

CONTROLE AERODINÂMICO DO VETOR DE EMPUXO NA SAÍDA DE UMA TUBEIRA AXISSIMÉTRICA

RESEMINI, D.¹, COSTA, F.S.²

Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, Brasil ¹ Aluno de Mestrado do curso de Combustão e Propulsão - ETE/PCP. ² Pesquisador e Docente do Laboratório de Combustão e Propulsão – ETE/PCP.

danielresemini@hotmail.com

Resumo. Um mecanismo de controle vetorial do empuxo de foguetes é um sistema com retroação a partir de medições realizadas por acelerômetros e giroscópios. Os dados dos sensores são inseridos na entrada do sistema para que novos cálculos sejam feitos por um computador embarcado e, dessa forma, o sistema pode atuar de forma a atingir o objetivo. Trata-se de um sistema mecatrônico de aplicação aeroespacial que necessita de informações do processo de combustão, do projeto do motor-foguete, da aerodinâmica, do mecanismo servo-atuador, sensores, eletrônica e algoritmos de controle.

Esse trabalho apresenta uma análise teórica e experimental das principais grandezas a serem consideradas no projeto e a implementação de um sistema de controle vetorial aerodinâmico do empuxo, que utilizará superfícies aerodinâmicas associadas a servo-atuadores. Uma porção do escoamento proveniente da tubeira terá sua direção modificada após a atuação dos servo-atuadores, gerando uma força de sustentação sobre as superfícies aerodinâmicas e produzindo um torque no corpo do foguete.

Espera-se, por fim, realizar experimentos com um sistema de baixo custo completo a fim de verificar a viabilidade da implementação desse sistema em aplicações espaciais.

Palavras-chave: Propulsão; Controle vetorial do empuxo; Arduino; Nitrato de potássio.

1. Introdução

A última década tem sido marcada por grandes avanços na engenharia aeroespacial, em particular no que tange ao reaproveitamento de veículos lançadores. A possibilidade de utilizar um foguete e não ser necessário descartá-lo após o uso reduz enormemente os custos por lançamento e assim torna todo o mercado espacial muito mais acessível para diversos empreendimentos, desde o lançamento de satélites, foguetes de sondagem, turismo espacial e até mesmo a colonização e mineração de outros corpos do nosso sistema solar.

Há muitos produtos já consagrados no mercado que utilizam o controle vetorial do empuxo, como é o caso dos mísseis que diversos países militarmente desenvolvidos já fabricam há décadas. Apesar disso, uma extensa pesquisa sobre esses mecanismos deve ser continuamente desenvolvida com o objetivo de dominar cada vez mais essa tecnologia tão estratégica.

O presente trabalho tem como intuito contribuir com a difusão de todo o conhecimento básico envolvido em um sistema de controle aerodinâmico do vetor de empuxo, em especial a integração de um sistema completo e das principais análises realizadas para cada uma de suas partes.

2. Metodologia

8° Workshop em Engenharia e

Tecnologia Espaciais

Para o funcionamento adequado do sistema de controle aerodinâmico do vetor de empuxo é necessário programar o microcontrolador precisamente com as informações dos demais subsistemas, como as características aerodinâmicas dos aerofólios, as propriedades físicas dos produtos da combustão na saída da tubeira e as características mecânicas do corpo, como a massa e o momento de inércia.

O princípio de funcionamento de um mecanismo de controle aerodinâmico do vetor de empuxo se dá conforme ilustrado na figura 1, abaixo:

Figura 1. Princípio de funcinoamento de um sistema de controle aerodinâmico do vetor de empuxo [Sutton, 1992]

Uma força de sustentação é gerada quando os aerofólios presentes na saída da tubeira são inclinados em relação à direção do escoamento. Essa força atuante a uma distância em relação ao centro de massa do corpo promove um torque resultante responsável pela variação no momento angular deste corpo.

O coeficiente de sustentação do aerofólio pode ser relacionado à essa força de sustentação, a pressão dinâmica e a sua área planar da seguinte forma:

$$C_L = \frac{L}{q_{\infty}S}$$

Tendo a pressão dinâmica a seguinte relação:

$$q_{\infty} = \frac{\rho_{\infty} u_{\infty}^{2}}{2}$$

A pressão dinâmica atuante sobre o aerofólio é composta pela velocidade do escoamento e pela desidade dos produtos da combustão na saída da tubeira.

