often abbreviated efl or simply !, is 
the limiting value of  ℎ!/ tan !, as ! approach zero, where ℎ′ is the image height 
of an infinitely distant object and ! is the angle subtended by the object. 

focal point The image of an infinitely distant axial point source object. The second or back 
focal point is the image of a point which is to the left of the lens, and the first or 
front focal point is the image of a point to the right. 

focus (noun) The (usually longitudinal) location of the sharpest image. 

focus (verb) The act of changing the relative positions of elements and sensor in order to get 
a sharp image. 

image A pictorial representation of an object, formed by the distribution of light at the 
focus of an optical system. 

iris diaphragm A mechanically adjustable aperture formed by thin pivoting arcuate leaves. 

lateral color 
(chromatic 
change of 
magnification) 

The variation of image height or magnification with wavelength.  

magnification: 
lateral, linear, or 
transverse 

The ratio of image height to object height, measured normal to the axis. 

marginal ray The ray (usually from an axial object point) which passes through the edge or 
margin of the lens aperture. An axial ray. 

meridional 
plane 

Any plane which includes the optical axis. Also called the tangential plane. 

meridional ray A ray which lies in the meridional plane; a ray which intersects the optical axis. 
A tangential ray. 

modulation The contrast in an object or image the luminance or illuminance of which varies 
sinusoidally. Defined as ! = !"#.−!"#. / !"#.−!!". , where !"#. and 
!"#. are the maximum and minimum levels of luminance or illuminance. 

MTF 
(Modulation 
Transfer 
Function) 

The ratio of the image modulation (or contrast) to that of the object, expressed 
as a function of the spatial frequency, where the object modulation is a 
sinusoidal variation of brightness/luminance/radiance and the image modulation 
is a sinusoidal variation of the illuminance/irradiance. !"# = !!"#$% /
!!"#$%& . MTF is the real part of the complex optical transfer function (OTF), in 

which the imaginary part is the phase transfer function (PTF). It was originally 
known as the sine-wave response, the frequency response and the contrast 
transfer function. 

numerical 
aperture, NA 

The numerical aperture, !" = ! sin!, where ! is the index of the medium in 
which the image is formed, and ! is the half angle of the imaging cone. For an 
infinitely distant object, !" = 1 2!!/# , and !/# = 1 2!" . 

Nyquist 
frequency 

The spatial frequency resolution limit imposed by the size of the pixels in a 
digital sensor (e.g., CCD). The Nyquist frequency is equal to the reciprocal of 
twice the pixel spacing !, or !"#$ = 1 2!.  
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object That which is being imaged by the optical system. 

objective lens In a camera, telescope, microscope, or other optical system, the lens which is 
closest to the object. 

oblique beam or 
ray 

A beam or ray which originates from an off-axis object point. 

optical axis The common axis of symmetry of a lens or optical system. See axis, optical. 

optical glass An amorphous, clear, highly transmissive material, made with accurately 
controlled index of refraction and chromatic dispersion. 

optical path 
difference 
(OPD) 

Wave-front aberration. The departure of the actual wave front from an ideal 
spherical wavefront. The difference between the total optical paths of two rays 
measured from their common point of origin in the object to their intersection 
with a reference sphere centered on the ideal object point. Usually measured in 
wavelengths, or fractions thereof. 

optical path 
length 

The sum of the index !!times the path distance !!along a ray in each medium 
!!the rays, has gone through, !" = !!!!! . Related to the transit time of light 
along a ray through a system. 

optical transfer 
function (OTF) 

The complex function of spatial frequency used to describe the imagery of an 
optical system. It consists of the real part (the MTF, or Modulation Transfer 
Function), and the imaginary part (the PTF, or Phase Transfer Function). 

paraxial A region where all angles are treated as infinitesimals, so that ! = sin! =
tan!, and the equations for raytracing are simple linear (i.e., nontrigonometric) 
expressions. 

paraxial ray A raytraced according to the paraxial rules, where the ray heights and angles 
are infinitesimals. The linearity of the paraxial raytracing equations allows the 
use of fictitious, real, finite values for height and slope. 

partial 
dispersion 

The difference in refractive index for two wavelengths, exressed as a fraction of 
the total dispersion, e.g., !!,! = !! − !! / !! − !! .  

point spread 
function 

The distribution of illumination in the image of a point. 

power The power of a lens is the reciprocal of its effective focal length. The power of a 
surface is equal to !′ − ! /!, where  ! and !′ are the refraction indices of 
media in which the incident and refracted rays travel respectively and ! is the 
surface radius of curvature. If the dimensions are in meters, the unit of power is 
the diopter. A positive power converging lens, or surface bends rays toward the 
axis; a negative power, diverging lens bends rays away from the axis. 

pupil Any image of the aperture stop. See also entrance pupil and exit pupil. 

refraction The bending or directional change of a light ray upon passing from one medium 
to another. Refraction follows Snell’s Law.  

refractive index The ratio of the velocity of light in vacuum ! (or, commonly, 

in air) to its velocity !!in the medium being characterized (! = !/! ). 
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Ritchey-
Chretien 

A Cassegrain system with both mirrors hyperbolic, shaped to correct both 
spherical and coma. 

Seidel 
aberrations 

The third-order aberrations, which are: spherical, coma, astigmatism, Petzval, 
and distortion. Also called the primary aberrations. 

Siedel Diagram The Seidel diagram, sometimes called Pagel (or Pegel) Diagram, gives a 
graphical representation of the surface by surface contribution to the third-order 
aberrations in a system.  

skew ray A general ray, not limited to the tangential/meridional plane. 

Snell’s law The change in direction of a ray crossing the boundary between two media, is 
governed by Snell’s law, which is: !! sin ! = !!′ sin !′, where ! and !′ are the 
refractive indices of the two media, and ! and !′ are the angles of incidence and 
refraction (the angle between the ray and the surface normal). 

spherical 
aberration 

The difference between the focus location of rays through the center of a lens 
aperture (i.e., paraxial rays) and those through the margin (or other parts) of the 
aperture. 

spherochromati
sm 

The variation of spherical aberration with wavelength, or the variation of axial 
chromatic with ray height. 

Strehl ratio The ratio of the peak intensity of the point spread function 

for an aberrated lens to the peak for an aberration-free lens. A Strehl ratio of 80 
percent (called the Marechal criterion) corresponds to the quarter-wave 
Rayleigh criterion (exactly for defocusing, approximately for the other 
aberrations). The Strehl ratio has an excellent correlation with other image 
quality metrics for well corrected systems. 

symmetrical 
lens 

Most lenses are rotationally, axially symmetrical. Another type of symmetry is 
“front-to-back” or “mirror” symmetry where the elements before the aperture 
stop are the same as those which follow it. Front-to-back symmetry eliminates 
coma, distortion, and lateral color aberrations. 

telephoto lens A lens the length from the first surface of which to the focal point is shorter than 
its effective focal length. The ratio of the two is called the telephoto ratio which, 
for a true telephoto, is less than one. The lens consists of a positive front 
component followed by a negative rear component. The name is sometimes 
incorrectly applied to an ordinary lens of long focal length. 

thin lens A concept which is useful in preliminary optical system layout. It assumes that 
the optical components have zero axial thickness, so that the principal points 
and the lens are coincident. 

vignetting The mechanical clipping or obscuration of the edges of oblique beams by the 
apertures of elements which are spaced away from the stop. It reduces the off-
axis illumination (in addition to the cosinefourth reduction). Often introduced to 
reduce manufacturing cost and/or to eliminate aberrated portions of the beam. 
In visual or photographic systems, as much as 50 percent vignetting is not 
uncommon. 

visible light Light to which the human eye is sensitive and which can be perceived. Usually 
considered to include wavelengths from 380 nm to 780 nm, at which 
wavelengths the photopic response is less than 0.0001 of the peak photopic 
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response at 555 nm. 

wave front A surface wherein all points have the same optical path distance from the object 
point, i.e., where the light has the same phase. 

wave front 
aberration 

The departure of the wave front from a perfectly spherical surface. See optical 
path difference (OPD). 

!

! !
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APPENDIX A DETAILED SOLUTION FOR THE DLS METHOD 

A.1 Introduction 

This appendix discusses the details of the general solution for the 

unconstrained damped least square method.  

For the solution derivation, we assume the following proprieties without 

demonstrating (FRIEDLAND, 1986; OGATA, 1990 and NIELSEN, 2004): 

Assuming !,!!and ! are matrixes with the respective dimensions of !!×"!,
!!×"!, and !×!, we have: 

 ! + ! ! = !! + !! , (A.1) 

 ! ∙ ! ! = !! ∙ !! . (A.2) 

Now, we accept !!and ! as invertible matrixes with dimensions !×!: 

 ! ∙ ! !! = !!!! ∙ !!!. (A.3) 

Suppose ! and ! are vectors of dimension !×1 where ! is a vector of variables. 

