Applying Continuous Integration principles in safety-
critical airborne software

André Barbieri Boralli *, Ricardo Bedin Franca

'EMBRAER S.A.
Rod. Presidente Dutra, km 134 — 12247-820 — S&® das Campos — SP — Brazil

{andre.boralli,ricardo.franca} @nbraer.com br

Abstract. In this paper, we propose an approach to apply Continuous
Integration principles in the development of airborne software subject to DO-
178C considerations. We present the fundamentals of the DO-178C and
continuous integration, then we explain the software development workflow
used in our case study, which is a flight control software program. We provide
possible applications of Continuous Integration in several stages of software
development, according to our workflow and the needs of our clients (flight
control law engineers). Finally, we present the results obtained by the
practices evaluated in our case study.

1. Introduction

1.1 Context

Given the potentially catastrophic consequencemdircraft accident, it is natural that
certain aviation embedded software programs figum®ng the most critical software
products one can imagine. Hence, developers inaeg amounts of time and resources
to have sound products and processes, while fallgwery stringent guidance, such as
the DO-178C [SC-205 RTCA 2011]. On the other handhe middle of this rigorous
environment, there are budgets and schedules thsit Ioe respected by any enterprise
that hopes to be competitive. Therefore, it makesss to look for development
processes that are both sound and lean: whilewoltp the DO-178C considerations
usually leads to solid software development praeessid products, the same cannot be
said about lean practices. Indeed, a naive useeolvaterfall-like software development
process as explained in the DO-178C (requiremeti¢sign, coding, integration,
verification) would lead to the infamous and cunsioene "Big Requirements Up
Front", which usually yield integration issues, s@&d deadlines and cost overruns.

Since the birth of the Agile Manifestin 2001, much attention has been devoted
to the use of agile techniques in the developmérdllosorts of software products,
including embedded, safety-critical ones. While r¢heare many available agile
techniques, with a broad scope of application, hadl Socus our work in Continuous
Integration, which is one of several practices tiep in agile software development.

! agilemanifesto.org/

1.2 Objectives

In this work, we intend to present an approachusihg Continuous Integration in
several stages of software development, while mgetie DO-178C considerations.
Specifically, we have the following goals:

» Evaluate Continuous Integration practices and theircapability of meeting,
directly or indirectly, DO-178C objectives While we would like, ideally, to
use Continuous Integration to help in full comptiarwith DO-178C objectives,
it might be simpler to use it as a means to ine@gasduct maturity and reduce
rework in the software product life cycle.

 Assess the use of such practices in a DO-178C leval software
development: In order to keep the study in touch with actuakdse and
constraints of real-life projects, we chose a cigdy that fits in the most critical
software considerations of the DO-178C.

1.3 Related Work

The use of agile methods in safety-critical sofevaright have seemed odd at a first
sight, as they could be regarded as undisciplin@ou@lass and Ekas, 2012]. This
prejudice has been dispelled and some interestgearch has been done in this field.

A very relevant work with agile methods and aireosoftware is Chisholm's
dissertation [Chisholm, 2007], which discusseddapplication of several agile practices
in a DO-178B level C software process and evaludtéhd how) they could address
the necessary process objectives for software ptedof that criticality level. Other
works [VanderLeest and Buter, 2009] [Wils et alp@DP[Chenu, 2009] follow similar
approaches and present results that show the ityabil many agile practices in the
environment of airborne software. Agile practicas ®enefit other domains of safety-
critical software, such as railway [Jonsson e2@l,2] and medical [Mc Hugh, 2013].

Our work has a different focus from the aforemargi ones: while they present
insights over the whole software development pracaesing many agile techniques, we
opt to focus on Continuous Integration and deepen study to the level of
implementation methods and tools. This emphasialse found in Stolberg's work
[Stolberg, 2009], although his work is not orientecgafety-critical software.

1.4 Structure of the paper

Firstly, we explain the fundamentals of the DO-178CSection 2. Section 3 briefly
discusses Continuous Integration practices, Sedtipresents the workflow of our case
study and the use of Continuous Integration invearkflow is presented in Section 5.

The results obtained in our case study are disdusseSection 6 and our
conclusions are presented in Section 7.

2. DO-178C and its supplements

RTCA's DO-178C is thele facto standard for the development of airborne software:
while aircraft makers and suppliers are not for¢tedmake use of it, certification

authorities usually acknowledge the DO-178C as lad vaeans to demonstrate the
soundness and rigor of an airborne software prddaatycle process.

