

1

An Approach to Model-Driven Architecture applied to
Hybrid Systems

Alessandro Gerlinger Romero 1 and Mauricio Gonçalves Vieira Ferreira2
National Institute for Space Research (INPE), São José dos Campos, São Paulo, 12227-010, Brazil

Hybrid systems are characterized by a composition of discrete and continuous dynamics.
In particular, the system has a continuous evolution and occasional jumps. The jumps are
caused either by controllable, uncontrollable external events or by its continuous evolution.
The continuous evolution and these jumps in control loops are the origins from the most
stringent real-time demands. With the necessity to launch more satellites, Brazilian National
Institute for Space Research (INPE) has been carrying out research on modeling and
verifying hybrid systems, of which its main focus is to obtain a better balance between
dependability, schedule, and cost. We are attempting to use Object Management Group
(OMG) specifications to model discrete events. We are focusing mainly in Modelica (with
some degree of Scicoslab) to model continuous dynamics. Another concern addressed by
this, INPE, research is to be independent from commercial tools, establishing itself on open
source software. This paper presents an approach to implement Model-Driven Architecture
in hybrid systems based on vendor neutral specifications. It shows how the models are
defined, traced and used, as well as a set of tools for this. SysML (Systems Modeling
Language), and MARTE (Modeling and Analysis of Real-Time Embedded Systems) allowed
us to define a Computation Independent Model focused mainly on high-level structure and
behavior (state oriented). At the end, a case study is presented (inverted pendulum). From
this case study, we have concluded that the proposed approach can complement uncovered
topics in current research applied to hybrid systems development and maintenance.

I. Introduction
YBRID systems are in all kinds of devices from cars up to spaceships. They are systems characterized by
continuous dynamics and occasional jumps in these dynamics. The jumps are caused either by controllable,

uncontrollable external events or its continuous evolution. The continuous evolution and these jumps in control
loops are the origins from the most stringent real-time demands. These real-time demands are one of the reasons that
hybrid systems usually require a high level of safety.

Usually, they are dedicated to manage the execution of a process or object of the physical world. This type of
system consists of three main activities: measuring - related to sensors; command synthesis - related to a processing
unit; and information output - related to actuators. Frequently, actuators are transducers that convert electricity into
mechanical energy. Indeed, it is a commonplace that a hybrid system is a mechatronic system.

According Thramboulidis (2010), the traditional development process is wholly inappropriate for the
development of mechatronic systems. Shah et al. (2010) emphasize that considerable research has been done for the
automation of software development through UML although little effort has been focused on the model-based
engineering of entire systems, including both software and hardware. Nonetheless, Model-Driven Architecture
(MDA) is not a new approach in software engineering even though it remains far from being commonly used on
projects in real systems (Giese et al., 2010).

Dickerson and Mavris (2009) explain that separation of problem specification from the solution is accomplished
by the logical separation of the Computation Independent Model (CIM) and Platform Independent Model (PIM) in
MDA. However, Dickerson and Mavris (2009) state that relationships between the concepts and terminology of

1 Doctoral student of course Space Engineering and Technology-ETE, Option Engineering and Management of
Space Systems-CSE at INPE, Av. dos Astronautas, 1758, building CCS, São José dos Campos, 12227-010, Brazil,
romgerale@yahoo.com.br
2 Doctor Engineer/Researcher, CRC (Satellite Tracking and Control Center), Av. dos Astronautas, 1758, building
CCS, São José dos Campos, 12227-010, Brazil, mauricio@ccs.inpe.br

H

2

systems engineering and MDA have not been firmly established, much less agreed upon by the software and
systems engineering communities.

In this paper, we present an approach to MDA (OMG, 2003) applied to hybrid systems. We explore two of the
three models defined by MDA in systems engineering: CIM and PIM. In addition, we place emphasis on two
different design domains typically involved in the development of hybrid systems. The first domain is the systems
engineering approach towards the system design including discrete behavior. The second domain is the analysis of
the continuous dynamic behavior, along with the control system design. Furthermore, a third domain is explored, the
real-time properties required by the system.

For each domain addressed by this paper, there is a vendor neutral specification:
• SysML (OMG, 2010a) is used to define CIM and PIM;
• Modelica (Modelica Association, 2012) is used to simulate analytical models;
• MARTE (UML Profile for Modeling and Analysis of Real-Time Embedded Systems) (OMG, 2011) is

used to collect real-time constraints in CIM and PIM.
SysML and Modelica are connected using draft version of SysML-Modelica Transformation Specification

(OMG, 2010b).
The remainder of this paper is organized as follows. In the next section, related works are presented. Section III

presents our initial approach that emphasizes what responsibilities are allocated to CIM and PIM. In Section IV, a
case study based on inverted pendulum problem is presented and discussed. Finally, conclusions are presented in
Section V.

