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Abstract. The performance and operation limits of heat pipes purely depend on thermo-physical 

properties. Any mathematical model must have adequate treatment of fluid properties that 

critically depend on temperature. Applications of heat pipes in satellites usually call for a very 

wide temperature range, therefore, it is very important to have correct and precise property 

correlations for the entire temperature two-phase range at saturation conditions, as well as out 

of the range. Simulation of HP (heat pipes) transient modes needs smoothed property 

correlations without interruptions of value and derivatives; tables and peas-wise linear 

interpolations between tabulated magnitudes are not acceptable. In this paper specific 

approximations were developed for water vapor pressure, which covers solid, two-phase, and 

super-critical temperature ranges. The results first time are presented in the format of a 

universal algorithm of a generalized function of dimensionless pressure versus dimensionless 

temperature. Such a function can be easily coded with any programming language and inserted 

into a heat pipe mathematical model.  
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1. Introduction 

Only in an ideal world, phenoms related to heat transfer can be disregarded, in the real 

world instead, these phenoms compel the project to consider it because if the system was 

dimensioned using only the ideal idea, this mission will fade in to fail. Any electronic 

equipment produces heat as a result of the second law of thermodynamics. The thermal 

system controls the heat in the satellite system, and usually, the design solution includes 

heat pipes, especially for big satellites. (SHUKLA, 2015) made an excellent explanation of 

the concept of heat pipes: “A typical heat pipe consists of a sealed pipe or tube made of a 

material that is compatible with the working fluid such as Copper for water heat pipes, or 

Aluminum for ammonia heat pipes. It is a simple construction that makes a heat pipe to 

allow high heat transfer rates over considerable distances, with minimum temperature 

drops...”. 

The heat pipe must retain vapor-liquid equilibrium with the saturated liquid and its vapor. 

The saturated liquid vaporizes and flows to the condenser compartment, where it is cooled 
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and turned back to a saturated liquid. In a standard heat pipe, the condensed is returned to 

the evaporator using a wick structure applying a capillarity on the liquid phase of the 

working fluid. 

Heat pipes are important and effective components of spacecraft thermal control systems 

and terrestrial applications. The performance of such devices depends on fluid properties at 

saturation conditions. Usually, such devices cannot operate outside their temperature 

limits. When the temperature is below the triple point, solidification or freezing occurs in 

working fluids; when the temperature is above the critical conditions, two phases cannot 

coexist anymore. However, the heat pipe must be able to be started from these states.  

Any mathematical model must have adequate treatment of such properties that critically 

depend on temperature. Applications of heat pipes in satellites usually call for a very wide 

operational temperature range, therefore, it is very important to have correct and precise 

property correlations for the entire temperature range which include solid, two-phase, and 

super-critical zones.  Simulation of HP (heat pipes) transient modes needs smoothed 

property correlations without interruptions of value and derivatives; tables and peas-wise 

linear interpolations between tabulated magnitudes are not acceptable. The most difficult 

problem arises in the simulation of specific transient HP modes, like start-up from solid 

state (high-temperature and freezable HPs) and start-up from super-critical states in 

cryogenics HPs. 

2. Methodology 

Usually, a polynomial approximation does not reflect the physical nature of the property 

behavior and only provides a good approximation within a limited temperature range. 

Usually, this temperature range of polynomial approximations is narrower than the entire 

operating temperature range to keep the necessary precision. When the temperature 

magnitude jumps out of the approximation range, the values of a property calculated by the 

polynomial approximation may run away from the physical sense and may get absurd 

magnitudes.  

Using such a polynomial approximation, the iteration process in a numerical algorithm 

may temporarily get out of the expected temperature range leading to numerical instability, 

and the algorithm failure.  

To avoid this drawback, it is suggested for any thermo-physical property y, the 

approximation configuration of a function of temperature shall follow the following format 

whenever possible: 

     ),(),(),,( TqyTpYTqpy +=  (1) 

Where the first term – a basic correlation, which reflects the main physical process, and 

second term – auxiliary correction approximation. 

  

For the auxiliary approximation term y(T), the function used in the approximation must 

have asymptotical stability over the entire temperature range 
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The correlation for the main Y(T) and auxiliary y(T) terms of the final approximation 

include parameters (vectors p and q) those values shall be obtained from the conditions of 

the best fitting of known tabulated data 
)(ˆ iTY
 for tabulated temperatures Ti. We denote 

such parameter vectors as p and q, and can rewrite our approximation in a more detailed 

format: 

These components of vectors p and q  are obtained by minimization of deviations from 

tabulated data. The least-square technique may work fine. In mathematic terms it can be 

expressed as follows.  

( )
2

1
,

)(ˆ),,(min
=

−
N

i

ii
qp

TYTqpY  (2) 

where N – number of points available in a table of the given thermo-physical property. 

