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1. TIME SERIES ANALYSIS AND PREVIOUS RE-
SULTS

For any observed system, physical or otherwise, one gen-
erally wishes to make predictions on its future evolution.
Sometimes, very little is known about the system. Suppose
that in particular the dvnamics behind the phenomenon be-
ing studied is unknown, and one is given just a time series’
ol one (or a Tew)y of its parameters.

[T the time series is the only source of information on the
system, prediction of the future values of the series requires
a modelling of the system’s (perhaps nonlinear) dynamical
law through a set of differential equations or through dis-
crete maps. However, it is even possible that we do not know
whether the measured quantity is the only relevant degree of
freedom (usually it is not) of the dynamical problem, nor how
many of them there are.

For time series originated from low dimensionality
chaotic systems, we have the non-linear analvsis apparatus
at our disposal and we will not be concerned with stochastic
processes”.

Methods for dealing with such a problem fall mainly into
two categories: local or global methods. We will focus on
global methods, We are also going to Suppose that the sys-
tem can be modelled by a set of differential equations of low
dimensionality. What we would like to obtain is some kind
of global map that, given anyv point of the state space. could
calculate a subsequent point ol the trajectory.  1f we have
known the set of differential equations (SDE) that models
the system, we could find a solution (starting from an initial
condition) by making a numerical integration through some
map obtained from the SED (probably a Runge-Kutta map,
a Taylor series one or an expansion in some function basis).
For practical purposes (computers can not work with the in-
finity) a truncation must occur at some order of the series ex-
pansion. Howewver, i the truncation order is low, we can run

LA time series is a set of numbers that are the possible outcome of mea-
surements of a given quantity, taken at regular intervals.The relevance of
performing Time Series” analysis can be equated to the fact that these Series
mentioned above can come from a great diversity of branches of knowledge.
There are extensive studies in the area of Physics, Economics, Meteoralogy,
Oceanography, Stock Exchange, Medicine, etc,

*Indeed, the first thing one has to ask when working with a Time Series
is whether the series represents a causal process or it is stochastic. [n the
Time Series analysis frame we also have tools to deal with that fundamental
question.

away from the real solution in a few time steps (even il each
time step is very small). For chaotic systems it is not used {in
general) a Runge-Kutta expansion ol degree less than [our.
This implies that the map generated present polvnomials of
high degree.

That means that the mathematical problem can be very
complex. For example, for the Lorenz system. a fourth-order
Tavlor expansion would be equivalent to a problem ol deter-
mining 168 coefficients a very elaborated task. Therefore,
despite the fact that the global approach has many attractive
features, such as the fact that, once it is determined it is ap-
plicable to the whole series*, one sees that the effective use
of it can be difficult to achieve in practice. So, there is a
¢lear demand lor procedures that can, withoutl increasing the
degree of the global mapping, enhance the accuracy of such
mappings.
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Figure 1 — Example of the “Plateau” formed for the Lorenz Sys-
tem Time Series

In a few words, our method | 1] is based on the realization
that the expansion with which we will be working is a "real”
one, i.e., it is finite. So the known (accepted) fact that the
next-order term will be negligible in relation to the previous
one faults at some stage. Our method detects where this as-
sumption starts to fail and uses this information to improve
the forecasting. Basicallv, we analyze the so-called platean
that is formed because of the balance between this tendency
of the expansion to have ever smaller terms and the “reality™
of our expansion, i.e., the truncation of the series causes this
tendency to be, eventually, overcome and the relative size of
the next term to the previous one, with increasing number
of terms, starts to rise again. A picture of such a behavior

#n the case of Local mappings, we have to determine a mapping for each
entry of the series.



is displayed on figure 1. where this difference Ae 1s plotied
against the number of terms (k) in the expansion.

2. IMPROVING THE SITUATION

Here, we present an algorithm which is concerned with
improving this forecast capabilities of our above mentioned
improved method [ 1] even further. The algorithm uses more
elaborated steps to extract the better way of deciding at which
stage to stop the approximating procedure to have a better
Torecast capability.

In a nutshell, we are looking into creating an algorithm
that, based on a previous analvsis of the particular Time Se-
ries, actually on the study of the particular section of the
Time Series under study, could determine how far one can go
“inside”™ the plateau to obtain the best resull possible where
forecasting is concerned. So far, while working in the scope
of [ 1], we stop our expansion in the very beginning of the
Plateau, without further examining if we could extract more
information from the terms already “inside™ the plateau, etc.

We have obtained preliminary results that indicate that
one can achieve a significantly better result for some cases.
For instance, in the case of “well behaved™ time series. such
as the one coming out of a Lorenz system, one can find a fac-
tor of five (or above) in the improvement for the forecasting
capabilities ol this new improved algorithm.
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