O coeficiente de sustentação para um aerofólio fino sob um escoamento supersônico também pode ser obtido pela seguinte relação envolvendo o ângulo de ataque e o número de Mach do escoamento [Anderson, 2005]:

$$C_L = \frac{4\alpha}{\sqrt{M_\infty^2 - 1}}$$

Uma vez conhecidas as características aerodinâmicas do aerofólio é necessário o conhecimento sobre o escoamento. Para isso é essencial um modelo apurado para a reação de combustão do o par propelente que será utilizado:

$$\begin{array}{rcl} C_{12}H_{22}O_{11} + n_{KNO_{8}}KNO_{3} & \rightarrow & n_{CO_{2}}CO_{2} + n_{H_{2}O}H_{2}O + & n_{CO}CO + & n_{H_{2}}H_{2} + & n_{N_{2}}N_{2} + \\ & & n_{K_{2}CO_{8}}K_{2}CO_{3} + & n_{CH_{4}}CH_{4} & \Delta H < 0 \end{array}$$

Os diversos produtos dessa reação de combustão são obtidos a partir do equilíbrio químico para uma dada condição termodinâmica.

Para que se possa analisar o sistema quanto à sua estabilidade é preciso que se avalie o modelo do controle aerodinâmico do vetor de empuxo com retroação a malha fechada e isto requer informações sobre o atuador, o controlador e o sistema.

O modelo físico de um sistema de controle do vetor de empuxo genérico possui, portanto, a seguinte forma, de acordo com Tewari, 2011:

$$I\ddot{\theta} = Fr + \dot{\theta}\mu$$

A representação do modelo físico do sistema de controle aerodinâmico do vetor de empuxo no domínio da frequência, já incluindo todas as características aerodinâmicas do atuador, fica:

$$s^2\theta(s) - \tfrac{\mu}{I}s\theta(s) = \alpha(s) \frac{4q_{\omega}Sr}{I\sqrt{(M_{\omega}^2-1)}}$$

Pode-se finalmente obter a função de transferência do sistema de controle aerodinâmico do vetor de empuxo:

$$\frac{\theta(s)}{\alpha(s)} = \frac{4q_{\infty}Sr}{I_s \left(M_{\infty}^2 - 1\right)} \left(\frac{1}{s^2 - \frac{\mu}{I}s}\right)$$

3. Resultados e Discussão

Obteve-se um modelo analítico de todos os subsistemas para a comparação com os dados que virão a ser obtidos na parte experimental desse trabalho.

A representação gráfica do modelo analítico simplificado do coeficiente de sustentação supersônico para um aerofólio fino para pequenos ângulos de ataque e alguns números de Mach está ilustrada a seguir:

Figura 2. Gráfico do coeficiente de sustentação para um aerofólio fino sob um escoamento supersônico

Os resultados da simulação da combustão utilizando o software CEA da NASA, considerando o modelo Frozen para os produtos, se encontram organizados na seguinte tabela:

Frozen	Câmara	Garganta	Saída Ajustada	
Ae/At	0.000	1.000	2.336	
Pressão (bar)	10.000	5.663	0.950	
Temperatura (K)	1027.190	939.060	697.986	
Densidade (kg/m3)	3.566	2.209	0.499	
Massa Molar (kg/mol)	26.123	26.123	26.123	
Cp (kJ/kgmol)	1.752	1.709	1.580	
Gamma	1.185	1.190	1.266	
Mach	0.000	1.000	2.184	
C* (m/s)	0.000	819.600	819.600	
Cf	0.000	0.674	1.279	
lsp (s)	0.000	56.319	106.885	
Viscosidade (cp)	0.427	0.400	0.319	
Condutividade (W/m2s)	0.001	0.001	0.001	

Tabela 1. Resultados da simulação modelo Frozen

Os resultados da simulação da combustão utilizando o software CEA da NASA, considerado o modelo Equilibrium para os produtos, se encontram organizados na seguinte tabela:

Equilibrium	Câmara	Garganta	Saída Ajustada	
Ae/At	0.000	1.000	2.579	
Pressão (bar)	10.000	5.828	0.950	
Temperatura (K)	1027.190	985.550	862.509	
Densidade (kg/m3)	3.566	2.193	0.425	
Massa Molar (kg/mol)	26.123	25.948	25.493	
Cp (kJ/kgmol)	9.344	9.380	8.778	
Gamma	1.112	1.110	1.104	
Mach	0.000	1.000	2.187	
C* (m/s)	839.700	839.700	839.700	
Cf	0.000	0.647	1.293	
lsp (s)	0.000	55.361	110.720	
Viscosidade (cp)	0.427	0.416	0.383	
Condutividade (W/m2s)	0.006	0.006	0.006	

