

sid.inpe.br/mtc-m19/2010/11.10.13.41-RPQ

CARACTERIZAÇÃO DE POLÍTICA ÓTIMA DE UM PMD PARA ALOCAÇÃO DINÂMICA DE RECURSOS E CONTROLE DE ADMISSÃO DE CONEXÃO EM REDES IEEE 802.16

Cynthia Feitosa Leal

Relatório final da disciplina Princípios e Aplicações de Mineração de Dados (CAP-359) do Programa de Pós-Graduação em Computação Aplicada, ministrada pelo professor Rafael Santos.

 $\label{eq:url_decomp} \begin{tabular}{ll} $$ \mbox{URL do documento original:} \\ \mbox{http://urlib.net/ 8JMKD3MGP7W/38J9ASE} > \end{tabular}$

INPE São José dos Campos 2010

PUBLICADO POR:

Instituto Nacional de Pesquisas Espaciais - INPE

Gabinete do Diretor (GB)

Serviço de Informação e Documentação (SID)

Caixa Postal 515 - CEP 12.245-970

São José dos Campos - SP - Brasil

Tel.:(012) 3208-6923/6921

Fax: (012) 3208-6919

E-mail: pubtc@sid.inpe.br

CONSELHO DE EDITORAÇÃO E PRESERVAÇÃO DA PRODUÇÃO INTELECTUAL DO INPE (RE/DIR-204):

Presidente:

Dr. Gerald Jean Francis Banon - Coordenação Observação da Terra (OBT)

Membros:

Dr^a Inez Staciarini Batista - Coordenação Ciências Espaciais e Atmosféricas (CEA)

Dra Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação

Dra Regina Célia dos Santos Alvalá - Centro de Ciência do Sistema Terrestre (CST)

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Dr. Ralf Gielow - Centro de Previsão de Tempo e Estudos Climáticos (CPT)

Dr. Wilson Yamaguti - Coordenação Engenharia e Tecnologia Espacial (ETE)

Dr. Horácio Hideki Yanasse - Centro de Tecnologias Especiais (CTE)

BIBLIOTECA DIGITAL:

Dr. Gerald Jean Francis Banon - Coordenação de Observação da Terra (OBT)

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Deicy Farabello - Centro de Previsão de Tempo e Estudos Climáticos (CPT)

REVISÃO E NORMALIZAÇÃO DOCUMENTÁRIA:

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Yolanda Ribeiro da Silva Souza - Serviço de Informação e Documentação (SID)

EDITORAÇÃO ELETRÔNICA:

Vivéca Sant´Ana Lemos - Serviço de Informação e Documentação (SID)

sid.inpe.br/mtc-m19/2010/11.10.13.41-RPQ

CARACTERIZAÇÃO DE POLÍTICA ÓTIMA DE UM PMD PARA ALOCAÇÃO DINÂMICA DE RECURSOS E CONTROLE DE ADMISSÃO DE CONEXÃO EM REDES IEEE 802.16

Cynthia Feitosa Leal

Relatório final da disciplina Princípios e Aplicações de Mineração de Dados (CAP-359) do Programa de Pós-Graduação em Computação Aplicada, ministrada pelo professor Rafael Santos.

 $\label{eq:url_decomp} \begin{tabular}{ll} $$ \mbox{URL do documento original:} \\ \mbox{http://urlib.net/ 8JMKD3MGP7W/38J9ASE} > \end{tabular}$

INPE São José dos Campos 2010

RESUMO

Este trabalho aplica técnicas de mineração de dados aplicadas à caracterização de uma política ótima obtida através da resolução de um Processo Markoviano de Decisão para o problema de alocação dinâmica de recursos e controle de admissão de conexão para o padrão IEEE 802.16. Será feito o uso de diferentes técnicas de mineração de dados como árvores de decisão e redes neurais, objetivando um estudo comparativo destas técnicas em relação ao conjunto de dados a ser tratado.

ABSTRACT

This work applies data mining techniques to a characterization of an optimal policy obtained by solving a Markov Decision Process for the dynamic resource allocation and call admission control problem in IEEE 802.16. Different data mining techniques like trees and neural networks will be used aiming to produce a comparative study of these techniques applied to the proposed problem.