II. Related Works

Cloutier (Cloutier, 2006) advocates use of MDA in system engineering. According this author, systems

engineers begin modeling business rules and concept of operations (CONOPS) in a CIM. The systems engineer
develops use cases which capture who are the users of the system, what are the uses and capabilities of the system,
and the significant communications between the system and its environment. The systems engineer also begins to
build the domain information model during this phase. CIM is transformed in PIM that has system requirements,
system architecture and high level design.

Advanced Research and Technologies for Embedded Intelligence and Systems (ARTEMIS) (Obermaisser and
Kopetz, 2009) is a coordinated European effort to establish foundations for embedded systems. MARTE and MDA
have selected as basis for real-time modeling in ARTEMIS. These authors use the term conceptual modeling instead
of CIM. According these authors, conceptual modeling is the phase where an abstract behavior and structure models
of the system are designed in order to get understanding of the problem and transfer this understanding to the
developers involved on the system architecture design. PIM is defined in three phases of architecture design: the
application architecture design, platform architecture design and system architecture design, the last being the result
of the System Allocation/Configuration/Refinement phase.

Qamar et al. (2011) use the term conceptual design that, according these authors, is a dynamic phase in terms of
change in design and interaction of designers where initial product synthesis serves as a basis for developing an
abstract function structure and corresponding function principles.

Buckl et al. (2010) focus on real-time embedded systems. They define and explore alternatives for specifying
properties of time. This paper highlights that a modeling language should allow the description of the system
temporal constraints regardless of a specific solution. Furthermore, Buckl et al. (2010) explore and compare the
MARTE (OMG, 2011) with other alternatives for setting properties of time.

Regarding real-time software, Giese et al. (2010) state that the functionality is developed regardless of the
platform and its interfaces with the environment (A/D converters and D/A). Therefore, such models ignore
properties like WCET, hardware features, memory consumption or power. Focusing on the logical order of
execution and data flow, this model allows verification and validation through simulation, using either no plant or a
plant model as environment. The objective of this stage is to run a first proof of concept, verification and validation
of the overall project and its control laws.

Project P (OpenDo, 2012) is a coordinated effort started in late 2011 to support the model-driven engineering of
high-integrity embedded real-time systems. This project is working to provide a framework able to verify the
semantic consistency of systems described using subsets of heterogeneous modeling languages, ranging from
behavioral to architectural languages such as SysML, MARTE and Scicos (SCICOSLAB, 2012).

Hien and Quang (2012) describe CIM using a usecase model, a kind of functional diagram and hybrid automata
to model autopilot systems of ships. Qamar et al. (2011) defines a mechatronic design infrastructure using

3

SysML to establish a domain-independent system model, thus establishing relationships and means for
automated integration with other design models. Qamar et al. (2010) present options to identify and to
represent systems dependencies inside a model, and to connect a system descriptive model with detailed-
design tools. Thramboulidis (2010) proposes an integration of the mechanical, electronic and software systems
though the 3+1 SysML view-model. SysML is used to specify the central view model of the mechatronic system
while the other three views are for the different domains involved. Shaa et al. (2010) presents a framework in which
multiple views can automatically be generated from a common system model defined using SysML.

Schamai et al. (2009) present a graphical Modeling Language (ModelicaML), a UML Profile for Modelica,
which enables an integrated modeling and simulation of system requirements and design (for systems including both
hardware and software). Sjöstedt et al. (2008) shows limitations with SysML parametric diagrams for modeling
dynamic systems and possible ways to overcome this problem.

Finally, Uttamag (2009) models and simulates an inverted pendulum focusing on SysML features.

III. Our initial approach

According to the OMG (OMG, 2003), the goal of MDA is to provide an open, vendor neutral approach to the

challenge of business and technology change. In MDA, a CIM is transformed into a PIM.
CIM focuses on the environment of the system and its requirements. The details of the structure and behavior are

not specified. It plays an important role in reducing the gap between those that are experts about the domain and its
requirements on one hand, and those that are experts of the design of the system that satisfy the domain
requirements, on the other (OMG, 2003).

