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ABSTRACT 

 

Recent technological advances in geospatial data gathering have created 
massive data sets with better spatial and temporal resolution than ever. These 
large data sets have motivated a challenge for Geoinformatics. We need 
models that represent spatiotemporal data sets from different areas and that 
lead to good quality software. Many existing spatiotemporal data models 
represent how objects and fields evolve over time. However, to properly capture 
changes, it is also necessary to describe events. Events are individual 
happenings with definite beginnings and ends. As a contribution to this 
research, this thesis proposes a model for spatiotemporal data, using an 
algebraic specification. Algebra gives formal specifications at a high-level 
abstraction, independently of programming languages. This helps to develop 
interoperable, reliable and expressive applications. The presented algebra is 
extensible, specifying data types as building blocks for other types. Three data 
types are defined as abstractions built on observations: time series, trajectory, 
and coverage. Using these types, we can construct objects and events. The 
algebra represents events explicitly, besides objects and fields. The proposed 
data types and functions can model and capture changes in many areas, 
including location-based services, public health, and environmental and natural 
disaster monitoring. 
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UMA ÁLGEBRA PARA DADOS ESPAÇO-TEMPORAIS: DE OBSERVA ÇÕES 

A EVENTOS 

 

RESUMO 

Recentes avanços tecnológicos na aquisição de dados geográficos têm gerado 
uma grande quantidade de informação com melhores resoluções espaciais e 
temporais do que nunca. Esse grande conjunto de dados espaço-temporais 
tem motivado um desafio para a Geoinformática. Precisamos de modelos que 
representam dados espaço-temporais vindos de diferentes áreas e que 
auxiliam no desenvolvimento de aplicativos de boa qualidade. Muitos modelos 
de dados espaço-temporais existentes representam como objetos e campos 
evoluem ao longo do tempo. Porém, para realmente capturar mudanças, é 
necessário também descrever eventos. Eventos são acontecimentos 
individuais com um definitivo início e fim. Como uma contribuição para essa 
área de pesquisa, esta tese propõe um modelo para dados espaço-temporais, 
usando uma especificação algébrica. Álgebra fornece especificações formais 
em um alto nível de abstração, independentemente de linguagens de 
programação. Isto auxilia no desenvolvimento de aplicações interoperáveis, 
confiáveis e expressivas. A álgebra apresentada é extensível, especificando 
tipos de dados como unidades de construção para outros tipos. Três tipos de 
dados são definidos como abstrações construídas sobre observações: time 
series, trajectory e coverage. Usando esses tipos, nós podemos construir 
object e event. Os tipos e funções propostas podem ser usadas para modelar e 
capturar mudanças em uma grande variedade de aplicações, incluindo serviços 
baseados em localização, saúde pública e monitoramento ambiental e de 
desastres naturais.  
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1 INTRODUCTION 

The age of big geospatial data has come. Mobile phones, social networks and 

GPS (Global Positioning System) devices create useful data for planning better 

cities, capturing human interactions and improving life quality. Geosensors 

allow scientists to observe the world in novel ways. Space agencies worldwide 

plan to launch around 260 Earth observation satellites over the next 15 years. 

We now have large spatiotemporal data sets in many application domains. 

These massive data sets have motivated a challenge for GIScience. We need 

models that represent spatiotemporal data sets from different areas and that 

lead to good quality software.  

In GIScience, static geospatial information is represented following well-

established models and concepts. This includes the dichotomy between object-

based and field-based models. Objects are identifiable geographical units with 

spatial and non-spatial attributes and fields are mapping from spatial locations 

to values of a property (COUCLELIS, 1992; GOODCHILD, 1992; WORBOYS 

and DUCKHAM, 2004). Examples of long-standing concepts are vector and 

raster data structures, topological operators, spatial indexing, and spatial joins 

(EGENHOFER; FRANZOSA, 1991; RIGAUX et al., 2002). Most existing 

geographical information systems (GIS) and spatial database systems are 

grounded in these concepts. However, there is no consensus on how to 

represent spatiotemporal information in computational systems.  

Many existing proposals of spatiotemporal data models focus on representing 

the evolution of objects and fields over time. Pelekis et al. (2004) review some 

of these models and consider that most of them are data-specific; each one 

addresses a class of spatiotemporal data. Some proposals are specific for 

discrete changes in objects (WORBOYS, 1994; YUAN, 1999; HORNSBY; 

EGENHOFER, 2000), others for moving objects (MARK et al., 1999; GÜTING 

et al., 2000; ISO, 2008) and still others for fields or coverage (PEUQUET; 

DUAN, 1995; LIU et al., 2008; OGC, 2006b; MENNIS, 2010). However, many 
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applications need to combine different classes of such data. For example, 

environmental change and natural disaster monitoring have to deal with moving 

objects as well as with fields. Thus, we need spatiotemporal data models as 

generic as possible to support such applications. 

To properly capture changes in the world, representing evolution of objects and 

fields over time is not enough. We also need to represent events and 

relationships between events and objects explicitly (WORBOYS, 2005). Events 

are occurrents (GALTON; MIZOGUCHI, 2009). They are individual happenings 

with definite beginnings and ends. The demand for models that describe events 

has encouraged recent research on spatiotemporal data modeling (WORBOYS; 

HORNSBY, 2004; GALTON, 2004; GALTON; WORBOYS, 2005; HORNSBY; 

COLE, 2007; WORBOYS, 2005).  

1.1. The Proposal 

To meet all these demands, this thesis proposes a data model for 

spatiotemporal information using an algebraic specification. The main 

contribution of this work is an extensible algebra to represent variation of 

objects and fields over time as well as events. The proposed data types and 

functions can model and capture changes in many areas, including location-

based services, public health, and environmental and natural disaster 

monitoring. Algebras describe data types and their operations in a formal way, 

independently of programming languages. By separating specification from 

implementation, they help to develop interoperable, reliable and expressive 

applications (FRANK; KUHN, 1995; FRANK, 1999).  

The presented model starts with observations, revisiting the Sinton’s classical 

work (SINTON, 1978). Recent research draws attention to the importance of 

using observations as a basis for designing geospatial applications. 

Observations are our means to assess spatiotemporal phenomena in the real 

world (KUHN, 2009). Kuhn (2005) argues that: “All information ultimately rests 

on observations, whose semantics is physically grounded in processes and 
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mathematically well understood. Exploiting this foundation to understand the 

semantics of information derived from observations would produce more 

powerful semantic models”.  

The proposed algebra is extensible. It defines data types as building blocks for 

other types. Three data types are defined as abstractions built on observations: 

time series, trajectory, and coverage. Using these types, we can construct 

objects and events. The algebra represents events explicitly, besides objects 

and fields. An event contains information about when and where it occurred and 

its involved objects.  

Since algebraic specifications are language-independent, programmers can 

translate them into software using programming languages of their choice. As 

an example, we have tested and validated the proposed algebra by 

implementing its data types and functions using the C++ language. Two 

modules have been developed on top of the geospatial software library TerraLib 

(CÂMARA et al., 2008).  

1.2. Document Structure 

The content of this document basically comes from three papers: 

(1) Ferreira, K. R.; Câmara, G.; Monteiro, A. M. Towards a Dynamic 

Geospatial Database Model. In: The International Conference on 

Emerging Databases (EDB 2011), 2011, Incheon, Korea. The Third 

International Conference on Emerging Databases (EDB 2011). 

Incheon, Korea, 2011. v. 1. 

(2) Ferreira, K. R.; Vinhas, L.; Monteiro, A. M.; Câmara, G. Moving 

Objects and Spatial Data Sources. (Accepted for publication in 

September 2012 in the journal “Revista Brasileira de Cartografica”). 
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(3) Ferreira, K. R.; Câmara, G.; Monteiro, A. M. An Algebra for 

Spatiotemporal Data: From Observations To Events. (Accepted for 

publication in October 2012 in the journal “Transactions in GIS”). 

Chapter 2 describes some existing spatiotemporal data models and related 

work. It is a summarized and revised version of paper (1) together with the 

related work reported in paper (3).   

Chapter 3 and 4 present the foundations and the algebraic specification of the 

proposed data model. They come from the core of paper (3), extending it with 

new examples of the algebra data types and with useful additional functions.   

Chapter 5 describes how the proposed algebra was tested and validated and 

presents its use examples. This chapter merges some parts of paper (2) with 

some use examples of paper (3). Besides that, this chapter provides details 

about the algebra implementation using the geographical software library 

TerraLib.    

Chapter 6 concludes the work. Annex A and B contain the complete papers (1) 

and (2), respectively. Since the core of paper (3) is entirely presented along this 

thesis, it has not been annexed to this document.    
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2 RELATED WORK  

This chapter presents a review of some existing spatiotemporal data models 

and related work, grouping them in three categories: (1) models that represent 

changes in objects; (2) models that represent evolution of fields over time; and 

(3) models that represent events explicitly.  

2.1. Changes in Objects 

Some authors distinguish instantaneous from continuous changes in objects 

(GALTON, 2004; GÜTING and SCHNEIDER, 2005). Cases of instantaneous 

changes arise mostly due to legal rules that demand an immediate change in an 

object. When a government creates laws that alter municipality limits, changes 

take effect instantaneously. Continuous changes refer to a constant variation 

over time and space. Examples include the movement of cars on a highway and 

of migratory animals. In these cases, the spatial locations of cars and animals 

change continuously over time. 

Galton (2004) points out the difference between bona fide and fiat object 

behavior over time. Bona fide objects are grounded in features of physical 

reality, such as rivers and forest regions. Fiat objects are the artificial products 

of human cognitive acts, such as municipality limits and land parcels. He argues 

that: “Both these objects might change over time, but typically the bona fide 

entity will undergo gradual change whereas the fiat entity undergoes sudden 

change (as a result of the boundary being redrawn from time to time).” He uses 

the terms “gradual” and “sudden” to refer to continuous and instantaneous 

changes, respectively. Güting and Schneider (2005) distinguish discrete from 

continuous changes and argue that classical research on spatiotemporal 

database has focused on discrete changes of all the spatial entities. They 

define moving objects as entities whose spatial location or boundary change 

continuously over time and propose a model to deal with them. 
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Worboys (1994), Yuan (1999) and Hornsby and Egenhofer (2000) propose 

models to represent instantaneous changes in objects. Worboys (1994) 

proposes a unified spatiotemporal object model that defines two data types, ST-

simplexes and ST-complexes, and a set of operations over them, such as ST-

Union, ST-Intersection and ST-Difference. Yuan (1999) defines a three-domain 

model to represent variation of objects over time in relational database systems, 

using normalized tables and a spatial graph. Hornsby and Egenhofer (2000) 

present a model for changes in identifiable objects, expressing operations like 

create, destroy and continue existence. 

2.1.1. Moving Objects and Trajectories 

Recent growth of mobile computing has motivated much work on moving 

objects. Mark et al. (1999), Güting et al. (2000) and ISO (2008) propose models 

that represent continuous changes in the spatial location or extent of objects. 

Mark et al. (1999) define the concept of geospatial lifeline that models an 

individual’s movement as a time-stamped record of locations. Güting et al. 

(2000) define an algebra, data types and operations over them, for moving 

objects. Interest in location-based applications led to an ISO (2008) standard 

that defines a moving feature as an object whose geometry moves as a rigid 

body.  

Based on the algebra proposed by Güting et al. (2000), there are two main 

initiatives of Moving Object Database (MOD) systems, SECONDO (GUTING; 

SCHNEIDER, 2005) and Hermes (PELEKIS et al., 2008). Both extend the SQL 

type system with data types to represent moving objects, such as moving point 

and moving region, and a set of functions to deal with them. SECONDO is an 

extensible database system prototype designed at the FernUniversität in 

Hagen. Hermes is a MOD engine that has been implemented as an Oracle data 

cartridge. 

Spaccapietra et al. (2007) propose a conceptual model for trajectories of 

moving objects. They define trajectories as countable journeys that are 
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semantically segmented by defining a temporal sequence of time intervals when 

the object position changes (moves) and stays fixed (stops). In the data mining 

research area, many algorithms, techniques and languages have been 

proposed to detect patterns of trajectories (LAUBE et al., 2005; BOGORNY et 

al., 2009; SAKR; GÜTING, 2011). 

2.2. Changes in Fields 

To represent fields, Goodchild (1992) proposes two models: sampling and 

interpolation-based field and tessellation-based field. Cova and Goodchild 

(2002) define object-field as a mapping from continuous field to discrete objects. 

Liu et al. (2008) introduce the concept of general field and show how 

conventional fields as well as object-fields can be seen as specializations of it. 

A general field has three dimensions in space plus one dimension in time. 

Efforts on standardization led to the OGC Coverage Standard (OGC, 2006b). 

This standard uses the term coverage to refer to field and defines it as a feature 

that associates positions in a spatial, temporal or spatiotemporal domain to 

attribute values. Although its definition includes spatiotemporal domains, only 

coverages with spatial domains are described in its UML class diagrams. For 

example, the domain of CV_DiscretePointCoverage consists in a set of points 

(GM_Point) and of CV_DiscreteCurveCoverage in a set of curves (GM_Curve).  

Raster is a particular representation of fields based on a regular cell grid. Some 

models are specific to represent changes in raster. Peuquet and Duan (1995) 

propose a model that groups changes in raster cells by time of occurrence. 

Mennis (2010) extends the conventional map algebra to multidimensional 

raster, including two or three dimensions in space and one dimension in time.  

2.3. Events 

Before talking about event representation, the next section introduces what 

event means.  
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2.3.1. Continuants and Occurrents  

According to Galton (2008), in philosophical ontology there is a long-standing 

classification of real world phenomena into continuants and occurrents. 

Continuants (or endurants) are entities whose identities remain constant as they 

undergo change, such as an aircraft and a volcano. They are present as a 

whole at each moment of their existence. Occurrents are entities that happen or 

occur, like a flight and an eruption. They cannot undergo change and only exist 

as a whole across the interval over which they occur.  

In the ontology literature, there is not a universal agreement about what events 

and processes are and how they are classified, continuants or occurrents. 

Some ontologies classify both as occurrents, such as SNAP/SPAN (GRENON; 

SMITH, 2004). Others categorize processes as continuants and events as 

occurrents, such as EXP/HIST (GALTON, 2008). This thesis follows the 

definitions and classifications proposed by Galton and Mizoguchi (2009). An 

event is an occurrent. It is an individual episode with a definite beginning and 

end. An event is a chunk of some process. A process is indefinitely extended in 

time. They are the “stuff” of which events are composed of. 

2.3.2. Event Representation 

Some spatiotemporal data models represent event explicitly. Worboys and 

Hornsby (2004) propose a unified model for objects and events. This model 

defines two kinds of relationships, object-event and event-event, following the 

idea that an event can affect or be associated to one or more objects or events. 

Some examples of object-event relationships are splitting and merger (“the 

event e1 created or destroyed the boundary between objects o1 and o2”). Some 

examples of event-event relationship are initiation and termination (“the 

occurrence of event e1 started or terminated the event e2”). Galton and Worboys 

(2005) refine such relationships for events, states, and processes in dynamic 

networks.  
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Hornsby and Cole (2007) model events associated to moving objects and 

propose an approach to extract patterns of movements from them. An event 

contains its name, the identifier of the object associated to it, the spatial region 

where it occurred, and the instant when it happened. Worboys (2005) presents 

a pure event oriented model, using an algebraic approach. He argues that 

“happenings should be upgraded to an equal status with things in dynamic geo- 

graphic representations” and suggests ways of doing so. 

2.4. Our Approach 

This thesis focuses on defining an extensible algebra that covers the whole 

process to obtain events from raw observations. We represent events explicitly, 

besides the variation of objects and fields over time. This is the main difference 

between our approach and the previous ones described in this chapter. In the 

proposed model, an event contains information about when and where it 

occurred and its involved objects. We do not define types of relationships 

between objects and events neither between events and events. These kinds of 

relationships, as the ones defined by Worboys and Hornsby (2004) and Galton 

and Worboys (2005), can be constructed on top of the presented model.  
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3 FOUNDATIONS  

This chapter presents the base concepts on which the proposed algebra is 

grounded, illustrating them with real examples. It is basically part of the paper 

entitled “An Algebra for Spatiotemporal Data: From Observations To Events” 

that has been accepted for publication in the journal “Transactions in GIS”.  

