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Abstract. Landslide inventory is an essential tool to support disaster risk 

mitigation. Using remote sensing images, it is usually obtained through pattern 

recognition. In this study, three classification methods are compared to detect 

landslides: Support Vector Machine (SVM), Artificial Neural Net (ANN) and 

Maximum Likelihood (ML). We used Sentinel-2A imagery, extracted and selected 

features for two areas in the Rolante River Catchment. The classification products 

showed that SVM classifier presented the best overall accuracy (OA) for Area 1 

resulting in 87.143%; while for Area 2 ML showed the best OA equals to 86.831%.  

 

1. Introduction 

Landslides are widespread natural geomorphologic processes and represent a gravity-driven 

component of erosion [Davies, 2015]. They are downward movements of slope material 

triggered by earthquakes, snow melting or heavy rain, which can also be caused or intensified 

by anthropic activities [Guzzetti et al., 2012]. These phenomena cause economic damages 

and loss of lives when occurred in occupied areas [Haque et al., 2019]. The landslide 

inventory map consists on identifying mass movement scars, which can provide many 

information about past events, as location, types and patterns, assisting to build landslide 

susceptibility models [Ramos-Bernal et al., 2018]. Thus, landslide inventory map is crucial 

to support urban planning and disaster risk reduction [Lupiano et al., 2019]. 

The inventory can be achieved by either conventional methods or state-of-the-art 

techniques. Conventional methods include field mapping and visual interpretation of remote 

sensing images; nevertheless, these methods are time and resource consuming [Qin, Lu and 

Li, 2018]. On the other hand, semi-automatic recognition of landslide scars and analysis of 

changes in the spectral signature of land surface can provide a rapid mapping [Guzzetti et al., 

2012]. Support Vector Machine (SVM), Artificial Neural Network (ANN) and Maximum 

Likelihood (ML) are popular classifiers that are used to identify landslide scars. [Manfré et 

al., 2014] used SVM and ML to identify landslides in São Paulo State coast, in Brazil. The 

authors claim that SVM presented better performance than ML, especially when associated 

to the Normalized Difference Vegetation Index (NDVI). [Moosava, Talebi and 
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Shirmohammadi, 2014] compared ANN and SVM to mapping landslides and the results have 

shown no significant differences between both methods. Many researches have been made 

using ANN to attend landslides issues, for instance the results shown by [Chen et al. 2017] 

at Wanyuan area, China and by [Kalantar et al., 2018] at Dodangeh watershed, Iran. 

In this context, the aim of this study is to compare different image classifying 

techniques: SVM, ANN and ML, in order to identify which of them presents better results 

concerning landslide scars detection. 

 

2. Study Area 

The Rolante River Catchment is located in the State of Rio Grande do Sul, Brazil (Figure 1), 

and it embraces three cities: Riozinho, Rolante and São Francisco de Paula. Its drainage area 

is 828 km², with altitudes varying from 19 to 997 m. This area is almost entirely located in 

the Serra Geral geomorphological unit, with a predominance of basaltic rocks and sandstone. 

According to [Rossato 2011], the climate is characterized as very humid subtropical, with 

precipitation regime distributed throughout the year, with annual averages between 1700 and 

200 mm. 

On January 5th, 2017, there was a landslide event in the upstream area of Rolante 

River Catchment triggered by an extreme precipitation event. The rains lasted for 

approximately four hours with local private measurers values estimated between 90 and 272 

mm [SEMA, 2017]. These rains moved a large amount of material from the slopes, 

generating a natural dam on the Mascarada river, a tributary of the Rolante river with 

subsequent rupture of this barrier and consequent flash flood, reaching Rolante city.  

Previous works identify approximately 300 landslide scars in this region [GAMEIRO 

et al., 2019; QUEVEDO et al., 2019a; QUEVEDO et al., 2019b]. According to the landslide 

inventory, two areas of interest were chosen to be analyzed.  The criteria to choose these 

areas considered that both of them contained a significant amount of landslide scars presented 

in the landslide inventory [QUEVEDO et al., 2019a]. The Area 1 contains 91 landslide scars 

with 39 ha whilst Area 2 contains 34 landslide scars with approximately 16 ha. 
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Figure 1. Location map of the study area. 