We can define a scalar function ! ! = !! ∙ !, which maps the vector ! into a 

single number scale. In this case, we find:  

 ! !! ∙ !
!" = !, (A.4) 

 ! !! ∙ !
!" = !. (A.5) 

Now, assume ! as a matrix of !×! dimensions. In this case, it is possible to 

demonstrate that  

 ! ! ∙ !
!!! = !, (A.6) 
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 ! !! ∙ !!
!" = !! , (A.7) 

 ! ! ∙ !
!" = !! . (A.8) 

Consider a square matrix ! with dimensions !×! such that  

 ! !! ∙ ! ∙ !
!" = ! + !! !, (A.9) 

 ! !! ∙ ! ∙ !
!!! = !! ! + !! . (A.10) 

A.2 Unconstrained damped least square solution 

For an unconstrained DLS problem, we want to minimize the following objective 

function: 

 Ψ = !! + ! ∙ Δ! !!! !! + ! ∙ Δ! + ! ⋅ Δ!! ∙ ! ∙ Δ!. (A.11) 

This objective function was written in the most general way by considering both 

the additive (!) and the multiplicative (!) damping factors. If only the additive 

damping is desired, ! should be replaced by the identity matrix. 

We can separate Equation (A.11) into two parts as follows: 

 Ψ = !! + ! ∙ Δ! !!! !! + ! ∙ Δ!
!

+ ! ⋅ Δ!! ∙ ! ∙ Δ!
!!

. (A.12) 

Working out the denominator (!), we find  

 
! = !!! ∙!! ∙ !! + ! − !! ! ∙ !! ∙!! ∙ !! + !!! ∙!! ∙ ! ∙ ! − !! +

! − !! ! ∙ !! ∙!! ∙ !! ∙ ! − !! , 
(A.13) 

where Δ! = ! − !! . 

Because ! − !! ! ∙ !! ∙!! ∙ !! and !! ∙!! ∙ ! ∙ ! − !!  are identical scalar 

quantities, we can rewrite (A.13) as 
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! = !!! ∙!! ∙ !! − 2 ∙ !!! ∙!! ∙ ! ∙ !! − !!! ∙ !! ∙!! ∙ ! ∙ !! + 2 ∙ !!! ∙!!
∙ ! ∙ ! + !! ∙ !! ∙!! ∙ ! ∙ ! − !! ∙ !! ∙! ∙ ! ∙ !! − !!! ∙ !!
∙!! ∙ ! ∙ !, 

(A.14) 

! = !!! ∙!! ∙ !! − 2 ∙ !!! ∙!! ∙ ! ∙ !! − !!! ∙ !! ∙!! ∙ ! ∙ !! + 2 ∙ !!! ∙!! ∙ ! ∙ ! + !!

∙ !! ∙!! ∙ ! ∙ ! − !! ∙ !! ∙! ∙ ! ∙ !! − !!! ∙ !! ∙!! ∙ ! ∙ !. 

In the same way, we can determine (!!): 

 !! = ! ∙ !! ∙ ! ∙ ! − !! ∙ ! ∙ !! − !!! ∙ ! ∙ ! + !!! ∙ ! ∙ !! . (A.15) 

To solve the problem, it is necessary that !(!)!" = 0, which is equivalent to 

!(!)
!" +

!(!!)
!" = 0. 

Differentiating (!), we find 

 

!(I)
!" = !(!!! ∙!! ∙ !! − 2 ∙ !!! ∙!! ∙ ! ∙ !! − !!! ∙ !! ∙!! ∙ ! ∙ !!)

!"

+ ! 2 ∙ !!! ∙!! ∙ ! ∙ !
!" + ! !! ∙ !! ∙!! ∙ ! ∙ !

!"

− ! !! ∙ !! ∙! ∙ ! ∙ !!
!" − ! !!! ∙ !! ∙!! ∙ ! ∙ !

!" . 

(A.16) 

To make things easier, we can differentiate each part of (A.16) individually. 

Because !!! ∙!! ∙ !! − 2 ∙ !!! ∙!! ∙ ! ∙ !! − !!! ∙ !! ∙!! ∙ ! ∙ !! is a constant, its 

derivation is equal to zero:  

 ! !!! ∙!! ∙ !! − 2 ∙ !!! ∙!! ∙ ! ∙ !! − !!! ∙ !! ∙!! ∙ ! ∙ !!!
!" = 0. (A.17) 

We determine the other parts of Equation (A.16) as follows:  

From (A.4) ! 2 ∙ !!! ∙!! ∙ ! ∙ !
!" = 2 ∙ !! ∙!! ∙ !!, (A.18) 

From (A.4) ! !! ∙ !! ∙!! ∙ ! ∙ !
!" = 2 ∙ !! ∙!! ∙ ! ∙ !, (A.19) 
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From (A.5) −! !! ∙ !! ∙!! ∙ ! ∙ !!
!" = −!! ∙!! ∙ ! ∙ !!, (A.20) 

From (A.4) −! !!! ∙ !! ∙!! ∙ ! ∙ !
!" = −!! ∙!! ∙ ! ∙ !!. (A.21) 

Combining Equations (A.17) to (A.21) and substituting them into (A.16) we get: 

 ! !
!" = 2 ∙ !! ∙!!! ∙ !! + 2 ∙ !! ∙!! ∙ ! ∙ ! − !! . (A.22) 

Now, differentiating !! , we find 

 

! !!
!" = ! ∙ ! !! ∙ ! ∙ !

!" − ! !! ∙ ! ∙ !!
!" − ! !!! ∙ ! ∙ !

!"

+ ! !!! ∙ ! ∙ !!
!" . 

(A.23) 

Again, because !!! ∙ ! ∙ !! is a constant, its derivative is zero:  

 ! !!! ∙ ! ∙ !!
!" = 0. (A.24) 

We determine the other parts of Eq. (A.23) as follows: 

From (A.8) ! !! ∙ ! ∙ !
!" = 2 ∙ ! ∙ !, (A.25) 

From (A.5) −! !! ∙ ! ∙ !!
!" = −! ∙ !!, (A.26) 

From (A.4) −! !!! ∙ ! ∙ !
!" = !!! ∙ ! ! = −! ∙ !!. (A.27) 

Combining Equations (A.24) to (A.27) and substituting them into (A.23), we get 

 ! !!
!" = ! ∙ 2 ∙ ! ∙ ! − ! ∙ !! − ! ∙ !! = ! ∙ 2 ∙ ! ∙ ! − !! . (A.28) 

Now, with (A.22) and (A.28) and the minimum condition, we find 
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! Ψ
!" = 0⟹ ! !

!" + ! !!
!" = 0

⟹ 2 ∙ !! ∙!!! ∙ !! + 2 ∙ !! ∙!! ∙ ! ∙ ! − !! + ! ∙ 2
∙ ! ∙ ! − !! = 0. 

(A.29) 

Isolating ! − !!  and dividing both sides of the equation by 2, we obtain the 

problem solution: 

 ΔX = − !! ⋅!! ⋅ ! + ! ⋅ ! !! ⋅ !! ⋅!! ⋅ !!. (A.30) 

! !
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APPENDIX B TUNING O-GEO 

This appendix provides the description and detailed data resulting from the O-

GEO free adjustment parameters experiment. Moreover, this appendix also 

includes the description and data for the experiment used to define the 

reference number of generations executed by O-GEO before entering the 

exploitation phase of the method. 

The free parameters adjustment of an evolutionary algorithm is a crucial step in 

the development and application of the algorithm. The correct value selection 

parameters can have a significant impact in the algorithm convergence 

performance. The O-GEO algorithm has two adjustable parameters: !, !. 

The main parameter for all GEO based algorithms is !. This parameter defines 

the probability of selecting a candidate solution according to its position in the 

adaptability ranking, which is sorted by the objective function value. As the 

value of ! increases, the algorithm becomes more deterministic, increasing the 

probability of selecting the most adapted solution. As the value of ! decreases, 

the algorithm becomes more stochastic, increasing the probability of selecting 

less adapted solutions. The normalized standard deviation of the Gaussian 

perturbation applied in each continuous variable during the search is !, defining 

the variable step change.  

In O-GEO, the adjustable parameters are static. They are defined before the 

algorithm is run and remains fixed during the optimization process. For static 

parameters, the values are typically set using a parameter tuning approach. 

Parameter tuning is performed by experimenting with different values and 

selecting the values, which give the best results for the test problem. 