While the DO-178C does not enforce a specificvearfe life cycle process, it
does mention a sequence of steps that is simildtraditional” development cycles,
such as the waterfall or the V-model. We choseldlter to briefly explain the DO-
178C concepts, as shown in Figure 1.

.. System requirements .- . "Client" scope " System-level verification .
R g R e P
= SW scope
High-level requirements
Low-level requirements

/ Coding

Cther processes: Planning, Configuration Management, Quality Assurance

Figure 1- A V-cycle based in DO-178C

The product life cycle, according to the DO-178Gmprises software planning,
development processes and integral processes - aicberification, configuration
management and others. Two main keywords for thevaee product development are
traceability and compliance traceability shows concrete links between one
development step (e.g. low-level requirements) i@djacent ones (e.g. code) while
compliance demonstrates that a development stelements correctly the previous one
(e.g. low-level requirements detail correctly whais specified in the high-level ones).

Another important concept isxdependence Independence exists whenever
verification activities over a software item artifais performed by people or team
different than the ones producing the item [SC-RISCA 2011]. Hence, people that
write the requirements are not the same that retth@m, and the developer of a given
code module and the verifier of this same modutenat the same person.

Given the different levels of criticality for airbme software (a failure in a flight
control software and a bug in the passenger emterét system do not necessarily
have the same consequences on the flight itse#)DIO-178C specifies five levels of
criticality. In level E (the less critical), one e&® not need to follow any of its
considerations, while in level A the most stringgaidance applies.

The DO-178C guidance includes many specific objestifor each life cycle
activity; we shall discuss them in more detail actoon 5. The scope of this paper
comprises the development and verification acésitiwe judge that these activities are
to get the most positive impact of Continuous Iragéign practices.

Besides the DO-178C guidance, there are other dextsrthat detail specific
aspects and technologies involved in airborne sotvdevelopment. In the scope of this
paper, the most relevant is the DO-331 [SC-205 RTDAL(b)], which discusses the

use of models as artifacts in a software producteldpment cycle and adapts
considerations, methods and means to the modetHessg&ronment.

3. Agile practices and Continuous Integration

The twelve practices recommended by the Agile Mestd gave birth to several
software development and management methods. Sbthe best-known are Crystal
Scrum and XP (eXtreme Programming). While Scrunu$es in management practices
in software development [Gomes, 2013], both Crystadl XP emphasize technical
aspects, including the concept of Continuous latiggn - which is a term mainly used
in XP but also present in Crystal.

Continuous Integration (or Frequent Integration) ¢ seen, essentially, as a set of
code build and test activities that are performemjdently and as automatically as
possible, so as to anticipate code integrationessAs mentioned in [Gomes, 2013],
several activities - such as tests and automatatyses - can be performed in the
Continuous Integration framework.

4. Project workflow

In this section, we present the structure of tluggot used as case study, considering its
application in the overall aircraft development gnam, the teams involved in its
development, and some highlights of the processksved by them.

4.1. Structure of Case Study Project

4.1.1. Project

The project used as case study for this paper fig-lay-wire software application,
developed for flight control system of an airciafdevelopment. Fly-by-wire, hereafter
FBW, is a system that controls flight command ste$aof airplanes through electronic
signals transmitted to their actuators from embddoemputers that interpret inputs of
pilots’ inceptors, like throttles, sticks, pedafgldevers [Spitzer, 2001].

Besides to receive and interpret pilots commandseta them to flight control
surfaces, FBW systems are projected to implemeanttight Control Laws (hereafter
CLaws), which are complex calculations performed Hight Control Computers
(hereafter FCC) that use signals from other ait@gétems to provide control surface
movements that conform to pilots' commands. The@ead our case study comprises
FCC software that implements aircraft CLaws - gitles criticality of the FBW system
in an aircraft, the FCC software belongs to the DBC Software Level A.

As an inseparable part of the overall aircraft, timal project clients are the
operators of the airplane. However, these operamsrarely accessible for software
developers, and they do not even care with thisl le’detail of the systems. Therefore,
for software development purposes, the clientdligiet command system engineers and
CLaws designers, who allocate FBW system requirésrtersoftware.

2 http://alistair.cockburn.us/Crystal+light+methods

To make such a decision, engineers and designé&es itdo account the
advantages of software implementation of partshef system, usually the ones that
could be simulated and previously tested beforegmattion with the aircraft, what is
much more expensive. The software development @mvient also could be prepared
to validate hardware, test benches, models usetkbigners, unit and integration test
vectors, and early integration of the FCC and FB¥tesn.