PIM presents a view of the system independent from the target platform and can be considered a functional
description of the system. A PIM exhibits a specified degree of platform independence so as to be suitable for use
with a number of different platforms of similar type.

Next subsections explore CIM and PIM modeling and simulation. The section IV presents a problem oriented
explanation.

A. CIM
In our initial approach, conceptual modeling is performed through a CIM using SysML.
The term conceptual modeling was allocated from Obermaisser and Kopetz (2009) to CIM.
Systems engineers begin modeling a mission domain where the mission context establishes the communication

between system, its environment, and its users. This communication is accomplished by physical connections
(Flowports) and by interaction with users (Standard ports). Physical connections demand definition of mission
ValueTypes.

Mission context analysis results in Blocks for entities in environment and one Block for the system. In case
studies, one single Block is used for the system under definition in CIM. This is a straightforward alternative to
avoid detailed specification in early phases; and, consequently, to choose an abstract solution while in CIM.
According Dickerson and Mavris (2009), problem specification is performed so that the system can be visualized as
a black-box. Mission structure is defined by Blocks.

Mission usecases describing uses and capabilities of the system are gathered and analyzed based on mission
context and structure. Mission behavior emerges from usecases and is defined by modes in the system. Considering
system as a black-box, these modes are defined by a state machine. Transitions between modes often can require
real-time constraints. HLAM (High-Level Application Modeling) package from MARTE is used to model real-time
constraints gathered in CIM.

Mission requirements and testcases are defined based on previous modeled elements. Eventually, a top level
objective function is defined in CIM to drive evaluation of multiples abstract solutions described by PIMs.

Behind modeling with CIM, there is the following statement: focus on problem, use SysML to start from the
context, analyze interfaces from “outside in” viewpoint, adhere to a top down approach, and as soon as they emerge
gather non-functional properties such as real-time constraints.

B. PIM
In our initial approach, CIM is transformed into PIM manually. PIM is defined using SysML.
The term conceptual design was allocated from Qamar et al. (2011) to PIM.
PIM using SysML contains a complete picture of the system from a higher abstraction level viewpoint. PIM is

the descriptive system model, defined by OMG (OMG, 2010b) as a model that is used to capture descriptions of a

4

systems or concepts generally in terms of their features and relationships. It captures multiple aspects of the system,
including its functionality, inputs/outputs and control flows, structural compositions and interconnections, and
traceability to its mission and system requirements. It is a common model for different domain experts to define and
specify the system.

In this approach, each PIM is coupled with an abstract solution. For instance, section IV shows a PIM using an
inverted pendulum as abstract solution to mission requirements defined in CIM StabilizedRod but others PIMs can
be modeled and evaluated as: double inverted pendulum, and a rod fixed to a cart. For each PIM, systems
requirements tend to be different. Furthermore, each PIM exhibits a degree of platform independence; e.g., the rod
can have one meter or one centimeter, controller can be implemented using software or an ASIC (Application-
Specific Integrated Circuit), control laws can be designed using classic or modern control, etc…

PIM refines structure through decomposition of CIM Block system. Each Block of system is defined but we
avoid deep diving into internal details. Every environment and user communication is refined, and also
communication between internal Blocks of system. Also PIM refines behavior. It is common to evaluate required
frequency for sensors and actuators according control design. These real-time constraints are modeled using
MARTE – HRM (Hardware Resource Modeling).

All mission requirements must be satisfied by, at least, one element in PIM. System usecases and requirements
are gathered and analyzed starting from structure and behavior in PIM and whole CIM. Testcases are derived from
system requirements. At this point, we have system structure, system behavior, system usecases, system testcases,
and system requirements.

System descriptive model can be defined considering discrete behavior simulation. More information about PIM
modeling and simulation using OMG specifications can be found in Romero (2010).

However, system requirements analysis and design need many different engineering analyses to evaluate the
extent to which the system can satisfy its system performance, physical, reliability, maintainability, and cost
requirements (OMG, 2010b). Engineering analysis is applied to evaluate critical system parameters.

As it was stated by Shah et al. (2010), the development of embedded systems requires more than one single
language, such as UML or SysML, to effectively capture all of the needed information. On the other hand, creating
models at different abstraction levels is necessary to unleash the hidden complexity present inside the system which
is otherwise not visible while modeling at a single abstraction level (Qamar et al., 2010). Nevertheless, by adding
abstraction levels, an integration issue emerges, where different tools are used to perform simulation and analysis.
These tools have to explicitly capture the sub-system design requirements broken down from the mission and
systems requirements.