3.1. Observations 

The proposed model starts with observations, which are our means to assess 

spatiotemporal phenomena in the real world (KUHN, 2009). It uses 

observations as the basis for spatiotemporal modeling, following Sinton’s 

approach (SINTON, 1978). According to Sinton, there is an inherent structure to 

geographical information. For him, an observation should have three attributes: 

space, time and theme (the term “theme” refers to the real-world phenomenon 

or to the object being observed). He argues that we can create generalizations 

of geographical information based on how these attributes (space, time and 

theme) are assessed. In a general way, we observe the world by fixing one 

attribute, controlling another and measuring the other. This means to: (1) keep 

one attribute constant; (2) vary the second attribute in a controlled way; and (3) 

measure the third attribute, taking into consideration the constraints of the 

second attribute. This produces six possible combinations, shown in Figure 1.  
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Figure 3.1 – The six possible combinations of measuring the world proposed by Sinton 
(1978). 

 

This work proposes three data types, time series, coverage and trajectory, to 

represent the combinations (1), (2) and (3) presented in Figure 1:  

1) Fixing location, controlling time, and measuring theme results in a 

time series. 

2) Fixing time, controlling location, and measuring theme results in a 

coverage. 

3) Fixing theme, controlling time, and measuring location results in a 

trajectory. 

We consider that these three data types are necessary and sufficient to model 

spatiotemporal data. All the six combinations presented in Figure 1 can be 

modeled as time series, trajectory or coverage. We do not need additional data 

types to represent the combinations (4), (5) and (6). Combination (4) occurs in 

cases like “measuring arrival times by runners in a marathon”. In this case, it is 

possible to get this type of information by analyzing trajectories of runners, 

without needing an additional data type. As an example of combination (5), 
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Sinton proposes a “vegetation map” that could be obtained by finding out all 

locations of a given land cover type. This is an awkward way to get a land cover 

map. Usually, such maps are obtained by a systematic data collection over a 

given area, resulting in coverages. Sinton suggests “tide tables” as an example 

for combination (6). Since such tables can be obtained from a time series that 

maps times to tide heights at a specific location, an additional type is needless. 

Thus, we consider that only three data types (time series, coverage, and 

trajectory) are necessary to model all possible combinations of theme, time, and 

space.  

3.2. Data Abstractions 

The model defines three data types as abstractions built on observations: time 

series, trajectory, and coverage. Using these types, we can create different 

views on the same observation set, meeting application needs. Consider a set 

of cars equipped with GPS and air pollution sensors. Figure 2 shows tracks of 

three cars in a city during one day. These cars produce an observation set, 

where each one contains a car identity, a time instant, a location and an air 

pollution value. The observations are taken at each hour. 

From this data, we can extract three different kinds of information: (1) how the 

average air pollution varies over time in the city; (2) how the cars move over 

time and space; (3) how pollution varies within the city limits. A typical query in 

the case (1) is “When the average pollution in the city was greater than x for 

more than five hours?”; in the case (2) is “How long did car c01 stay in the south 

region of the city?”; in the case (3) is “What city district had the worst pollution 

index in this day?”. Thus, each application needs different queries and each 

kind of query is suited to a specific data type. Taking the whole city as a fixed 

reference, we can get a time series that represents the variation of the average 

air pollution in the city per hour. Considering each car an individual object, we 

can get a set of trajectories. Fixing the whole day as a time reference and taking 
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all observations at that day, we can create a coverage to represent the air 

pollution variation within the city limits during that day. 

	
  

Figure 3.2 – Different views on observations produced by moving cars. 

 

3.2.1. Time Series 

A time series represents the variation of a property over time. It is obtained from 

observations that measure values at controlled times in a fixed location. Figures 

3(a) and 3(b) show time series used in disease surveillance of dengue in the 

city of Recife, Brazil (REGIS et al., 2009). Dengue is a viral disease transmitted 

by the Aedes aegypti mosquitoes. These mosquitoes lay their eggs in standing 

water; the eggs hatch in hot weather. To assess dengue risk, health services 

use buckets of water as egg traps. Figure 3(a) shows five meteorological 

stations and one temperature time series. A second set of time series 

represents the number of mosquito eggs gathered weekly from egg traps. 

Figure 3(b) presents egg traps (red points) in a district of Recife and a time 

series produced by one of them.  
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(a) (b) 

 
Figure 3.3 – Examples of time series: (a) temperature collected by meteorological 

stations and (b) number of mosquito eggs gathered from one egg trap in a district of 
Recife (Brazil). 

 

3.2.2. Trajectory 

A trajectory represents how locations or boundaries of an object change over 

time. Figures 4 and 5 show examples of trajectories. Figure 4 presents routes of 

ten sea elephants in Antarctica. These animals are monitored by a project 

called MEOP - “Marine Mammal Exploring the Oceans Pole to Pole” 

(http://www.inpe.br/crs/pan/pesquisas/telemetria.php). Figure 5 shows the 

evolution of three city limits in the Brazilian state of Rondonia from 2001 to 

2005. 
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Figure 3.4 – Trajectories of ten sea elephants in Antarctica (red lines).  

 

 

Figure 3.5 – Trajectories of three cities of Rondônia. Left and right picture present 
their boundaries in 2001 and 2005. Legend: blue polygon is “Costa Marques” 

municipality; yellow is “São Francisco do Guaporé” and green is “Seringueiras”. 

 

3.2.3. Coverage 

A coverage represents the variation of a property in a spatial extent at a time. 

For every location within such extent, it is possible to compute a value of this 

property. The variation of air pollution in the city districts during one day (Figure 

2) is represented by a coverage that has the observations obtained by all cars. 

Figure 6 shows examples of coverages, where each one is represented by a 

grid associated to a time. Each coverage is a grid associated to a time. These 

grids contain the rain variation in the state of Rio de Janeiro during the natural 
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disaster of 11 January 2011. Each cell contains an estimated value of 

precipitation, in millimeter per hour (mm/h). 

   
 

Figure 3.6 – Example of coverages: rain in the state of Rio de Janeiro, Brazil, in 11 
January 2011. 

 

A set of observations in an Amazon rainforest lake is shown as red points in 

Figure 7, in four different months. Each observation measures the chlorophyll 

value, among other properties, at a specific location and time. These 

observations are taken to analyze the variation of chlorophyll within the lake 

over time. Usually, a kriging interpolation function is used to estimate values at 

non-observed locations in the lake. In our model, the observations of each 

month are represented as a coverage whose spatial extent is the limits of the 

lake.  
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September, 2003 November, 2003 

  
February, 2004 June, 2004 

 
Figure 3.7 – Example of coverages: variation of chlorophyll in a lake of the Amazon 

rainforest. 

 

3.2.4. Interpolation Functions 

Since observations are discrete by nature, we need to combine them with 

interpolation functions to approximate continuous change. Interpolators 

estimate values at locations in space and moments in time for which there is no 

data (KNOTTERS et al., 2010). Consider two observations of a moving car 

(Figure 2), one at instant 4 and the other at 8, shown in Figure 8 (a). There are 

different methods to estimate car location at the non-observed time 6. Choices 

include a linear interpolator (Figure 8 (b)) or a method that uses a street map as 

a spatial constraint, as in Figure 8 (c). The proposed algebra allows a user to 

choose the most suitable interpolation function for each type instance. 
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Figure 3.8 – Observations of a moving car and different kinds of interpolation functions. 

	
  

3.3. Objects and Events 

The model defines objects as continuants and events as occurrents. An object 

is an identifiable entity whose spatial and non-spatial properties can change 

over time. It is present as a whole at each moment of its existence (GALTON; 

MIZOGUCHI, 2009). Examples of objects are cars (Figure 2), egg traps (Figure 

3), sea elephants (Figure 4), cities (Figure 5) and cities of Rio de Janeiro 

(Figure 6).  An event is an individual episode with a definite beginning and end. 

It only exists as a whole across the interval over which it occurs. An event does 

not change over time. It can involve one or more objects, and an object can be 

involved in any number of events (GALTON; MIZOGUCHI, 2009). The 

proposed model represents events and their involved objects explicitly. We can 

derive events from specific conditions of spatial and non-spatial properties of 

objects. If we know what conditions lead to an event, we can express them 

using operations over the proposed types.   

Consider the following objects and conditions that lead to events. The objects 

are the cities of Angra dos Reis and Recife and a group of sea elephants. A 

‘flood’ event occurs in Angra if “rain is more than 10 mm/hour for more than 5 

hours”. A ‘dengue epidemic’ event happens in Recife when “the average 

temperature is above 30o C for more than a week and more than 50 eggs on 

average were found in the egg traps in the same week”. A ‘meeting of two 

animals’ event occurs when “the minimal distance between two sea elephants is 

shorter than 2 meters”. We can express these conditions through operations on 
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time series, trajectories and coverages, which in turn are built from 

observations. 

The proposed model can also represent events that are not directly derived 

from conditions of objects. Since we have information about when and where an 

event happened, we can represent it using the model. Examples include 

occurrences of crimes or diseases in a city. Figure 9 presents occurrences of 

meningitis in Belo Horizonte city (black points). Each event has a spatial 

location and a time of occurrence. We can also associate each event to the 

district object where it occurred. Figure 10 presents an overview of the 

proposed model. 

 

Figure 3.9 – Events of meningitis in Belo Horizonte city. 
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Figure 3.10 – The proposed data model. 
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4 AN ALGEBRA FOR SPATIOTEMPORAL DATA  

This chapter presents an algebraic specification of the data model described in 

Chapter 3. It is basically part of the paper entitled “An Algebra for 

Spatiotemporal Data: From Observations To Events” that has been accepted for 

publication in the journal “Transactions in GIS”.  

Data types are used to express abstractions. A data type is a set of values and 

a collection of operations on those values that defines their behavior. An 

algebraic specification of a data type T consists in: (1) a syntactic description 

which defines the names, domains, and ranges of the operations of T; and (2) a 

semantic specification which contains a set of axioms in the form of equations 

which relate operations of T to each other (GUTTAG et al, 1978). In our 

specification, functions and type signatures use monospaced font. Type names 

are given in TitleCase and function names in lowercase. Sets are enclosed by 

curly braces and square brackets denote parameterized types. 

The proposed algebra defines data types as building blocks to create other 

types, as shown in Figure 11. It starts defining a set of primitive types: Number, 

Value, Time, Chronon and Geometry. Then, it specifies the Observations and 

Interpolator types that are used to build the spatiotemporal data types. The 

spatiotemporal types are TimeSeries, Trajectory, Coverage and 

CoverageSeries. They implement an abstract interface defined by the 

SpatioTemporal type. Object type is built from Trajectory and TimeSeries. 

Event is created from Object.  
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Figure 4.1 – Data types as building blocks. 

 

4.1. Primitives Data Types 

There are three primitive types: Value, Time and Geometry. Value is a generic 

type to express attribute values that can be an Integer, Float, String or 

Boolean. Typical operations on Value type include less_than, greater_than, 

equal_to, max, and min. The meanings of such operations are evident when 

applied to numerical types. When applied to textual and boolean types, we 

consider the alphabetical order.  

Time is a generic type that can be an Instant or a Period. Our types Time, 

Instant and Period are compliant with TM_GeometricPrimitive, TM_Instant 

and TM_Period defined in the ISO temporal model (ISO, 2002). Operations on 

Time include equals, before, after, begins, ends, during, contains, 

overlaps, meets, overlappedBy, metBy, begunBy and endedBy. They 

compare two time instances based on the temporal relationships of Allen 

(1991). Their behavior when applied to instants and periods is described in the 

ISO standard (ISO, 2002). Chronon is a generic type to represent temporal 

resolutions. 
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Geometry is a generic type compliant with the Geometry type defined in the 

OGC Geometry Model (OGC, 2006a). It can be a Point, Line, Polygon, 

MultiPoint, MultiLineString, or MultiPolygon type. Operations on 

Geometry include equals, touches, disjoint, crosses, within, overlaps, 

contains and intersects, as defined by OGC (2006a). The types are:  

Number:	
  	
   Integer,	
  Float	
  

Value:	
  	
   Number,	
  String	
  and	
  Boolean	
  

Time:	
  	
   Instant,	
  Period	
  

Chronon:	
  	
   Year,	
  Month,	
  Week,	
  Day,	
  Hour,	
  Minute,	
  Second.	
  

Geometry:	
  	
  Point,	
  Line,	
  Polygon,	
  MultiPoint,	
  	
  

MultiLineString,	
  MultiPolygon.	
  

These types and their operations are well-known and have already been 

defined in the adopted standard. We also define a null type, Null, to represent 

invalid values. In what follows, we omit the null type in the function signatures 

for clarity. Functions can return Null types in some cases, as described in the 

axioms. This behavior should be considered when implementing the algebra. 

4.2. Observations  

type:	
  	
  Observations	
  [F:Type,	
  C:Type,	
  M:Type]	
  	
  

operations:	
  	
  

new:	
  	
  {(F,C,M)1,(F,C,M)2,…,(F,C,M)n}	
  →	
  Observations	
  |	
  n>0	
  

	
   reference:	
  Observations	
  →	
  F	
  	
  	
  

	
   positions:	
  Observations	
  →	
  {C1,…,Cn}	
  	
  	
  

	
   measure:	
  Observations	
  x	
  C	
  →	
  M     
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An observation is a tuple of three elements (F,C,M) of any types. The 

Observations type represents a set of observations and has three type 

parameters. Following Sinton (1978), the first type is the fixed reference (F), the 

second is the controlled attribute (C) and the other is the measured attribute (M). 

The constructor new builds an observation set from a set of tuples of types F, C 

and M. Reference returns the value of the fixed attribute. The positions 

function reports the controlled attribute values. Measure returns the observed 

value associated to a given position.   

4.3. Interpolator 

type:	
  	
  Interpolator	
  [F:Type,	
  C:Type,	
  M:Type]	
  

operations:	
  	
  

estimate:	
  Interpolator	
  x	
  Observations[F,C,M]	
  x	
  C	
  →	
  M	
  

The Interpolator type defines a generic interface for interpolation methods. A 

programmer will create concrete implementations of it, one for each 

interpolation method. It has no constructor, since it is an interface to other 

concrete types. The Interpolator type has only a function called estimate. 

This function takes an observation set and a position in space or time of the 

same type of the controlled attribute. Then, it calculates a value (M) valid for that 

position.   

4.4. SpatioTemporal 

type:	
  	
  SpatioTemporal	
  	
  

operations:	
  	
  

	
  	
  	
   observations:	
  SpatioTemporal	
  →	
  Observations	
  	
  

	
   interpolator:	
  SpatioTemporal	
  →	
  Interpolator	
  

	
   begins,	
  ends:	
  SpatioTemporal	
  →	
  Instant	
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boundary:	
  SpatioTemporal	
  →	
  Geometry	
  

after,	
  before,	
  during:	
  SpatioTemporal	
  x	
  Time	
  	
  

→	
  SpatioTemporal	
  

	
   intersection,	
  difference:	
  SpatioTemporal	
  x	
  Geometry	
  	
  

→	
  {st1,…,stn}	
  |	
  st:	
  SpatioTemporal	
  and	
  n≥0	
  

axioms:	
  

	
   st1,st2:	
  SpatioTemporal;	
  t:	
  Time;	
  g:	
  Geometry;	
  

	
   before(st1,begins(st1))	
  =	
  Null	
  	
  

	
   after(st1,ends(st1))	
  =	
  Null	
  

	
   during(before(st1,t),t)	
  =	
  Null	
  

	
   during(after(st1,t),t)	
  =	
  Null	
  

	
   after(before(st1,t),t)	
  =	
  Null	
  	
  

	
   before(after(st1,t),t)	
  =	
  Null	
  

	
   difference(st1,boundary(st1))	
  =	
  ∅	
  

	
   intersection(st1,boundary(st1))	
  =	
  {st1}	
  

	
   within(boundary(st1),g)=	
  TRUE	
  ⇒	
  intersection(st1,g)	
  =	
  {st1}	
  

	
   disjoint(boundary(st1),g)	
  =	
  TRUE	
  ⇒	
  intersection(st1,g)	
  =	
  ∅	
  

	
   intersection(st1,g)	
  =	
  {st2}	
  ⇒	
  difference(st2,g)	
  =	
  ∅	
  

	
   intersection(st1,g)	
  =	
  {st2}	
  ⇒	
  boundary(st2)	
  =	
  g	
  

The	
  SpatioTemporal type provides an abstract interface to the concrete types 

time series, trajectory, and coverage. It contains common operations of these 

three types. These concrete types inherit SpatioTemporal operations and 
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implement them according to their needs, conforming to the axioms above. As 

this type is only a generic interface, it has no instances.  