Obviously, to perform this stage, an empirical preliminary study shall be conducted to find 

an appropriate analytical format for the auxiliary term y(q,T).  

 

For generality, we will use dimensionless properties and temperature: 
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Wherefore, for two-phase zone, the values for both   and p may vary from 0 to 1. For 

sublimation,  and p are negative, and for the one-phase zone (i.e., gas), the values are 

above 1. Such approach will help to elaborate universal correlations with close coefficients 

for different working fluids. We denote these zones A, B e C, 

To reach the smoothness needed in mathematical equations, the interfacing technique is 

used to connect the pressure equations in the interfacing points τ=0 and τ=1. 

Initially, the interfacing is applied in equations close to the triple point (τ = 0). 

For example, good approximations are available for the sublimation zone, at <0, (pA()) 

and another – for two-phase zone (pB()). 

Usually, at =0 ( and similar at =1) we have interruption Figure 1 for the magnitude and 

for derivatives from two sides: from the left and from the right )0()0( BA pp   and 

)0()0( BA pp  : 
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Figure 1 – Interfacing for pressure at the division between sublimation and two-
phase regions 

Such an interruption is not acceptable for HP numerical modeling in a wide range of 

temperatures. To resolve this problem, the idea is to introduce a small interface zone (AB) 

around T3 temperature to smooth these interruptions. 

This  corresponds to a small value of temperature, for example, 1oC. The approximation 

in this interfacing zone, pAB(), must eliminate and smooth these interruptions. To do so, 

we can establish additional constraints on this approximation (conditions of smoothing in 

interfacing zone), considering that we already have the approximations pA() and pB() and 

their derivatives: 
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Therefore, we have 4 conditions for the interfacing. In this case a polynomial function of 

3rd order can be pretty used: 
32)( dzczbzazpAB +++=  

(5) 

After the substitution of this approximation into the condition’s equation (4),   

we have a system of 4 algebraic equations of 4 unknowns a,b,c,d,  which can be resolved 

by any method. 

A similar approach was used for the interfacing of approximations around critical 

temperature Tcr ( )1= . 

3. Results 

    3.1 Sublimation zone 

Thermo-physical properties of water were studied widely and there are many published 

data and tables available for the using (IAPWS, 1995). Therefore, it is natural that this 

analysis is initiated by water. All analyzes will be treated in the same way in terms of 

temperature. Initially, the analysis will be done for τ<0 starting at 0< τ<1 and ending at 

τ>1. 
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For the sublimation zone (τ<0), the best approximation which fits available table data is an 

exponential function.  

caep b

A +=  )(  (6) 

Table 1 - Coefficients of exponential approximation for τ<0  

 a b c 

pA(τ) 2,85E-05 3,26E+01 -9,00E-07 

  The resulting approximation is shown in Figure 2, on the left. 

 3.2 Two-phase zone 

For 0<τ<1, the approximation of the vapor saturation pressure is based on an already 

known variation, the Clapeyron-Clausius pressure used in many studies, as 

(KOUTSOYIANNIS, 2012) did when aligning the theory with the empirical data. 

First, we perform analysis with temperature as a dimensionless variable keeping pressure 

as a dimensional variable. This was done using the approach discussed in the previous 

chapter, the results can be seen below in Figure 2, on the right. 

 

Figure 2- Correlation between saturation pressure and dimensionless Temperature 

for water below the triple point (τ<0) and above it (0<τ<1) 

Then, the approximation was performed for dimensionless variables following the 

proposed approach (Eq.1). The results are shown in the equation below, in equations (7) 

and (8). It is worth mentioning that, this approximation is based on a classic of the 

Clapeyron-Clausius equation, PCC(), with an added polynomial approximation of 3rd order 

for refinement.  
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dcbapp ccB −−−+=  23)(  (8) 

 

Table 2 – Coefficients results of 0<τ<1 with dimensionless pressure and temperature 

 a b c d T0 [°C] 

pB(τ)  2.3E-03 -1.02E-02 -5E-05 -3E-05 95 

3.3 Supercritical zone 

To obtain precision approximation the pressure above the critical point cannot be treated 

through a well-known ideal gas low. We will use a real gas approach based on the Van der 

Waals equation, Redlich-Kwong equation, and Soave-Redlich-Kwon equation. The better 

option was selected to use for the approximation and interfacing at =1. 