LISTA DE FIGURAS

	<u>Pág.</u>
Figura 2.1 - Árvore de decisão para ev = A2 e conjunto de atributos E	5

LISTA DE TABELAS

	<u>Pág.</u>
Гabela 2.1 - Tabela parcial da política ótima	3
Tabela 2.2 - Classificação com árvore de decisão	5
Fabela 2.3 - Resultado comparativo dos classificadores	6

SUMÁRIO

		<u>Pág.</u>
1 IN7	rodução	1
2 MA	TERIAIS E MÉTODOS	2
2.1.	Descrição dos Dados da Política Ótima	2
2.2.	Pré-processamento	3
2.3.	Mineração de Dados	4
3 CO	NCLUSÃO	8
REFE	RÊNCIAS BIBLIOGRÁFICAS	9

1 INTRODUÇÃO

O controle de admissão conexão (CAC) é de suma importância em qualquer rede de telecomunicações que permita provisão QoS para suas conexões, como no caso do padrão IEEE 802.16 [1] , pois possibilita o controle da utilização dos recursos da rede. A principal função do CAC e decidir adequadamente se canal de comunicação deve ou não aceitar uma nova conexão. Caso a politica do controle aceite um número excessivo de conexões o sistema não terá com garantir a QoS das conexões existentes, entretanto caso a politica de controle admita um número muito pequeno de conexões, ou seja, rejeite muitas conexões, pode ocorrer um desperdício dos recursos da rede.

O controle de admissão de conexão em uma rede IEEE 802.16 deve permitir tanto o tratamento diferenciado das classes de serviço definidas no padrão como objetivar a maximização da utilização dos recursos da rede. Neste contexto, foi desenvolvido em [2] uma solução para este problema através da modelagem de um Processo Markoviano de Decisao (PMD) [3] da qual obtevese uma política ótima de admissão que maximiza a utilização da largura de banda a rede. Entretanto, a solução obtida é demasiadamente grande para ser embarcada e efetivamente utilizada em uma rede IEEE 802.16, sedo compostas de uma tabela com todos os estados e ações a serem tomadas da rede. Desta forma, se faz necessário realizar uma mineração nos dados da política obtida de forma reduzir o volume de dados com o mínimo de perda de informação, para tal será feito o uso de diferentes técnicas de mineração de dados como árvores de decisão e redes neurais, objetivando um estudo comparativo destas técnicas em relação ao conjunto de dados a ser tratado. Para maiores detalhes sobre a modelagem e solução do PMD referenciar [2].

2 MATERIAIS E MÉTODOS

2.1. Descrição dos Dados da Política Ótima

Os dados obtidos pela politica ótima estão na forma uma tabela composta por sete campos que representam a definição do estado S do PMD e a ação a ser tomada:

$$S = (n_1, n_2, n_3, l_2, l_3, ev) \rightarrow ACAO$$

Onde n_1 , n_2 e n_3 representam o número de conexões das classes 1, 2 e 3, respectivamente; l_2 e l_3 representam o nível de degradação das classes 2 e 3 respectivamente; e ev representa a ocorrência de evento que pode ser:

- a_1, a_2, a_3 : chegada de uma nova conexão da classe 1, 2 e 3, respectivamente.
- s_1, s_2, s_3 : término de conexão da classe 1, 2 e 3, respectivamente.

Dado um estado S a política encontrada através da resolução analítica do PMD indica a ação a ser tomada, que pode ser:

- ACC: aceita a nova conexão;
- REJ: decide rejeitar a nova mesmo tendo recurso disponível
- rej: rejeita por falta de recurso
- NOA: libera os recursos de uma conexão quando é dado o seu término.
 Ocorre sempre no caso ev = s₁ V s₂ V s₃.