4.1.2. Teams

CLaws designers engineers write most of the HighelLeRequirements
(hereafter HLR), that are actually control lawsntiselves to be implemented into FCC.
These requirements are validated and unfoldeddgélrelopment engineers.

Development engineers create HLR for software mexiwhat are not in the
scope of system designers (e.g. the operation&raysunfold HLR into Low-Level
Requirements (hereafter LLR), develop the sourck @nd integrate them in the target
computer.

Verification engineers are responsible for vertiima and validation of all other
artifacts regarding compliance and traceabilityn@ntioned in section 2, as well as
perform all test activities in the product.

4.1.3. Software Development Workflow

Test Oracle

\ !

FCCLLR » Design Models e—
A

Aircraft Model ——

autogeneratip
ClLaws designers 8

=

Y Y
Control Laws » FBWHLR » Source Code =t

»ou
Software Qevelopers 1 Verificgtion engineers
Y

Hardware spec— Build environment———3 Ohject code f—

FCC
Figure 2 - FCC Software Development Workflow

Figure 2 presents a workflow that produces embedd&d software from CLaws. The
thin arrows represent artifact production flow,veall their entry points. Bold arrows,
which come from verification engineers, represeaidation activities executed over
the artifacts to check compliance and traceabiisyyell as all kind of tests.

CLaws designers write HLR, describing flight cohtatgorithms to be implemented
into FCC. Developers unfold HLR into LLR, textual models as well. In this case,
models could be used to generate source code atitaltya Textual LLR are used as
requirements to develop code manually.

Considering hardware characteristics and consssadevelopers configure the
build environment to compile and link source code auild software image to fit in
FCC. This configuration takes into account charties of processors, size and type
of memory, and other hardware features to be ceresit

Verification engineers execute activities that dale all steps of this workflow.
They generate cases and procedures for softwaotidoal verification, and they also
perform reviews and analyses on software developaréfacts.

In this workflow, we need close cooperation amadmg teams to ensure (when
changes are necessary) precise impact analysisiamndize re-verification effort.

4.2 Benchmark for evaluation criteria

Since we did not intend to develop two parallelecatudies to evaluate the gains
obtained with Continuous Integration, we based"oon-agile” time and cost estimates
on the results of the first development iteratigwben some activities and processes
were not yet mature enough to be suitable to Coatia Integration). When concrete

results are not available - either because we nexecuted the non-agile approach or
because the gains are not tangible, we avoid astvoaise benchmark” and, instead,
assume a benchmark that misses one or two key pisn@eg. periodical activities that

are executed in a semi-automated way, or a pratedsdoes not use model-based
development as intensively as ours).

5. Continuous Integration in a DO-178C-oriented wokflow

In order to verify the applicability of Continuodstegration in our case study and
similar development cycles, we follow Chisholm'shj€holm, 2007] approach and use
DO-178C (or DO-331, when applicable) tables as fareace for the process and
product objectives. Though such tables "should beotused as a checklist" [SC-205
RTCA 2011], they synthesize most essential aspbetsshall be taken into account
when developing airborne software products.

We do not necessarily intend to use Continuougitaten to directly fulfill the
DO-178C objectives. Instead, we prioritize its tsdnelp product maturity and reduce
rework when the official "run-for-score" developnaativities take place.

Since the Continuous Integration activities arehlyigocused on the program
implementation, we prioritize the development pes&s (requirements, coding,
integration) and their verification. We also comsithat configuration management is in
the scope of our work: while the DO-178C presetsited guidance on configuration
management practices, the only working hypothdss tve need is that there is a
centralized server, accessible to all developmegiineers, where the development

artifacts are available for access and modificatiimere are many tools that may be
used for this purpose, such as GNU BaZdational ClearCaseGit® and Subversidh

Another essential item, which is not necessaniidid to a DO-178C objective,
is a Continuous Integration server to automatically integration and test activities.
The server usually runs tools such as AnthillP@ruiseContrdiand Jenkirs

5.1 Traceability between development steps

As mentioned in section 2, traceability is a kepaapt in the DO-178C. The following
traceability evidence is required:

* Between system requirements and high-level req@nesn

* Between high-level requirements and low-level resmients,
* Between low-level requirements and source code,

* Between source code and object code (for level A),

* Between verification cases and requirements.

The last item is not explicit in the DO-178C tablag we find it essential to
accomplish the requirement-based test strategymaieed in the DO-178C.