The spatiotemporal types are built from an observation set and an interpolator. 

The operations observations and interpolator return these two building 

elements. Begins and ends return its initial and final times. Boundary reports its 

spatial extent. After, before and during return a subset of a 

SpatioTemporal instance, whose temporal range is after, before and during a 

given time. Intersection and difference select subsets a SpatioTemporal 

instance, whose geometries intersect and do not intersect, respectively, a given 

geometry. 

4.4.1. Time Series 

type:	
  	
  TimeSeries	
  [G:Geometry,	
  T:Time,	
  V:Value]	
  	
  

	
  inherits	
  SpatioTemporal	
  	
  

operations:	
  	
  

	
   new:	
  Period	
  x	
  Observations[G,T,V]	
  x	
  Interpolator[G,T,V]	
  	
  

	
   	
   	
   →	
  TimeSeries	
  	
  	
  

	
   value:	
  TimeSeries	
  x	
  T	
  →	
  V	
  

	
   min,	
  max:	
  TimeSeries	
  →	
  V	
  

	
   less,	
  greater,	
  equals:	
  TimeSeries	
  x	
  V	
  →	
  {ts1,ts2,…,tsn}	
  	
  

	
   	
   	
   	
   	
   	
   |	
  ts:	
  TimeSeries	
  and	
  n	
  ≥	
  0	
  

axioms:	
  

ts1,ts2:	
  TimeSeries;	
  t1,tn:	
  Time;	
  v:Value;	
  	
  	
  

p:	
  Period;	
  obs:	
  Observations;	
  interp:	
  Interpolator;	
  

ts1=	
  new(p,obs,interp)	
  ⇒	
  begins(ts1)	
  =	
  begin(p)	
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ts1=	
  new(p,obs,interp)	
  ⇒	
  ends(ts1)	
  =	
  end(p)	
  

value(ts1,t1)	
  =	
  	
  

estimate(interpolator(ts1),observations(ts1),t1)	
  

after(t1,ends(ts1))	
  ∨	
  before(t1,begins(ts1))	
  

	
   ⇒	
  value(ts1,t1)	
  =	
  Null	
  

value(after(ts1,t1),t1)	
  =	
  Null	
  

value(before(ts1,t1),t1)	
  =	
  Null	
  

less(ts1,min(ts1))	
  =	
  ∅	
  

greater(ts1,max(ts1))	
  =	
  ∅	
  

equals(ts1,v)	
  =	
  {ts2}	
  ⇒	
  min(ts2)	
  =	
  max(ts2)	
  =	
  v	
  

less(ts1,v)	
  =	
  {ts2}	
  ⇒	
  max(ts2)	
  <	
  v	
  	
  

greater(ts1,v)	
  =	
  {ts2}	
  ⇒	
  min(ts2)	
  >	
  v	
  

boundary(ts1)	
  =	
  reference(observations(ts1))	
  

positions(observations(ts1))={t1,...,tn}	
  ⇒	
  begins(ts1)	
  ≤	
  t1	
  

positions(observations(ts1))={t1,...,tn}	
  ⇒	
  ends(ts1)	
  ≥	
 tn	
  	
  	
  	
  	
  

TimeSeries is parameterized by Geometry (G), Time (T) and Value (V) types. 

New builds a TimeSeries from a temporal range (Period), an observation set 

and an interpolator. These observations have a fixed geometry (G) and 

measured values (V) at controlled times (T). The interpolator estimates values 

(V) at times (T) during the temporal range of the series. Value uses the 

interpolator to provide a value at a given time. If this given time is outside the 

temporal range, value returns Null. All these behaviors are described in the 

axioms. Min	
  and max return its minimum and maximum values. Less, greater 

and equal select subsets of a time series whose values are, respectively, less 
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than, greater than or equal to a given value. It inherits and implements the 

SpatioTemporal operations. For example, boundary returns the fixed 

geometry of its observations, as described in the axioms.  

The temperature measures of Figure 3 (a) can be represented by an 

Observations[Point,	
  Instant,	
  Float] type. The station location (Point) is 

fixed and the temperature (Float) is measured at controlled instants (Instant). 

We can build a TimeSeries[Point,	
   Instant,	
   Float] using these 

observations. The observations of the each traps of Figure 3 (b) map to 

Observations[Point,	
  Period,	
  Integer]. The trap location (Point) is fixed 

and the number of eggs (Integer) is measured at controlled times (Period). 

We can capture the variation of the eggs in the traps as a TimeSeries[Point,	
  

Period,	
  Integer]. 

4.4.2. Trajectory 

type:	
  	
  Trajectory	
  [V:Value,	
  T:Time,	
  G:Geometry]	
  	
  

	
  inherits	
  SpatioTemporal	
  

operations:	
  	
  

	
   new:	
  	
  Period	
  x	
  Observations[V,T,G]	
  x	
  	
  

Interpolator[V,T,G]	
  →	
  Trajectory	
  	
  

value:	
  Trajectory	
  x	
  T	
  →	
  G	
  

axioms:	
  

	
   tj:	
  Trajectory;	
  t1,tn:	
  Time;	
  g:	
  Geometry;	
  

	
   p:	
  Period;	
  obs:	
  Observations;	
  interp:	
  Interpolator;	
  

	
  	
   tj	
  =	
  new(p,obs,interp)	
  ⇒	
  begins(tj)	
  =	
  begin(p)	
  

	
   tj	
  =	
  new(p,obs,interp)	
  ⇒	
  ends(tj)	
  =	
  end(p)	
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   value(tj,t1)	
  =	
  	
  

estimate(interpolator(tj),observations(tj),t1)	
  

	
   after(t1,ends(tj))	
  ∨	
  before(t1,begins(tj))	
  ⇒	
  	
  

value(tj,t1)=Null	
  

	
   value(after(tj,t1),t1)	
  =	
  Null	
  

	
   value(before(tj,t1),t1)	
  =	
  Null	
  

	
   positions(observations(tj))	
  =	
  {t1,...,tn}	
  ⇒	
  begins(tj)	
  ≤	
  t1	
  

	
   positions(observations(tj))	
  =	
  {t1,...,tn}	
  ⇒	
  ends(tj)	
  ≥	
  tn	
  

	
   measure(observations(tj),tn)	
  =	
  g	
  ⇒	
  	
  

within(g,boundary(tj))	
  =	
  TRUE	
   	
  

Trajectory is parameterized by Value (V), Time (T) and Geometry (G) types. 

New constructs a Trajectory from a temporal range, an observation set and an 

interpolator. The observations have a fixed identity (V) and measured 

geometries (G) at controlled times (T). Value uses the interpolator to provide a 

geometry at a given time. When this given time is out of the Trajectory 

temporal range, value returns Null. All these behaviors are described in the 

axioms. It inherits SpatioTemporal operations and implements them according 

to its needs. For example, boundary returns a bounding box that contains all 

measured geometries of a trajectory.  

The observations of each sea elephant of Figure 4 is described as an instance 

of Observations[Integer,	
   Instant,	
   Point]	
   type. The animal identity 

(Integer) is fixed and its location (Point) is measured at controlled times 

(Instant). We can capture this data as an instance of Trajectory[Integer,	
  

Instant,	
   Point]. The observations of each city shown in Figure 5 is 

described by an instance of Observations[String,	
   Period,	
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MultiPolygon]	
   type, where each observation contains the city’s identity 

(String) and a  boundary (MultiPolygon) valid during a period. From these 

observations, we build an instance of a Trajectory[String,	
   Period,	
  

MultiPolygon]	
  which captures the variation of the city’s boundary. During the 

temporal range 2001 and 2012, each city’s trajectory has two observations, one 

valid for period [2001, 2004] and the other for period [2005, 2012]. 

4.4.3. Coverage and Coverage Series 

type:	
  Coverage	
  [T:Time,	
  G:Geometry,	
  V:Value]	
  	
  

	
   	
   	
  inherits	
  SpatioTemporal	
  	
  

operations:	
  	
  

	
   new:	
  	
  Geometry	
  x	
  Observations[T,G,V]	
  x	
  Interpolator[T,G,V]	
  

	
   	
   	
  	
  	
  	
  →	
  Coverage	
  	
  

	
   value:	
  Coverage	
  x	
  G	
  →	
  V	
  

	
   min,	
  max:	
  Coverage	
  →	
  V	
  

	
   less,	
  greater,	
  equals:	
  Coverage	
  x	
  V	
  →	
  Coverage	
  

axioms:	
  

cv1,cv2:	
  Coverage;	
  g:	
  Geometry;	
  v:	
  Value;	
  obs:	
  Observations;	
  	
  

interp:	
  Interpolator;	
  t:	
  Time;	
  	
  

	
   cv1	
  =	
  new(g,obs,interp)	
  ⇒	
  boundary(cv1)	
  =	
  g	
  

	
   begins(cv1)	
  =	
  begin(reference(observations(cv1)))	
  	
  	
  

	
   ends(cv1)	
  =	
  end(reference(observations(cv1)))	
  	
  

	
   value(cv1,g)	
  =	
  estimate(interpolator(cv1),observations(cv1),g)	
  

	
   disjoint(g,boundary(cv1))	
  =	
  TRUE	
  ⇒	
  value(cv1,g)	
  =	
  Null	
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   less(cv1,min(cv1))	
  =	
  Null	
  

	
   greater(cv1,max(cv1))	
  =	
  Null	
  

	
   equals(cv1,v)=cv2	
  ⇒	
  min(cv2)=	
  max(cv2)=	
  v	
  

	
   less(cv1,v)=cv2	
  ⇒	
  max(cv2)<v	
  	
  

	
   greater(cv1,v)=cv2	
  ⇒	
  min(cv2)>v	
  

	
   less(equals(cv1,v),v)	
  =	
  Null	
  

	
   greater(equals(cv1,v),v)	
  =	
  Null	
  

	
   cv2	
  ∈	
  intersection(cv1,g)	
  ⇒	
  boundary(cv2)=	
  g	
  	
  

	
   cv2	
  ∈	
  difference(cv1,g)	
  ⇒	
  boundary(cv2)	
  =	
  boundary(cv1)	
  

Coverage is parameterized by Time (T), Geometry (G) and Value (V). New builds 

a Coverage from three elements: (1) a geometry that defines the coverage 

spatial extent or boundary; (2) an observation set that has a fixed time and 

measured values at controlled geometries; and (3) an interpolator. In most 

cases, the boundary is a Polygon. However, the boundary can be other 

geometry types. For moving cars in a highway, the boundary could be a 

MultiLineString.   

Value provides a value at a given location, using the interpolator. If this given 

location is outside the coverage boundary, Value returns Null. All these 

behaviors are described in the axioms. Min and max return the minimum and 

maximum values. Less, greater and equal select the coverage observations 

whose values are less than, greater than or equal to a given value. They return 

a new coverage built on such selected observations. Coverage inherits and 

implements SpatioTemporal operations. For example, boundary returns the 

coverage’s spatial extent.	
    

type	
  	
  CoverageSeries	
  [G:Geometry,	
  T:Time,	
  CV:Coverage]	
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inherits	
  SpatioTemporal	
  	
  

operations:	
  	
  

	
   new:	
   Period	
  x	
  Observations[G,T,CV]	
  x	
  Interpolator[G,T,CV]

	
   	
   →	
  CoverageSeries	
  	
  	
  	
  	
  

	
   snapshot:	
   CoverageSeries	
  x	
  T	
  →	
  CV	
  	
  

timeseries:	
  CoverageSeries	
  x	
  Point	
  →	
  TimeSeries	
  	
  

axioms:	
  

cs:	
  CoverageSeries;	
  c:	
  Coverage;	
  t1,tn:	
  Time;	
  l:	
  Point;	
  	
  

obs:	
  Observations;	
  interp:	
  Interpolator;	
  p:	
  Period;	
  	
  

cs	
  =	
  new(p,obs,interp)	
  ⇒	
  begins(cs)	
  =	
  begin(p)	
  	
  

cs	
  =	
  new(p,obs,interp)	
  ⇒	
  ends(cs)	
  =	
  end(p)	
  	
  

snapshot(cs,t1)	
  =	
  	
  

estimate(interpolator(cs),observations(cs),t1)	
  

snapshot(after(cs,t1),t1)	
  =	
  Null	
  	
  

	
   snapshot(before(cs,t1),t1)	
  =	
  Null	
  

	
   after(t1,ends(cs))	
  ∨	
  before(t1,begins(cs))	
  ⇒	
  	
  

snapshop(cs,t1)	
  =	
  Null	
  

	
   begins(timeseries(cs,l))	
  =	
  begins(cs)	
  

	
   ends(timeseries(cs,l))	
  =	
  ends(cs)	
  

	
   boundary(cs)	
  =	
  reference(observations(cs))	
  

	
   measure(observations(cs),t1)	
  =	
  c	
  ⇒	
  	
  

boundary(cs)	
  =	
  boundary(c)	
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   measure(observations(cs),t1)	
  =	
  c	
  ⇒	
  begins(c)	
  =	
  begin(t1)	
  

	
   measure(observations(cs),t1)	
  =	
  c	
  ⇒	
  ends(c)	
  =	
  end(t1)	
  

	
   positions(observations(cs))	
  =	
  {t1,...,tn}	
  ⇒	
  begins(cs)	
  ≤	
  t1	
  

	
   positions(observations(cs))	
  =	
  {t1,...,tn}	
  ⇒	
  ends(cs)	
  ≥	
  tn	
  

CoverageSeries	
   is an auxiliary type that represents a time-ordered set of 

coverages that have the same boundary. This type is useful in many 

applications. It is parameterized by Geometry (G), Time (T) and Coverage (CV) 

types. Taking coverages as measured units, we construct a CoverageSeries 

from: (1) a temporal range (Period); (2) an observation set that has a fixed 

boundary (G) and measured coverages (CV) at controlled times (T); and (3) an 

interpolator that estimates coverages at non-observed times. Snapshot uses 

the interpolator to provide a coverage at a given time. If this given time is out of 

the coverage series temporal range, snapshot returns Null. Timeseries 

returns a time series associated to a given location within the coverage series 

boundary. 

Consider the hourly observations of air pollutions of Figure 2 obtained by cars 

moving in the city during one day. We can capture all observations of the same 

hour as an instance of Observations[Period,	
   Point,	
   Float]. These 

observations have a fixed time (Period) with measured air pollution values 

(Float) at controlled locations (Point). There are 24 instances of 

Observations, each leading to a Coverage[Period,	
  Point,	
  Float]. These 

coverages can be grouped in a CoverageSeries[Polygon,	
   Period,	
  

Coverage], producing an hourly coverage set of air pollution in the city in one 

day. In the rain grids of Figure 6, all observations of the same grid are 

represented as an instance of Observations[Period,	
   Point,	
   Float]. 

These observations have a fixed time (Period) and rain values (Float) at 

controlled cell locations (Point). We encapsulate each instance of 
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Observations as a Coverage[Period,	
  Point,	
  Float]. Then, we group all 

coverages from 11 January 2011 as an instance of CoverageSeries[Polygon,	
  

Period,	
  Coverage]. 

Considering the chlorophyll measurement shown in Figure 7, all observations of 

the same month are represented as an instance of Observations[Instant,	
  

Point,	
   Float]. Each observation is associated to the instant when it was 

collected. We encapsulate each instance of Observations as a 

Coverage[Period,	
   Point,	
   Float]. Each coverage is associated to the 

period that represents a month. Then, we group all coverages as an instance of 

CoverageSeries[Polygon,	
  Period,	
  Coverage]. 

4.4.4. Additional Functions  

The proposed signatures for TimeSeries, Trajectory, Coverage and 

CoverageSeries types provide minimal interfaces. From those functions, a 

user can build more complex ones. In this section, we give some examples of 

additional functions.  