A Tabela 2.1 apresenta uma pequena parte da tabela que representa a política ótima obtida. Sendo que a tabela da política ótima possui 72734 linhas, porém este número depende do dos parâmetros de simulação utilizados no modelo do PMD. Ainda, para obter uma avaliação do modelo em [2] com relação à carga do sistema (número de novas conexões) variou-se a taxa de chegadas de conexões nas classes 1, 2 e 3, fazendo, $\lambda_1 = \lambda_2 = \lambda_3 = \{2, 4, 6, 8, 10, 12, 14, 16, 18 e 20\}$. Resultado em dez tabelas de políticas ótimas 72734 linhas a serem mineradas que foram reunidas eu uma única tabela com o acréscimo do campo LAMB para representar a taxa de chegada de conexões.

Tabela 2.1 - Tabela parcial da política ótima

n ₁	n ₂	n ₃	l ₂	<i>I</i> ₃	ev	Ação
9	20	4	2	3	A1	ACC
9	20	4	2	3	A2	ACC
9	20	4	2	3	A3	REJ
9	20	5	2	3	S1	NOA
9	20	5	2	3	S2	NOA
9	20	5	2	3	S3	NOA
9	20	5	2	3	A1	rej
9	20	5	2	3	A2	rej
9	20	5	2	3	A3	ACC
9	20	6	2	3	S1	NOA
9	20	6	2	3	S2	NOA
9	20	6	2	3	S3	NOA
9	20	6	2	3	A1	rej

2.2. Pré-processamento

Foi feito um pré-processamento nos dados de forma a eliminar dados irrelevantes e adaptá-los para serem utilizados como dados de entrada da rede neural. Como o grande objetivo da caracterização da politica ótima é avaliar as decisões de controle que são tomadas ao definir as ações ACC e REJ para um dado estado, as ações NOA e rej foram retiradas do conjunto de dados, já que sempre ocorrem dada uma saída de conexão e falta de recurso, respectivamente, não representam desta forma uma decisão de controle.

Assim, é possível reduzir o número de linhas da política ótima de 727340 para 342510 linhas. Uma pré-visualização dos dados permitiu ainda verificar que quando se tem um evento de chegada $\mathrm{ev}=\mathrm{A_1}$, a ação a ser tomada sempre será ACC caso o sistema possua recurso suficientes. Dessa forma, todas as linhas com $\mathrm{ev}=\mathrm{A_1}$ podem ser excluídas do conjunto de dados, pois também

não representarem ação de controle. Foi decidido ainda que separar o conjunto de dados para $ev=A_2$ e $ev=A_3$, onde cada conjunto um será representado por uma tabela composta por (LAMB, n_1 , n_2 , n_3 , l_2 , l_3 , Ação), totalizando 114400 linhas ou padrões cada.

2.3. Mineração de Dados

A mineração de dados foi feita com o auxilio do software weka [4], conduzindose primeiramente vários experimentos com árvores de decisão (J48), nos quais foi possível perceber a necessidade da criação de mais um atributo BWdisp, o qual é calculado através do atributos n_1, n_2, n_3, l_2, l_3 . Dessa forma, foram conduzidos cinco experimentos para o dados da política ótima com $ev = A_2$ e $ev = A_3$, levando em consideração conjunto de atributos diferentes dados por:

- A. (LAMB, $\mathbf{n_1}$, $\mathbf{n_2}$, $\mathbf{n_3}$, $\mathbf{l_2}$, $\mathbf{l_3}$, Ação)
- B. (LAMB, Bwdisp, $\mathbf{n_1}$, $\mathbf{n_2}$, $\mathbf{n_3}$, $\mathbf{l_2}$, $\mathbf{l_3}$, Ação)
- C. (LAMB, Bwdisp, \mathbf{n}_1 , \mathbf{n}_2 , \mathbf{n}_3 , Ação)
- D. (LAMB, Bwdisp, l_2 , l_3 , Ação)
- E. (LAMB, Bwdisp, Ação)

A Tabela 2.1 apresenta a matriz de confusão e tamanho da árvore obtida em cada classificação. Nela é possível observar a importância do acréscimo do atribulo BWdisp, que além de melhor a capacidade de classificação da árvore ainda ajuda a diminuir a complexidade da mesma. Em especial, com o conjunto de atributos E para $ev = A_2$ já é possível obter uma árvore simples, como mostra a Figura 2.1, com capacidade de classificação relativamente boa.

