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To calculate the potential energy surface (PES) of van der Waals interactions, the
general case of XOY-AB molecules were represented through hyperspherical harmonics
expansion, that is a mathematically rigorous procedure and a powerful tool for these inte-
racting molecular systems, with applications also to classical and quantum molecular dy-
namics simulations. This technique consists in the construction of the expanded potential
interaction up to terms that provide the generation of a number of leading configurations
sufficient to explain faithful geometrical representations. The full general description of
the method of the spherical harmonics expansion applied to the systems of nonlinear mo-
lecules interacting with diatomic molecules and applications to interaction for H2O with
Hydrogen and Halogens atoms is also presented in this article.

Keywords Potential Energy Surface; Van der Waals clusters; XOY-AB molecules;
Interaction Energy; Spherical harmonics.

1. Introduction
In molecular dynamics simulations of reactive and non-reactive systems
[Aquilanti and Cavalli 1986, Aquilanti et al. 1986], the potential energy surfaces
have been lately generated by spherical and hyperspherical harmonics expansions
[Palazzetti et al. 2011]. These expansions are best suited for the calculation of matrix
elements, which are needed in quantum mechanics. In classical molecular dynamics
simulation, a specific requirement is a suitable representation of the interactions by a
convenient analytical form, which permits a simple calculation of derivatives and a full
account of the involved symmetries. Multipolar expansions have been applied to several
areas, including representation of potential energy surfaces, showing as a major feature
the fast convergence of the series (see [der Avoird et al. 1994]). The multipolar expansion
that we describe here is an exact transformation of quantum chemical (or experimental)
input data related to a minimal number of configurations, called “leading configurations”,
selected on the basis of geometrical and physical characteristics of the system. Since the
transformation is exact, the number of terms of the expansion corresponds to the number
of leading configurations. The method permits interpolation and extrapolation as needed
in dynamical and structure calculations. Spherical harmonics expansion has been largely
used to characterize potential energy surfaces of a series of van der Waals aggregates
using information from molecular beam studies and/or quantum chemical calculations.
The mathematical procedure consists in solving a finite dimensional linear algebra
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system, where the elements of the known vector are the input data, in this case the single
energy points determined by quantum mechanical calculations, and the elements of the
unknown vector are the expansion moments, thus the expansion in spherical harmonics
of a certain configuration gives exactly the single point energy. The expansion moments
provide interpolation among the potential curves corresponding to the leading configura-
tions, to the whole configuration space. The key points of the method are expansibility
by inclusion of further leading configurations and replacing of the input data, when
more accurate ones are available. In the characterization of the potential energy surface
of a generic XOY-AB van der Waals cluster (one nonlinear molecule interacting with
one diatomic molecule composed by five different atoms), we limit our considerations
to non-reactive interactions and assume that the interatomic bonds are kept “frozen”
i.e. the interacting molecules are considered as rigid in their equilibrium position in the
electronic ground state. The functional form depends on a radial coordinate R between
centers-of-mass of the two molecules, and the azimuth, the polar and dihedral angles
(α, θ1, θ2, φ)(see Figure 1 in Section 2). The moments of the hyperspherical harmonics
expansion are determined by choosing for the quantum chemical calculations a certain
number of representative configurations (we call the leading configurations - see Figure
2), with a minimal number, depending on the type of system, based on geometrical and
symmetry considerations. The leading configurations allow the solution of a system
of linear equations for which the unknown values are the expansion moments and the
known values are the interaction potentials determined by ab initio calculations. The
method allows extension whenever further configurations are available and considered
appropriate to improve the representation of the full potential energy surface. The paper
is organized as follows. In Section 2 we discuss the representation of the PES and leading
configurations. In Section 3 we show results on the application of this method on the
HOH-HB system, where B equal to H, F, Cl and Br atoms. We close the paper in Section
4 with Conclusions.