 

3. Methodology 

To fulfill the proposed objective, we used thirteen attributes (Sentinel Bands: 02 - Blue, 03 - 

Green, 04 - Red, and 8 - NIR; Sentinel TCI: Blue, Green and Red; NDVI; PCA 1 and PCA 

2; Texture Variance and Texture Mean (Band 08); Slope). All the features were ranked in 

order of importance via Weka software and, then, we applied three image classifiers: SVM, 

ANN and ML. The methodological process of this study is exposed in the Figure 2. 

 

Figure 2. Flowchart of the methodology. 

The identification of landslide scars usually present better results when high spatial 

resolution images are used [Karen et al., 2009]. Considering that, Sentinel 2A Level-2A 

imagery was chosen, especially because it provides orthorectified reflectance products of 

Bottom-of-Atmosphere (BOA). For the purpose of this study, among all products available 

for Level-2A, only 10 m spatial resolution data were used, discarding AOT maps. The 

Sentinel scene selected is from February 09th, 2019. The original image was clipped in for 

the two areas of interest, each one containing 6 km² (Figure 3).  
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Figure 3. Location map of the two analysed areas. A) Area 1; B) Area 2. 

   

 After selecting the study area and clipping the scene, some statistics were used with the 

objective to identify heterogeneity of classes during the classification procedure. From the 

original images, a feature extraction process was performed, using features based on [Gerente 

et al, 2017a], [Gerente et al, 2017b] and [Karen et al, 2009]. This procedure was executed at 

ENVI 4.7 software. The first chosen feature is the NDVI which considers near-infrared and 

red wavelengths for its computation. The NDVI values are used to detect varying densities 

of vegetation coverage which could be used for natural disasters [Bhandari et al., 2012]. 

 The second used feature was the Principal Components 1 and 2, from Principal Component 

Analysis (PCA), shown in [Singh and Harrison, 1985], which computes eigenvalues and 

eigenvectors from a dataset. According to the authors, this approach aims the determination 

of underlying statistical dimensionality of a dataset, and it is usually applied to image 

enhancement, change detection and characterizing seasonal changes in land cover types.   

 Using QGIS 2.8 software, a slope has been extracted from the DEM of ALOS (Advanced 

Land Observing Satellite), PALSAR (Phased Array type L-band Synthetic Aperture Radar) 

sensor. Moreover, in the matter of characterizing heterogeneity of classes, textures are 

usually applied. This concept is related to spatial distribution of intensity values; hence it 

contains information regarding rugosity, regularity, contrast, etc. [Ruiz et al, 2004]. Among 

the statistic features, mean and variance have been used to characterize Texture. 
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 [Hall, 1999] defines feature selection as a learning step that focuses on the most useful data 

aspects for analysis and feature prediction. The author adds that correlation-based feature 

selector approach eliminates non-relevant data and it may improve the performance of 

algorithms. This method takes into consideration feature-feature inner correlation as well as 

feature-class correlation. Using this approach, a rank of features is obtained, and the analyst 

defines the number of selected features. This approach was conducted using the Weka 

Software. All the features were ranked in order of importance and only the first four were 

selected. These four attributes were chosen to test whether only a quarter of the variables was 

able to map landslides scars and, consequently make the model more parsimonious. 

Furthermore, in order to be able to make a comparison between classifiers, the selected 

attributes were the first ones which were similar for both areas in Weka rank. 

  After selecting the most heterogeneous attributes, the supervised classification was 

conducted. The classification assessment was performed via holdout method where testing 

samples are given independently of training samples [Kim 2009]. The image size was 

214x284 pixels and approximately 400 training samples and 100 testing samples were used 

for each class.  The number of sampled pixels was defined after testing and finding a 

satisfactory result.  

  In order to assure our decision about the classes, high resolution images from different 

dates from Google Earth were consulted. It is assumed here that all bare soil classified is a 

landslide, once it was not detected significant presence of this type of land cover before the 

landslides event. Therefore, the classes were: Forest, Grass, Landslide, Shadowed Forest and 

Water.  

 

3.1. Classification methods 

The analysis of different classifiers for detecting landslides aims to present the best 

performance available in order to attend risk assessments in urgent situations. Considering 

that, it is important to take into account the computational efforts, time and feasibility of such 

methods. 

