
sid.inpe.br/mtc-m19/2012/12.11.16.43-TDI

AN ALGEBRA FOR SPATIOTEMPORAL DATA: FROM

OBSERVATIONS TO EVENTS

Karine Reis Ferreira

Doctorate Thesis at Graduate

Course in Applied Computing

Science, advised by Drs. Gilberto

Câmara, and Antônio Miguel

Vieira Monteiro, approved in 2012,

November, 28

URL of the original document:

<http://urlib.net/8JMKD3MGP7W/3D76MUS>

INPE

São José dos Campos

2012

http://urlib.net/8JMKD3MGP7W/3D76MUS

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE

Gabinete do Diretor (GB)

Serviço de Informação e Documentação (SID)

Caixa Postal 515 - CEP 12.245-970

São José dos Campos - SP - Brasil

Tel.:(012) 3208-6923/6921

Fax: (012) 3208-6919

E-mail: pubtc@sid.inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE INTEL-

LECTUAL PRODUCTION (RE/DIR-204):

Chairperson:

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Members:

Dr. Antonio Fernando Bertachini de Almeida Prado - Coordenação Engenharia e

Tecnologia Espacial (ETE)

Dra Inez Staciarini Batista - Coordenação Ciências Espaciais e Atmosféricas (CEA)

Dr. Gerald Jean Francis Banon - Coordenação Observação da Terra (OBT)

Dr. Germano de Souza Kienbaum - Centro de Tecnologias Especiais (CTE)

Dr. Manoel Alonso Gan - Centro de Previsão de Tempo e Estudos Climáticos

(CPT)

Dra Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação

Dr. Pĺınio Carlos Alvalá - Centro de Ciência do Sistema Terrestre (CST)

DIGITAL LIBRARY:

Dr. Gerald Jean Francis Banon - Coordenação de Observação da Terra (OBT)

DOCUMENT REVIEW:

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Yolanda Ribeiro da Silva Souza - Serviço de Informação e Documentação (SID)

ELECTRONIC EDITING:

Vivéca Sant´Ana Lemos - Serviço de Informação e Documentação (SID)

sid.inpe.br/mtc-m19/2012/12.11.16.43-TDI

AN ALGEBRA FOR SPATIOTEMPORAL DATA: FROM

OBSERVATIONS TO EVENTS

Karine Reis Ferreira

Doctorate Thesis at Graduate

Course in Applied Computing

Science, advised by Drs. Gilberto

Câmara, and Antônio Miguel

Vieira Monteiro, approved in 2012,

November, 28

URL of the original document:

<http://urlib.net/8JMKD3MGP7W/3D76MUS>

INPE

São José dos Campos

2012

http://urlib.net/8JMKD3MGP7W/3D76MUS

Cataloging in Publication Data

Ferreira, Karine Reis.
F413a An algebra for spatiotemporal data: from observations to

events / Karine Reis Ferreira. – São José dos Campos : INPE,
2012.

xviii + 102 p. ; (sid.inpe.br/mtc-m19/2012/12.11.16.43-TDI)

Thesis (Doctorate Thesis at Graduate Course in Applied Com-
puting Science) – Instituto Nacional de Pesquisas Espaciais, São
José dos Campos, 2012.

advisors : Drs. Gilberto Câmara, and Antônio Miguel Vieira
Monteiro.

1. spatiotemporal data. 2. algebra. 3. data model. 4. Geo-
graphic Information Systems. I.T́ıtulo.

CDU 004.652

Copyright c© 2012 do MCT/INPE. Nenhuma parte desta publicação pode ser reproduzida, ar-
mazenada em um sistema de recuperação, ou transmitida sob qualquer forma ou por qualquer
meio, eletrônico, mecânico, fotográfico, reprográfico, de microfilmagem ou outros, sem a permissão
escrita do INPE, com exceção de qualquer material fornecido especificamente com o propósito de
ser entrado e executado num sistema computacional, para o uso exclusivo do leitor da obra.

Copyright c© 2012 by MCT/INPE. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, microfilming, or otherwise, without written permission from INPE, with the exception
of any material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use of the reader of the work.

ii

	

	

iv	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

v	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

To my son Guilherme, my husband Luciano and

my parents Élcio and Terezinha.