Unfortunately, this task can be very time consuming because the parameter 

dependence is high, making the number of combinations extremely large even 

with a limited parameter range and significant step size.  

In this case, the parameter values selected using this method are not 

necessarily optimal. Though the best values for the parameters are problem 
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dependent, it is practically impossible to define different parameters for different 

problems. 

In this work, we perform a systematic search for the parameters of a very 

simple optical design problem, assuming a fixed number of lenses and running 

the algorithm in the mono-objective mode. We selected the Cooke triplet 

problem for tuning. The adjustable parameter values found for this problem are 

then utilized for every other lens design problem in this thesis. The Cooke triplet 

was select for the tuning process because it has a known design space and 

runs fast in the available computer machines due to its simplicity, allowing in a 

feasible time interval, the test of many different adjustable parameter 

configurations. 

Once ! and ! have been defined, we performed a search to establish the best 

number of generations to execute before entering the exploitation phase. We 

also used the Cooke triplet problem for this search. Unlike ! and !, the number 

of generations is assumed to be linearly proportional to the number of design 

variables and quadratic with the number of objective functions. 

B.1 Tuning ! and ! 

The following values were tested for !: 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 7, 8, 9, 

and 10. For each value assumed for !, ! was changed from 0.1 to 1 in 

increments of 0.1. For each combination, the algorithm was executed 50 times 

for 104 objective function calls.  

We!collected!the!data!for!each!texted!!!value!and!plotted!the!results!in!!

Figure B.1 to Figure B.10. The plots on the left-hand side of these figures show 

the evolution of the objective function value with the accumulated number of 

objective function calculations. The curve colors differ for each ! value. The 

plots on the right-hand side shows the final objective function value as a 

function of !. In both plots, the values are the average of fifty independent 

executions. 
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!

Figure B.1 - Tuning experiment curves for ! = 0.1. The left-hand side shows the 
average objective function value evolution for the number of objective 
function calculations. The right-hand side shows final performance of the 
average objective function as a function of !.  

 Figure B.2 - Tuning experiment curves for ! = 0.2. The left-hand side shows the 
average objective function value evolution for the number of objective 
function calculations. The right-hand side shows the final performance of 
the average objective function as a function of !. 
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Figure B.3 - Tuning experiment curves for ! = 0.3. The left-hand side shows the 
average objective function value evolution for the number of objective 
function calculations. The right-hand side shows the final performance of 
the average objective function as a function of !. 

 

!

Figure B.4 - Tuning experiment curves for ! = 0.4. The left-hand side shows the 
average objective function value evolution for the number of objective 
function calculations. The right-hand side shows the final performance of 
the average objective function as a function of !.  
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Figure B.5 - Tuning experiment curves for ! = 0.5. The left-hand side shows the 
average objective function value evolution for the number of objective 
function calculations. The right-hand side shows the final performance of 
the average objective function as a function of !. 

 

Figure B.6 - Tuning experiment curves for ! = 0.6. The left-hand side shows the 
average objective function value evolution for the number of objective 
function calculations. The right-hand side shows the final performance of 
the average objective function as a function of !.  
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Figure B.7 - Tuning experiment curves for ! = 0.7. The left-hand side shows the 
average objective function value evolution for the number of objective 
function calculations. The right-hand side shows the final performance of 
the average objective function as a function of !.  

 

Figure B.8 - Tuning experiment curves for ! = 0.8. The left-hand side shows the 
average objective function value evolution for the number of objective 
function calculations. The right-hand side shows the final performance of 
the average objective function as a function of !.  
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Figure B.9 - Tuning experiment curves for ! = 0.9. The left-hand side shows the 
average objective function value evolution for the number of objective 
function calculations. The right-hand side shows the final performance of 
the average objective function as a function of !.  

 

Figure B.10 - Tuning experiment curves for ! = 1. The left-hand side shows the 
average objective function value evolution for the number of objective 
function calculations. The right-hand side shows the final performance of 
the average objective function as a function of !.  

Analyzing Figures 1 through 10, we observe that for almost all ! values tested, 

! = 1 was the best value. However, this was not true for ! = 0.9 and ! = 1, for 

which ! = 2 was the best value. These curves demonstrate that the best ! value 

is not very sensitive with respect to the ! value.  

Now, to analyze the best ! value, we plot the curves for the best MF average 

value as a function of ! for the two best ! values: ! = 1 and ! = 2. Figure B.11 

shows these results.  
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Analyzing the curves in Figure B.11, the best ! values are 0.6 and 0.9 for ! = 1 

and ! = 2, respectively. From the ! = 1 curve, despite the small fluctuations, we 

observe that the algorithm performance improves as ! approaches 0.6 and 

degrades for higher values. On the other hand, the ! = 2 curve does not 

present a clear tendency despite providing best performances for ! = 0.9 and 

! = 1, which was surprising because these values for ! are very high.  

Analyzing all of the curves and data, we chose to set ! = 1 due to the fact that 

this value was appropriate for the majority of the experiments and because the 

curve as a function of ! has the best behavior. As a consequence, ! was set 

equal to 0.6.  

 

Figure B.11 - Performance of the algorithm as a function of ! for ! = 1 and ! = 2. 
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In this experiment, O-GEO (exploration phase) runs for a predefined number of 

generations. After the maximum number of generations is complete, the 

exploitation phase (local search) is called. If the algorithm does not fulfill the 

stopping criterion, which is given by a minimum image quality for the system in 

this case, O-GEO is reinitialized and the loop continues until the stopping 

criterion is achieved. For this experiment, the image quality specified was 0.4 

waves. 

Once the stopping criterion is fulfilled, the total number of MF calculations in the 

current independent execution is logged. For each number of generations 

defined, this process is repeated 20 times.  

The number of generations varied from 50 to 450 in steps of 50. To analyze the 

data, we plotted histograms for the total number of objective function calls in 

each independent execution for each number of generations tested.  

We selected the most appropriate reference number of generations by 

analyzing these histogram plots. The analysis could have been done based on 

the average value of the total number of objective function calculation; however, 

because we only performed 20 independent executions, the average number 

could mislead the analysis. Therefore, the histograms shown in Figure B.12 

provides a better representation of the algorithm performance. 
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Figure B.12 - Histograms for the number of objective function calculations necessary to 

achieve the minimum image quality defined in the Cooke triplet 
experiment.  

Analyzing the histograms in Figure B.12, a good number of generations for this 

experiment is between 50 and 150 generations. For these generation numbers, 

the stopping criterion is regularly satisfied with a low number of objective 

function calculations. For higher generation numbers, we see an increase in 

occurrences that require a much higher number of objective function 

calculations.  
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APPENDIX C PAPER PUBLISHED IN OPTICS EXPRESS  

Method of glass selection for color correction in 
optical system design 

Bráulio Fonseca Carneiro de Albuquerque, 1,2* Jose Sasian,2 Fabiano Luis de Sousa,1 
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Abstract: A method of glass selection for the design of optical systems with 
reduced chromatic aberration is presented. This method is based on the 
unification of two previously published methods adding new contributions 
and using a multi-objective approach. This new method makes it possible to 
select sets of compatible glasses suitable for the design of super-
apochromatic optical systems. As an example, we present the selection of 
compatible glasses and the effective designs for all-refractive optical 
systems corrected in five spectral bands, with central wavelengths going 
from 485 nm to 1600 nm. 
©2012 Optical Society of America  
OCIS codes: (220.0220) Optical design and fabrication; (220.3620) (080.3620) Lens system 
design; (220.1000) Aberration compensation; (080.0080) Geometric optics; (080.2720) 
Mathematical methods (general). 
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1. Introduction  

Multi-spectral imaging instruments are widely used in scientific instrumentation. The different 
spectral bands, which frequently go beyond the visible region of spectrum, can allow 
extraction of many important features and chemical-physical information from the objects 
been imaged.  

Common examples of this kind of instrument are multispectral satellite remote sensing 
cameras, multispectral microscopes, and astronomical telescope multispectral cameras. These 
instruments sometimes cover spectral bands from the UV to the thermal IR. Depending on the 
instrument specification, an all-reflective solution for the optical system, which would be 
chromatic aberration-free, is not always feasible, due to some disadvantages of this kind of 
solution [1]. The design of a refractive optical system that can cover a wide spectral band 
providing good image quality is not an easy task. According to Rayces and Aguilar [2], two 
barriers impose limitations on an optical system performance, light diffraction and chromatic 
aberration. 

The chromatic aberration in imaging forming optical systems is a well-known issue 
studied since the XVII century. As pointed out by Sigler [3], this topic has been one of most 
investigated in optical design. 

