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Abstract: We present a simple method to analyze time se-
ries, and estimate the parameters needed to control chaos in
dynamical systems. Application of the method to a system
described by the logistic map is also shown. Analyzing only
two 100-point time series, we achieved results within 2%
of the analytical ones. With these estimates, we show that
OGY control method successfully stabilized a period-1 un-
stable periodic orbit embedded in the chaotic attractor.
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1. INTRODUCTION

Chaotic behavior is a common feature found in a wide
range of complex systems of interest to science and engineer-
ing. The time evolution of a chaotic system is unpredictable
yet deterministic and not random. Chaotic oscillations in a
dynamical system may be reduced or even suppressed by
chaos control techniques that disturb the system slightly. In
this paper, we present a simple way to estimate the control
parameters of OGY chaos control method through an analy-
sis of the chaotic time series output by the system.

Chaos control techniques allows us to keep a chaotic sys-
tem in a unstable periodic orbit embedded within a strange
attractor with the application of small perturbations to the
underlying dynamics. Due to the sensitive dependence on
the actual state of the system, a small perturbation may cause
dramatic changes in the system evolution. Owing precisely
to the chaotic behavior of the system, its control turns out
to be surprisingly efficient because every small region in the
phase space of a strange attractor is crossed by orbits that
visit every other regions in the attractor.

In this context, the OGY control method is a very simple
one, relying on a variation of linear control with feedback
proportional to the system output[1]. In a codimension-1
map

xn+1 = F (xn, rn) , (1)

the controls needed to stabilize a period-1 unstable periodic
orbit (fixed point) are small disturbances ∆rn around the
nominal value r0 of the control parameter r:

∆rn = rn − r0 = −γn̂ · (xn − x∗0) (2)

where n̂ is a unit vector normal to the Poincaré section Σ in
the neighborhood of the unstable fixed point x∗0, and γ is a
proportional gain.

Applied to the stabilization of a fixed point in the logistic
map[2]

xn+1 = F (xn, r) = rxn (1− xn) , (3)

OGY control method is based on the linearized map around
the unstable fixed point x∗ = 1− 1/r0, and around the nom-
inal control parameter r0,

xn+1 ≈ x∗ + α (xn − x∗) + β (rn − r0) (4)

that leads to a modified map

xn+1 = (r0 − γ (xn − x∗))xn (1− xn) (5)

when the system is close enough of the unstable fixed point
x∗. Optimal control is achieved by choosing γ = −α/β.
Therefore, one must determine experimentally the location
of the fixed point x∗, and the sensitivities
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in order to apply controls on the system.
Reconstruction of some aspects of the chaotic dynam-

ics from time series is a subject explored through a variety
of methods[3–5]. We introduce a very simple recurrence
method to estimate the parameters required in order to ap-
ply the OGY method to control chaos in dynamical systems.
For ease of presentation, we restrict this discussion to unidi-
mensional maps as the logistic map, and to period one fixed
points. Therefore, it suffices to estimate the values of x∗, α,
and β from a time series.

1.1. Our Proposal

A linearized version of the map around x = x∗, and r =
r0 may be written as

xn+1 ≈ x∗ + α (xn − x∗) + β (rn − r0) . (8)



Next, we fix the value of the control parameter to the nom-
inal value r0, and select only those situations in which the
variation

∆n = xn+1 − xn ≈ (α− 1) (xn − x∗) (9)

is small (less than some ε, say). In these cases, the system
is in a small neighborhood of the fixed point due to the slow
dynamics of the map around x∗. Then, it is straightforward
to show that

x∗0 ≈
〈
xn∆m − xm∆n

∆m −∆n

〉
(10)

where ∆m is the corresponding variation for another close
encounter in the neighborhood of the fixed point, and the
brackets indicate averaging over many such close encounters
provided by a long time series. Despite the simplicity of this
recurrence method, fixed point detection may be enhanced
by techniques that manipulates the probability distribution
on the attractor through fixed point transforms[4].

Having an estimate for x∗, it is easy to show that

α ≈ 1 +
〈

∆n

xn − x∗

〉
. (11)

Finally, in order to estimate β, we vary the control parameter
to a value r1 slightly different from r0, and estimate the new
fixed point x∗1 using Eq. (10). Hence, averaging over many
different values of r1, we discover that

β ≈ (1− α)
〈
δx∗

δr

〉
= (1− α)

〈
x∗1 − x∗0
r1 − r0

〉
. (12)

2. RESULTS AND DISCUSSION

To demonstrate the power of this simple method, we esti-
mate x∗, α, β, and γ for the logistic map with only two runs
of 100 points each. In these simulations, we set r0 = 3.90
and r1 = 3.91, right in the middle of a heavily chaotic re-
gion, and we also fixed the radius for a close encounter to
be detected in 10% of the total variation of the logistic map.
The results are shown in Table 1. Even these short few runs
were enough for a fair estimation of the parameters needed
to control the chaos in the system.

Table 1 – Theoretical and simulated values for the fixed point
x∗, sensitivities α and β, and proportional gain γ.

Parameter x∗ α β γ
Theory 0.74359 −1.90 0.1907 9.97
Simulation 0.74347 −1.86 0.1892 9.85
Error 0.016% 2.1% 0.79% 1.2%

Using the estimated parameters, we were able to stabilize
a period-1 unstable periodic orbit embedded in the heavily
chaotic region of the logistic map as shown in Fig. 1. In order
to keep the orbit stabilized, additional controls amounting to
only ∆r/r0 = 0.074% had to be continuously applied.

Figure 1 – Stabilized fixed point in the logistic map (r0 = 3.90)
using OGY chaos control method with parameters estimated
from time series. The arrow marks the first time that controls
were applied.

Time series are tipically used as a means to gain in-
sight on the general dynamics of a chaotic system, including
Lyapunov exponents, and some topological characteristics.
However, from a control engineering perspective, this kind
of information is excessive. The novelty of the proposed
method is to analyze the time series to extract just the in-
formation required to control chaos, drawing attention only
to the dynamics on a small neighborhood of the unstable pe-
riodic orbits.

3. CONCLUSION

We presented a simple way to estimate the set of param-
eters needed in order to control chaos. The method applied
here to stabilize a fixed point in the logistic map may be eas-
ily adapted to stabilize a period-k unstable periodic orbit in
higher dimensional systems where α is replaced by the ja-
cobian matrix [αij ] = [∂Fi/∂xj ], and β is replaced by a
matrix of sensitivities [βij ] = [∂Fi/∂rj ]. Analysis of only
two very short time series of the logistic map was enough to
estimate the control parameters within 2% of its analytical
values. With these estimates, OGY method could success-
fully stabilize an unstable periodic orbit.
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