The analysis of traceability between source cod# alnject code is a rather
manual task, as it requires semantic understanafiriggo languages to be performed.
On the other hand, all other traceability evidersc@roduced in essentially the same
way: as requirements and test cases have uniquéfieies, traceability matrices and
tables can be constructed to associate them - aghé source code, low-level
requirement tags can be used at an arbitrary ceailgrity level.

While such matrices must be analyzed manually (dube necessary semantic
understanding of the evidence), their automaticfeeglient generation is useful to find
more obvious errors, such as the absence of codediwen low-level requirement.

5.2. High-level requirements development and verifation

Traditionally, one thinks of requirements as teaséd [Marques et al, 2012], although
they could be expressed by models or any otherdism.

If textual high-level requirements are used, thsrittle automation that can be
done, but some syntactic checks are possible (spetiks, parenthesis/brackets count,
"shall" word count). Such checks can provide phhtp to the compliance-related DO-

® http://bazaar.canonical.com/en/

* http://www-03.ibm.com/software/products/en/cleaea
® http://git-scm.com/

® http://subversion.apache.org/

" https://developer.ibm.com/urbancode/

8 http://cruisecontrol.sourceforge.net/

® http://jenkins-ci.org/

178C objectives. If the high-level requirements rae formally defined, it is possible
to devise stronger automatic syntactic and semaatitiers.

In our case study, we opted to use text-based Ibig#- requirements and
prioritized Continuous Integration in other projesteps, where the need for agility
seemed most urgent and with more tangible gains.

5.3 Low-level requirements development and verifidéon

While low-level requirements can also be associatih text, the advent of tools that
generate code from models boosted the viabilitynodel-based design. Besides the
perceived ease in graphical modeling (instead dingy), model simulation tools are
extremely useful to perform software verificatioaither as a official means or as a dry-
run environment to increase product maturity. Aeotladvantage of model-based
design, when using suitable modeling languages,thes improved requirement
consistency attained thanks to unambiguous mobDelgelopers can devise consistency
checks - for example, semantic checks in connexti@tween design blocks.

One can argue that there are software modulesctraiot or should not be
developed using model-based design. For our cagly,sthis is indeed true, as the
embedded operating system that runs our flightrobrsoftware requires much low-
level programming, but we consider that the con&qaplication itself is much more
voluminous and subject to change than the operalystem - therefore, we can safely
assume that the application is more relevant thamperational system for our study.

When using models as low-level requirements, wesicken that the test oracle
should also be a model. In this way, not only eaxddel component would be easily
testable, but more elaborated simulations (oftéled&oftware-In-The-Loof%) would
become possible early in the software developmgelechelping in the validation of
the implemented control algorithms and softwarerfiaces. There is room for even
more advanced verification, such as overflow deiadiHonda and Vieira Dias, 2013]
which is usually done more expensively at lateredtgyment stages.

In any design approach (text, models or othel} dtill possible to automate at
least part of the design standard verificationvéas, although this is easier in design
models than in text. Aspects such as naming cororentdiagram size, number of
entities per model and many others can be verdigdmatically and frequently.

We summarize our proposed Continuous Integratioansmédo tackle the DO-
178C objectives related to low-level requirement$able 1.

Table 1 - Continuous Integration activities for model-based design

Objective Compliance Method Attained objective cage

Compliance with HLR Frequent requirement-base@artial (product maturity with no process
verification (tests and/or proofs),impact), can be full at a larger initial cost
software-in-the-loop simulations| (integrate tests and processes with Cl software)

Accuracy and consistency Automatic semantic chgekg. | Partial (some degree of review is usudlly
interfaces, numeric overflow) necessary)

19 http://www.acm-sigsim-mskr.org/MSAreas/InTheLoaptaareInTheLoop.htm

Conformance to standards Automatic checks Partmldth checks can be automated)

5.4 Software Architecture

In the scope of the DO-178C, software architecigréreated as a design artifact.
Nevertheless, its construction is heavily influeshbgy both high-level requirements and
feedback from integration and verification actegi- hence, constructing it in a pure
waterfall-like fashion is a nightmarish activityhds, we recommend a more automated
architecture development approach - at least fitwace scheduling, which can be very
time-consuming - such as in Masini's work [Masihiak 2014]: in order to keep the
architecture as optimized as possible, it is ingodrto perform "downstream"™ activities,
such as timing and memory profiling, as soon asiptess Complex hardware-related
aspects would still be dealt with manually but #ngtomated scheduling eases the
overall task of generating and maintaining a sigtabftware architecture.