A part of this integration issue can be addressed by SysML4Modelica transformation specification (OMG,
2010b). This specification defines stereotypes used to create an analytical representation from the system structure
of the PIM, so this analytical model is transformed to Modelica programs, which can then be simulated. Results
collected from simulation feedback system descriptive model.

Only Blocks and Internal Block Diagrams are used in the SysML4Modelica profile (OMG, 2010b) because
complexity inherent on parametric diagrams can often be abstracted from the system descriptive model. This is in
accordance with Qamar et al. (2010), which argue that in the long run, it is better to define only input and output
parameters in SysML descriptive models. In this paper, equations are modeled in the analytical model according
SySML4Modeliva profile.

Modelica can be combined with Scicoslab (SCICOSLAB, 2012) using scicos Modelica Generic Block 2 (Naja
and Nikoukhah, 2006). This gives to our initial approach a very flexible alternative to simulate analytical models
defined in PIM.

In conclusion, our initial approach generates a PIM defined by system descriptive model using SysML. This
system descriptive model has high level structure and discrete behavior, non-functional constraints (real-time
constraints defined by MARTE in this paper), usecases, testcases, and requirements. Analytical models for
continuous dynamic behavior, along with the control system design, are transformed from SysML to Modelica
programs. Scicos models can use Modelica programs to enhance simulation flexibility. Analytical models help to
improve our understanding of the system requirements.

It is undesirable to get into too much detail in first level PIM, choosing a concrete solution. The first level PIM
should remain as much as possible platform independent. Another PIM can be refined to explore the next lower
level of abstraction.

When modeling PIM we consider the following: focus on abstract solution, use SysML to refine CIM
introducing hierarchy in a system descriptive model, analyze interfaces from “outside in” viewpoint even between
internal components, and simulate analytical models to evolve system requirements using multi-view modeling.

5

IV. Case Study
A case study considering the generalized version of the inverted pendulum’s problem was developed to evaluate

our initial approach. Specifications and models discussed above were applied to a mission called “StabilizedRod”.
We have chosen StabilizedRod to concentrate on gathering and analyzing mission requirements, and not on a
particular abstract solution. This has allowed us to practice this main concept behind MDA and our initial approach
presented above.

Indeed, the abstract solution was defined as an inverted pendulum. The inverted pendulum is a model of the
attitude control for satellite launch vehicles at its departure. The objective of the attitude control problem is to keep
the vehicle in a vertical position. The uniqueness of the inverted pendulum, due to its natural instability, provides
various research areas: systems, control, electronics, and software. Furthermore, the inverted pendulum is a classic
hybrid system, since it is composed of continuous dynamics (stabilization of the pendulum in a vertical axis) and
discrete logics (mode management).

We manipulated the classical inverted pendulum to put it in an industrial device. Case study started from one
stakeholder requirement:

• An operator can use a device that must move a rod to right and to left.

A. CIM - StabilizedRod
As it was stated previously, CIM is a model, which shows the system in the environment where it will operate.

Consequently, the CIM modeling starts representing mission context to StabilizedRod. Figure 1 shows a block
definition diagram to mission context after iterations.

Figure 1. StabilizedRod mission context.

In our initial approach, mission context is part of domain modeling together with mission ValueTypes, mission

structure and mission behavior. Mission ValueTypes is very important because it defines characteristics from flow
ports. Figure 1 shows flow ports, and it ValueTypes. A standard port, defined by an interface called
OperatorInterface, was modeled in mission behavior. This standard port represents how Operator actor gives and
receives stimulus from StabilizedRod.

6

These elements were expressed
in an internal block definition
diagram showing its connections.
This diagram highlighted that
using standard port
OperatorInterface an Operator
interacted with StabilizedRod.
These stimuli and how
StabilizedRod responded was
modeled using a state machine
diagram showed in Fig. 2. This
state machine defines
StabilizedRod modes. Mode is one
of the discrete parts of the system.
All these modes were allocated to
the StabilizedRod in CIM. At this level of abstraction, the StabilizedRod is the only element that represents the
system.

Usecases were developed to analyze CONOPS and manufacturing; iteratively, comprehension about mission
requirements became more and more clear.

During analysis of Adjust horizontal position mission usecase, it
was gathered that when an operator requests to stop or move the
StabilizedRod, it should respond in a maximum of 100 milliseconds.
This non-functional property has modeled using MARTE HLAM.
As show in Fig. 3, the operation horizontalMovement in
OperatorInterface was stereotyped using rtFeature and its rtSpecification specifies arrival pattern as aperiodic,
deadline as 100 milliseconds and as a hard deadline.