Tabela 2. Resultados da simulação modelo Equilibrium

As frações molares e mássicas das diversas espécies produto da combustão obtidas com o modelo Frozen:

Frações Molares	Câmara	Garganta	Saída Ajustada	Massa Molar	Massa	Fração Mássica
H2	0.2490	0.2490	0.2490	2.0160	0.5020	0.0195
СО	0.2000	0.2000	0.2000	28.0100	5.6020	0.2172
CO2	0.1544	0.1544	0.1544	44.0090	6.7950	0.2635
H2O	0.1495	0.1495	0.1495	18.0150	2.6936	0.1045
С	0.0900	0.0900	0.0900	12.0110	1.0810	0.0419
CH4	0.0500	0.0500	0.0500	16.0430	0.8022	0.0311
K2CO3	0.0500	0.0500	0.0500	138.2040	6.9102	0.2680
N2	0.0500	0.0500	0.0500	28.0140	1.4007	0.0543

Tabela 3. Espécies químicas modelo Frozen

As frações molares e mássicas das diversas espécies produto da combustão obtidas com o modelo Equilibrium:

Frações Molares	Câmara	Garganta	Saída Ajustada	Massa Molar	Massa	Fração Mássica
H2	0.249	0.250	0.250	2.016	0.504	0.020
СО	0.200	0.175	0.102	28.010	2.859	0.112
CO2	0.154	0.163	0.189	44.009	8.306	0.326
H2O	0.150	0.153	0.163	18.015	2.941	0.115
С	0.091	0.107	0.156	12.011	1.873	0.073
CH4	0.052	0.049	0.039	16.043	0.627	0.025
К2СО3	0.052	0.051	0.050	138.204	6.971	0.273
N2	0.052	0.051	0.050	28.014	1.412	0.055

Tabela 4. Espécies químicas modelo Equilibrium

A resposta do sistema de controle aerodinâmico do vetor de empuxo com retroação a malha fechada, no domínio da frequência, para um impulso unitário utilizando a ferramenta *sisotool* do Matlab, se encontra na figura abaixo:

Figura 3. Gráfico da resposta do sistema à um impulso unitário

A figura 3, abaixo, mostra a concepção do experimento de controle aerodinâmico do vetor de empuxo:

Figura 4. Desenho do arranjo experimental

4. Conclusão

Com o desenvolvimento desse trabalho foi possível perceber que um sistema de controle vetorial do empuxo completo à nível de aplicação aeroespacial requer um conhecimento muito profundo e preciso de todos os fenômenos físicos envolvidos ao longo da operação.

Esse experimento será realizado para que se possa avaliar as principais questões a serem consideradas na integração teórico-experimental de um sistema de controle aerodinâmico do vetor de empuxo.

É do interesse desse trabalho aprimorar tanto quanto o possível o modelo analítico, incluindo o cálculo do atrito ao longo do aerofólio; sugerir melhores geometrias para o aerofólio supersônico de acordo com critérios aerodinâmicos e de resistência ao calor; e, por fim, realizar uma melhor sintonia das constantes do PID com base no ganho de compensação, tendo-se um sistema físico mais conhecido e da análise das representações de Nyquist e BODE, sempre respeitando às possíveis restrições físicas.

Agradecimentos: Os autores agradecem à CAPES - Pró-estratégia por fornecer bolsa

e recursos para este projeto.

Referências

ANDERSON, JR. J.D. Fundamentals of Aerodynamics, 4 ed. McGraw-Hill, 2005.

BERRIER, B. L.; MASON, M. L. Static Performance of an Axisymmetric Nozzle With Post-Exit Vanes for Multiaxis Thrust Vectoring, NASA Technical Paper 2800, 1988.

FLEEMAN, E. L. Tactical Missile Design, 2 ed. AIAA Education Series, 2006.

SCHAEFERMEYER, M. R. Aerodynamic Thrust Vectoring For Attitude Control of a Vertically Thrusting Jet Engine, Master of Science in Mechanical Engineering, Utah State University, 2011.

SIDI, M. J. Spacecraft Dynamics & Control, 6 ed. Cambridge University Press, 2006.

TEWARI, A. Automatic Control of Atmospheric and Space Flight Vehicles, Birkhauser, 2011.