Several graphical and mathematical methods for the selection of optimum glass 
combinations for the correction of chromatic aberration have been proposed [2,3-13]. 
However, the problem of glass selection is wide in scope and in our opinion is not yet 
completely solved. Even a recent publication about optimum glass selection [14] brings no 
relevant contributions for the subject in our opinion. 

Some contemporary methods propose the use of evolutionary [15,16] and hybrid [17] 
optimization algorithms for the optimal glass selection. Despite of reporting excellent results, 
we believe these techniques can be computationally demanding due to the extremely huge 
number of different possibilities available even for a reasonable simple optical system. 
Moreover, these methods do not guaranty that the best set of glasses has been found.  
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Fischer et al [18] mention that the glass selection in optical design has a mystique and 
tends to be both a science and an art. Our goal in this paper is to present a synthesis method 
that systematizes the task of glass selection for the design of color corrected optical systems, 
making this an objective task. The proposed method is based on the unification of two other 
methods proposed in the literature [2,7] with some important contributions added, and a multi-
objective approach for the problem. 

In the next Section we present the motivation that conducted us to the development of this 
new method of glass selection. In the Section 3 we present the background for the proposed 
method, in Section 4 we explain the proposed method itself. In Section 5 we present one 
example of the application of the method. Concluding this work in Section 6. 

2. Motivation  

The studies presented herein were motivated by the request for the feasibility study of a single 
refractive optical system capable of covering and providing excellent image quality in five 
spectral bands, going from the blue (0.45-0.485-0.52 µm), passing through green (0.52-55-
0.59 µm), red (0.63-0.66-0.69 µm), NIR (0.77-0.83-0.89 µm) and reaching the SWIR (1.5-1.6-
1.7 µm) spectral region. 

Optical system covering wide band with good image quality is a challenge due to the 
chromatic aberration. In this case a detailed study of how to design a broadband system like 
this had to be conducted. The success of such system lies on the selection of the right set of 
optical glasses used in the design [2,7,9,11,16]. For this purpose we started to study the 
available methods of glass selection in the literature. During this survey, we identified points 
that could be better developed in the available methods and we ended up with an improved 
technique that we present in this paper.  

Using the developed method it was possible to design a preliminary system for the five 
spectral bands camera, which complies with the main requirements imposed to the system, as 
we show in Section 5. 

3. Background of the proposed method 

After studding many methods of glass selection available in the literature [2-13], we realized 
that the one proposed by Mercado and Robb [7] is the most theoretically rigorous and general. 
The Mercado-Robb method considers in the formulation different number of glasses used in 
the set, as well as different number of wavelengths for which the minimization of chromatic 
aberration is desired. It is possible to affirm that other methods presented in the literature [e.g. 
4-6,9,11,13] can be seen as special cases of this method.  

Despite the general formulation of the Mercado-Robb method and the excellent discussion 
provided in reference [7], the authors solve the problem for practical purposes just in some 
specific cases. The cases for two glasses corrected from 2 to n wavelengths are very well 
presented with all the necessary details. Nevertheless, for more than two glasses, only some 
particular cases are discussed. One reason is that for more than two glasses, the metric adopted 
to define how good a specific set of glasses is at color correction for n specific wavelengths, 
becomes difficult to define and interpret geometrically. Furthermore, the adopted method to 
calculate the optical power of each glass type does not have a general equation, also becoming 
complicated in these cases. The method presented in this paper improves the Mercado-Robb 
method with contributions that address some of the practical implementations issues.  

In spite of the method of color correction proposed by Rayces and Aguilar [2] being 
limited to two glasses and three wavelengths, it establishes and makes use of some metrics 
that appear not to have been reported before in glass selection theory. These metrics are not 
related to color correction but are important for verifying if a set (in their case a pair) of 
glasses can provide a successful design. In contrast to other glass selection methods, the 
Rayces-Aguilar method uses as input not only the wavelengths, but also the focal length and 
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the numerical aperture of the designed system. In the method presented in this paper, we 
incorporate this metrics proposed by Rayces and Aguilar [2]. 

With different metrics of dissimilar physical natures for each possible glass arrangement, 
the use of a multi-objective approach was very convenient and helpful to filter out the non-
dominated solutions and organize them in different Pareto rankings, helping the selection of 
the most appropriate glass combination solution for the problem. 

3.1-The Mercado and Robb method with some new contributions 

The index of refraction of optical materials is a function of the wavelength. Several 
mathematical models have been proposed to describe this dependence. Some are based in 
physical models other are simply empirical functions [19]. One of these models, proposed by 
Buchdahl [20] is given by Eq. (1). 

 N(λ) = N0 +ν1ω(λ)+ν2ω(λ)
2 ++νnω(λ)

n  (1) 
This model, as many others, is based on a Taylor series. N represents the refraction index 

for wavelength λ. N0 is the refraction index in a reference wavelength λ0, and ω is a function 
of the wavelength λ that is called chromatic coordinate: 

 
αδλ
δλ

ω
+

=
1

 (2) 

where δλ =λ-λ0, and α is a universal constant taken as 2.5 [7]. The dispersion coefficients νn, 
are particular to a given glass. This dispersion equation proposed by Buchdahl converges 
rapidly and can model optical glasses to a very good accuracy using only a few terms in the 
series [20].  

The develop method of glass selection for color correction takes advantage of this 
dispersion equation. If a set of glasses is needed to minimize the chromatic aberration for n 
wavelengths, Eq. (1) is expanded to include up to the n-1th algebraic power term. Then a 
system of linear equations is obtained to compute the dispersion coefficients νn of each glass 
were the number of unknowns is equal to the number of equations.  

By passing N0 to the left side of Eq. (1) and by dividing both sides by the constant N0 –1, 
we obtain:  

 D(λ) = ηiω(λ)
i

i=1

n−1

∑  (3)  

where: ( ) ( ) ( )1/ 0 −= NND λδλ  ; ( ) 0)( NNN −= λλδ  and ( )1/ 0 −= Nii νη . The term D(λ) is 
called dispersive power.  

This equation is very important since the method presented in [7] is mainly based on it.  
The optical power φ of a lens is defined as the inverse of the it’s focal length f :  

 φ =
1
f

 (4)  

The optical power of a single thin lens for a wave λ is given by the relationship:  

 φ λ( ) = N λ( )−1"# $% C1 −C2( )  (5)  

where C1 and C2 are the lens curvature.  
For a specific optical material and a defined optical power, the quantity (C1 – C2) must be a 
constant, conveniently called K. Thus we can write: 

 φ λ( ) = N λ( )−1"# $%K  (6) 

As a consequence, the power of a thin lens at λ0 can be expressed by:  
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 φ λ0( ) = N λ0( )−1"# $%K  (7) 

By use of ( ) ( ) ( )1/ 0 −= NND λδλ , and ( ) 0)( NNN −= λλδ , together with Eq. (7), we can write 
for the optical power:  

 φ λ( ) = φ λ0( ) 1+D λ( )!" #$  (8) 

For a system of k thin lenses in contact, the resulting optical power for the reference 
wavelength λ0 is computed by:  

 Φ λ0( ) = φ j λ0( )
j=1

k

∑  (9) 

Using Eq. (8) and Eq. (9), the total optical power for any wavelength λ can be written as: 

 Φ λ( ) =Φ λ0( )+ φ j λ0( )Dj λ( )
j=1

k

∑    (10) 

Assuming that each one of the k lenses is made out of a different glass, where k≥2, the 
mathematical conditions for having an achromatized optical system in n wavelengths, where 
n≥2, can be given by:  

 

Φ λ1( ) =Φ λ 2( )
Φ λ2( ) =Φ λ 3( )


Φ λn−1( ) =Φ λ n( )

 (11) 

Using Eq. (10), Φ(λ1), Φ(λ2), Φ(λ3), ..., Φ(λn) can be transcribed in the following form: 

 

Φ λ1( ) =Φ λ0( )+φ1 λ0( )D1 λ1( )+φ k
λ0( )Dk λ1( )

Φ λ2( ) =Φ λ0( )+φ1 λ0( )D1 λ2( )+φ k
λ0( )Dk λ2( )


Φ λn( ) =Φ λ0( )+φ1 λ0( )D1 λn( )+φ k

λ0( )Dk λn( )

 (12)  

Using the set of Eq. (12), the conditions for achromatized optical systems are:  

 

φ1(λ0 ) ⋅ D1(λ1)−D1(λ2 )( )+...φk (λ0 ) ⋅ Dk (λ1)−Dk (λ2 )( ) = 0
φ1(λ0 ) ⋅ D1(λ2 )−D1(λ3)( )+...φk (λ0 ) ⋅ Dk (λ2 )−Dk (λ3)( ) = 0