Support Vector Machine (SVM) 

Based on statistical learning theory, SVM is a machine learning technique which 

transforms original input space into a higher-dimensional feature space to find an optimal 

separating hyperplane [Vapnik 1998; Kavzoglu and Colkesen 2009; Abe 2010]. The goal of 

the optimal separating hyperplane is a correct discrimination between two sorts of samples 

(though certain errors are allowed) while maximizing the classification margin [Huang, 

2018]. A variety of authors have proven the efficiency of SVM for landslide susceptibility 

analysis [Lee et al., 2017]. According to [Feizizadeh et al. 2017], the resulting SVM 

classifications are affected by the choice of the kernel function and among the different 

possibilities of kernels available, the Radial Basis Function (RBF) have been found the most 
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feasible and reliable to produce susceptibility maps. Based on that, it is our choice of using 

RBF in the classification by SVM. 

Artificial Neural Network (ANN) 

ANN is a supervised classification method, which is inspired on human brain 

functioning, composed of a variety of processing units, called neurons, that work in parallel 

classifying input data in output classes. Generally, a feed-forward multi-layer network is 

adopted. It typically consists of three layers—input, output, and a hidden layer between the 

first two—with a sufficient number of neurons in each layer [Aurora et al., 2004]. This 

method uses the error backpropagation algorithm [Rumelhart et al., 1986], which consists on 

minimizing the output errors.  

Maximum Likelihood (ML) 

ML is a supervised classification method determined by the Bayes theorem and 

employs a discriminant function to assign pixels to user-defined classes with the maximum 

likelihood [Pawluszek, 2018]. According to the author, ML continues to be the most widely 

used parametric classification algorithm. This method suits ellipses, so that the location, 

shape and ellipse size reflect the average variance and covariance of two variables [Duarte, 

2018]. A probability function describes the distribution of reflectance values and evaluates 

the possibility of a pixel to belong to a certain category.  

4. Results 

From the Feature Selection, the software Weka ranked the 13 input attributes and we chose 

the first four ones which were similar, though not in the same order, for both areas (Table 1). 

It was not expected for the Feature Selection to choose Blue band instead of choosing either 

NDVI or NIR attributes, although the classification showed good results as can be seen 

herein. 

Table 1. Feature Extraction and Selection for both studied areas 
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  One must highlight that, from all the classification approaches, SVM appeared to 

increase computational effort and it was not possible to perform it with all the extracted 

features. Therefore, Feature Selection has proven to be worthwhile for this study, otherwise 

no comparisons could be made. 

  The final classification products for both areas are shown in Figures 4 and 5. In order 

to standardize the classification figures for comparison, the classification labels of Area 2 

were adapted to Area 1 classes, which means that Forest 1 and Forest 2, due to different 

spectral responses, were gathered into the same class, now called Forest. All three classifiers 

performed well in detecting landslide scars. 

In Area 1, once the water pixels presented a relative similarity to the landslide in 

terms of spectral reflectance, some confusions between the two classes could be 

detected, as it can be visually noticed at the classification products. In the middle of this 

study area, there is a spot on the left bottom side which shows a saturation effect from 

the RGB image. This spot caused a variety of results provided from the classifiers. The 

ML classified it mostly as bare soil, while ANN mixed the area with some water pixels 

and SVM proposed it mostly as grass. On the other hand, in Area 2 no significant visual 

differences between the classifiers were noticed.  

The classifications were evaluated by kappa index and matrix having different 

results as follows: for Area 1 SVM had a better kappa (0.8315) and ANN a better matrix, 

while Area 2 ML had a better kappa (0.8353) and SVM a better matrix. For Area 1 SVM 

presented an overall accuracy (OA) of 87.143%, while for Area 2 ML had an OA equals 

to 86.831%. It is important to point out that the overall accuracies for other classifiers 

in this area did not present significant difference from ML: both SVM and ANN with 

kappa equals to 0.8276 and OA of 86.21%. Further analysis of the results through 

commission and omission errors are developed in this session. [Gerente et al. 2017b] 

presented similar results concerning overall accuracy in landslides scar detection via 

Random Forest classification.  