At this point, part of the requirements and related elements were able to be expressed using the requirements
diagram showed in Fig. 4. A requirement is copied to operation package, and then modeled using decomposition and
derivation. Usecases, actors and blocks were associated to it using refine and trace relationships.

A rationale related to NormalCondition requirement is defined; in fact, it is specified in detail to be used in
analytical continuous models.

A testcase responsible to verify the requirements related to the rod’s horizontal movement was depicted showing
that mission test cases were defined.

Figure 4. StabilizedRod mission requirements - operation.

Figure 2. StabilizedRod modes.

Figure 3. Real-time definition in CIM.

7

The modeled CIM had views that conforms viewpoints. It was used to group concerns that were dispersed in
model. CIM modeled had three viewpoints: CONOPS, Manufacturing, and Real-time. The CIM model had five
main packages: Mission Requirements, Mission Usecases, Mission Domain, Mission Verification and Views.

Using the above constructions all mission requirements are gathered, analyzed and recorded in a model. This
model did not define a particular abstract solution. This allows evaluation of a variety of abstract solutions that
satisfies these mission requirements.

B. PIM – StabilizedRod as an Inverted Pendulum
In this paper, the selected abstract solution to mission requirements is an inverted pendulum but a rod fixed to a

cart or a double inverted pendulum are valid abstract solutions. Multiples abstract solutions can also be described,
each one by one PIM, and evaluated to yield the option that offers better results on top level objective function
defined in CIM. In this paper, inverted pendulum was chosen to enable engineering analysis using a well known
problem.

The transformation from CIM to PIM was performed manually in this paper.
Now that CIM has defined mission requirements and domain, PIM modeling begins gathering and analyzing

system structure, considering the mission context defined in CIM. All definitions in PIM must be a refinement from
the mission modeling, e.g. the StabilizedRod must have two input flow ports defined in mission context of CIM.

Figure 5 shows the first block definition diagram for system structure in PIM.

Figure 5. StabilizedRod structure.

As shown in Fig. 5, system structure was decomposed using hierarchy.
The mechanical domain was represented by MechanicalInvertedPendulum, and the electrical domain is

represented by ElectricalHardware. ElectricalHardware has two special blocks: (1) Sensor stereotyped with
MARTE HRM hWSensor; (2) Actuator stereotyped with MARTE HRM hWActuator. These blocks are responsible
for transforming a mechanical movement into an electrical signal, or vice-versa. Each block has an A/D converter or
a D/A converter because it is assumed that the Controller, and its components, works with digital signals.
Furthermore, ElectricalHardware transforms an electrical signal exchanged by flow ports to standard ports. In this
PIM, the Controller can be implemented with multiple alternatives such as: ASIC, FPGA (Field-Programmable Gate
Array), microcontrollers or digital computer.

Interfaces were defined using SysML Interface for standard ports and SysML FlowSpecification to flow ports,
which are not based in atomic flow ports.

MechanicalInvertedPendulum shows four value properties that have no default value, these parameters are
subject of engineering analysis. Others value properties were also defined but they were not relevant for this paper.

Figure 6 presents the internal block definition diagram for the StabilizedRod. It is possible to notice that the
Sensor and the Actuator allow communication from the Controller (based on digital signals) to mechanical

8

components. This reflects the “outside in” approach, as mentioned earlier, where interfaces to other components are
modeled first.

The internal block definition for the Controller defines how it uses signals collected from Sensor to send to the
ModeManager, and, eventually, getting signals generated by the ModeManager redirected to the Actuator.
ModeManager was supplier from allocation of a majority of modes defined in CIM (from Fig. 2 modes: Stopped,
MovingToRight and MovingToLeft), and refined in PIM. It defines reference values to KControler based on current
state variables and mode.

Figure 6. StabilizedRod internal block definition diagram.

System usecases were defined considering system functions. Iteratively, as PIM was modeled understanding

about system requirements became clearer. Table 1 shows part of system requirements. Prefixes used in requirement
id are to indicate level: (MR) Mission Requirement; (SR) System Requirement. Mission requirements were copied
from CIM and decomposed based on the selected abstract solution. System requirements were grouped in PIM using
two categories: product system requirements, and process system requirements.

Table 1. StabilizedRod part of system requirements.