φ1(λ0 ) ⋅ D1(λn−1)−D1(λn )( )+...φk (λ0 ) ⋅ Dk (λn−1)−Dk (λn )( ) = 0

 (13) 

The difference in the dispersive power of a particular glass j over the wavelength range 
λ1< λ< λ2, can be written in simplified form as:  

 Dj (λ1,λ2 ) = Dj (λ1)−Dj (λ2 )  (14) 
By using the dispersive power definition in Eq. (3), we can rewrite Eq. (14) in terms of the 

chromatic coordinate ω as:  

 [ ]∑
−

=

−=
1

1
2121 )()(),(

n

i

ii
ijjD λωλωηλλ  (15) 

Thus we can write the conditions for achromatized optical systems, expressed in Eq. (13), 
in matrix form as:  
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 0=Φ⋅⋅ΩΔ η   (16) 

where, ΔΩ  is a square matrix of order n-1 x n-1: 

 ΔΩ =

(ω1 −ω2 ) (ω1
2 −ω2

2 )  (ω1
n−1 −ω2

n−1)

(ω2 −ω3) (ω2
2 −ω3

2 )  (ω2
n−1 −ω3

n−1)


    
(ωn−1 −ωn ) (ωn−1

2 −ωn
2 )  (ωn−1

n−1 −ωn
n−1)

$

%

&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)

 (17) 

 η  is a matrix of order n-1 x k:  

 

η =

η11 η12  η1k
η21 η22  η2k
η31 η32  η3k
   

η(n−1)1 η(n−1)2  η(n−1)k

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

 (18) 

Φ  is a matrix of order k x1:  

 

Φ =

φ1(λ0 )
φ2 (λ0 )


φK (λ0 )

"

#

$
$
$
$
$

%

&

'
'
'
'
'

 (19) 

and 0  is a matrix of the n-1 x 1 order:  
!

 

0 =

0
0
0

0

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

 (20) 

The matrix ΔΩ  is a square and doubtless nonsingular. As a consequence its inverse 
(ΔΩ−1) exists. Multiplying both sides of Eq. (16) by ΔΩ−1  results in a condition to obtain a 
solution free from chromatic aberration for all the wavelengths defined:  

 η ⋅Φ = 0   (21) 
Equation (21) has a nontrivial solution (i.e. Φ≠ 0 ) if and only if the matrix η  rank is 

lower than k (i.e. not a full rank matrix). This happens when there is a perfectly linear 
dependence among the columns of matrix η . Nevertheless, for any practical and meaningful 
situation, where k≤n-1, the linear dependence will virtually never be mathematically exact. As 
a consequence, the matrix η  rank will always be equal to k. This result makes the rank of 
matrix η  an inefficient metric either to identify sets of glasses that are free from chromatic 
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aberration in the defined wavelengths, or to compare the residual chromatic aberration among 
the different possible combination of glasses.  

To solve this problem, Mercado and Robb provide a geometrical interpretation of the Eq. 
(21). In this way, they suggest a geometric metric to verify how good a set of glass is at color 
correction for a given set of wavelengths. The metric is easy to understand and visualize for 
the case of two glasses. Nevertheless, for more than two glasses the interpretation changes and 
becomes complicated. Another drawback is that the metric has no physical meaning. 

In this paper we propose a different metric to verify how good a specific set of glasses is at 
minimizing the chromatic aberration for a given set of wavelengths. The proposed metric has 
a general form, not depending on the number of glasses used in the combination, and has a 
direct physical meaning. This new metric is presented and explained in some paragraphs 
ahead. 

To minimize or correct the chromatic aberration, not only a specific set of compatible 
glasses must be selected, but also the right optical power for the lenses made with each one of 
these materials must be used. To calculate the optimum power of each glass that minimizes 
the chromatic aberration, both Eq. (16) and Eq. (9) are used. To simplify the computation, we 
normalize the focal length of the optical lens system for λ0. As a consequence Eq. (9) 
becomes:  

 φ j λ0( ) =1
j=1

k

∑  (22) 

This equation can be written in a matrix form as:  

 S ⋅Φ =1  (23) 

where S  is a row vector of order 1xk, with all elements equal to one.  
Putting together Eq. (16) and Eq. (22) we obtain: 

 S
ΔΩ⋅η

$

%
&
&

'

(
)
)
⋅Φ = ê  (24)  

where ê  is a column vector of order nx1 with the first element equal to one and the others 
zero as shown below : 

 
ê =

1
0
0

0

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

 (25) 

Defining !
"

#
$
%

&

⋅ΩΔ
=

η

S
G , and assuming that n ≥ k and k≥2, we estimate an optimum Φ  

applying in Eq. (24) the least square method, what results the following equation:  

 Φ̂ = Gt ⋅G( )
−1
⋅Gt ⋅ ê  (26) 

Equation (26) computes the optimum power of the lenses made with each one of the 
glasses considered in the set that minimizes the square sum of the chromatic change of power 
for the n defined wavelengths. We point out that the equations provided by Mercado and 
Robb, to compute the optical powers, are only related to some specific situations and do not 
use all the glass information available. In contrast, the equation presented herein is general, 
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uses all the glass dispersion coefficients available, and provides the minimum chromatic 
aberrations for the glass set considered, in the n given wavelengths. 

Now, it is possible to use the vector Φ̂  in Eq. (16), to obtain the minimum chromatic 
change of power CCP , as expressed in Eq. (27).  

 CCP = ΔΩ⋅η ⋅ Φ̂  (27) 
Our metric to verify how suitable a specific set of glasses is for minimizing chromatic 

aberration, for a given set of n wavelengths, is now established as the modulus of the vector 
CCP . 

As we have normalized the optical power (see Eq. (22)), we obtain an excellent 
approximation for the chromatic focal shift by multiplying the vector CCP  by the desired 
effective focal length F for the optical system. 

 
f (λ2 )− f (λ1)
f (λ3)− f (λ2 )


f (λn )− f (λn−1)

"

#

$
$
$
$
$

%

&

'
'
'
'
'

≈ CCP ⋅F   (28) 

As the chromatic focal shift is proportional to CCP  it clearly gives physical meaning to our 
metric. 

3.2-The Rayces-Aguilar method  

Rayces and Aguilar [2] proposed a method of glass selection where not only the chromatic 
correction is considered, but also aberrations, that according to the authors, cannot be 
corrected, namely spherochromatism and fifth order spherical aberration.  

The Rayces-Aguilar method is based on an exhaustive search of combination of pairs of 
glasses. The possible arrangements of glasses, deriving from a glass catalog, are tested. For 
each glass set possibility the power of the glasses are computed to produce a thin achromatic 
doublet solution for the two extreme wavelengths considered. The chromatic aberration for the 
middle wavelength, also called the secondary spectrum, is computed. Based on the power of 
the elements of the doublet and on the desirable aperture of the system, a first weeding out of 
potentially useless solutions is carried out. This eliminates solutions with steep curves, what is 
an indication of high-order monochromatic aberrations, which are difficult to correct or 
balance. In the next step, the radius of each surface is computed to produce an aplanatic 
solution to third-order approximation using structural aberration coefficients. Paraxial rays are 
then traced to compute third–order sphero-chromatism and fifth-order spherical aberration. 
Based on the magnitude of these aberrations, a second glass arrangement elimination is 
carried out.  

The output of the Rayces-Aguilar method is a table with solutions that comply with the 
limits imposed for each aberration, ranked according to the secondary spectrum value. The 
method provides a certain level of confidence for glass combinations solutions that may 
provide a successful design. 

3.3-The multi-objective approach 

Despite being frequently considered as mono-objective, practical optimization problems have 
in general more than one objective or criteria, which usually are conflicting. In the problem of 
finding the best glass combinations for color correction we pursue more than one objective 
and therefore the use of a multi-objective approach [21] is appropriate. 

When a problem is treated as multi-objective, usually there is a set of solutions, and not 
only one solution. One solution in this set cannot be considered, in principle, better than 
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another solution in the same set, because at least it will be worse than another solution in one 
aspect or objective. This set of solutions is known as non-dominated solutions. When these 
solutions are plotted in the objective-functions space they form the thus called Pareto front.  

To illustrate the ideas of dominance, non-dominance and Pareto front consider Fig. 1 
where blue and red dots represent solutions of a multi-objective problem as plotted in the 
objective-function space F1 and F2. 

!

Fig. 1. The graph shows solutions for a generic min-min multi-objective problem, plotted in the 
objective-functions space F1 and F2. Dominated solutions are represented in blue, while red 
dots represent non-dominated solutions.  

Objective functions are metrics used to evaluate a specific characteristic of a solution. The 
example considered in Fig. 1 represents a two objective minimum-minimum problem. This 
means that the smaller the values of F1 and F2 the better the solution is. 