The analysis of Table 2 allows the interpretation of results by the commission 

and omission errors of each classifier presented in percentage. For Area 1, the ANN 

classifier presented the best result. Among the five classes, ANN presented the lowest 

percentage of commission errors for Landslide (8,82%), Grass (17,39%) and Shadowed 

Forest (10,45%); while ML and SVM only presented best results for Forest (7,45%) and 

Water (0%). Regarding omission errors, ANN also revealed better results by keeping 

the minimum error compared to the others; however, the only class that ML and SVM 

had the best performance was Shadowed Forest (16,83%). 

  When it comes to Area 2, all the classifiers seemed to have similar classification, 

although SVM classifier showed the best performance. Concerning commission errors, it 

presented the lowest error percentage for the following classes: Forest 1 (14,29%), Landslide 

(0%) and Grass (20%). Regarding omission errors, it presented the best results for Landslide 

(20,41%), Grass (10,20%) and Forest 2 (1,08%). 
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Figure 4. Classification products for Area 1. a) RGB composite; b) ML; c) ANN; d) SVM.   

 

 

Figure 5. Classification products for Area 2. a) RGB composite; b) ML c) ANN and d) 
SVM.  
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165



 

 

A comment about the confusion between water and landslide pixels is valid; once 

the landslide scars are still exposed, having not been occupied by vegetation yet. Bare 

soil is constantly falling off the slopes into the river, mixing the water components with 

soil material. This phenomenon causes significant confusion on the water pixel value 

compared to the landslide pixel’s value. 

 

Table 2. Commission and Omission errors (in percentage) for the three classifiers in 
Areas 1 and 2 

AREA 1 ML ANN SVM 

Class Commission Omission Commission Omission Commission Omission 

Forest 7.45 10.31 19.64 7.22 7.53 11.34 

Landslide 9.38 17.14 8.82 11.43 9 13.33 

Grass 22.95 8.74 17.39 7.77 22.13 7.77 

Shadowed Forest 10.64 16.83 10.45 40.59 11.58 16.83 

Water 28.57 28.57 58.33 28.57 0 28.57 

       

AREA 2 ML ANN SVM 

Class Commission Omission Commission Omission Commission Omission 

Forest 15.66 27.84 16.47 26.8 14.29 31.96 

Landslide 0 22.45 1.33 24.49 0 20.41 

Grass 22.52 12.24 23.42 13.27 20 10.2 

Shadowed Forest 18.85 1 18.85 1 20.83 5 

Water 3.19 2.15 3.23 3.23 8.91 1.08 

   

  In addition, due to high reflectance values for both classes, grass caused confusion 

with bare soil, which was expected to be detected by NDVI attribute - not selected for the 

classification. However, the commission errors still presented satisfactory outcomes even 

though omission errors were large. 

5. Conclusion 

Feature Selection was mandatory to obtain our results, otherwise it would not be possible to 

perform the SVM classifier, due to computational efforts. In addition, the classification 

presented satisfactory results even though the number of used attributes was reduced from 

13 to 4. This fact confirms that it is not necessary, whatsoever, to use a great number of 

attributes for classification. However, few features, such as NDVI still seem to be decisive 

for acquiring better classification results. Therefore, one should analyze and decide 

thoroughly the number of attributes. 

 When it comes to classification, all the resulted products have shown suitable outcomes, even 

though ANN has proven to be the best for Area 1 and SVM for Area 2, concerning the 

commission and omission errors perspectives. This fact shows that finding the most 

Proceedings XX GEOINFO, November 11-13, 2019, São José dos Campos, SP, Brazil. p 158-169
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appropriate classifier is relative. However, one can be the best recommended for a specific 

study area. Therefore, one should always test the best option for their specific case. 

 Moreover, it is important to point out that the classes used must be chosen thoroughly as the 

supervised classification quality depends directly on that. Likewise, one must have a good 

training sampling mechanism and a truthful test sampling in order to achieve better outcomes. 

 For future studies, it is recommended to add a segmentation process before the classification 

and test other classifiers such as Random Forest and Decision Tree. Nevertheless, even 

though semi-automatic classification methods have proven to display satisfactory results, it 

does not exclude completely the importance of manual processing and the interpreter 

interference. Semi-automatic algorithms still show some problems, which can be better 

managed throw auxiliary data such as field work and visual interpretation corrections, in 

order to produce better classification results. 
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169