Since the architecture document may also be sutgestandards, it is once again
possible to automate some syntactic and semargitkshalthough these depend heavily
on the architecture representation chosen by gaetife project. Table 2 summarizes
our recommendations related to software architecdad Continuous Integration.

Table 2 - Continuous Integration activities for architecture development

Objective Compliance Method Attained objective cage

Compliance with HLR Automatic scheduling generatignPartial (reviews are usually necessary)

Accuracy and consistency Automatic scheduling geieer | Partial (reviews are usually necessary)

Conformance to standards Automatic checks Pargsldws are usually necessary)

5.5 Coding and Integration

In our approach, most of the source code shouldecérom an automatic code
generator, thus not necessarily being subjectatodsirds or to verifications that may be
done at design level. However, the hand-coded soffvmodules can be verified, at
least partially, with respect to coding standatdsaddition, there are many tools that
perform static verification over the source code pimve specific properties (as
mentioned in section 5.3) or detect run-time efrsush as Astrétand Polyspacé

As in typical Continuous Integration applicationg also strive to ensure the
integrity of a software build. First of all, frequiebuild attempts can quickly detect a
broken build. Many activities can be performed ¢oify build integrity:

e Automatic analysis of the program map files helsl@ating memory usage.

* Timing and stack usage analysis can be perforntbedrdyy static analysis of the
executable object code or by tests on the targapater. If the latter alternative
is chosen, the usage of test equipment is gregtiynzed if the Continuous
Integration server controls the jobs that are setie available target platforms.

™ http://www.absint.com/astree/index.htm

12 http://www.mathworks.com/products/polyspace/

» High-level and low-level tests can also be schatialed run by the Continuous
Integration server on the target platforms, onaragptimizing their use.

e It is even possible to perform automated hardwasthe-loop simulations if
simulation models of the aircraft and test procedware available.

Not every test can be executed continuously: aptbéuct evolves, more tests
are needed and some have to be changed. Nevesth#lesexamples above
amount to a large part of all necessary integratenfication activities.

6. Case Study Results

The adoption of Continuous Integration practicescdeed in the section 5
allows us to execute our workflow without signiintabreak in the FCC software
development activities while the product evolvewieed, since the aircraft and all its
systems are under development almost simultangoitis$/expected that CLaws (and
their corresponding software HLR) evolve, too.

Considering the workflow described in the sectidh3, the minimum sequence
of activities for any CLaws evolution step includes

e Updates in requirements and models,

» Code auto-generation, coding and build,

* Model and code reviews and analyses,

* Requirement-based tests,

» Software- and Hardware-in-the-loop simulations wfté client.

There are thousands of CLaws requirements to loeaa#d to FCC software,
thus all this "minimum cycle" might take up to amendred men-months to finish if the
product is developed from scratch in a single step.

In order to increase maturity of the FCC softwanel anticipate integration
problems within CLaws evolution cycle, we allocatéie following tasks to a
Continuous Integration server:

e Code auto-generation, and build,
e Execution of automatic model analysis scripts,
* Model testing with respect to the oracle model,

* Integration of software components in the clientiemment and software-in-
the-loop simulation runs,

All activities are triggered by update of the safter items into version control,
in case of any failed task (e.g. a broken buildg $oftware developer involved in the
update is noticed to start corrective actions. Base the time we took to keep build
integrity and detect and fix errors before settiqg our continuous build, analysis,
simulation and test environment, we estimate theh futomation alone may reduce the
overall product lead time by 50%. These time saviage more pronounced in periods
where the software product is being subject to uUesq and numerous requirement
changes, as these can be quickly verified and ataid

Besides time saving, Continuous Integration prastiallowed us to balance
workload throughout the software development cyBEleen if, for software approval
purposes, the project is in a preliminary stagg. (dLR development and verification),
it is possible for development and verification ielegrs to follow "downstream™ with
the build procedures and validate the planned deweént processes and improve the
Continuous Integration activities.

Our Continuous Integration system also allowed diegelopment of several
verification and simulation platforms, many of themmning at developer workstations,
whose operation cost is relatively low. Since adftware image and simulation
environments are built immediately whenever FCCivgarfe items are updated in
version control system, we can guarantee that lalifggms are running consistent
versions of our embedded software. We are ableetect problems that otherwise
would be found out by using much more expensive nmea test, like Iron Birds
(ground-based test benches with flight controlctries, actuators and controllers), or
even in flight test. In particular, we have thddaling problem anticipation patterns:

» Desktop tests anticipate modeling/coding errorsigedn-target testing,
» Desktop simulations anticipate some on-target nat@gn issues,

» Hardware-in-the-loop simulation can anticipate peols that would be found in
Iron Birds and flight test campaigns.