Some	
  additional	
  operations	
  for	
  TimeSeries:	
  	
  

min,	
  max,	
  mean,	
  sum,	
  mult:	
  TimeSeries	
  x	
  Chronon	
  →	
  TimeSeries	
  

union:	
  	
  TimeSeries	
  x	
  TimeSeries	
  →	
  TimeSeries	
  

Min, max, mean, sum, and mult aggregate time series values considering a 

given temporal resolution (Chronon) and return a new time series. They 

calculate each value of the new time series by taking the minimum, maximum, 

average, sum or multiplication of all values in the same time resolution. Union 

computes the union between two given time series ts1 and ts2 and returns a 

new one ts3. For each time tn of ts1 and ts2, it gets the observations ob1n of ts1 

and ob2n of ts2 at time tn. If ob1n exists, it uses it to create ts3. If ob1n does not 

exist and ob2n exists, it uses ob2n to create ts3.  
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Some	
  additional	
  operations	
  for	
  Trajectory:	
  	
  

distance:	
   Trajectory	
  x	
  Trajectory	
  →	
  TimeSeries	
  

enters,	
  exits,	
  reaches,	
  leaves:	
  Trajectory	
  x	
  Geometry	
  	
  

→	
  {tj1,…,tjn}	
  |	
  tj:	
  Trajectory	
  and	
  n≥0	
  

speed:	
   	
   Trajectory	
  →	
  TimeSeries	
  

direction:	
  	
   Trajectory	
  →	
  TimeSeries	
  

linearPath:	
  	
   Trajectory	
  →	
  Line	
  

convexhullPath:	
  Trajectory	
  →	
  Polygon	
  

necklacePath:	
  	
   Trajectory	
  →	
  PolygonSet	
  

Distance computes the distance between two trajectories, tj1 and tj2. It returns 

a time series that maps time to the Euclidean distance between both at that 

time. Enters, exits, reaches and leaves select subsets of a trajectory that 

enter, exit, reach or leave a given geometry. They are based on the spatial 

relations between the trajectory geometry tjg and a given geometry g. If tjg is 

disjoint from g at ti and within g at ti+1, the trajectory enters g in period [ti, ti+1]. If 

tjg is within g at ti and disjoint from g at ti+1, it exits g in period [ti, ti+1]. If tjg is 

disjoint at tn and touches at tn+1, it reaches g in period [tn, tn+1]. If tjg is intersects 

at tn and disjoint at tn+1, it leaves g in period [tn, tn+1].     

Speed and direction return the velocity and direction variation over time. 

LinearPath, convexhullPath and necklacePath return trajectory 

approximations, based on the ones defined by Hornsby and Egenhofer (2002). 

LinearPath, convexhullPath and necklacePath are specific to trajectories 

whose G is a Point. Therefore, when we apply them to trajectories whose 

geometries are not points, we consider their centroids. 

Some	
  additional	
  operations	
  for	
  CoverageSeries:	
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min,	
  max,	
  mean,	
  sum,	
  mult:	
  CoverageSeries	
  →	
  TimeSeries	
  

min,	
  max,	
  mean,	
  sum,	
  mult:	
  CoverageSeries	
  x	
  Geometry	
  	
  

→	
  TimeSeries	
  

Min, max,	
  mean,	
  sum	
  and	
  mult aggregate values of a coverage series and 

return a time series. We can define a spatial restriction given a geometry, as 

presented in the second signature. They compute each value of the returned 

time series by taking the minimum, maximum, average, sum and multiplication 

of all values of the coverage series at a specific time. If there is a spatial 

restriction, they consider only the values whose locations intersect the given 

geometry. 

4.5. Object 

type:	
  Object[ID:Value,	
  TS:TimeSeries,	
  TJ:Trajectory]	
  	
  

operations:	
  	
  

	
   new:	
  	
  ID	
  x	
  TS	
  x	
  TJ	
  →	
  Object	
  

	
   id:	
   Object	
  →	
  ID	
  

timeseries:	
  Object	
  →	
  TS	
  

trajectory:	
  Object	
  →	
  TJ	
  

state:	
  Object	
  x	
  Time	
  →	
  (Value,	
  Geometry)	
   	
  

axioms:	
  	
  

	
   o:	
  Object;	
  t:	
  Time;	
  v:	
  Value;	
  g:	
  Geometry;	
  	
  

	
   id(o)	
  =	
  reference(observations(trajectory(o)))	
  

	
   intersects(boundary(trajectory(o)),	
  

boundary(timeseries(o)))	
  =	
  TRUE	
  

	
   begins(trajectory(o))	
  =	
  begins(timeseries(o))	
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   ends(trajectory(o))	
  =	
  ends(timeseries(o))	
  

	
   state(o,t)	
  =	
  	
  

(value(timeseries(o),t),	
  value(trajectory(o),t))	
  	
  

An object is an identifiable entity whose spatial and non-spatial properties can 

change. The Object type is parameterized by its identity type (ID), a 

TimeSeries (TS) that represents the variation of its non-spatial property and a 

Trajectory (TJ) that describes the change of its spatial property. An object can 

have one or more non-spatial properties, but we consider only one in the type 

definition for simplicity. New constructs an Object. Id, timeseries and 

trajectory access the object parts. State returns the state of an object at a 

given time, that is, the values of its spatial and non-spatial properties at that 

time.   

Each car of Figure 2 maps to an Object	
  [Integer,	
  TimeSeries[Polygon,	
  

Period,	
   Float],	
   Trajectory[Integer,	
   Instant,	
   Point]]. Each car’s 

identity is represented by an Integer, its air pollution measures by a 

TimeSeries and its location change by a Trajectory. Each sea elephant of 

Figure 4 maps to an Object[Integer,	
  ∅,	
  Trajectory[Integer,	
  Instant,	
  

Point]], where its identity is represented by an Integer and its location 

variation by a Trajectory. Since the sea elephants do not have non-spatial 

properties, they have no associated time series. Each city of the state of Rio de 

Janeiro in Figure 6 maps to an Object[String,	
   TimeSeries[Polygon,	
  

Instant,	
   Float],	
   Trajectory[String,	
   Period,	
   Polygon]]. The city 

name is its identity (String), the average rain variation is a TimeSeries and its 

boundary variation is a Trajectory. In this case, the Trajectory has a single 

geometry. 

Non-spatial properties of an object can be derived from coverage series. For 

example, the average rain variation within the city limits can be extracted from 

the coverage series presented in Figure 6, using CoverageSeries operations. 
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The next chapter presents a case study that includes this example. Using 

operations over objects, we can answer questions that combine the variation of 

spatial and non-spatial properties like “where are all the cars now and what are 

the pollution indexes associated to them?” and “where were the cars when the 

pollution indexes associated to them were more than x?”. 

4.6. Event 

type:	
  Event	
  [ID:Value,	
  T:Time,	
  G:Geometry]	
  	
  

operations:	
  	
  

	
   new:	
  	
  ID	
  x	
  T	
  x	
  G	
  x	
  {obj1,	
  obj2,...,	
  objn}	
  →	
  Event	
  	
  

	
   	
   	
   	
   |	
  obj:	
  Object	
  and	
  n	
  ≥	
  0	
  	
  	
  

	
   id:	
   Event	
  →	
  ID	
  

	
   time:	
  Event	
  →	
  T	
  

location:	
   Event	
  →	
  G	
  

objects:	
  	
   Event	
  →	
  {obj1,	
  obj2,...,	
  objn}	
  

axioms:	
  	
  

	
   e:	
  Event;	
  o:	
  Object;	
  t:	
  Time;	
  v:	
  Value;	
  g:	
  Geometry;	
  	
  

	
   o	
  ∈	
  objects(e)	
  ∧	
  time(e)	
  =	
  t	
  ⇒	
  state(o,t)	
  ≠	
  Null	
  	
  

	
   o	
  ∈	
  objects(e)	
  ∧	
  location(e)	
  =	
  g	
  	
  

	
   	
   ⇒	
  intersects(boundary(trajectory(o)),	
  g)	
  =	
  TRUE	
  	
  	
  

An event is an individual episode with a definite beginning and end which can 

involve one or more objects. The Event type is parameterized by the types of 

its identity (ID), time (T) and spatial location (G). New constructs an event from 

an identity, a time of occurrence, a geometry that stands for the event’s 

location, and the objects involved in the event. The events of flood, dengue 
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epidemic and animal meeting described in Section 3.3 can be mapped to 

instances of Event[Integer,	
   Period,	
   Polygon]. Each instance has the 

event’s identity (Integer), when it occurred (Period) and the region where they 

happened (Polygon). These events involve objects. The flood event is 

associated to the city of Angra dos Reis. The dengue epidemic happened in the 

city of Recife. The meeting event involves two sea elephants. 

Using operations over sets of events, we can answer questions like “how many 

meetings did animal a1 participate and where did they occur?”, “what meetings 

occurred near island x?”, “when and in which districts did dengue epidemics 

occur in Recife?”, “which are all events that occurred in Rio?” and “what floods 

have occurred in Angra dos Reis during the last 5 years and what have been 

their average rains?”. 
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5 PROOF OF CONCEPT AND EXAMPLES 

This chapter describes how the proposed algebra was tested and validated and 

presents its use examples. We have implemented the algebra data types and 

functions, using the C++ programming language, on top of the geographical 

software library TerraLib (CÂMARA et al., 2008). TerraLib is an open source 

library base to build geographical information systems.  

5.1. Software Architecture  

We have developed two new modules called ST and STLoader on top of 

TerraLib DataAccess module, as shown in Figure 12. The ST module contains 

all data types and functions of the proposed algebra. Each type and its 

operations were implemented as classes and their methods. Figure 13 shows a 

simplified UML (Unified Modeling Language) class diagram of the ST module. 

 

Figure 5.1 – Software architecture: Implementation of the algebra. 

 

The classes AbstractObservationSet, TimeSeries Trajectory, Coverage, 

CoverageSeries, Object and Event implement the algebra’s types 
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Observations, TimeSeries, Trajectory, Coverage, CoverageSeries, 

Object and Event, respectively. The classes PointCoverage and 

RasterCoverage specialize the Coverage class. PointCoverage represents 

coverages whose observations are taken by measuring values at controlled 

locations (that is, G is a Point type). RasterCoverage represents coverages that 

use raster structures to associate locations to values. The proposed class 

architecture is extensible. We can extend it to other kinds of coverages. For 

example, we can also specialize the Coverage class for isolines and 

triangulated irregular network (TIN), creating the classes LineCoverage and 

TINCoverage.  

Considering the examples of coverages shown in Section 3.2.3, each 

precipitation grid (Figure 6) is represented as an instance of RasterCoverage 

and all chlorophyll observations of the same month (Figure 7), as an instance of 

PointCoverage.  

 

Figure 5.2 – A simplified UML class diagram of the ST module. 
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The abstract classes AbstractInterpValueAtTime, 

AbstractInterpGeometryAtTime, AbstractInterpValueInGeometry and 

AbstractInterpCoverageAtTime implement the Interpolator type of the 

algebra. All these classes have an operation called estimate that calculates 

values at non-observed positions. The types of the estimated value and of the 

position vary according to each interpolator. AbstractInterpValueAtTime 

estimates values of the type Value (Number, Boolean or String) at non-

observed times. AbstractInterpGeometryAtTime estimates geometries at non-

observed times. AbstractInterpValueInGeometry estimates values of the type 

Value at non-observed locations. AbstractInterpCoverageAtTime estimates 

coverages at non-observed times.  

NearestValueAtTimeInterpolator, NearestGeometryAtTimeInterpolator, 

IDWInterpolator and NearestCoverageAtTimeInterpolator are concrete classes 

that implement the abstract interpolators. Given a non-observed time, the 

estimate function of the first class provides the closest measured value to that 

given time. The estimate function of the second class provides the nearest 

measured geometry to the given non-observed time. As an example, to 

estimate the car location at non-observed time 7 in Figure 8, 

NearestGeometryAtTimeInterpolator provides the measured location at time 8. 

When estimating the car location at time 5, it gives the measured location at 

time 4.  

IDWInterpolator implements an Inverse Distance Weighted (IDW) interpolator. 

NearestCoverageAtTimeInterpolator provides the closest measured coverage to 

the given non-observed time. As an example, to estimate the coverage at non-

observed time “December, 2003” in Figure 7, 

NearestCoverageAtTimeInterpolator gives the closest measured coverage, that 

is, the coverage at time “November, 2003”. As the proposed class architecture 

is extensible, the idea is to improve this module by providing many other kinds 

of interpolators, for example kriging for coverages and street-based interpolator 

for trajectories.  
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As defined in the algebra, the classes TimeSeries, Trajectory, Coverage and 

CoverageSeries are composed of an observation set (AbstractObservationSet) 

and of an interpolator (AbstractInterpValueAtTime, 

AbstractInterpGeometryAtTime, AbstractInterpValueInGeometry or 

AbstractInterpCoverageAtTime). The Object class is composed of TimeSeries 

and Trajectory. The Event class is composed of Object.  

The DataAccess module of TerraLib can load data sets with spatial and 

temporal information from different kinds of data sources, such as PostGIS 

databases as well as KML and GeoTif files. The STLoader module is 

responsible for transforming these data sets into instances of the 

spatiotemporal types defined in the ST module. To perform this transformation, 

we have proposed a strategy based on metadata files. The strategy and its 

validation using trajectories of moving objects have been reported in a paper 

entitled “Moving Objects and Spatial Data Sources”. Annex B presents the 

complete paper.  

The paths of ten sea elephants presented in Figure 4 are stored in a KML file as 

sets of spatial locations associated to time stamps. Using the proposed strategy 

(shown in Annex B), the STLoader module loads and transforms these sets into 

instances of the Trajectory class of the ST module. Thus, using the Trajectory 

functions we can analyze these sets as moving object trajectories. For example, 

we can answer questions like: (1) Where was animal1 at time t5? (2) When did 

animal1 reach the island x and how long did it stay in this island? (3) When and 

where did animal1 and animal2 meet each other (considering a meeting when 

the distance between two animals is less than 10 meters)? (4) Where and when 

was there a spatiotemporal cluster of animals?  

Figure 14 shows the ten sea elephant trajectories (colored lines at the bottom) 

loaded by the STLoader module from the KML file and the distance between 

two of them. As defined in the algebra, the distance operation between two 

trajectories results in a time series, shown in the left side of the picture.   
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Figure 5.3 – Ten sea elephant trajectories loaded by the STLoader module from a 
KML file and the distance between two of them. 

 

5.2. Code Examples 

This section presents pseudo code examples of how to get events from 

spatiotemporal data types, using the proposed data types and functions. Using 

the data sets presented in Section 3, this section shows three code examples 

that cover all data types and a substantial set of functions. The code uses the 

following conventions.  

The statement “Type	
   instance(p1,p2,…,pn)” builds an instance called 

“instance” of the type “Type” using the set of parameters “p1,p2,…,pn”. This is 

equivalent to the new constructor. The command “Event	
  ev("Meeting",	
  p,	
  

b,	
  objs)” creates the instance “ev” of the type “Event” with four parameters, 

“Meeting”, “p”, “b”	
  and	
   “objs”. To execute an operation “operation” whose 

first parameter is the instance “instance” and the others are “p1,p2,…,pn”, we 

use the command “instance.operation(p1,p2,…,pn)”. It is equivalent to 

“operation(instance,p1,p2,…,pn)”. For example, “tj1.distance(tj2)” 
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executes operation “distance” of the instance “tj1” with the parameter “tj2”. It 

is equivalent to “distance(tj1,tj2)”.  

To represent a set of instances of a type “Type”, we use “set<Type>”. The 

statement “for	
  each	
  element	
  in	
  set	
  {…}” executes the commands between 

brackets “{…}” for each “element” of the “set”. For example, the command 

“set<TimeSeries>	
   result” creates a set called “result” of instances of 

“TimeSeries”. To access each instance “ts” of “result”, we use “for	
  each	
  

ts	
   in	
   result”. The statement “Type	
   inst1	
   =	
  

inst2.operation(p1,p2,…,pn)” creates an instance called “inst1” of the type 

“Type” from the result of the operation “operation”.  For example, “TimeSeries	
  

dist	
   =	
   tj1.distance(tj2)” builds the instance “dist” of the type 

“TimeSeries” from the operation “distance”.  