The red dots represent the non-dominated solutions while the blue dots represent the 
dominated solutions. A given solution “A” is considered dominated when there is a solution 
“B” with at least one of objectives better than the objectives at solution “A”. The dominance 
relationship among the dominated solutions can also be considered; for example, the solution 
1 dominates solutions 2 and 3 [21]. 

When the non-dominated solutions are plotted on the objective function space, they form 
the so-called Pareto front, represented in the Fig. 1 by the dashed line connecting the red dots. 

Another useful concept used in this paper is the Pareto rank [22]. For a set of possible 
solutions of a specific problem the dominance definition can be applied several times. Each 
time the previous non-dominated solutions are removed, giving place to the formation of a 
new Pareto front. The different Pareto fronts that result are classified by ranking. For example, 
in Fig. 1 the red dots forming the Pareto ranking equal to 1. Solutions 5, 6, 1 and 4 are the 
ones forming the Pareto ranking 2 and so on.  

The dominance, non-dominance, Pareto front and Pareto rank concepts can be used for 
multi-objective problems containing any number of objectives.  

4. The synthesis method of glass selection  

With the background presented in the last section, the explanation of our method of glass 
selection becomes straightforward. Its implementation involves several steps. 

Step 1. As input data for the method, the designer must provide the effective focal length 
F, the f number F/#, the n wavelengths that covers the desired spectral range, and the number 
of the primary wavelength λ0. A glass catalog and the number of glasses used in the 
combination (i.e. 2, 3, 4, etc) must also be specified.  

Step 2. At the outset, the first n-1 dispersion coefficients ηi, are calculated for each glass in 
the catalog. For that, the n specified wavelengths and their respective refractive index in the 
corresponding glass are used in Eq. (3). This results in a system of linear equations with n-1 
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equations and n-1 unknowns, that when solved provides the ηi dispersion coefficients. With 
the specified wavelengths, the matrix ΔΩ  is then calculated using Eq. (17). 

Step 3. Next, all possible arrangements for the glasses from the specified catalog are 
performed. For each possibility the optimum normalized power of each glass is computed 
using Eq. (26). The sum of the absolute power of each arrangement, given by Eq. (29) below, 
is used as a metric for the first weeding out. As pointed out by Rayces and Aguilar [2], high 
power elements have steep surfaces that result in large monochromatic aberrations, involving 
higher orders of aberration. This first cut eliminates potentially useless solutions. The metric 
used here is different from the one presented in [2]. It is more general in terms of the number 
of glasses used in the combination. This metric has been suggested in [11]. 

 
F1 = φ j (λ0 )

j=1

k

∑  (29)  

The user must set the maximum value for F1. The glass arrangements that have F1 values 
larger than the specified value are discarded. This metric is not just used to eliminate potential 
useless solutions but can also be used as one of the metrics in the multi-objective approach 
proposed in this work. The next steps and calculations are only performed for the 
arrangements that comply with the F1 limit imposed.  

The vector CCP  is than calculated by Eq. (27). The modulus of this vector, called F2 (

F2 = CCP ) can also be used in the multi-objective analysis. The smaller the value of F2 the 

better the color correction the set of glasses provides as explained in Section 3.1.  
Step 4. Following, a thin lens aplanatic solution for wavelength λ0 is found for each 

candidate glass arrangement. To find the aplanatic solution, the system structural coefficient 
for spherical aberration Ξ and coma Χ are set equal to zero, with the power of each glass 
element calculated using Eq. (26). We ended up with the following set of equations.  

 
Ξ = ξ j = 0;

j=1

k

∑  (30)  

 Χ = χ j = 0;
j=1

k

∑  (31)  
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 (32)  

To find the aplanatic solution it is necessary to solve the above set of equations for r1 to 
r2k.  

For the case of a doublet, k=2, there are four equations and four unknowns resulting in a 
straightforward solution. As Eq. (30) has a quadratic dependence as a function of the radius 
(see appendix A in [30]), two different aplanatic solutions can be obtained for each glass 
arrangement. The best solution is retained where the definition for a better solution is based in 
the metric F3 as explained ahead. 

For k≥3 there are more unknowns than equations. For solving the set of equations in an 
analytic and fast way, some constraint equations are added to make the number of unknowns 
equal to the number of equations. For example, the case where k=3 (triplet), two options for 
the constraint equations are possible r3=r2, or r5=r4. The system can then be solved for both 
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cases; in each case two solutions exist, which means four total possible solutions. Once more 
only the better solution is retained. This same idea can be expanded for k>3. The solution for 
the set of equations where k≥3 in not so trivial and is made with the help of a computer.  

For each one of the possible retained solutions, the fifth-order spherical W060 λ0( )  and the 

sphero-chromatism W040CL λ1λn( )  wave aberration coefficients are calculated according to 
the algorithm presented in [30]. The fifth-order spherical is calculated for the reference 
wavelength λ0. The sphero-chromatism is calculated for all possible combinations of the input 
wavelengths, and the worse case is assigned for the set. 

Step 5. The third and last metric used in the multi-objective analysis is then computed by 
the sum of the normalized fifth-order spherical W060  and normalized sphero-chromatism 

W040CL  wave aberration coefficients according to Eq. (33).  

 F3 = W040CL +W060( )  (33)  

where [2]:  

 W060 =
14 ⋅W060 (λ0 )
20 7

  (34) 

and 

 W040CL =
14 ⋅W040CL (λ1λn )

6 5
 (35) 

The metric F3 is also used to define which of the possible aplanatic solutions for a specific 
glass set is the best one, as mentioned above. 

Step 6. For all the possible set of glass arrangements complying with the maximum 
allowed metric F1, the best aplanatic solution is stored in a table with its respective F1, F2 and 
F3 metric values. The data stored in the table are organized as shown in the Fig. 2. The r’s are 
the radius of curvature of each surface and ϕ’s are the normalized optical power of each thin 
lens.  

!
Fig. 2. Format of the table where the data for each glass arrangement best aplanatic solution is 
stored.  

Step 7. The solutions are then organized into different Pareto ranks using the metrics F1, 
F2 and F3. 

Step 8. At last, a post-Pareto analysis is applied in the first or in the firsts Pareto ranks, 
organizing the solutions in the out-put table from the best to the worse trade-off solutions.  

In summary, the glass selection for the design of optical systems with reduced chromatic 
aberration can be seen as a multi-objective optimization problem where the goal is to 
minimize at the same time the objective functions F1, F2 and F3, subjected to: F1 ≤ Constant; 
to Eq. (30), (31) and (32), and to some additional constrains when k≥3 (e.g. r3=r2, or r5=r4, for 
the case when k=3). The method we used here to solve the problem was an exhaustive search. 

The method is also represented in a flowchart form in Fig. 3. 
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Fig. 3. Flowchart of the proposed method of glass combination selection. 

4.1-Post Pareto analysis  

The Pareto front, or the Pareto rank 1, specifies the global non-dominated trade-off solutions 
for the problem. In practice, the designer has to pick one solution from this set for designing 
the optical system. Despite one solution in the Pareto front not being in principle considered 
better than other solution in the same front, it is evident and intuitive that a discrimination 
among the less satisfactory trade-offs and the most promising solution can be done. This 
process of selecting a solution is called decision-making. Many methods for supporting this 
process, also known as Post-Pareto analysis, can be found in the literature [23-29].  
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metric, given by F2. Rayces and Aguilar [2, 30] also propose the organization of the output 
table of their method by the color correction index, in their case given by the secondary color. 
We recommend the use of this method if the number of glasses used in the set is much lower 
than the number of wavelengths defined and the spectral band is broad, covering different 
regions of the spectrum. The best glass combination is not necessarily in the first line of this 
table but probably among the first ones. The final choice will be made by the designer, in this 
case, it is important to look for a solution with a low F3 but at the same time keeping F2 as low 
as possible. Other glass parameters can also be considered in this final choice. 

4.1.2-Minimum distance to the origin 

Suppose a generic multi-objective problem with two objective functions O1 and O2, where the 
goal is to minimize both functions. Suppose also that the Pareto front for this problem in the 
objective function space can be represented as the line plotted in Fig. 4. This is in fact a very 
usual shape for a Pareto front in a min-min problem. In this Figure we highlight the “knee”, a 
region where the best trade-off solutions lays.  

 
Fig. 4. Typical Pareto front for 2 objective min-min problem, showing the attributes used in the 
post-Pareto analysis.  