The heat pipe has a peculiarity. The total density of working fluid, considering liquid and 

vapor phases together, is fixed and defined by the working fluid amount charged into the 

heat pipe during HP fabrication. Then the HP container is sealed hermetically, and the 

mass of working fluid does not change. Knowing the internal volume of heat pipe, such 

total density can be easily calculated: 

Therefore, the author chose more than one fluid density for the analysis; which varies from 

332 kg/m3 (critical density) up to 350 kg/m3 but for this paper only the critical density will 

be analised. The charts presented in Figure 3can be expressed by the Van der Waals 

equation (9), Redlich-Kwong equation (12), and Soave equation (15), (SMITH; PETERS; 

INOMATA, 2013; MARKOČIČ; KNEZ, 2016). 
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Figure 3 - Correlation between Pressure and Dimensionless Temperature for water 
above the critical point and with a density equal to 322 kg/m3 and suggested 

modifications  

Below the real-gas equations were modified to achieve dimensionless parameters. Van der 

Waals equation can be expressed as follows: 
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Redlich-Kwong equation: 
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Soave-Redlich-Kwong equation: 
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Those coefficients expressed in variable “a” and “b” can be expressed in the table below. 

Table 3 - Coefficients “a” and “b” expressed by polynomial coefficients 

  a1 
a1 ρ= 322 

kg/m3 
b1 

b1 ρ= 322 

kg/m3 
c1 

c1 ρ= 322 

kg/m3 

Van der Waals  
a - -6,00E-08 - 9,00E-05 4,22E+04 3,97E+02 

b - - - 7,00E-04 8.00 7.81 

Redlich-Kwong 
a - - - 2.4E-03 23.393 7,26E+02 

b - - - -9.6E-3 11.542 1,79E+05 

Soave-Redlich-

Kwong 

a - - - 1.3E-02 23.393 1.485 

b - - - -5.8E-3 11.542 1,54E+04 

    3.3 Final results in the form of universal algorithm and dimensionless 

variables 

The results first time are presented in the format of a universal algorithm of a generalized 

function of dimensionless pressure versus dimensionless temperature. Such a function can 

be easily coded in any programming language and inserted into any mathematical model of 

heat pipes. This function is shown in equation (21) below. 
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The coefficients a,b,c for sublimation and super-critical are already shown in Tables 1-3.  

 Conclusion 

This work provides approximations for water-saturated pressure from low temperature 

(below triple point) to high temperature (above critical point). This pressure is the main 

parameter in any mathematical model of heat pipes and other two-phase heat transfer 

devices.  Different types of approximations were combined in the equations using the 

interfacing interrupted method, in other words, the results reached until here give a 

continuous property result for values as well as for derivatives. The results first time are 

presented in the format of a universal algorithm of a generalized function. Such a function 

can be easily coded with any programming language and inserted into any mathematical 

model of heat pipes. For future work more fluids can be add in this algorithm to reach a 

hole group of interestimg work fluids in aerospace engineering. 

References 

FAGHRI, A. Heat pipe Science and Technology. 1995.  

IAPWS. Appendix B: Property Tables for Water. Em: IAPWS. [s.l.] 1995 Formulation for 

the Thermodynamic Properties of Ordinary Water Substance for General and Scientific 

Use, 1995.  



 

 

10 

 

KOUTSOYIANNIS, D. Clausius-Clapeyron equation and saturation vapour pressure: 

Simple theory reconciled with practice. European Journal of Physics, v. 33, n. 2, p. 295–

305, 2012.  

MARKOČIČ, E.; KNEZ, Ž. Redlich–Kwong equation of state for modelling the solubility 

of methane in water over a wide range of pressures and temperatures. Fluid Phase 

Equilibria, v. 408, p. 108–114, 25 jan. 2016.  

SHUKLA, K. N. Heat Pipe for Aerospace Applications—An Overview. Journal of 

Electronics Cooling and Thermal Control, v. 05, n. 01, p. 1–14, 2015.  

SMITH, R.; PETERS, C.; INOMATA, H. Equations of State and Formulations for 

Mixtures. Supercritical Fluid Science and Technology, v. 4, p. 333–480, 1 jan. 2013 

Annex 

T Temperature [°C] 

T3 Triple point temperature [°C] 

TCR Critical temperature [°C] 

P Pressure [bar] 

pcc Clausius-Clapeyron Saturation Pressure Equation dimensionless 

  Reference pressure dimensionless 
 

Triple point pressure [bar] 
 

Triple point pressure dimensionless [bar] 
 

Equation using temperature as variable 

 

Temperature Dimensionless 

  Temperature Dimensionless Variation 

  Reference Temperature Dimensionless 
 

Saturated pressure equation τ < 0 
 

Derivation of Saturated pressure equation τ < 0 
 

Saturated pressure equation 0 < τ < 1 
 

Derivation of Saturated pressure equation 0 < τ < 1 
 

Pressure equation τ > 1 
 

Derivation of pressure equation τ > 1 
 

Interfacing equation linking saturated pressure from τ < 0 to 0 < τ < 1 
 

Derivation of Interfacing equation linking saturated pressure from τ < 0 to 0 < τ 

< 1 
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Interfacing equation linking saturated pressure from 0 < τ < 1 to pressure τ>1 
 

Derivation of Interfacing equation linking saturated pressure from 0 < τ < 1 to 

pressure τ>1 

 Variable  

 Variable 

 Variable 

 Variable 

 