5.2.1. Meeting of Two Animals 

Considering two sea elephants (identifiers 43 and 44) shown in Figure 4, the 

following code creates events of “meeting of two animals” that occur when “the 

distance between two sea elephants is less than 10 meters”:  

Trajectory	
  tj1;	
  

Trajectory	
  tj2;	
  

LoadTrajectories("metadata.xml",	
  tj1,	
  tj2);	
  

	
  

set<Object>	
  objs;	
  

Object	
  seaElephant43(43,	
  0,	
  tj1);	
  

Object	
  seaElephant44(44,	
  0,	
  tj2);	
  

objs.add(seaElephant43);	
  	
  

objs.add(seaElephant44);	
  

	
  

TimeSeries	
  dist	
  =	
  tj1.distance(tj2);	
  	
  	
  

set<TimeSeries>	
  result	
  =	
  dist.less(10.0);	
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set<Event>	
  meetings;	
  

for	
  each	
  ts	
  in	
  result	
  

{	
  

	
  	
  	
  Period	
  	
  	
  	
  	
  	
  p(ts.begins(),	
  ts.ends());	
  

	
  	
  	
  Trajectory	
  	
  tj	
  =	
  tj1.during(p);	
  

	
  	
  	
  Geometry	
  	
  	
  	
  b	
  =	
  tj.boundary();	
  

	
  	
  	
  	
  

	
  	
  	
  Event	
  ev("Meeting",	
  p,	
  b,	
  objs);	
  

	
  	
  	
  meetings.add(ev);	
  

} 

The code above creates two trajectories “tj1” and “tj2” and loads them from 

the KML file presented in Figure 4 through a function called 

“LoadTrajectories”. This function is part of the STLoader module and loads 

trajectories from different data sources based on metadata files, as described in 

Annex B. The metadata file “metadata.xml” describes the two trajectories to be 

loaded. We do not inform explicitly what interpolator should be used. In this 

case, the function “LoadTrajectories” associates the default interpolator 

“NearestGeometryAtTimeInterpolator” to each trajectory. Afterwards, the code 

creates two objects “seaElephnat43” and “seaElephnat44” whose identifiers are 

“43” and “44” and trajectories are “tj1” and “tj2”. These objects do not have 

non-spatial properties, that is, they do not have time series associated to them. 

We create the set of objects “objs” and add “seaElephnat43” and 

“seaElephnat44” to it.   

To identify a meeting, we calculate the distance between “tj1” and “tj2”, using 

the function “distance”. It gives the time series “dist”. So, we select parts of 

“dist” whose values are less than 10, using the operation “less”. It returns the 

time series set “result”. Each time series “ts” of “result” indicates an event. 

From each “ts”, we get the period (“p”) and the region (“b”) where the meeting 

occurred. Then, we create an event “ev” using such information and its involved 
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objects “seaElephnat43” and “seaElephnat44”, which are in the object set 

“objs”. All events are added to the set “meetings”.  

Figure 15 shows three events of meetings between two animals detected using 

the code above. The location of each event is presented as a red rectangle at 

the bottom of the picture. This picture also presents the distance between the 

two animals as a time series. Observing this time series, we can identify when 

these events occurred. There are three parts of it whose values are less than 

10.  

 

Figure 5.4 – Meetings of two sea elephants. 

 

5.2.2. Spatiotemporal Clusters  

Considering five sea elephant paths presented in Figure 4, the following code 

creates events of “spatiotemporal cluster of animals”. We consider that a 

spatiotemporal cluster occurs when “the sum of the distances among the 

animals (at least three) is less than 10 meters for at least 15 consecutive days”:  
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set<Trajectory>	
  paths;	
  

LoadTrajectories("metadata5.xml",	
  paths);	
  

	
  

set<Object>	
  objs;	
  

Object	
  seaElephant40(40,	
  0,	
  paths[0]);	
  	
  

Object	
  seaElephant41(41,	
  0,	
  paths[1]);	
  

Object	
  seaElephant42(42,	
  0,	
  paths[2]);	
  

Object	
  seaElephant43(43,	
  0,	
  paths[3]);	
  

Object	
  seaElephant44(44,	
  0,	
  paths[4]);	
  

objs.add(seaElephant40);	
  

objs.add(seaElephant41);	
  	
  

objs.add(seaElephant42);	
  

objs.add(seaElephant43);	
  

objs.add(seaElephant44);	
  

	
  

TimeSeries*	
  distancePerDay	
  =	
  MinDistancePerDay(paths);	
  

set<TimeSeries>	
  result	
  =	
  distancePerDay.less(10.0);	
  

	
  

set<Event>	
  clusters;	
  

for	
  each	
  ts	
  in	
  result	
  

{	
  

	
  	
  	
  if(ts.ends()	
  -­‐	
  ts.begins()	
  >	
  15)	
  

	
  	
  	
  {	
  

	
  	
  	
  	
   Period	
  	
  	
  	
  	
  	
  p(ts.begins(),	
  ts.ends());	
  

	
  	
  	
  	
   Geometry	
  	
  	
  	
  l	
  =	
  GetLocation(paths,	
  p);	
  

	
  	
  	
  	
  	
  	
  	
  Event	
  ev("ST	
  Cluster",	
  p,	
  l,	
  objs);	
  

	
  	
  	
  	
   clusters.add(ev);	
  

	
  	
  	
  }	
  

} 

The code above creates a set of trajectories “paths” and loads the trajectories 

of five sea elephants from the KML file presented in Figure 4 through a function 

called “LoadTrajectories”. This function is part of the STLoader module and 
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loads trajectories from different data sources based on a metadata file, as 

described in Annex B. In this example, the metadata file “metadata5.xml” 

describes the five sea elephants to be loaded. We do not inform explicitly what 

interpolator should be used. In this case, the function “LoadTrajectories” 

associates the default interpolator “NearestGeometryAtTimeInterpolator” to 

each trajectory. Afterwards, the code creates five objects “seaElephnat40”, 

“seaElephnat41”, “seaElephnat42”, “seaElephnat43”, “seaElephnat44” and 

“seaElephnat45” from the loaded set of trajectories “paths”. These objects do 

not have non-spatial properties, that is, they do not have time series associated 

to them. We create the set of objects “objs” and add these objects to it.   

To identify spatiotemporal clusters, the function “MinDistancePerDay” calculates 

a time series that contains the sum of the three minimal distances among the 

five animals per day. To create the time series “distancePerDay”, this function 

calculates the distances among all five trajectories using the operations 

“distance” and selects only the three minimal distances per day. So, we select 

parts of “distancePerDay” whose values are less than 10, using the operation 

“less”. It returns the time series set “result”. Each time series “ts” of “result” 

whose temporal range is greater than 15 days (ts.ends()	
  -­‐	
  ts.begins()	
  >	
  15) 

indicates an event. The period of each event is created from the temporal range 

(“p”) of “ts”. The event location (“l”) is computed through the function 

“GetLocation” that gives the region of the trajectories “paths” associated to 

period “p”. All events are added to the set “clusters”.  

Using the code above, we have found one event of spatiotemporal cluster. 

Figure 16 shows the location of this event as a red rectangle at the bottom of 

the picture. This figure also presents the time series “distancePerDay” 

calculated in the code above.  
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Figure 5.5 – Spatiotemporal cluster of at least 3 animals. 

 

5.2.3. Flood 

Using the rain grids presented in Figure 6, the following code creates events of 

“flood” in Angra city that occur if “rain is more than 10 mm/hour for more than 5 

hours”:  

CoverageSeries	
  cvseries;	
  

LoadCoverageSeries("metadata.xml",	
  cvseries);	
  

	
  

DataSet	
  cities;	
  

LoadDataSet("postgis&...&br_cities",	
  cities);	
  

Polygon	
  angraLimits	
  =	
  cities.getGeometry("Angra	
  dos	
  Reis");	
  

	
  

TimeSeries	
  maxRainInAngra	
  =	
  cvseries.max(angraLimits);	
  

TimeSeries	
  maxRainInAngraPerHour	
  =	
  maxRainInAngra.max(HOUR);	
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set<TimeSeries>	
  result	
  =	
  maxRainInAngraPerHour.greater(10);	
  	
  

	
  

Object	
  angraCity("Angra	
  dos	
  Reis",	
  maxRainInAngraPerHour,	
  0);	
  

set<Event>	
  floods;	
  

for	
  each	
  ts	
  in	
  result	
  

{	
  

	
  	
  	
  if(ts.ends()	
  -­‐	
  ts.begins()	
  >	
  5)	
  

	
  	
  	
  {	
  

	
  	
  	
  	
   Period	
  	
  time(ts.begins(),	
  ts.ends());	
  

	
  	
  	
  	
   Event	
  ev("Flood",	
  time,	
  angraLimits,	
  angraCity);	
  

	
  	
  	
  	
   floods.add(ev);	
  

	
  	
  	
  }	
  

}	
  

The code above creates a coverage series “cvseries” and loads it from the 

precipitation grids shown in Figure 6 through a function called 

“LoadCoverageSeries”. Each grid associated to a time is a geotif file. This 

function is part of the STLoader module and loads coverage series from different 

data sources based on the metadata file “metadata.xml”, following the approach 

described in Annex B. In this case, the metadata file contains the name and 

path of each geotif file and the time associated to it. Internally, the function 

“LoadCoverageSeries” creates an instance of the RasterCoverage type for each 

grid.  Since we do not inform explicitly what interpolator should be used, this 

function associates the default interpolator 

“NearestCoverageAtTimeInterpolator” to the coverage series.  

The boundary of Angra city called “angraLimits” is get from the data set 

“cities” loaded from a PostGIS database through the function “LoadDataSet”. 

We use the operation “max” and the spatial restriction “angraLimits” to get the 

time series “maxRainInAngra”. This time series maps times to the maximum rain 

in Angra city. Since the rain grids are taken at 15-minute intervals, the time 

series “maxRainInAngra” also contains values at each 15 minutes. So, we 
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aggregate “maxRainInAngra” by taking the maximum precipitation values per 

hour, using the operation “max” and chronon “Hour”. This returns the new time 

series “maxRainInAngraPerHour”. Then, we select parts of 

“maxRainInAngraPerHour” whose values are more than 10 mm/hour, using the 

operation “greater”. This provides the new time series set “result”.  

Each event of flood “ev” is created from a time series “ts” of “result” whose 

temporal range is greater than 5 hours (“if(ts.ends()	
  -­‐	
  ts.begins()	
  >	
  5)”) . 

All events are	
  associated to the object “angraCity” and are added to the set 

“floods”.  
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6 FINAL REMARKS AND FUTURE WORK 

This thesis presents an extensible algebra for spatiotemporal data. Taking 

observations as basic building blocks, the algebra constructs three data types, 

time series, trajectory and coverage. This allows us to define different views on 

the same observation set, meeting application needs. Considering coverages 

as measured units, we extend the algebra defining the coverage series type. 

Using these types, we can define objects and events. The proposed data types 

and functions can model and capture changes in a large range of applications, 

including location-based services, public health, and environmental and natural 

disaster monitoring. 

The proposed model addresses both instantaneous and continuous changes in 

objects, as discussed in Section 2.1. Paths of animals (Figure 4) as well as 

changes of municipality limits (Figure 5) can be represented as instances of 

Trajectory type. The boundary variation of a city is represented by a set of 

observations. Each observation contains its valid boundary in a period and the 

periods of all observations cover the whole timeline of the city. Therefore, for 

every time during this timeline, there is a valid boundary of the city and the 

interpolator always provides it. 

A limitation of the proposed model is to consider only two-dimensional space. 

Since OGC geometry types can be built using 3-dimensional coordinates (x, y 

and z), we intend to solve this limitation in future work. The Event type contains 

information about when and where it occurred as well as its involved objects. 

However, the algebra does not express how events are related to other events. 

These kinds of relationships, as defined by Worboys and Hornsby (2004) and 

Galton and Worboys (2005), can be built on top of our model. We intend to 

extend the model to represent these relationships, such as “event e3 is 

composed of events e1 and e2” and “event e1 initiates event e2”.   

We also plan to define functions to create types from other types. For example, 

we can create a set of TimeSeries from the CoverageSeries composed of 
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instances of RasterCoverage presented in Figure 6. In this case, each time 

series will be associated to a cell or pixel and will contain the variation of rain in 

that cell over time. We can create a CoverageSeries composed of instances of 

PointCoverage from the TimeSeries shown in Figure 3 (a) or (b). From weather 

satellite images represented as CoverageSeries, we can think about extracting 

trajectories of storms or hurricanes.  

The algebra was tested and validated using the TerraLib geospatial software 

library. An alternative would be to extend an existing spatial database system, 

such as PostGIS or Oracle Spatial, with the proposed types and functions. 

However, we have chosen to implement it in a general-purpose library that can 

access spatiotemporal data from different sources, including databases, files 

and web services (Figure 12). This approach requires transforming the spatial 

and temporal information stored in different data file formats and databases into 

the algebra types. This thesis proposes a strategy to do this transformation 

based on metadata files. This strategy has been validated using trajectories of 

moving objects, as presented in Annex B. As future work, we intend to extend 

and use this strategy for time series, coverage, converge series and events, 

which can also come from different data sources.        

6.1. Next Steps Related to Software Implementation 

The three next steps related to software implementation are:  

(1) Study new and intuitive ways to display spatiotemporal information 

and the results of operations over it. As an example, the system 

shown in Figure 14 displays the sea elephant trajectories through an 

animation over time. However, there is no interaction between the time 

series generated by the operation distance and the trajectories. As a 

starting point, we intend to construct such interactions.  

(2) Develop interfaces with other software tools for statistical analyses 

and data mining of the proposed data types. As a beginning, we plan 
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to develop interfaces with the R spacetime package (PEBESMA, 

2011) and with the module Weka-STPM (BOGORNY et al., 2011). 

These interfaces will allow us to use R packages for statistical analysis 

and to create semantic trajectories for data mining using Weka 

system.  

(3) Provide a mechanism that allows a user to write scripts with a set of 

operations over the proposed data types, as the code examples 

shown in Section 5.2. Scripts can be written and executed "on-the-fly", 

without explicit compile and link steps. The idea is to use well-known 

script languages, such as LUA and Python.  

6.2. Comparison with Previous Work 

This section presents a comparison between the data types proposed in this 

thesis and the closest ones defined in previous models. We first compare the 

Trajectory type with the previous models ISO (2008) and Güting et al. (2000). 

Trajectory allows geometry deformations over time, whereas the ISO moving 

feature model does not (ISO, 2008). Therefore, the proposed model can cope 

with applications where entities change their shape, like oil spills and boundary 

changes in cities. The moving point and moving region types defined by Güting 

et al. (2000) always consider a predefined interpolation function, without 

allowing a user to choose other interpolation methods. Since Trajectory is 

built from an observation set and an interpolator, we can explicitly choose the 

most suitable interpolation function for each instance. 

The Coverage type is consistent with existing field or coverage definitions 

(GOODCHILD, 1992; COVA; GOODCHILD, 2002; OGC, 2006b; LIU et al., 

2008). Regularly and irregularly spaced sample points can be represented by 

Coverage[Point,	
   Value,	
   Polygon] and isolines by Coverage[Line,	
  

Value,	
  Polygon]. We can also specialize Coverage for tessellation structures, 

such as raster and triangulated irregular network (TIN). Although OGC 



 
	
  

60	
  

coverage definition includes spatiotemporal domains, only coverages with 

spatial domains are described in its UML class diagrams. OGC coverage with 

spatiotemporal domain can be mapped to the CoverageSeries type. Besides 

that, we use an algebra to define our types instead of using UML diagrams. 

Formal definitions are better than CASE tool diagrams for GIS type 

specifications (Frank and Kuhn 1995). Such diagrams are not suitable for large 

problems, where the amount of documentation becomes overwhelming. 

Galton (2004) distinguishes punctual (instantaneous) events from durative ones 

(those that take time). The Event type can be used to represent both instances 

of punctual events (using Instant) and durative ones (using Period). Events 

associated to moving objects, such as those discussed by Hornsby and Cole 

(2007), can also be expressed using the Event type. This work focuses on 

defining an algebra that covers the whole process to obtain events from raw 

observations. It does not define types of relationships between objects and 

events neither between events and events. These kinds of relationships, like the 

ones defined by Worboys and Hornsby (2004) and Galton and Worboys (2005), 

can be built on top of the proposed model. 
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ANNEX A – TOWARDS A DYNAMIC GEOSPATIAL DATABASE MODEL  

This annex presents a paper published in the International Conference on Emerging 

Databases - EDB 2011, Incheon, Korea (Ferreira et al, 2011): 
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Since most existing spatio-temporal database models are specific to meet a particular set of 
applications, there is a need for a more general one which is not application-oriented and can be 
used for a new generation of dynamic geographical information systems. Thus, this work aims to 
identify a set of requirements for a new database model, called Dynamic Geospatial Database 
Model (DyGeo Model), able to represent and query different geospatial data dynamics and so to 
support different kinds of spatio-temporal applications. These requirements were defined based on 
an analysis of distinct geospatial data dynamics and on a critical review of ten spatio-temporal 
database models proposed in literature during the past two decades. 