While it is hard to estimate concrete cost saviings the above patterns, one
can easily figure out that an embedded target ctenpsi much more expensive than a
desktop one and that any test means is less expehsin a prototype aircraft.

7. Conclusions and future work

Our main conclusion from this work is that widegmtause of Continuous Integration
techniques and tools through the development ayicke DO-178C level A software is

not only possible, but very beneficial. We obtaireecrete gains in time (we can use
less human effort than in non-agile approaches)iangerification costs, as we were
able to detect and fix errors in earlier projecagds, using less costly means.

Although Continuous Integration is not dependentnordel-based techniques,
we did notice that the adoption of frequent test amulation activities was rendered
much easier by the use of models in software demigitest cases development.

We understand that there is still room for more @mous Integration practices
on our software development process. We intend¢od future work on automating
more static review and analysis activities, whica anexciting and time-consuming.
Another future work is the evaluation of static lgmars (such as Frama-§ as early
verification means, as the construction of tesesasan sometimes be slower than the
development of a model or a code functionality. [Banalyzers have already been
employed successfully in the aircraft industry [$wiet al, 2009].

'3 http://frama-c.com/

References

Special Committee 205 (SC-205) of RTCA. (2011) “DZBC, Software
Considerations in Airborne Systems and Equipmentifi©ation”.

Special Committee 205 (SC-205) of RTCA (2011) “D8t3 Model-Based
Development and Verification Supplement to DO-128@ DO-278A".

Douglass, Bruce P. and Ekas, Leslie. (2012) “Adaptagile methods for safety-critical
systems development”, IBM Software Thought Leadpralnite paper.

Chisholm, Ronald A. (2007), "Agile Software Devatognt Methods and DO-178B
Certification", Master’'s Thesis, Division of GradaaStudies of the Royal Military
College of Canada.

Chenu, Emmanuel. (2009) "Agility and Lean for AvicsY. Lean, Agile Approach to
High-Integrity Software Conference, Paris, France.

Wils, Andrew; Van Baelen, Stefan; Holvoet, Tom ate Vlaminck, Karel. (2006)
"Agility in the Avionics Software World". XP 200®ulu, Finland.

VanderLeest, Steven H. and Buter, Andrew. (200%cédpe the waterfall: Agile for
aerospace”. 28th Digital Avionics Systems Confeee@rlando, USA.

Mc Hugh, Martin; Cawley, Oisin; McCaffery, FergaRichardson, Ita and Wang,
Xiaofeng. (2013)"An Agile V-Model for Medical DevécSoftware Development to
Overcome the Challenges with Plan Driven SDLCs'"e Boftware Engineering in
Healthcare (SEHC) Workshop at the 35th ICSE, Sandtsco, USA.

Jonsson, Henrik; Larsson, Stig and Punnekkat, Samik (2012). "Agile Practices in
Regulated Railway Software Development". 23rd |IHEfErnational Symposium on
Software Reliability Engineering, Dallas, USA.

Gomes, André F. (2013). "Agile: Desenvolvimentosdéiware com entregas frequentes
e foco no valor de negécio". Casa do Cédigo.

Marques, Johnny C.; Yelisetty, Sarasuaty M. H.;irdi®ias, Luiz A. and da Cunha,
Adilson M. (2012). "Using Model-Based Developmerg Software Low-Level
Requirements to Achieve Airborne Software Certifmal’. ITNG, Las Vegas, USA.

Souyris, Jean; Wiels, Virginie; Delmas, David andldeny, Hervé (2009). "Formal
verification of avionics software products”. FM 200Formal Methods, Lecture
Notes in Computer Science Volume 5850.

Masini, Henrique F.; Franga, Ricardo B.; Bezertgdjada M. and Hirata, Celso M.
(2014) "An approach to generate optimized cyclidhesiuling from AADL
specification ". 33rd Digital Avionics Systems Cerdnce (to appear), Colorado
Springs, USA.

Honda, Renato and Vieira Dias, Luiz A. (2013). "BaAnalyzer: An Automatic Tool
for Arithmetic Overflow Detection in Model-based @opment”. ITNG, Las Vegas,
USA.

Spitzer, Cary R. (editor) (2001). "The Avionics Haook". CRC Press