Furthermore, starting from system structure and behavior, engineering analysis is applied to evaluate critical

system parameters. Engineering analysis is a critical aspect of systems engineering.
As it was stated in our initial approach, it was defined blocks in analytical model. These blocks were stereotyped

with SysML4Modelica profile. Therefore, system descriptive blocks were allocated to analytical blocks (stereotyped
with SysML4Modelica). These stereotyped blocks were transformed in Modelica programs then they can be run in a
Modelica environment for simulation purpose. These simulations generate data that is used to refine system
structure, behavior or parameters, and, eventually, system requirements.

Figure 7.a. shows blocks defined to evaluate inverted pendulum dynamics using parameters, controller, and
influence caused by environment according to the requirement and rationale stated in CIM. Each block stereotyped
with ModelicaBlock or ModelicaModel generates one Modelica program that can be run in a Modelica environment.

9

In addition, InvertedPendulumBlock and ControlledInvertedPendulum defined simulation parameters. ValueTypes
defined in the mission domain are used by value properties from blocks in analytical model; moreover, each one was
stereotyped with ModelicaValueProperty indicating that it was a parameter. Each flow port was stereotyped with
ModelicaPort defining its causality. Inverted pendulum dynamics evaluation was performed without use of
Modelica Standard Library. Therefore, every equation was defined in each block with a constraints stereotyped with
ModelicaEquation.

Figure 7. (a) Block definition diagram for analytical elements using SysML4Modelica; (b) Internal block

definition diagram for these elements.

Figure 7.b shows internal block definition diagram for ControlledInvertedPendulum. These classes were

transformed into Modelica programs; as a result, Fig. 8.a shows generated Modelica program for
ControlledInvertedPendulum. A series of simulations was performed using these Modelica programs. Figure 8.b
shows one simulation result for ControlledInvertedPendulum using initial theta as 0.1 rad. ModeManager could be
modeled using Modelica Standard Library StateGraph but we chose to use Scicoslab to prototype this block.

(a)

(b)
Figure 8. (a) Modelica program for ControledInvertedPendulum (b) Simulation result for

ControlledInvertedPendulum.

10

A similar process was performed to generate a scicos analytical model but without a specific profile like
SysML4Modelica. Scicos was used to prototype ModeManager using TCL/TK; in addition, this prototype had
horizontalMovement push button so it was possible to simulate system response to mode’s change triggered by an
Operator still in PIM. InvertedPendulumBlock defined using Modelica was reused with little modification to
integrate into scicos model. Figure 9.a shows scicos model where: RandomGenerator scicos block replaced
Modelica program EnvironmentDisturbance; and, one constant and one MATMUL scicos block replaced Modelica
program ControllerBlock. Figure 9.b shows a simulation result for the scicos model. The button labeled as
“ChangeMode” simulates PushButton.

 (a)

(b)
Figure 9. (a) Scicos model for ScicosControlledInvertedPendulum; (b) Simulation result for

ScicosControlledInvertedPendulum.

These analytical blocks where allocated from descriptive model according Table 2.

Table 2. Allocation from descriptive elements to analytical elements.

11

C. Discussion
The case study shows us that MDA and system engineering can be conciliated in an elegant way through

SysML.
We concluded that CIM encompasses the term conceptual modeling that is sometimes called requirements

analysis, in context of hybrid systems. In fact, CIM has an abstract behavior and structure that are designed in order
to get understanding of the problem (Obermaisser and Kopetz, 2009). Dickerson and Mavris (2009) complement
that problem specification is accomplished in CIM. Therefore, CIM is focused in problem space, and it is generated
by mission requirements gathering and analysis process. In our case studies, we observed that this strong separation
from problem space and abstract solution space is very valuable, as it can help to avoid mistakes that often occur
when we go to abstract or concrete solution quickly.

We concluded that PIM encompasses the term conceptual design, in context of hybrid systems. In fact, Qamar et
al. 2011 states conceptual design as a dynamic phase in terms of change in design and interaction of designers,
where initial product synthesis serves as a basis for developing an abstract function structure and corresponding
function principles. The first level PIM has the initial system architecture and it is refined iteratively henceforth. As
it was stated in the case study, PIM represents an abstract solution. We stated some didactical examples about
different abstract solutions in previous sections but we have used this rule to detect that a separated abstract solution
is needed: when to accommodate a new abstract solution is required changes in system descriptive model.

The first level PIM is constrained by CIM, and constraint next lower level of abstraction. This PIM can be
derived in others domains not explored in this paper using techniques proposed in literature (Shah et al., 2010)
(Qamar et al., 2011).