Key Words: dynamic geospatial data, spatio-temporal database model, dynamic geographic information 
systems. 
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1. INTRODUCTION 

The recent technological advances in geospatial data collection, such as Earth 
observation and GPS satellites, wireless and mobile computing, radio-frequency 
identification (RFIDs), and sensor networks, have motivated new types of 
applications which handle spatio-temporal information. Examples include animal 
tracking and oil spill on the ocean, land parcel changes, as well as environmental 
change monitoring based on satellite images. To meet this demand, it is necessary 
to represent dynamic geospatial information in spatial databases and geographical 
information systems (GIS).  

Static geospatial information is represented in GIS following well-established 
ideas. These ideas include object-based and field-based models [1], vector and 
raster data structures, topological operators [2], spatial indexing as well as spatial 
joins and operations [3]. In recent years, database management systems (DBMS) 
have been extended to handle 2D static geospatial information and there has been a 
major effort to standardize basic components for such data [4].    

However, there is no consensus on how to represent spatio-temporal information 
in computational systems. According to Worboys [5], there are four stages in 
introducing temporal capacity into GIS and most current proprietary technologies 
are in stage zero, that is, they do not deal with spatio-temporal information. In GIS 
literature, there are many proposals of spatio-temporal database models. 
Nevertheless, Pelekis et al. [6] consider that most existing models are application-
oriented, focusing on particular aspects of spatio-temporal data. They are not 
general enough to be a basis for a new generation of dynamic geographical 
information systems.  

Therefore, this work aims to identify a set of requirements for a more general 
and not application-oriented model called Dynamic Geospatial Database Model 
(DyGeo Model). The main idea is to define a new model able to represent and 
query different geospatial data dynamics and then to support different kinds of 
spatio-temporal applications. Following this idea, the first phase aims to identify a 
consistent set of requirements that the DyGeo model must meet.   

The DyGeo model requirements have been identified based on an analysis of 
distinct geospatial data dynamics and on a critical review of ten spatio-temporal 
database models. So, section 2 analyses distinct geospatial data dynamics and 
illustrates each one with real spatio-temporal applications. Section 3 provides a 
critical review of ten spatio-temporal database models proposed in GIS literature 
during the past two decades. They are well-known models which have high number 
of citations in the literature. The DyGeo model requirements are presented in 
section 4 and section 5 concludes this work.  
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2. DYBAMIC GEOSPATIAL DATA 

Based on the dichotomy, geo-objects and geo-fields, to represent geospatial data 
[1], dynamic geospatial data can be represented by either (1) Geo-objects which 
vary over time or (2) Geo-fields which change over time. In the first 
representation, there are three cases: (1.1) Geo-object whose geometry is fixed but 
its non-spatial attributes change over time; (1.2) Geo-object whose geometry 
changes discretely over time and whose non-spatial attributes also can change; and 
(1.3) Geo-objects whose geometry changes continuously over time and whose non-
spatial attributes also can change. 

Since the spatial component of a geo-object is represented by geometries, such 
as polygons, lines and points, this work uses the term “geometry” for the geo-
object spatial component. Besides that, the term “non-spatial attributes” refers to 
features associated to geo-object which are represented by primitive data types, 
such as numbers and texts. 

Regarding geo-objects which change over time, the difference between discrete 
and continuous geometry changes is pointed out by Galton [7] when he explains 
the difference between bona fide and fiat object behavior over time. Bona fide 
objects are grounded in features of physical reality, such as rivers and forest 
regions, and fiat objects are the artificial products of human cognitive acts, such as 
municipality limits and land parcels. So, he says “Both these objects might change 
over time, but typically the bona fide entity will undergo gradual change whereas 
the fiat entity undergoes sudden change (as a result of the boundary being redrawn 
from time to time).” In this work, “gradual change” is called continuous change 
and “sudden change” is called discrete change. 

Guting and Schneider [8] also talked about this difference, saying that 
“Regarding kinds of changes, a major distinction concerns discrete changes and 
continuous changes. Classical research on spatio-temporal database has focused on 
discrete changes of all the spatial entities. In contrast, the term moving objects 
emphasizes the fact that geometries change continuously.” 

In order to illustrate the main features of each geospatial data dynamic presented 
above, the following sections present four real applications and their demands on 
representing and querying dynamic geospatial information. They are: (1) Dengue 
Fever Monitoring; (2) Municipal Management; (3) Movement Monitoring; and (4) 
Amazon Deforestation Monitoring.  

Universities and research institutes in Brazil have been involved in a cooperative 
project called SAUDAVEL which aims at building a surveillance system to 
control, warn and intervene in epidemic and endemic diseases, like Dengue Fever 
and Leptospirosis [9]. The central experiment of this project is being carried out in 
Recife, Brazil. Mainly, it consists in giving out egg traps for Aedes aegypti and 
Aedes albopictus mosquitoes in different locations around the city and in counting 
the number of mosquito eggs found in each trap weekly. Then, this data is 
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processed together with environmental information, resulting in risk maps for 
public health interventions.  

In this first application, each egg trap can be considered as a fixed geosensor, 
that is, a sensor which collects information at different times associated to a fixed 
location. The location of each trap does not change over time, only its attributes, 
such as number of mosquito eggs. So, each egg trap can be represented by a geo-
object whose geometry is fixed but its non-spatial attributes change over time. 
Besides that, some important queries associated to this application are: (1) What 
was the monthly mosquito egg average for each trap? (2) Which month presented 
the biggest number of mosquito eggs? (3) When and where were more than 80 
mosquito eggs collected by each trap? (4) How many eggs were collected in the 
summer season? (5) Which district had the biggest/smallest number of mosquito 
eggs?  

Figure 1 shows a set of egg traps (represented by red points) in a Recife’s 
district called “Engenho do Meio” and a time series generated by the egg trap 
EM124. This time series represents the number of collected eggs (axis y) by date 
(axis x). 

 

Figure 1. SAUDAVEL egg traps. 

Municipal management applications deal with municipality related issues, 
such as urban land parcels and municipal limit changes. In this application, each 
urban parcel boundary as well as each municipal limit change discretely over time 
and their non-spatial attributes can also vary (e. g. the municipal government and 
the parcel owner). As an instance, Figure 2 shows changes in Rondônia’s 
municipality limits. In this example, three municipalities “Costa Marques”, “São 
Francisco do Guaporé” and “Seringueiras” had the same limits from 2001 to 2004, 
and then, on the first day of 2005 they suddenly changed due to new laws. 

Movement Monitoring refers to applications which monitor and analyze object 
motions, such as animal, vehicle and person movement. These kinds of 
applications consist in tracking objects by getting their locations as well as other 
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information such as animal temperature and vehicle velocity at different times. In 
this case, the object locations vary continuously over time and the concept of 
trajectory is very important. Some related queries are: (1) Where was object o1 at 
time t5? (2) When did object o1 enter a specific region r10 and how long did it stay 
in this region?  (3) When and where did objects o1 and o2 meet each other 
(considering a meeting when the distance between two objects is less than 2 
meters)? (4) Where and when was there a spatio-temporal cluster of objects?  

 

  
Figure 2. Rondônia’s municipality limits in 2001 (left picture) and in 2005 (right 
picture). Legend: blue polygon is “Costa Marques” municipality; yellow is “São 

Francisco do Guaporé” and green is “Seringueiras”. 

 

The Brazilian Amazon deforestation has been monitored since 1988 by 
National Institute for Space Research (INPE) through a project called PRODES. It 
is responsible for calculating Amazon deforestation and for identifying deforested 
regions in each year through satellite images, by using a well-established 
methodology [10]. Each deforested region evolves continuously and nonlinearly 
over time and this evolution must be represented in order to allow a specialist to 
refine its analysis by recognizing patterns of deforested regions [11] and how these 
patterns evolve over time [12]. A real example of a deforested region evolution is 
shown in Figure 3. 

 

 

Figure 3. Evolution of a deforested area. Source: [10]. 
 

In this case, each deforested region can be represented by a geo-object whose 
geometry changes continuously over time and some important queries are: (1) 
What was the state of a specific deforested region like in 2003? (considering that 
this specific deforested region was observed in 2002 and in 2005, but not in 2003) 
(2) What was the area and perimeter variation over time of a specific deforested 
region? (3) How did a specific deforested region evolve over time between 2000 
and 2008? (4) How did the deforested regions that started less than 2 kilometers 
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far from river r1 evolve over time? (5) When did a specific deforested region reach 
municipality x?  

Besides the polygonal representation of each deforested region, PRODES project 
also generates sets of classified images to represent deforestation process. Figure 4 
shows an example of the deforestation process in a specific region in Amazon, 
based on four classified images from different times. These images can be better 
represented by a geo-field which change/evolve over time since geo-object concept 
does not exist in this case. 

Some important queries associated to it are: (1) Given a pixel or cell, how has 
the forest status been varying in this cell over time? (2) What was the deforestation 
in this specific region like in 2001? (considering that there is no classified image 
from 2001.) (3) How many hectares were deforested in this specific region over 
time? 

  

 

Figure 4. Sequence of four classified images from different years that represent the 
deforestation process in a specific region in Amazon rainforest. In these images, there are 

basically three classes: river (dark gray), forest (gray), and deforested area (light gray). Source: 
[10]. 

3. SPATIO-TEMPORAL DATABASE MODELS: A CRITICAL REVIEW 

During the past two decades, many spatio-temporal database models have been 
proposed in GIS literature. This section presents a critical review of ten models 
which propose an ontology of space and time and its representation through data 
types, relationships and operations thereon. They are well-known models which 
have high number of citations in GIS literature and are shown in Figure 5.  

The Time-Slice Snapshot [13] is the simplest model of them. This model works with  
a  set  of  snapshots,  where  each  one  is  a raster  layer which represents  a  state  of  
the  real  world  at  a  given  time,  like  a photograph. Each snapshot is a collection of 
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temporally homogeneous units and there are no explicit temporal relations among 
snapshot. It has two main limitations: (1) operations among snapshots must compare 
them exhaustively; and (2) redundant storage because a complete snapshot is produced 
at each time slice, duplicating all unchanged data. 

The Space-Time Composite (STC) model [13] is an evolution of Snapshot model, by 
considering vector objects which change over time instead of raster time-slice layers. 
The mechanics of this model begin with a base layer which represents the objects at 
some starting time. After this, each change decomposes the space over time into 
increasingly smaller fragments (objects with geometries) with its own distinct history. 
Despite being very simple, it is important because it introduces the idea of representing 
spatial objects which vary over time. 

The Unified Spatio-Temporal Object Model (STOM), proposed by Worboys [14], 
defines basically two spatio-temporal data types, ST-simplexes and ST-complexes, and a 
set of operations over them, such as ST-Union, ST-Intersection and ST-Difference. ST-
simplex is an ordered pair<S, T>, where S is a simplex data type and T is a bitemporal 
element (BTE). A simplex is either a single point, or a finite straight line segment or a 
triangular area. And BTE is a temporal data type composed of event and transaction 
time. At last, a ST-complex is a finite set of ST-simplexes. The main disadvantage of 
the STOM model is not to consider changes in object attributes, that is, in the textual 
and numerical extents of geographical objects. 

 

 

Figure 5. Spatio-temporal database models. 
 

The main idea of Event oriented Spatio-Temporal Data Model (ESTDM) [15] is to 
group changes by time of occurrence, ordering changes in locations within a 
predetermined geographical area. The time associated with each change, called event, is 
stored in increasing order from initial time t0 to the latest time tn. The set of changes Ci 
recorded for any time ti consists of the set of each location (x, y) which changed since ti-

1, and its new value v. Its two main characteristics are: (1) the events are recorded when 
changes occur, that is, in any temporal resolution; (2) a value v is recorded only when it 
is different from the last one found along the scan line. So, this model does not have the 
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two limitations of Snapshot model because it stores only the changed cells by each 
event. Besides that, it defines a very simple event concept, without exploring concepts 
related to it, such as, semantics or relationships. 

The Three-domain model [16] mainly focuses on how to represent geo-objects which 
vary over time in a relational database system by using normalized tables and a spatial 
graph as well as on how to query them by using SQL language. The proposed database 
schema consists in four tables, one for each domain (semantic, temporal and spatial) and 
another for the domain link. It can also be implemented in spatial DBMS, as PostGIS 
and Oracle Spatial, by using its support to deal with spatial information. It is a simple 
model, which does not define spatio-temporal data types and operations. It only uses the 
data types and query language provided by DBMS. 

Moving Object defines a robust algebra, data types and operations, in two levels of 
abstraction, abstract and discrete, to deal with moving objects. Moving Object refers to 
entities whose geometries change continuously over time, such as, cars, aircraft, ships, 
mobile phone users, polar bears, hurricanes, forest fires, or oil spills in the sea [8]. The 
authors propose an algebra with two main data types, moving points and moving 
regions, and a set of auxiliary types, such as moving real and moving int. Besides that, 
this algebra defines a set of operators over these data types, such as trajectory, distance, 
direction, and velocity. Its principal disadvantage is not to consider geo-fields which 
vary over time. For instance, a hurricane must be represented in this model as a moving 
region. Nevertheless, in some applications, the best representation of a hurricane is a 
geo-field which varies over time and not an object. As a prototype of spatio-temporal 
database, the moving object model was implemented in SECONDO, a database system 
that is extensible by algebra modules (http://dna.fernuni-hagen.de/Secondo.html/). 

The Geospatial Lifeline Model [17] defines a geospatial lifeline concept which 
models an individual’s movement as a time-stamped record of locations. The basic 
element of lifeline data is a triple <Id, Location, Time>, where Id is a unique identifier 
of the individual, Location is a spatial descriptor (such as a coordinate pair, a polygon 
and a street address), and Time is the time stamp when the individual was at that 
particular location. Besides that, this model proposes different types of trajectories or 
movement approximations, such as, threads, beads, necklaces, and convex hulls [18]. 
Depending on the desired granularity and on the application type, distinct types of 
trajectories are essential. For example, in animal tracking, the convexhull trajectory is 
necessary in order to define a habitat. So, although this model does not define 
operations over moving objects, it defines important different types of trajectories. In 
the Moving Object model only the linear or thread trajectory is extracted from moving 
points (through the operator trajectory). 

The Hierarchal model, proposed by Yuan [19], provides an interesting way of 
organizing, using hierarchical layers, dynamic geographical phenomena which posses 
both field and object characteristics. It is based on a sequence of snapshots called state 
layers. Therefore, it has redundant storage problem like the Snapshot model. Besides the 
snapshots, this model also stores the objects which represent the phenomena. These 
objects are extracted from the state layers. Thus, these two representations of 



 
	
  

75	
  

phenomena, geo-fields and geo-objects, are used to improve the spatio-temporal query 
processing and operations. Finally, this model also defines the concepts of event and 
process only to organize the data layers in different levels. 

The Geospatial Event Model (GEM), proposed by Worboys and Hornsby [20], is 
interesting because it introduces an event concept and relationships between events and 
geo-objects in a model based on spatial objects. It defines two kinds of relationships, 
object-event and event-event, following the idea that an event can affect or be associated 
to one or more objects or events of different types. Some examples of object-event 
relationships are splitting and merger (An event that creates/destroys a boundary 
between objects). Some examples of event-event relationship are initiation and 
termination (The occurrence of event A starts / terminates event B). However, it is a 
model which defines only data types but not operations over them. 

The Moving Feature Model, proposed by the International Organization for 
Standardization (ISO), defines a conceptual schema for moving feature [21]. The term 
feature refers to an abstraction of real world phenomena and moving feature refers to 
features whose geometries move over time. This schema includes a set of classes, 
attributes, associations, and operations which provides a common conceptual 
framework to deal with feature geometry which moves as a rigid body. Therefore, it 
supports changes of location, translation and rotation of a feature, but not other change 
types, such as, the feature deformation and changes in non-spatial attributes of a feature. 
The main advantage of this model is to define a generic type called one-parameter 
geometry which represents the variation of feature geometry with respect to any single 
variable, such as pressure, temperature, or time. However, its main disadvantages are 
not to consider feature geometry deformation and changes in feature non-spatial 
attributes. 