Looking at Fig. 4, it is possible to say that the bigger the length of vector gi the less 
satisfactory trade-offs solution i provides. This vector gi connects the origin of the system to a 
solution i on the Pareto front, having objectives values O1i and O2i. Due to possible different 
physical meanings of the objective functions, completely different numerical values ranges 
may be represented in each axis. This difference in range can be a problem for the use of the 
vector numerical length as a metric. However, we can work out this issue through the 
normalization of each one of the objectives. This can be done dividing O1i by Ō1, O2i by Ō2, 
and so on, for each solution i. The solutions can than be organized according to the value gi , 

given in its general form by Eq. (36). 

 gi =
Oob,i

Oob

!

"
#

$

%
&

ob=1

m

∑
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 (36)  

These Ōob values are not necessarily the highest values in the range of the solutions for 
each objective as we show in Fig. 4. For instance, in this work we defined this normalization 
factor for each variable as the value that accumulates 90% of the solutions used in the 
analysis. Organizing the solutions in the Pareto front in a new table using the metric given by 
Eq. (36), from the lowest to the highest, supports in a very nice way the decision-making. 



#162763 - $15.00 USD          Received 8 Feb 2012; revised 27 Mar 2012; accepted 27 Mar 2012; published 4 Jun2012 
(C) 2012 OSA             18 June 2012 / Vol. 20, No. 13 / OPTICS EXPRESS  

 

13605 

keeping the final choice for the designer that should be limited among the firsts lines in the 
table.  

We recommend the use of this method if the number of glasses k is within n ≥ k > n/2. For 
the case when n is equal to k, F2 is zero, so only functions F1 and F3 are used to calculate gi . 

When k is lower than n, the use of only F2 and F3 to compute gi  is recommended. Again, the 
best glass combination does not necessarily lie in the very first line of this table but probably 
among the first ones, and the designer must make the final choice.  

5. Example 

In this section it is presented an example for the application of the glass selection method 
proposed in this work. The specification of the lens system that motivated this development, 
described in Section 2, is used as the example. Our intention is not to present a final design for 
the problem but to show how the method can be used to effectively design a multi-spectral 
lens system. In Table 13 it is shown the most important features specified for the optical 
system. 

Table 13-Basic Requirements for the optical system used as example.  

ITEM REQUIREMENT 
Effective Focal Length 250mm 

F/ Number (f#) 5 
Field of view ±9 degrees 

Spectral Bands 0.450-0.520; 0.520-0.590; 0.630-0.690; 
0.770-0.890 e 1.5-1.7µm 

Maximal Distortion 3% 
Field relative illumination Constant ±3% 
Back focal length (BFL) Large enough to fit the spectral bands beamsplitter 

(more than 50mm). 
Design Resolution (MTF) Close to diffraction limit for all bands in sagittal 

and tangential directions. 
 

The inputs for the method can be extracted from the spec in Table 13. The focal length and 
the F/# are taken directly from the table. For the wavelengths, the central values for each 
spectral band were used: 0.485, 0.55, 0.66, 0.83 and 1.6 microns. The primary wavelength λ0 
was set to 0.83 microns the due to its proximity to the central wave of the whole spectrum 
covered by the instrument.  

The newest available Schott glass catalog was selected [31] to run the method. However, 
some specific glasses from this catalog were discarded: Lithotec-CAF2, N-PK51, N-PK52A, 
N-FK51A, P-PK53, N-PSK53A and N-PSK53. Despite these glasses being very good options 
for color correction, they were rejected due to their undesirable thermal behavior. Optical 
systems designed with these glasses are potentially sensitive to temperature changes. 
Normally, for small changes of temperature, the effect can be compensated with refocusing, 
however, the application of the instrument object of this example, cannot afford either a 
manual or an automatic refocus mechanism.  

At first we ran the method for arrangements of two glasses. The limit F1 defined for this 
case was 9. The post-Pareto analysis was applied only for the solutions in the Pareto ranking 
1, using the method presented in Section 4.1.1.  
In Table 14 we can see the first 10 rows of the output table, sorted from the smallest to the 
biggest F2. 
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Table 14- Output table from the glass selection method for 2 glasses sorted by F2.  

N° Glass 1 Glass 2 r1 r2 r3 r4 φ1 φ2 F1 F2 F3 
771 N-BALF4 N-KZFS11 170.91 -37.58 -38.36 -351.12 4.63 -3.63 8.27 5.46E-04 16.28 
606 N-BAK1 N-KZFS11 163.36 -47.77 -48.80 -403.20 3.82 -2.82 6.64 5.75E-04 8.69 

1383 N-KZFS11 N-BAK1 111.63 37.08 36.53 3124.93 -2.82 3.82 6.64 5.75E-04 8.59 
1417 N-KZFS11 N-SK2 129.72 38.16 37.98 3141.56 -2.90 3.90 6.79 7.36E-04 6.94 
4394 N-SSK5 KZFS12 168.54 -58.44 -58.88 -1078.81 3.74 -2.74 6.47 2.50E-03 6.12 
216 KZFS12 N-SSK5 134.49 42.57 42.37 1796.69 -2.74 3.74 6.47 2.50E-03 5.91 

2092 N-LAK12 KZFS12 168.51 -74.49 -74.20 -2741.16 3.23 -2.23 5.47 3.72E-03 4.35 
191 KZFS12 N-LAK12 145.49 50.04 50.19 1765.35 -2.23 3.23 5.47 3.72E-03 4.29 
212 KZFS12 N-SK2 118.05 48.24 47.64 2732.27 -2.09 3.09 5.18 3.80E-03 4.32 
596 N-BAK1 KZFS12 160.66 -65.53 -67.81 -355.23 3.03 -2.03 5.07 4.20E-03 4.92 

 
We believe that the fourth line of Table 14 brings the best trade-off option for the 

combination of 2 glasses for the problem. Solutions above the fourth line have F2 values 
slightly smaller, however, the F3 values are significantly higher. Bellow the forth line the F2 
values increase very fast.  

Before we go for the design of the optical system with the selected pair of glass, we can 
perform a roughly check to see if it is promising in terms of the color correction. It is known 
that the tolerable depth of focus of a system can be given by [19]: 

 ε = ±2λ( f #)2  (37)  
Calculating Eq. (37), using the f# provided in the Table 13 and the selected primary 

wavelength λ0 (0.83µm), results in ε=±0.0415mm. We can compare this value to the result 
from the multiplication between F2 and the focal length F, which for the selected pair gives 
0.184mm. This number is much higher than the calculated ε, telling us that the design with the 
selected pair is not promising. Even with the lowest F2 value shown in the first line of Table 
14, we cannot even get close to the calculated ε. The conclusion is that more glasses to the set 
are necessary to design the desirable system with the glass catalog used.  

In this case, we ran the method again with the same parameters but now for three glasses 
in the set. With more glasses, the F1 limit was changed to 11. The most suitable post-Pareto 
method in this situation is the one presented in Section 4.1.2, where the metric gi  is 
calculated using only F2 and F3.  

In Table 15 we can see the first 15 rows of the output table resulted from the application of 
the method using 3 glasses in the set. The solutions are sorted from the smallest to the biggest 
gi .  

For the case of three glasses, we selected two solutions among the first lines that we 
believe to be good trade-offs. The chosen solutions are located in the fifth and thirteenth lines 
of Table 15. The first one has a smaller F3 than the second one and also a better power 
distribution among the lenses. On the other hand the second has a smaller F2. Calculating the 
multiplication between F2 and the focal length for both solutions we get 0.047mm and 
0.014mm respectively. These numbers reveals that these glass combinations are promising in 
terms of color correction.  

Figure 5 shows the chromatic focal shift for the two aplanatic thin triplet obtained from the 
glass combination chosen from Table 15. The one in the left side of the Fig. 5 corresponds to 
the glasses on the fifth line of Table 15 (N-BAF52, N-KZFS11 and N-BAK2) while the one in 
the right side corresponds to the ones on the thirteenth line of Table 15 (N-KZFS8, P-SF68 
and N-SK2). This graphs reveals that despite not crossing the axis five times in the center of 
all spectral bands, the shift is not greater than 33 microns for the combination N-BAF52, N-
KZFS11 and N-BAK2 and less than 13 microns for the combination N-KZFS8, P-SF68 and 
N-SK2 for the central wavelength of each spectral band. This gives us confidence that the 
design of the objective can be done. The residual chromatic focal shift can be compensated 
with a slightly change on the position of each spectral band image plane, as each band will 
focus in a different detector. In this case we can go for the design.  
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Table 15- Output table from the glass selection method for 3 glasses sorted by gi . 