2. Spherical harmonic expansion and Representation of the potential energy
surface (PES)

2.1. Coordinates

The parametrization of the nonlinear molecule· · · linear molecule system (XOY · · ·AB)
requires four orthogonal vectors and a total of nine coordinates [Barreto et al. 2009]. The
system is embedded in the Cartesian coordinate frame xyz, whose origin coincides with
the center-of-mass of the whole system (see Figure 1 for the general case where XOY is
the nonlinear molecule and AB is the diatomic molecule). The lengths of three atomic
bonds are frozen and correspond to the two bonds of the molecule XOY and to the AB
bond. Next, we define the coordinates of the system: the distance between the centers of
mass (CM1 and CM2) of the two molecules is the coordinate R, i.e., the vector joining
the center of mass of the XOY molecule and the center of mass of the AB molecule, it
is denoted by ~R and has module R. In a reference system for bodies fixed, the Z axis
is chosen as the axis coincides with the direction of ~R. E1 is the axis parallel to the AB
bond of the diatomic molecule andE2 is along the Jacobi vector of the nonlinear-molecule
XOY . The description of the system requires also four angular variables: α, θ1, θ2 and
φ = φ1 − φ2 [Barreto et al. 2009, Barreto et al. 2011], while the angle of bending of the
XOY molecule is also held fixed at the equilibrium distance. The azimuth is expressed by
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the α, whose value varies between 0 and 2π and describes the motion of the AB molecule
around XOY (or equivalently the motion of XOY around the E2-axis. The angle formed
by the intersection of the Z− and E1 − axes, along the AB bond is the θ1, while the
θ2 is the angle formed by the intersection between the axes Z and E2 along the Jacobi
vector of XOY . Their values vary between 0 and π. In this work, we consider the bond
length held fixed because we treat the molecules as rigid rotors. Lastly, the dihedral angle
φ represents the angle formed by the plane passing through the E1 and Z axes relative to
the plane passing through the E2 and Z axes, and its range varies between 0 and 2π.

Figura 1. Definition of coordinates (R; α; θ1, θ2 and φ) in a Cartesian Coordinate
system specifying the position of the XOY · · · AB system.

2.2. Hyperspherical harmonics expansion for the HOX · · ·AB system
In this paper we focus on aspects more relevant for this work in relation to the hypersphe-
rical harmonics expansion of the interaction potential, thus the bond lengths of the mo-
lecules are considered “frozen”, in such a way that this interaction depends only on four
variables: R;α, θ1, θ2, φ, and then the potential energy surface (PES), V, is given as an
expansion of angular functions and the corresponding radial functions:

V (R;α, θ1, θ2, φ) =
∑
m,n

υm,n(R)Fm,n(α; θ1, θ2, φ) (1)

where the υm(R) coefficients are the expansion moments depending on the R co-
ordinate (intermolecular distance) and Fm,n(α; θ1, θ2, φ) are the angular functions,
which can be written in terms of the bipolar spherical harmonic, Y L0

L1L2
(θ1, θ2, φ)

[Aquilanti and Cavalli 1986] for the “exterior”angles, while the angle α is the argument of
functions w(α) accounting for the position of XOY with respect to the largest moment-
of-inertia axis:

V (R;α; θ1, θ2, φ) =
∑

L1,L2,L

υL1L2L(R)w(α)Y
L
L1L2

(θ1, θ2, φ) (2)

with L1, L2 = 0, 1, 2, · · · , |L1 − L2| ≤ L ≤ L1 + L2. The Equation 1 can be rewritten
as:

V (R;α; θ1, θ2, φ) =
∑
i

wi(α)
∑

L1,L2,L

(
L1 L2 L
m −m 0

)
υL1L2L(R)Y

m
L1
(θ1, 0)Y

−m
L2

(θ2, φ)

(3)

The terms
(
L1 L2 L
m −m 0

)
is the Wigner 3 − j symbol, with −min(L1, L2) ≤ m ≤

min(L1, L2), Y m
L1
(θ1, 0) and Y −mL2

(θ2, φ) are the spherical harmonics. The wi(α) esta-
blishes the weight of each set of leading configurations according to the value of the α
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angle, defined by the subscript i (i=0, π/2, and π) and the general form for wi(α) is given
by wi(α) = ai + bi cos(α) + ci cos(2α) allowing us to compute ai, bi, ci as follow

w1(α) = (1/4)+(1/2) cos(α)+(1/4) cos(2α)

w2(α) = (1/2)−(1/2) cos(2α)

w3(α) = (1/4)−(1/2) cos(α)+(1/4) cos(2α) (4)

For the general case when the molecules are antisymmetric, both the odd and even mo-
ments will contribute to the sum in Equation 3 and it will be shown adequate that the
sum can be truncated for L1 = L2 = 2. Explicitly, after extensive algebraic manipula-
tions, one obtains a system of linear equations that depends on angles and moments for
XOY · · ·AB. In order to evaluate the expansion moments of the interaction potential
V(R, α, θ1, θ2, φ) and according to [Novillo et al. 2011], we can identify a number of
leading configurations (possible positions of the molecules in the system - see Figure 2 in
the Subsection 2.3), whose choice is due to physical and geometric considerations. The
advantage of such a choice is to select a number of configurations which permit inter-
polation to account fully for the symmetries of the interactions between the molecules
forming the system. The leading configurations depends on their values on α, θ1, θ2 and
φ (shown in 1 for details). We have a system with “n”equations and “n”leading configura-
tions that can be algebraically inverted by Cramer’s rule, and get the moments depending
on the geometries terms, determined by ab initio calculations. And then, we obtain the
isotropic term of potential energy, which is important because it can be measured by mo-
lecular beam experiments with rotationally hot molecules and can be compared with other
systems [Aquilanti et al. 2005, Cappelletti et al. 2010].