4. TOWARDS A DYNAMIC GEOSPATIAL DATABASE MODEL 

Since most existing spatio-temporal database models are specific to meet a particular set 
of applications, there is a need for a more general one which is not application-oriented 
and can be used for a new generation of dynamic geographical information systems. 
This new model must be able to represent and query distinct geospatial data dynamics 
and so to support different kinds of spatio-temporal applications. Therefore, based on 
the different geospatial data dynamics shown in section 2 and on the reviewed models 
in section 3, this section presents a set of requirements which this new model, called 
Dynamic Geospatial Database Model (DyGeo Model), must meet.  

Sections 4.1 to 4.5 describe requirements that are related to “what” the DyGeo model 
must represent and query. Sections 4.6 and 4.7 describe requirements related to “how” it 
can be clearly and usefully defined and formalized. 

4.1 Represent both Geo-Fields and Geo-Objects which Vary over Time 
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The models presented in section 3 can be grouped in two classes: (1) models which are 
specific to represent geo-fields that change over time and (2) models which are specific 
to represent geo-objects that change over time. Still in the second class, there is a subset 
of models specialized in representing geo-objects whose geometries change 
continuously over time. This classification is shown in Table 1. 

Considering these models and the applications presented in section 2, the question 
that arises is: What database model is able to support the four applications, that is, able 
to represent and query the information generated by them? Unfortunately, there is no 
single model general enough to support them. So, we could use different models, one 
for each application. For example, the Moving Object model to support the Movement 
Monitoring application, STOM model to Municipal Management and ESTDM Model to 
represent the images of Deforestation Monitoring. However, in this case, how to 
combine dynamic geospatial data from different applications in our analysis? How to 
mix, for instance, trajectories of animals in the Amazon forest with the deforestation 
process (represented by a set of classified images at different times)? There is no model 
that defines this kind of operations.  

Therefore, there is a lack of a single model able to represent and query geo-fields as 
well as geo-objects which vary over time, considering discrete and continuous geometry 
and non-spatial attribute changes of geo-objects. Representing these different geospatial 
data dynamics, the DyGeo model should be able to support different kinds of 
applications, such as the four applications presented in section 2. 

 
Table 1. Classification of existing spatio-temporal models. 

Geo-Fields which change 
over time 

 
Geo-Objects which change over time 

 

Discrete geometry change Continuous geometry change 

 

Snapshot Model, ESTDM 
Model, and Hierarchal 
Model 

 

STC Model, STOM Model 
Three-domain Model, and 
GEM Model 

 

Moving Object Model, 
Geospatial lifeline, and Moving 
Feature Model 

 

4.2 Define Operations between Geo-Fields and Geo-Objects which Vary over 
Time 

Besides representing and querying geo-fields as well as geo-objects which vary over 
time, the DyGeo model must define operations between them. For example, considering 
the monitoring of animals in the Amazon forest (represented by geo-objects whose 
geometries change continuously over time) and the deforestation process (represented 
by geo-fields which change over time), the model should be able to answer questions 
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like: (1) When did animal a1 go into forested areas? (2) How long did animal a1 stay in 
deforested areas? And what was its mean temperature during this period? 

Another example of question which requires operations between geo-fields and geo-
objects which vary over time is “How many hectares were deforested in each 
municipality?”, presented in section 2.1. In this case, the answer must take into account 
geo-objects whose geometries vary discretely over time (municipality limit changes) as 
well as geo-fields which change over time (deforestation process). 

In order to answer queries between geo-fields and geo-objects which vary over time, 
the DyGeo model must define a set of operators which receive both as parameters and 
combine them. For example, to answer the question “When did animal a1 go into 
forested areas?”, the model must provide an operator able to compute the class, 
deforested or forest (see Figure 4), for each animal location. So, if the animal a1 were in 
a deforested area at time t5 and in a forest area at time t6, where t5 < t6, we could 
conclude that it went into a forest area between t5 and t6. 

4.3 Define Spatio-Temporal Interpolators 

Since computational systems are discrete, continuous processes are often represented in 
them as a set of discrete measures. For example, the tracking of an animal is represented 
by a set of its locations, each one measured in a specific time. Likewise, the Amazon 
deforestation process is measured by detecting deforested regions at distinct times.  

Spatio-temporal interpolators for geo-objects whose geometries vary continuously 
over time are essential in order to estimate a space in a specific time when there is no 
measurement available about it. For instance, in the second application, shown in Figure 
2, each municipal limit changes discretely over time. So, in order to answer the question 
“what was the limit of Seringueiras municipally in 2003?” we do not need to interpolate 
its limits between 2001 and 2005 because it had the same limit from 2001 to 2004. 
Otherwise, in the fourth application presented in Figure 3, in order to answer the 
question “what was the deforested region like in 2002?” we do need to interpolate it 
between 2000 and 2003 because a deforested region evolves continuously over time. 

In addition to that, spatio-temporal interpolators for geo-fields which change over 
time are also necessary. For example, considering the images presented in Figure 4, in 
order to answer the question “what was the deforestation in this specific region like in 
2001?” we need to interpolate the images between 2000 and 2003, because we assume 
that the deforestation process is continuous over time. In this case, the interpolators can 
consider pixel or cell neighborhoods and how they evolve over time.  

Actually, spatio-temporal interpolators are mechanisms to approximate discrete 
measures to continuous processes. There are different ways to do it. For example, 
Hornsby and Egenhofer [18] propose distinct trajectory approximations for moving 
point, such as linear, necklace and convexhull, as shown in Figure 6.  
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Figure 6. Types of trajectory approximations. Source: [18]. 
 

Therefore, the DyGeo model must provide distinct kinds of spatio-temporal 
interpolators for geo-objects whose geometries change continuously over time as well 
as for geo-fields which vary over time. These interpolators must be internally used by 
most of DyGeo operations and must be selected based on the characteristics of the data, 
such as the space and time granularities.    

4.4 Represent Semantics of Changes 

In some kinds of applications, besides representing spatial changes over time, it is 
necessary to associate semantics to them. For example, in the Municipal Management 
application, a new urban land parcel can be created through the merging of two old ones 
or through the splitting of one parcel. In this case, the application can be interested in 
knowing what caused a land parcel merging or splitting. In the animal tracking 
application, an animal can die and its sensor can be used to monitor another animal. Or 
an animal can be hurt and this state can interfere in its trajectory. So, in this application, 
a user can be interested in knowing when and why an animal died as well as when and 
why it was hurt. 

Regarding the Amazon deforestation monitoring, there are works which study 
different patterns of deforested regions and how they evolve over time [11] [12]. They 
try to understand who and what causes some specific patterns of deforested areas. For 
instance, new small settlements emerge; large farms increase their agricultural area at 
the expense of the forest and, then, farmers buy land from small settlers to increase their 
property for large-scale agriculture and extensive cattle ranching. 

It is important to note that each application has its own semantic scope. Therefore, 
the DyGeo model must provide mechanisms that allow each application to define and 
represent its change semantics and to consider them in its queries. 

4.5 Represent Geospatial Processes and Relationships among them 

Nowadays, one research challenge in geospatial science is to define and represent 
dynamic geospatial processes and relationships among them [5]. In GIS literature, there 
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are many distinct definitions of geospatial process, depending on the application 
domain.  

So, the DyGeo model must provide a mechanism that allows an application user to 
define geospatial processes based on the application domain and, then, relationships 
among them. For example, a user can define the Amazon deforestation as a geospatial 
process and the migration of an animal species as another process. And then, the user 
can identify relationships between these two processes, such as “the deforestation 
process starts up the migration of an animal species in the Amazon”. 

Among the models presented in this work, only the GEM Model defines a set of 
event-event relationships, such as, initiation and termination (The occurrence of event 
A starts / terminates event B). 

4.6 Describe the Model by Using Algebraic Specifications 

Algebraic specifications provide a mathematical framework for describing abstract data 
types. The main advantage of this framework is the capacity of formally describing 
required types and operations thereon, independent of programming language and 
implementation. Besides that, it is possible to specify semantics of operations [22]. So, 
the DyGeo model should be clearly and formally defined by using well-known 
algebraic formalisms. 

Among the models presented in section 3, the Moving Object Model is the clearest 
and best formally defined. It utilizes a many-sorted algebra to express its spatio-
temporal data types and operations.   

4.7 Define the Model in Two Levels of Abstraction, Conceptual and Physical 

The ANSI-SPARC (American National Standards Institute, Standards Planning And 
Requirements Committee) proposes a database architecture based on three levels: 
external, conceptual and internal [23].  

The external level (user view) describes a part of the database that is relevant to a 
particular user. It looks at the world from a particular perspective, for a particular 
purpose. The conceptual or logical level is a representation of what data is stored within 
the whole database and how it is inter-related. It focuses on describing the model 
concepts without worrying about the way the data is physically stored in computational 
systems. It is independent of hardware and software. At last, the physical or internal 
level is a low-level representation of the entire database. It describes how the database is 
physically represented on the computer system.  

The description of a database model in all these levels is very useful and important, 
mainly the conceptual and physical ones. The conceptual model is important to describe 
the main concepts in an understandable way. While the physical one presents 
implementation details and is useful to describe how to materialize a conceptual model 
in a computational system. Since the external level is related to particular user views 
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and is based on the conceptual model, we believe that it is not essential to understand 
the whole database model. 

To wrap up this section, Table 2 shows what requirements are met by each model 
presented in section 3.    

Table 2. Requirements versus existing spatio-temporal database models. 
 Requirements 
 4.1 4.2 4.3 4.4 4.5 4.6 4.7 

Snapshot        
ST Composite        
STOM      √   
ESTDM     √    
Three Domain       √  
Moving Object   √    √  √  
Geospatial Lifeline   √      
Hierarchal Model     √    
GEM    √  √    
Moving Feature       √  

5. CONCLUSION 

This work presents a set of requirements for a more general and not application-oriented 
model, called Dynamic GeoSpatial Database Model (DyGeo Model), able to represent 
and query different geospatial data dynamics and so to support different kinds of spatio-
temporal applications. These requirements are identified based on an analysis of distinct 
geospatial data dynamics and on a critical review of some spatio-temporal database 
models proposed in literature during the past two decades. This work reviews ten 
models which define space and time representations through data types, relationships 
and operations thereon. They are well-known models which have high number of 
citations in GIS literature.  

We believe that the phase of requirements gathering, based on an analysis of distinct 
geospatial data dynamics as well as on a critical review of the existing spatio-temporal 
database models, is the first step towards the DyGeo model. It is crucial before actually 
defining a consistent model. For now on, the next step is to formally define the DyGeo 
algebra taking the requirements identified in this work as a basis for its data types and 
operators. 
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ABSTRACT 

	
  

Moving object is a well-established concept in geographic information system (GIS) science. It is an 
entity whose spatial position or extent changes continuously over time. Some examples are cars, animals 
and deforested regions. Nowadays, there is a growing demand for GIS tools that are able to handle and 
analyze moving objects. Most existing spatial file formats (e.g. KML and GML) and database systems 
(e.g. PostGIS) represent spatial and temporal information using structures and types predefined in 
specifications written by the International Organization for Standardization (ISO) and the Open 
Geospatial Consortium (OGC). However, in these specifications, there is nothing about moving object 
representation in data files or databases. Each data producer adopts its own format to do it. Therefore, this 
work proposes an interoperable strategy to translate spatial and temporal information stored in different 
data sources into moving object trajectories for further analyses. The proposed approach is based on the 
processing of an additional metadata file that describes how moving objects are stored in a particular data 
source. Grounded on this strategy, we have built a new software module for moving object analysis in a 
geographical library called TerraLib. This module architecture is also described in this paper.  
 
Keywords: Geographical information systems (GIS), moving objects, spatial data sources, KML, 
PostGIS. 
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1. INTRODUCTION 

This work extends (FERREIRA et al., 2012), in two ways. First, the strategy 

designed only for KML files is generalized to deal with different kinds of spatial 

data sources, including database systems such as PostGIS. Second, we 

propose a new software architecture based on this extended strategy. To prove 

such strategy and architecture, we build a prototype and try out it with animal 

tracking and car movement data from different sources. 

The recent technological advances in geospatial data collection, such as Earth 

observation and GPS satellites, mobile computing, and sensor networks, have 

motivated new applications that handle spatiotemporal information. Some 

examples are location-based systems, natural disaster and environmental 

change monitoring. To support these applications, there is a growing demand 

for geographical information systems (GIS) that deal with such information. 

Since the beginning of the 2000s, the GIS community has made a serious effort 

towards spatial data interoperability. The International Organization for 

Standardization (ISO) and the Open Geospatial Consortium (OGC) have 

proposed standards to represent and store spatial information in data files and 

database systems. Geography Markup Language (GML) (OGC, 2007) and 

Keyhole Markup Language (KML) (OGC, 2008) are examples of file formats 

proposed by OGC for spatial data interchange. Many agencies and institutions 

throughout the word have distributed their spatial data using these formats. 

Spatial extensions of traditional Database Management Systems (DBMS), such 

as PostGIS and Oracle Spatial, deal with spatial information in compliance with 

the OGC Simple Feature Access (SFA) specification (OGC, 2006a) (OGC, 

2006b).  

The compliance with ISO and OGC standards has assured a high degree of 

spatial data interoperability. Many GIS tools and libraries are able to access 

spatial data files and databases that follow these standards. Standards are 
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useful to promote spatial data interoperability. However, few results have been 

achieved regarding spatiotemporal data interoperability.  

Moving object is a well-known category of spatiotemporal data. They are 

objects whose spatial positions or extents change continuously over time 

(ERWIG et al., 1999). Examples of moving objects are cars, aircraft, ships, 

mobile phone users, polar bears, hurricanes, forest fires, and oil spills on the 

sea. Although the concept of a moving object is well-established in GIS science, 

there is not a standard way to represent it in data files or database systems. 

Each data producer adopts its own format to store moving objects. A particular 

format specifies the way to encode information and how it is organized. 

This work focuses on this class of spatiotemporal data. It proposes an 

interoperable strategy to translate spatial and temporal information stored in 

different data sources into moving object trajectories for further analyses. The 

proposed approach is based on the processing of an additional metadata file 

that describes how moving objects are stored in a particular data source. It is an 

XML file that must be compliant with a schema proposed in this paper. 

Grounded on this strategy, we have built a new software module to deal with 

and analyze moving objects in a geographical library called TerraLib (CÂMARA 

et al., 2008).   

2. RELATED WORK 

Erwig et al. (1999) propose a model, called Moving Object Model, which defines 

an algebra to deal with moving objects. This algebra specifies three main data 

types, moving points, moving lines and moving regions, and a set of operations 

over them, such as trajectory and distance. This work is based on this algebra. 

Fig. 1 (a) and (b) shows the tracking of an animal and the evolution of a 

deforested region. The former is an example of a moving point because the 

animal position changes over time. The latter is a moving region, since the 

object extent evolves over time. 
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Fig. 1 - Examples of moving objects: (a) an animal tracking and (b) the evolution of a 

deforested region. 

Although moving object spatial positions or extents change continuously over 

time, they are often represented by discrete observations. For instance, Fig. 1 

(a) shows an animal tracking through an observation set. Each observation 

records a spatial position, represented by a point, and a time instant when the 

animal was at that position. Fig. 1 (b) presents the evolution of a deforested 

region through three observations. Each one contains the spatial extent of the 

deforested region, represented by a polygon, and the year when it was 

detected. 

Trajectories are countable journeys associated to objects that are moving over 

time (SPACCAPIETRA et al., 2008). Different kinds of trajectories can be 

extracted from a moving object. For example, if an application is interested in 

studying the daily behavior of an animal, it can extract its trajectories by 

grouping its daily observations. In another case, the application might extract 

trajectories that group the animal observations by its intersection with some 

regions of interest. 

Based on the algebra proposed by Erwig et al. (ERWIG et al., 1999), there are 

two main initiatives of Moving Object Database (MOD) systems, SECONDO 

(GUTING and SCHNEIDER, 2005) and Hermes (PELEKIS et al., 2008). Both 

extend the SQL type system with data types to represent moving objects, such 

as moving point and moving region, and a set of functions to deal with them. 

SECONDO is an extensible database system prototype designed at the 
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FernUniversität in Hagen. Hermes is a MOD engine that has been implemented 

as an Oracle data cartridge. 