N° Glass 1 Glass 2 Glass 3 r1  r6 φ1 φ2 φ2 F1 F2 F3 
5317 N-BAF52 N-KZFS11 N-SK4 145.26  -1056.62 3.12 -4.68 2.56 10.37 2.15E-04 2.98 

35786 N-SK4 N-KZFS11 N-BAF52 135.68  -2128.74 2.56 -4.68 3.12 10.37 2.15E-04 2.99 
11387 N-KZFS11 N-BAF52 N-SK4 -42.02  -55.13 -4.68 3.12 2.56 10.37 2.15E-04 3.03 
25496 N-LAK8 N-KZFS11 N-BAK2 -20.89  -23.05 -3.21 -1.58 5.79 10.59 4.61E-04 1.49 
5310 N-BAF52 N-KZFS11 N-BAK2 110.35   -1266.01 3.34 -4.71 2.38 10.43 1.88E-04 3.14 

26091 N-LASF31A N-KZFS2 N-BAK1 -16.58  -17.83 -2.09 -2.03 5.13 9.26 5.11E-04 0.67 
13718 N-KZFS11 N-SSK8 N-SK4 -45.56  -62.64 -3.71 2.41 2.29 8.41 4.28E-04 2.04 
13672 N-KZFS11 N-SSK8 N-BAK2 -47.45  -65.80 -3.67 2.56 2.11 8.35 4.17E-04 2.14 
9960 N-FK5 N-KZFS11 N-BAF51 165.17  -264.64 2.02 -4.37 3.35 9.74 3.18E-04 2.84 

11541 N-KZFS11 N-BAK2 N-SSK8 -43.54  -58.25 -3.67 2.11 2.56 8.35 4.17E-04 2.23 
6824 N-BAK2 N-KZFS11 N-SSK8 142.16  -444.22 2.11 -3.67 2.56 8.35 4.17E-04 2.28 

37966 N-SSK8 N-KZFS11 N-BAK2 115.23  -1534.96 2.56 -3.67 2.11 8.35 4.17E-04 2.31 
20485 N-KZFS8 P-SF68 N-SK2 98.06   812.98 -4.73 1.17 4.56 10.46 5.66E-05 3.56 
2283 KZFS12 N-SF4 N-SK4 112.05  1464.73 -4.48 1.54 3.94 9.96 3.67E-04 2.68 

11237 N-KZFS11 LLF1 N-SK14 -42.00  -54.57 -4.20 2.49 2.70 9.39 3.75E-04 2.63 
 

The output glass combination chosen after the application of the method proposed can then 
be used to design an optical system either applying classical or evolutionary methods. In this 
last one the advantage is the significantly reduction of the design space, decreasing the 
number of glasses from thousands to just a few.  

Fig. 5. Chromatic focal Shift for the aplanatic triplets designed with glass combination (a) N-
BAF52, N-KZFS11 and N-BAK2, and combination (b) N-KZFS8, P-SF68 and N-SK2. 

The lens design lay out for the glass combination N-BAF52, N-KZFS11 and N-BAK2 can 
be seen in the top left side of Fig. 6, where each lens glass is identified. The system complies 
with all the basic requirements presented in Table 15. The image quality is also shown in Fig. 
6 through the MTF curves. The Quality is fair for the blue band and great for the other bands.  
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Fig. 6. Layout (a) and MTFs (b)(c)(d)(e)(f) for each spectral band and field position for the 
design made with glass combination N-BAF52, N-KZFS11 and N-BAK2.  

In Fig. 7 the layout for the lens system designed with the glass combination N-KZFS8, P-
SF68 and N-SK2 is shown in the top left side. The glass of each one of the lenses is identified 
in the layout. Notice that the glass P-SF68 is present only in one lens. This reflects the big 
difference in the power distribution between the 2 positive lenses as shown in Table 15. 

The MTF curves for each one of the spectral bands for this system is also presented in  
Fig. 7. Again the image quality is fair for the blue band and excellent for the other bands for 
the whole field of view.  

For both systems presented, the MTF curves reported were obtained with each spectral 
band focusing in its best focus. The prescription data for the lens shown in Fig. 6 and Fig. 7 
are presented in Table 16 and Table 17 in the end of this section. The systems were designed 
using only spherical lenses. 
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Fig. 7. Layout (a) and MTFs (b)(c)(d)(e)(f) for each spectral band and field position for the 
design made with glass combination N-KZFS8 P-SF68 and N-SK2. 

Despite being very good designs, the systems presented in this example might not 
represent final designs for the system that motivated the development of the glass selection 
method proposed herein. Probably more elements in the system will be needed in order to 
comply with all the detailed optical requirements necessary for the system, as well as to 
accommodate the beam splitters necessary for the spectral bands separation in the different 
detectors. Although, care was taken to design systems that are very representative in order to 
show the feasibility of the project. For example we avoided the use of some glasses with 
potential thermal problems, and also cemented lens that would facilitate the design, 
controlling easier the lateral color, but would not be desired for the final system due to some 
thermo mechanical constraints. 
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Table 16-Prescription data for the system shown in Fig. 6. 

System 1. EFL=250mm; F/# =5. 
Surf Radius (mm) Thickness (mm) Glass 
OBJ Infinity Infinity  

1 114.506 7.737 N-BAF52 
2 1551.850 2.887  
3 -787.580 8.220 N-KZFS11 
4 58.764 2.534  
5 60.880 8.455 N-BAK2 
6 173.824 59.804  

STO Infinity 20.929  
8 125.540 10.496 N-BAF52 
9 -80.372 2.299  

10 -75.012 7.000 N-KZFS11 
11 84.061 2.084  
12 84.729 12.000 N-BAK2 
13 -170.627 126.151  
14 -69.911 7.833 N-KZFS11 
15 -207.232 50.887  

Table 17- Prescription data for the system shown in Fig. 7. 

System 2. EFL=250mm; F/# =5. 
Surf Radius (mm) Thickness (mm) Glass 
OBJ Infinity Infinity  

1 120.751 6.425 N-SK2 
2 -1753.068 4.809  
3 -112.487 6.002 N-KZFS8 
4 179.109 1.011  
5 115.631 8.594 N-SK2 
6 -119.451 0.130  

STO Infinity 11.169  
8 12071.420 6.000 P-SF68 
9 -141.327 2.586  

10 -107.188 8.000 N-KZFS8 
11 62.025 3.207  
12 68.587 12.000 N-SK2 
13 159.482 40.000  
14 163.086 12.000 N-SK2 
15 -257.749 98.105  
16 -82.596 12.000 N-KZFS8 
17 -253.127 50.000  

6. Conclusion  

In the research of available methods and techniques of glass selection for color correction in 
lens design, we realized that all presented approaches in the literature had some drawbacks 
and/or missing points. During the literature survey two of the reviewed methods called our 
attention: the Mercado and Robb method [7] and the Rayces and Aguilar method [2]. The first 
one presents a technique in a very general form in terms of the number of wavelengths where 
the achromatization is desired, spectral region, and number of glass material used in the set. 
However, it has some practical implementation issues that limit its use to some specific cases. 
The second is limited to the combination of only two glasses and three wavelengths. 
Nevertheless, it proposes the use of some metrics very important in the identification of 
promising glass combinations that can potentially provide good final designs.  

Unifying these two mention methods, providing some original contributions to Mercado 
and Robb technique that repair its practical issues, and using a multi-objective approach, a 



#162763 - $15.00 USD          Received 8 Feb 2012; revised 27 Mar 2012; accepted 27 Mar 2012; published 4 Jun2012 
(C) 2012 OSA             18 June 2012 / Vol. 20, No. 13 / OPTICS EXPRESS  

 

13611 

new method of glass selection for color correction was developed. This new method offers 
significant advantages in the task of glass selection, leading to optimum choice of optical 
glasses for specific problems, as pointed out and demonstrated here. 

Along this paper we went from the background theory, passing through a detailed 
description of the new proposed method and finally wrapped it up with a practical example. 
The design examples demonstrated the power of the proposed method in fiddling compatible 
glasses that are able to conduct to excellent final designs. The results of this paper offer 
significant improvements to the problem of glass selection in lens design when color 
correction is an important matter, converting this task into a systematic and objective work. 
The efficiency of this new method will be investigated in future papers for other lens design 
problems, involving different spectral bands and types of lens systems.  

We intend to incorporate the presented method of glass selection together with 
evolutionary optimization methods in lens design that we have been working on. The glass 
selection method has the ability to identify the most promising glasses to be used in a certain 
design, reducing the glass options from hundreds to just a few. As a consequence the design 
space is reduced and simplified, what is a significant advantage for global search heuristic 
methods. 

In a near future, free stand-alone version of the software with the method presented here 
will be provided. The software will be found in the site: 
http://www.optics.arizona.edu/glassselectiontool. Meanwhile, we can provide free of charge 
tables of glass combinations upon request for specific input data provided. The request can be 
done by e-mail: braulio@dea.inpe.br.  
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