Outro ponto a se ressaltar nos experimentos realizados é constatação da dificuldade de se obter uma árvore de decisão simples com boa capacidade de classificação para $\mathrm{ev}=\mathrm{A}_3$.

```
Bwdisp <= 192
| LAMB <= 10
| LAMB <= 8: ACC (9800.0)
| LAMB > 8
| Bwdisp <= 64: REJ (528.0/243.0)
| Bwdisp > 64: ACC (1922.0)
| LAMB > 10
| Bwdisp <= 96: REJ (5120.0/71.0)
| Bwdisp > 96
| LAMB <= 14: ACC (2852.0)
| LAMB > 14
| Bwdisp <= 160: REJ (2883.0/362.0)
| Bwdisp > 160
| Bwdisp > 160
| Bwdisp > 160
| AMB <= 18: ACC (930.0/130.0)
| AMB > 18: REJ (465.0/119.0)
| Bwdisp > 192: ACC (89900.0/351.0)
```

Figura 2.1 - Árvore de decisão para $ev = A_2$ e conjunto de atributos E

Tabela 2.2 - Classificação com árvore de decisão

		A2	A3		
	A	a b ← classified as 104874 844 a = ACC 878 7804 b = REJ	a b ← classified as 71561 1080 a = ACC 13302 39767 b = REJ		
		Classifica corretamente 98.4948%	Classifica corretamente 97.9052%		
		Nº de folhas: 1320	Nº de folhas: 1463		
		Tamanho da Árvore: 2639	Tamanho da Árvore: 2925		
		a b ← classified as	a b ← classified as		
		105707 11 a = ACC	72521 120 a = ACC		
9	В	17 8665 b = REJ	214 40855 b = REJ		
za		Classifica corretamente 99.9755% Nº de folhas: 108	Classifica corretamente 99.7060% Nº de folhas: 603		
Conjunto de atributos utilizado		Tamanho da Árvore: 215	Tamanho da Árvore: 1205		
õ		a b ← classified as 105702 16 a = ACC	a b ← classified as 72271 370 a = ACC		
ŭ	С				
ij		17 8665 b = REJ Classifica corretamente 99.9712%	476 40593 b = REJ Classifica corretamente 99.256%		
a		Nº de folhas: 104	Nº de folhas: 1382		
q		Tamanho da Árvore: 207	Tamanho da Árvore: 2763		
ţ		a b ← classified as	a b ← classified as		
<u>i</u>		105183 535 a = ACC	70652 1989 a = ACC		
'n.		257 8425 b = REJ	3265 437804 b = REJ		
ŭ	D	Classifica corretamente 99.3077%	Classifica corretamente 95.3795 %		
		Nº de folhas: 29	Nº de folhas: 47		
		Tamanho da Árvore: 57	Tamanho da Árvore: 93		
		a b ← classified as	a b ← classified as		
		104923 795 a = ACC	67632 5009 a = ACC		
	Е	481 8201 b = REJ	6361 34708 b = REJ		
	_	Classifica corretamente 98.8846%	Classifica corretamente 90.00 %		
		Classifica 9	Nº de folhas: 18		
		Tamanho da Árvore: 17	Tamanho da Árvore: 35		

Dado os resultados obtidos com as árvores de decisão, foram realizados outros experimentos no Weka com mais duas técnicas: K vizinhos mais próximo (IBK) com k=7 e rede neurais (MPL) com 50 neurônios na camada escondida; Com o objetivo de comparar os resultado obtidos nos experimentos anteriores e encontra uma melhor forma de minerar os dados da política ótima para $ev = A_3$. Os Resultados destes experimentos são apresentados na Tabela 2.2 para o conjunto de atributos A, B e C.