2.3. Leading Configurations

We have seen that in order to obtain the Potential Energy Surface it is necessary to find the
values of the moments of the expansion of the angular function and their corresponding
radial functions. With the ab initio calculations we obtain the points of the interaction
distances necessary to obtain the radial terms of the potential function, V. Therefore, it
is necessary to present possible equilibrium geometries (configurations) that depend only
on the angles, allowing us to solve the angular terms of the function. The choice of the
minimal number these configurations (leading configurations) is selected based on the
geometric and physical characteristics of the system, in order to simplify and converge
the calculations. Since the transformation is exact, the number of terms of the expansion
corresponds to the number of leading configurations. The method permits interpolation
and extrapolation as needed in dynamical and structure calculations. Spherical harmonics
expansion has been largely used to characterize potential energy surfaces of a series of
van der Waals aggregates using information from molecular beam studies and/or quantum
chemical calculations.

3. Aplications
In this section, we report an overview of some case studies of water molecule · · · dia-
tomic molecule systems. We will represent PES for the case of interaction between the
water molecule with diatoms, HOH· · ·AB, where A represents the Hydrogen atom and
B the Hydrogen, Fluor, Chlorine and Bromine atoms. To construct the PES, ab initio
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Figura 2. The fourteen leading configurations for the general case of nonlinear
molecule· · · linear molecule system (XOY · · ·AB). Within parenthesis we reported
the three angles θ1, θ2 and φ, where H1, H2, L1, L2, L3, L4, T1, T2, T3, T4, X1, Z1,
Z2 and Z3 are the nomenclature given to the leading configurations in the three
positions chosen for the α angle, inserted at the top of the image

calculations were performed using the MOLPRO code [Werner et al. 0121] and in order
to eliminate the basis set superposition error, the full counterpoise Boys and Bernardi
method [Boys and Bernardi 2002] was used too. The analytical form of the PES, for
each of the leading configurations (see Figure 2) is constructed by fitting the following
fifth degree generalized Rydberg function [Rydberg 1931] and Improved Lennard Jones
[Pirani et al. 2008] respectively into the ab initio points, taking advantage of the parame-
ters also obtained as source of comparisons.

3.1. Interaction between water diatomic molecules
In general case where all atoms differ from each other, the surface can be adequa-
tely represented using 42 main configurations, as presented in this paper. For XOX-
B2 systems, eighteen leading configurations are required and only the even terms of
the expansion contribute to the sum in equation 3, well explained in the literature
[Barreto et al. 2009, Palazzetti et al. 2011]. For XOX-AB systems, twenty seven leading
configurations are required and both the even terms of L1 and the even and odd terms of
L2 in equation 3 contribute to the summation, as well as the interaction of the water mole-
cule with diatomic molecules, when this number of the leading configurations decreases
due to symmetries in the system. After extensive algebraic manipulations, one obtains:

VXOY ···AB(R;α, θ1, θ2, φ) =
∑

i wi(α)·[υ000(i;R)+
√
3υ011(i;R) cos(θ2)+

√
5
4
υ022(3 cos(2θ2)+1)

+
√
5

4
υ202(i;R)(3 cos(2θ1)+1)−

√
6

4
υ211(i;R)((3 cos(2θ1)+1) cos(θ2)+3 sin(2θ1) sin(θ2) cos(φ)))

+ 3
4
υ213(i;R)((3 cos(2θ1)+1) cos(θ2)−2 sin(2θ1) sin(θ2) cos(φ))

+
√
5

16
υ220(i;R)((3 cos(2θ1)+1)(3 cos(2θ2)+1)+3(1−cos(2θ1))(1−cos(2θ2)) cos(2φ)+12 sin(2θ1) sin(θ2) cos(φ))

− 5
8
√
14
υ222(i;R)((3 cos(2θ1)+1)(3 cos(2θ2)+1)−3(1−cos(2θ1))(1−cos(2θ2)) cos(2φ)+6 cos(φ) sin(2θ1) sin(2θ2))

+ 3
16

√
5
14
υ224(i;R)(2(3 cos(2θ1)+1)(3 cos(2θ2)+1)+(1−cos(2θ1))(1−cos(2θ2)) cos(2φ)−16 sin(2θ1) sin(2θ2) cos(φ))]
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Since one of the molecules involved here are antisymmetric (HB when B is the F, Cl and
Br atoms), the even and odd moments contribute to the sum in Equation 3 and because
these interactions with the water molecule, we can identify twenty-seven terms that must
be obtained through the only twenty-seven leading configurations (H1, L1, L2, T1, T2,
T3, X, Z1 and Z2), taking into account the symmetry presented in the system, this number
decreases to twenty-three because the geometries L1 and L2 are invariant with respect to
the wi(α) (Figures 1 and 2 for details). We have a system with equations that can be
algebraically inverted by Cramer’s rule and we have:

υ000(i;R) = 1
18

(4VH1(i;R)+VL1(i;R)+VL2(i;R)+2(VT1(i;R)+VT2(i;R)+2(VT3(i;R)+VX(i;R))))

υ011(i;R) = 1
6
√
3
(VL1(i;R)−VL2(i;R)+2(VT1(i;R)−VT2(i;R)))

υ022(i;R) = 1
9
√
5
(−2VH1(i;R)+VL1(i;R)+VL2(i;R)+2(VT1(i;R)+VT2−VT3(i;R)−VX(i;R)))

υ202(i;R) = − 1
9
√
5
(2VH1(i;R)−VL1(i;R)−VL2(i;R)+VT1(i;R)+VT2−4VT3(i;R)+2VX(i;R))

υ211(i;R) = 1
30

√
3
(6VH1(i;R)+(3−2

√
2)VL1(i;R)+(3+2

√
2)VL2(i;R)+(3+2

√
2)VT1(i;R)+

+ (3−2
√
2)VT2(i;R)+6(VT3(i;R)−2(VZ1(i;R)+VZ2(i;R))))

υ213(i;R) = 1
30

(2
√
2(VH1(i;R)+VT3(i;R)−2(VZ1(i;R)+VZ2(i;R)))+

+ (2+
√
2)(VL1(i;R)+VT2(i;R))+(−2+

√
2)(VL2(i;R)+VT1(i;R)))

υ220(i;R) = 1
45

√
5
(2(7VH1(i;R)−2VT3(i;R)−5VX(i;R)+6VZ1(i;R)−6VZ2(i;R))+

+ (2−3
√
2)(VL1(i;R)−VT2(i;R))+(2+3

√
2)(VL2(i;R)−VT1(i;R)))

υ222(i;R) = 1
45

√
7
(2
√
2(5VH1(i;R)+2VT3(i;R)−7VX(i;R)−3VZ1(i;R)+3VZ2(i;R))+

+ (3−2
√
2)(VL1(i;R)−VT2(i;R))+(3+2

√
2)(VT1(i;R)−VL2(i;R)))

υ224(i;R) = 2
15

√
2
35

(2(VH1(i;R)−VT3(i;R)−2VZ1(i;R)+2VZ2(i;R))+

+ (1+
√
2)(VL1(i;R)−VT2(i;R))+(1−

√
2)(VL2(i;R)−VT1(i;R))) (5)

The same applies to homonuclear systems (HB when B is the H atom), where the potential
energy surface can be adequately represented by eighteen leading configurations because
the diatomic molecule involved here presenting symmetric characteristics that decrease
the number of leading configurations necessary to solve the systems of equations, since
only the even moments will contribute to the sum in the Equation 3.

3.2. Results for interaction between water and diatomic molecules

In Figures 3(a), 3(b) and 3(c) it is shown a cut of the representation through hyperspherical
harmonics expansion of the potential energy surface (PES) of van der Waals interactions
for HOH· · ·H2, HOH· · ·HF and HOH· · ·HCl systems. The Figure 4 report the isotro-
pic components of the interaction potential of HOH· · ·H2 system with minimum at -46.8
cm−1 located at 3.5 Å, HOH· · ·HF system with minimum at -121.4 cm−1 located at 4.3
Å, and HOH· · ·HCl system with minimum at -174.2 cm−1 located at 3.7 Å. These com-
ponents, which can be measured experimentally, would allow comparison and evaluation
of the reability of the theoretical method.

4. Conclusions
In this paper we study the possibility of representing the potential energy surface for a
general case of interaction between XOY-AB molecules and we present some applications
where the water molecule represents XOY and the diatoms HH, HF and HCl represent
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(a) HOH· · ·H2. (b) HOH· · ·HF. (c) HOH· · ·HCl.

Figura 3. Representation of the potential energy surface near the global minimum
configuration .

Figura 4. Isotropic Term for the HOH· · ·HB System, with B = H, F and Cl.

AB. In these applications, the PES was computed for about one hundred points for each of
the leading configurations, whose number reduces from 42 to 23 for HOH· · ·HB (where
B equal to F and Cl atoms) and to 18 for HOH· · ·B2 (where B equal to H, F and Cl atoms),
because of symmetry properties. The results for the system reducing the computational
cost simplifying the fitting and the representation of the potential energy surface for other
applications also to classical and quantum molecular dynamics simulations.
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