In the case study, we illustrated a simple use of MARTE in CIM but this use can be extrapolated to other non-
functional properties in CIM and PIM. In addition, other metrics can be described and evaluated; for instance,
CONOPS soft real-time deadlines derived from system requirements such as: repair time described as a normal
distribution with mean two days and standard deviation one day.

Our initial approach is based on vendor neutral specification, so it can be used with multiples tools. The
presented case study is defined using these tools:

• Topcased 5.2 (TOPCASED, 2012) and Papyrus 0.8.2 (CEA, 2012) to develop all models;
• OpenModelica 1.8.1 (OPENMODELICA, 2012) to simulate Modelica programs;
• Scicoslab 4.4.1 (SCICOSLAB, 2012) to define and simulate scicos models.

Finally, we briefly compare the presented case study with two others in literature. We emphasized items where
our initial approach can complement previous researches:

• Uttamang (2009) prefers to focus on SysML features. Nonetheless, he does not emphasize the separation
from problem and solution space. At the same level, requirements were gathered, analyzed and
documented, structure was defined in an intermediary level, and, some parts of structure were allocated
to software.

• Qamar et al. (2011) starts from conceptual design without a previous conceptual modeling. Therefore,
traceability and reuse of conceptual domain could be lost.

V. Conclusion
With the necessity to launch more satellites, Brazilian National Institute for Space Research (INPE) have been

carrying research about modeling and verifying hybrid systems, the main focus is to obtain a better balance between
dependability, schedule, and cost. As it was stated by Cloutier (2006), MDA is a key initiative to reduce cost while it
can increase dependability.

As it was stated before, we are attempting to be vendor independent using vendor neutral specifications and open
source tools. Therefore, this paper presented an approach to implement Model-Driven Architecture in hybrid
systems based on vendor neutral specifications. It shows how models are defined, traced and used, as well as a set of
open source tools for this.

Our initial approach contributes to conciliate system engineering and MDA covering topics not addressed by
previous known researches. Also it presents a feasible complement to recent researches (Thramboulidis, 2010)
(Shah et al., 2010) (Qamar et al., 2010) (Qamar et al., 2011) on mechatronic systems, a special type of hybrid
system. However, it is important to highlight that the current proposal can be applied towards hybrid systems. These
are first results from our work so we do not intent to prescribe a process or even a method. We believe that the major
contribution is related with CIM scope and use definition.

Future work targets: exploring CIM modeling, refining approach with discrete simulation in CIM and PIM
concurrently to continuous simulation; refining non-functional properties analysis and simulation; SysML testcase

12

generation based on CIM; evaluation of automatic transformations using OMG MOF QVT or Triple Graph
Grammars (TGG); evaluation about how patterns can be useful in refinements of our initial approach.

References
Buckl, C.; Gaponova, I.; Geisenger, M.; Knoll, A.; Lee, E. A. (2010). Model-Based Specification of Timing Requirements. In

Proceedings… EMSOFT 2010 Proceedings of the tenth ACM international conference on Embedded software.
CEA (2012). Papyrus site. Available at: <http://papyrusuml.org>. Accessed on: 23 April 2012.
Cloutier, R. (2006). MDA for systems engineering – why should we care? USA: 2006. 10 p. Available at:

<http://www.calimar.com/Papers/Model%20Driven%20Architecture%20for%20SE-Why%20Care.pdf>. Accessed on: 17 April
2012.

Dickerson, C.E.; Mavris, D.N. (2009). Architecture and Principles of Systems Engineering (CRC Complex and Enterprise
Systems Engineering). Auerbach Publications. ISBN 978-1-420-07253-2

Giese, H.; Karsai, G.; Lee, E.A.; Rumpe, B.; Schätz, B. (2010). Model-Based Engineering of Embedded Real-Time Systems.
International Dagstuhl Workshop, Dagstuhl Castle, Germany, November 4-9, 2007. ISBN 978-3-642-16276-3

Hien, N. V.; Quang, V. D. (2012). A realization model to develop the autopilot system of ships by specializing MDA.
Vietnam Journal of Mechanics, VAST, Vol. 34, No. 1 (2012), pp. 55 – 65

MODELICA Association. (2012). Modelica Language Specification: Version 3.2R1. Available at:
<https://www.modelica.org/news_items/documents/ModelicaSpec32Revision1.pdf> Accessed on: 17 April 2012.