Tabela 2.3 - Resultado comparativo dos classificadores

		A2			A3			
		а	b ←	 classified as 	а	b ←	classified as	
		104874	844	a = ACC	71561	1080	a = ACC	
	Α	878	7804	b = REJ	1302 3	9767	b = REJ	
		Classifica co	rretamente	98.4948 %	Classifica co	orretamente	e 97.9052 %	
		а	b ←	 classified as 	а	b	← classified as	
J48	В	105707	11	a = ACC	72521	120	a = ACC	
	В	17	866□	b = REJ	214	40855	b = REJ	
		Classifica co	rretamente	99.9755 %	Classifica corretamente 99.7063 %			
		а	b ←	 classified as 	а	b ·	← classified as	
		105702	16	a = ACC	72271	370	a = ACC	
	С	17	8665	b = REJ	476	40593	b = REJ	
		Classifica co	Classifica corretamente 99.9712 %			orretament	e 99.256 %	
		а	b ←	 classified as 	а	b	← classified as	
	Α	104890	828	a = ACC	71799	842	a = ACC	
	A	2463	6219	b = REJ	1690	39379	b = REJ	
		Classifica corretamente 97.1233 %			Classifica corretamente 97.7733 %			
/		а		 classified as 	а	b	← classified as	
	В	105528	190	a = ACC	71845 🗆	796	a = ACC	
BA		549	8133	b = REJ	1232	39837	b = REJ	
=		Classifica corretamente 99.354 %			Classifica co	orretament	e 98.2165 %	
	С	а		 classified as 	а		← classified as	
		105656	62	a = ACC	71859	782	a = ACC	
		313	8369	b = REJ	1278	39791	b = REJ	
		Classifica corretamente 99.6722 %		Classifica corretamente 98.1884 %				
		а		 classified as 	а		← classified as	
	Α	105677	41	a = ACC	71716	925	a = ACC	
		276	8406	b = REJ	651		b = REJ	
		Classifica corretamente 99.7229 %			Classifica corretamente 98.614 %			
0		а		_ classified as	а		← classified as	
MPL 50	В	105670	48	a = ACC	71934	707	a = ACC	
		33	8649	b = REJ	580	40489	b = REJ	
		Classifica corretamente 99.9292 %		Classifica co				
	С	а		_	а		← classified as	
				assified□as	72230	411	a = ACC	
		105689	29	a = ACC	907	40162	b = REJ	
		119	8563	b = REJ	Classifica co	orretament	e 98.8409 %	
		Classifica co	rretamente	99.8706 %				

Observa-se que em termos de capacidade de classificação para $ev=A_3$, o melhor classificador foi a árvore de decisão, entretanto, como além da capacidade de classificação é preciso levar em consideração a complexidade do classificador obtido, que no caso das árvores de decisão foi demasiadamente complexo. O segundo melhor resultado para $ev=A_3$ em termos de capacidade de classificação foram as redes neurais, porém se é a simplicidade do classificador for muito mais importante que sua acuraria, o melhor custo benefício seria o IBK-7, que com regra de decisões simples produz resultados satisfatórios.

3 CONCLUSÃO

Este trabalho apresentou o uso de três técnicas de mineração de dados: árvores de decisão, K vizinhos mais próximo (IBK) e rede neural (MPL), para a caracterização de uma política ótima. Durante os desenvolvimento do trabalho foi possível constatar que dependendo do conjunto de dados a ser tratador, do resultado, acurácia e simplicidade da solução desejada, uma técnica se mostra mais apropriada que outra. Verificou-se também a necessidade de um conhecimento profundo da base de dados trabalhada, o que permitiu identificar a necessidade de novos atributos, produzindo-o, retirada de atributos desnecessários.

Para avaliar o real impacto o impacto da eficiência de cada classificador é possível utilizá-los de forma reversa no Processo Markoviano de Decisão que originou a política de controle estudada, fixando a política de controle de cada classificador e calculando as métricas de desempenho do modelo, podendo assim compará-las com as métricas da política ótima. Ficando assim, a sugestão para trabalho futuros.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] IEEE 802.16e Working Group, 2005, IEEE 802.16-2005 (Revisão do IEEE 802.16-2004): IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems., IEEE Press.
- [2] Leal, C. F. Modelo Markoviano para Alocação Dinâmica de Recursos e Controle de Admissão de Conexão em Redes IEEE 802.16, in 30° Iberian Latin American Congress on Computational Methods in Engineering, 2009
- [3] Puterman, M. L. Markov Decision Processes. New York:Wiley, 1994.
- [4] WEKA The University of Waikato. Disponível em: http://www.cs.waikato.ac.nz/ml/weka/