ISO defines a conceptual model called Moving Feature Model for features 

whose geometries move over time as a rigid body (ISO, 2008). It supports 

changes of location, translation and rotation, but not deformation of a feature. 

The Moving Object Model is broader than the Moving Feature Model because it 

supports geometry deformation over time. By dealing with geometry 

deformations, the model can cope with a class of environmental problems, like 

deforested region evolution show in Fig. 1 (b), where entity geometries move 

and deform over time. 

3. THE PROBLEM 

Most existing spatial file formats (e.g. KML and GML) and database systems 

(e.g. PostGIS) do not provide data types or structures to represent moving 

objects. They represent spatial and temporal information using structures and 

types predefined in ISO and OGC specifications. However, in these 

specifications, there is nothing about moving object representation in data files 

or database systems. Each data producer adopts its own format to do it. 

Therefore, this work addresses the problem: how to translate spatial and 

temporal information stored in different data sources into moving object 

trajectories for further analyses?  

To illustrate this problem, let us consider two real examples of data sources that 

contain spatial and temporal information related to moving objects: a KML file 

and a PostGIS database. 

3.1.  Moving Objects in KML files 

KML stands for Keyhole Markup Language and is an OGC standard for 

encoding and transporting representations of geographic data, mainly for data 

display in an Earth browser. It is an XML file that follows a predefined XML 
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schema. Such schema describes the grammar which KML file instances must 

be compliant with. All components of the KML schema are defined in the 

namespace with the identifier "http://www.opengis.net/kml/2.2". 

The KML Schema defines an element called kml::PlacemarkType to represent 

spatial objects and time stamps associated to them. Spatial objects are 

represented by five types: kml:MultiGeometryType, kml:PointType, 

kml:LineStringType, kml:LinearRingType and kml:PolygonType. It 

defines two types for time information: kml:TimeStampType and 

kml:TimeSpanType.  

The first example is a KML file generated by a project that monitors sea 

elephants in the Antarctica (INPE, 2012). This file contains observations of eight 

animals during three years. Each observation has an animal location at a 

specific time and is represented by a kml::PlacemarkType element. The 

animal location is represented by kml::PointType and its associated time by 

kml::TimeStampType.  

Although KML is used to describe journeys, there is not a predefined type in its 

schema that associates spatial and temporal elements to a same trajectory. 

There is nothing to indicate what kml::PlacemarkType elements must be 

grouped as the same moving object trajectory. In this example, the KML file 

uses a kml::FolderType element to group all observations of the same 

animal. However, KML files generated by other producer can use different 

elements to do it.  

This file also contains visual style elements to describe how the data should be 

visualized. Fig. 2 shows the display of this KML file in the Google Earth, where 

the red lines represent the sea elephant trajectories. 
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Fig. 2 - Trajectories of sea elephants: display of the KML in the Google Earth software. 

 

3.2.  Moving Objects in a PostGIS database 

PostGIS extends the PostgreSQL, an open source object-relational database 

system, to deal with geographic objects. It is compliant with the OGC Simple 

Feature Access (SFA) specification (OGC, 2006a) (OGC, 2006b).  It provides a 

set of data types to represent geometries, such as st_point and st_polygon, 

and of functions to handle these types, such as st_distance and 

st_intersection. These types and functions come from the OGC geometry 

model. For temporal information, PostgreSQL supports the full set of Structured 

Query Language (SQL) date and time types, such as timestamp, interval, 

date and time. 

The SFA specification uses the term feature tables to refer to tables that have at 

least a spatial attribute, stored in a column whose domain is a geometry type. It 

proposes two metadata tables: geometry_columns and spatial_ref_sys. 

The spatial_ref_sys table holds the numeric identifications and textual 

descriptions of coordinate systems used in the spatial database. The 

geometry_columns table registers the available feature tables in the database 

and metadata about their geometry columns, such as their types and 

associated spatial reference systems identifications (srid). 

The second example is a PostGIS database that has observations of moving 

cars in a city. Fig. 3 shows the trajectories of three cars during a day, where 
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each point represents a car location at a specific time. All observations of all 

cars are stored in a feature table, called car_trajectories, that has three 

columns: (1) car_id: to store the car identities; (2) location: to store the car 

spatial locations (st_point type); and (3) date_time: to store the temporal 

information (timestamp type).  

 

Fig. 3 - Trajectories of three cars in a city during a day. 

The car_trajectories is a feature table and so the metadata about its 

geometry column is registered in the geometry_columns table. However, there 

is not a metadata in this database that indicates how to translate the spatial and 

temporal information of the car_trajectories table into moving object 

trajectories. 

3.3.  Analyzing Moving Objects 

Most GIS tools can access and display geometries and their associated times 

from PostGIS databases and KML files. Some of them, such as Google Earth, 

can automatically configure timelines and generates animations over time. 

However, they are not able to analyze them as moving object trajectories. They 

cannot answer questions like: (1) Where was object o1 at time t5? (2) When did 

object o1 enter a specific region r10 and how long did it stay in this region? (3) 

When and where did objects o1 and o2 meet each other (considering a meeting 

when the distance between two objects is less than 2 meters)? (4) Where and 

when was there a spatiotemporal cluster of objects?  
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This requires a more specialized tool that is able to: (1) translate geometry 

objects associated to time stamps stored in data sources into data structures 

that represent moving object trajectories, and (2) analyze trajectories, by 

providing functions over its data structures that can answer questions like the 

ones presented above. To meet these requirements, we are developing a new 

software module in a geographical library called TerraLib (CÂMARA et al., 

2008). Its architecture is described at follow. 

4. SOFTWARE ARCHITECTURE 

This section describes the architecture of a new software module for moving 

object analysis, built in a geographical library called TerraLib. TerraLib is a C++ 

software library base to build geographical information systems. It is open 

source and is developed by the National Institute for Space Research (INPE) 

(CÂMARA et al., 2008). 

This new module is composed of three other ones, ST (SpatioTemporal), 

STLoader and DataAccess, as shown in Fig. 4. The ST module contains data 

structures and functions to represent and analyze moving objects. It provides 

functions to calculate the distance between two moving objects and the 

intersection between a moving object and a region of interest. The distance 

operation results in a time series that maps each time to the distance between 

the objects at that time. The intersection operation results in patches or 

trajectories of a moving object that intersect a region of interest, as shown in 

Fig. 5. In this figure, each trajectory represents a patch when the object was 

inside the region of interest. Using the ST module functions, a user can answer 

questions like the four ones presented in Section 3.3. 
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Fig. 4 - Software architecture. 

 

Fig. 5 - Intersection between a moving object and a region of interest. 

The DataAccess module is in charge of accessing data sets from different 

sources, such as KML and GML files as well as PostGIS databases. Each 

source stores spatial and temporal information using particular predefined 

structures. A point is stored in a kml::PointType element in KML files and in a 

st_point type in PostGIS databases. So, this module has to know the 

particularities of each source to load its data sets.  

The STLoader module is responsible for translating the data sets loaded by the 

DataAccess into moving object structures of the ST module. To do this, it needs 

extra information about how the sources represent moving objects. Let us 

consider the PostGIS database presented in Section 3.2. To load its moving 

cars, this module has to know that the car_trajectories table contains 
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moving objects. Besides that, it needs to know that its column car_id stores 

the car identities, location stores the car locations and date_time contains 

the temporal information. To load moving animals from the KML file described in 

Section 3.1, this module has to know that all observations of each animal are 

grouped in a kml::FolderType element.  

Therefore, this module requires an additional metadata file, called moving 

object source metadata, which contains this necessary extra information. 

5.  MOVING OBJECTS SOURCE METADATA 

The moving object source metadata is an XML file. XML stands for eXtensible 

Markup Language and is a markup language designed to transport and store 

structured data. It is a World Wide Web Consortium (W3C) recommendation 

and has been widely used to carry and share data mainly in the Web 

environment (BRAY et al., 2008). An XML file is structured through user-defined 

tags and can be described by a XML Schema. The purpose of an XML Schema 

is to define the legal building blocks of an XML document in terms of elements 

and attributes that can appear in an XML file. The XML Schema language is 

called XML Schema Definition (XSD).  

Moving object source metadata files must be compliant with the XML Schema 

proposed in this section. This schema is shown in Fig. 6. It defines seven 

complex elements: MovingObjectSourceType, DataSourceInfoType, 

DataSourceParamsType, MovingObjectInfoType, IdInfoType, 

SpatialInfoType and TemporalInfoType.  

MovingObjectSourceType is the root element. It encloses all the other 

elements that contain metadata about data sources and theirs moving objects. 

Information about each data source is described by the DataSourceInfoType 

element. It holds the data source name, its type and its access parameters. In 

this first version, the metadata file supports two types of data sources, KML and 

POSTGIS. 
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Fig. 6 - The Moving Object Source Metadata file schema. 

The access parameters are described by the DataSourceParamsType element. 

Since each type of data source requires a specific set of access parameters, 

this element is composed of key-value pairs instead of predefined elements. To 

access a PostGIS database, a user opens a connection that requires, at least, 

the database name, the server host name and its available port, the user name 

and its password. Otherwise, to access and open a KML file, a system only 

needs its path and name. A list of possible access parameters for each data 
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source type is available in the TerraLib documentation available at 

www.terralib.org. 

MovingObjectInfoType element carries information about the containers in the 

data sources that hold moving object observations. It includes: (1) the container 

type and name (containerType and containerName elements); (2) where the 

object identities are stored (IdInfoType type); (3) where the spatial and 

temporal information is stored (SpatialInfoType and TemporalInfoType 

types). The container that holds the moving car observations (Section 3.2) is the 

table car_trajectories. The identity of each car is stored in the column 

car_id. The columns location and date_time store the spatial and temporal 

information of each observation.   

The IdInfoType element describes where the object identities are stored. The 

SpatialInfoType element describes where the spatial information is stored 

and its Spatial Reference System Identification (SRID). SRID is a unique 

number used to identify projected and local spatial coordinate system 

definitions. In the metadata file, the srid is optional since it can be already 

registered in the data source. A PostGIS database holds the srid of its feature 

tables in the geometry_columns table.   

The TemporalInfoType element indicates where the temporal information is 

stored as well as its pattern and temporal resolution. Temporal pattern refers to 

the format of a textual representation of a date and time. For example, the text 

“01-03-2008” is ambiguous; it can represent the first day of March in 2008 or the 

third day of January in 2008. So, we have to inform what pattern it follows in 

order to understand its right meaning. ISO 8601:2004 (ISO, 2004) proposes 

some date and time format representations, such as DD-MM-YYYY or MM-DD-

YYYY, and this work adopts them. The temporal pattern information is optional. 

It is only necessary when the temporal data is of a textual type.  
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Temporal resolution refers to the time granularity which must be considered to 

deal with temporal information. Each deforested region observation (shown in 

Fig. 1 (b)) can have a complete date associated to it (a day, a month and a 

year), such as ‘01-01-2003’. Nevertheless, the measurement of deforested 

regions is done yearly and so only the year must be considered in this date. In 

other words, the time resolution associated to it is YEAR. The possible time 

resolutions are: YEAR, MONTH, WEEK, DAY, HOUR, MINUTE and SECOND. 

6. EXAMPLES 

This section presents the moving object source metadata files related to the two 

examples presented in Section 3. These files contain necessary information to 

translate the spatial and temporal information in the KML file and in the PostGIS 

database into moving animals and moving cars, respectively. They follow the 

schema described in the previous section.  

6.1.  Moving Animals in the KML file 

Fig. 7 (a) presents the moving object metadata file related to the KML file 

described in Section 3.1. The DataSourceInfo element contains the data 

source name (sea_elephants); its type (KML) and its access parameters 

(NAME=c://sea_elephants.kml). To access and open a KML file, a system 

needs only its name and path. So, we inform only the access parameter NAME. 

In this file, there are two MovingObjectInfo elements that describe information 

about two containers of moving animal observations. The first container is a 

folder (containerType is kml::FolderType) called 40:	
   locations 

(containerName). The second one is also a folder (containerType is 

kml::FolderType) called 41:	
  locations (containerName). Both folders hold 

moving animals observations using the following KML elements: (1) 

kml::Placemark::Name to store the animal identities (IdInfo); (2) 

kml::Placemark::Point to  store the animal locations (SpatialInfo); and (3) 

kml::Placemark::TimeStamp to store the temporal information associated to 
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each location (TemporalInfo). The srid of the locations is 4326 that refers to 

the reference coordinate system WGS84. And, its temporal resolution is 

SECOND. 

6.2.  Moving Cars in the PostGIS database 

Fig. 7 (b) presents the moving object metadata file related to the PostGIS 

database described in Section 3.2. The DataSourceInfo element contains the 

data source name (cars), its type (POSTGIS) and its access parameters. These 

parameters contain necessary information to open a connection to a PostGIS 

database: the database name (NAME=stdatabase), the server host name 

(HOST=localhost), its available port (PORT=5432) and the user name 

(USER=postgres).   

Information about how the moving cars are stored in this database is in the 

MovingObjectInfo element. The moving car observations are stored in a table 

(containerType is Table) called car_trajectories (containerName). The 

car identities are stored in a column called car_id (IdInfo). The car spatial 

locations are stored in a column called location (SpatialInfo) and their 

associated times in a column called date_time (TemporalInfo). We do not 

need to inform the srid in this file. It comes from the geometry_columns where 

the table car_trajectories is registered. 
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(a) (b) 
 

Fig. 7 - The moving object metadata files: (a) related to the KML file and its moving animals 

(Section 3.1); (b) related to the PostGIS database and its moving cars (Section 3.2). 

7. PROTOTYPE 

We have built a new software module to deal with and analyze moving objects 

in the geographical library TerraLib. This module is based on the software 

architecture and strategy proposed in this paper. Besides that, we have adapted 

the open GIS TerraView to display and analyze moving objects, using this new 

module. TerraView is a geographical application built utilizing the TerraLib 

library (INPE, 2012). It is open source and developed by INPE.  
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Fig. 8 shows TerraView displaying the trajectories of two sea elephants (blue 

and yellow lines at the bottom) and the distance between both. The distance 

operation results in a time series (right side of the figure) that maps each time to 

the distance between both at that time. TerraView has loaded these two 

trajectories from the KML shown in Fig. 2, using the moving object source 

metadata file presented in Fig. 7 (a). It can also display them through an 

animation over time.    

 

Fig. 8 - TerraView: displaying and analyzing sea elephant trajectories. 

We have built this module using three open source C++ software libraries: 

Xerces-C++, OGR and libpq. Xerces-C++ (http://xerces.apache.org/xerces-c/) is 

able to read and write XML data, checking its compliance with predefined 

schemas. It is used to read the moving object source metadata files that are 

XML files. OGR is provides read (and sometimes write) access to a variety of 

geographical vector file formats, including KML files (http://www.gdal.org/ogr/). 

We use the OGR LIBKML Driver to read KML files 

(http://www.gdal.org/ogr/drv_libkml.html). To access PostGIS databases, we 

use the libpq library (http://www.postgresql.org/docs/8.2/static/libpq.html).   

8. FINAL REMARKS 
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The proposed approach consists in loading spatial and temporal information 

from data sources as it is and, afterwards, translating it into moving objects 

trajectories. To do this, it uses an additional metadata file that describes how 

moving objects are stored in a particular data source. This translation is 

essential to analyze the original information as moving object trajectories. To 

answer the question “when and where did objects o1 and o2 meet each other 

(considering a meeting when the distance between two objects is less than 2 

meters)?”, we need to structure the original data as moving object trajectories.   

This strategy has two main advantages. The first one is that no change in the 

original data sources is required. It loads the original data as it is and uses the 

metadata file to know how to translate it into moving objects. This feature is 

particularly interesting when dealing with database servers and the final 

application do not have permission to change them.  

The second advantage is that it can be easily extended to other data sources.  

In this paper, we show a prototype working with KML files and PostGIS 

databases. However, we can easily extend it to other kinds of data sources, 

such as GML or Oracle Spatial. To do it, we have to: (1) add the new types of 

data sources in the moving object source metadata file schema, including them 

in the element type of the DataSourceInfoType type (Fig. 6); and (2) build a 

new software piece in the DataAccess module that is able to load spatial and 

temporal information from these new data sources.   

This proposal allows for dealing with moving objects data using common GIS 

spatial files and DBMS spatial extensions. In this perspective, this work 

advances towards a new generation of GIS that deals with spatiotemporal data. 
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