Naja, M.; Nikoukhah, R. (2006). Modeling and simulation of differential equations in Scicos. In proceedings…The Modelica
Association Modelica 2006, September 4th – 5th

Obermaisser, R.; Kopetz, H. (2009). Genesys – A candidate for an ARTEMIS Cross-Domain Reference Architecture for
Embedded Systems. 2009. Available at: <http://www.genesys-platform.eu/genesys_book.pdf> Accessed on: 17 May 2011.

OBJECT MANAGEMENT GROUP (OMG) (2003). Model-Driven Architecture. USA: OMG, 2003. 62 p. Available at:
<http://www.omg.org/mda>. Accessed on: 17 May 2011.

OBJECT MANAGEMENT GROUP (OMG) (2010a). Systems Modeling Language SysML: Version 1.2. USA: OMG, 2010.
260 p. Available at: < http://www.omg.org/spec/SysML/1.2/PDF >. Accessed on: 17 April 2012.

OBJECT MANAGEMENT GROUP (OMG) (2010b). SysML-Modelica Transformation Specification Draft. USA: OMG,
2010. 101 p. Available at: <http://www.omgwiki.org/OMGSysML/lib/exe/fetch.php?id=sysml-
modelica%3Asysml_and_modelica_integration&cache=cache&media=sysml-modelica:sysml-modelica_xformspec_v.1.0_2010-
5-10.pdf>. Accessed on: 17 April 2012.

OBJECT MANAGEMENT GROUP (OMG) (2011). UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems: Version 1.1. USA: OMG, 2011. 754 p. Available at: <http://www.omgmarte.org/>. Accessed on: 17 April
2012.

OpenDo (2012). Project P. Available at: <http://www.open-do.org/projects/p/>. Accessed on: 23 April 2012.
OPENMODELICA (2012). OPENMODELICA Site. Available at: <http://www.openmodelica.org/>. Accessed on: 01 April

2012.
Qamar, A., Törngren, M., During, C., Wikander, J. (2010). Integrating multi-domain models for the design and development

of mechatronic systems. In proceedings… 7th Eusec Conference, may 2010. INCOSE, INCOSE.
Qamar, A.; Wikander, J.; During, C. (2011) Designing mechatronic systems: a model integration approach. In proceedings…

International conference on engineering design, ICED11, August, 2011. Technical University of Denmark.
Romero, A. G. (2010). An approach to model-driven architecture applied to space embedded real-time software. Version:

2010-12-13. 203 p. Master dissertation (Space Engineering and Technology-ETE, Option Engineering and Management of Space
Systems-CSE) - National Institute for Space Research (INPE), São José dos Campos, 2010.

Schamai, W.; Fritzson, P.; Paredis, c.; Pop, A. (2009). Towards Unified System Modeling and Simulation with ModelicaML:
Modeling of Executable Behavior Using Graphical Notations. Proceedings of the 7th International Modelica Conference, Como,
Italy. September 20-22, 2009.

SCICOSLAB (2012). SCICOSLAB Site. Available at: <http://www.scicoslab.org/>. Accessed on: 01 April 2012.
Shah A. A.; Kerzhner A. A.; Shaefer D.; Paredis C. J. J. (2010). Multi-View Modeling to Support Embedded Systems

Engineering in SysML. Lecture Notes in Computer Science, Graph Transformations and Model-Driven Engineering, 2010,
Volume 5765/2010, pp 580-601.

Sjöstedt, C. J.; Chen, D. J.; Cuenot, P.; Frey, P.; Johansson, R.; Lönn, H.; Servat, D.; Törngren, M. (2008). Developing
Dependable Automotive Embedded Systems Using the EAST ADL; Representing Continuous Time Systems in SysML. In
Proceedings of the 1st International Workshop on Equation-Based Object-Oriented Languages and Tools. Berlin, Germany,
2008.

Thramboulidis, K. (2010). The 3 + 1 SysML View-Model in Model Integrated Mechatronics. Journal of Software
Engineering and Applications, Vol. 3, No. 2, 2010, pp. 109-118.

TOPCASED (2012). TOPCASED Site. Available at: <http://www.topcased.org>. Accessed on: 01 April 2012.
Uttamang, K. (2009). Design of Inverted pendulum System using SysML. No Magic Inc. Available at: <

http://training.nomagic.com/index.php?option=com_docman&task=cat_view&gid=114&limit=20&limitstart=0&order=hits&dir
=DESC&Itemid=72> Accessed on: 21 April 2012.