	

	

vi	

	

	

vii	

AGRADECIMENTOS

	

Muitas	
 pessoas	
 colaboraram	
 com	
 a	
 realização	
 desta	
 tese	
 e	
 cada	
 uma	
 de	
 uma	
 maneira	

diferente.	
 Algumas	
 pessoas	
 colaboraram	
 intelectualmente.	
 Estas	
 me	
 ajudaram	
 na	

construção	
 e	
 aperfeiçoamento	
 das	
 ideias	
 apresentadas	
 nesta	
 tese,	
 através	
 de	

discussões,	
 sugestões	
 e	
 críticas.	
 Outras	
 me	
 ajudaram	
 emocionalmente,	
 me	
 apoiando	

com	
 palavras	
 e	
 gestos	
 de	
 carinho	
 nos	
 momentos	
 de	
 ansiedade	
 e	
 cansaço	
 que	

inevitavelmente	
 fazem	
 parte	
 desse	
 processo.	
 E	
 têm	
 ainda	
 as	
 pessoas	
 que	
 me	
 ajudaram	

a	
 conciliar	
 este	
 trabalho	
 com	
 a	
 maternidade,	
 me	
 auxiliando	
 em	
 momentos	
 que	
 tive	

que	
 me	
 ausentar	
 para	
 me	
 dedicar	
 a	
 esta	
 tese.	
 	

Cada	
 ajuda	
 teve	
 seu	
 valor.	
 Agradecerei	
 pessoalmente	
 com	
 um	
 forte	
 abraço	
 a	
 cada	
 uma	

dessas	
 pessoas.	
 Lembrarei-­‐me	
 sempre	
 de	
 cada	
 apoio!	

	

	
 	

	

	

viii	

	
 	

	

	

ix	

ABSTRACT

Recent technological advances in geospatial data gathering have created
massive data sets with better spatial and temporal resolution than ever. These
large data sets have motivated a challenge for Geoinformatics. We need
models that represent spatiotemporal data sets from different areas and that
lead to good quality software. Many existing spatiotemporal data models
represent how objects and fields evolve over time. However, to properly capture
changes, it is also necessary to describe events. Events are individual
happenings with definite beginnings and ends. As a contribution to this
research, this thesis proposes a model for spatiotemporal data, using an
algebraic specification. Algebra gives formal specifications at a high-level
abstraction, independently of programming languages. This helps to develop
interoperable, reliable and expressive applications. The presented algebra is
extensible, specifying data types as building blocks for other types. Three data
types are defined as abstractions built on observations: time series, trajectory,
and coverage. Using these types, we can construct objects and events. The
algebra represents events explicitly, besides objects and fields. The proposed
data types and functions can model and capture changes in many areas,
including location-based services, public health, and environmental and natural
disaster monitoring.

	

	

	

x	

	

xi

UMA ÁLGEBRA PARA DADOS ESPAÇO-TEMPORAIS: DE OBSERVA ÇÕES

A EVENTOS

RESUMO

Recentes avanços tecnológicos na aquisição de dados geográficos têm gerado
uma grande quantidade de informação com melhores resoluções espaciais e
temporais do que nunca. Esse grande conjunto de dados espaço-temporais
tem motivado um desafio para a Geoinformática. Precisamos de modelos que
representam dados espaço-temporais vindos de diferentes áreas e que
auxiliam no desenvolvimento de aplicativos de boa qualidade. Muitos modelos
de dados espaço-temporais existentes representam como objetos e campos
evoluem ao longo do tempo. Porém, para realmente capturar mudanças, é
necessário também descrever eventos. Eventos são acontecimentos
individuais com um definitivo início e fim. Como uma contribuição para essa
área de pesquisa, esta tese propõe um modelo para dados espaço-temporais,
usando uma especificação algébrica. Álgebra fornece especificações formais
em um alto nível de abstração, independentemente de linguagens de
programação. Isto auxilia no desenvolvimento de aplicações interoperáveis,
confiáveis e expressivas. A álgebra apresentada é extensível, especificando
tipos de dados como unidades de construção para outros tipos. Três tipos de
dados são definidos como abstrações construídas sobre observações: time
series, trajectory e coverage. Usando esses tipos, nós podemos construir
object e event. Os tipos e funções propostas podem ser usadas para modelar e
capturar mudanças em uma grande variedade de aplicações, incluindo serviços
baseados em localização, saúde pública e monitoramento ambiental e de
desastres naturais.

	

	

xii	

	

	

xiii	

LIST OF FIGURES

Page

Figure	
 3.1	
 –	
 The	
 six	
 possible	
 combinations	
 of	
 measuring	
 the	
 world	
 proposed	
 by	
 Sinton	

(1978).	
 ...	
 12	

Figure	
 3.2	
 –	
 Different	
 views	
 on	
 observations	
 produced	
 by	
 moving	
 cars.	
 	
 14	

Figure	
 3.3	
 –	
 Examples	
 of	
 time	
 series:	
 (a)	
 temperature	
 collected	
 by	
 meteorological	

stations	
 and	
 (b)	
 number	
 of	
 mosquito	
 eggs	
 gathered	
 from	
 one	
 egg	
 trap	
 in	

a	
 district	
 of	
 Recife	
 (Brazil).	
 ..	
 15	

Figure	
 3.4	
 –	
 Trajectories	
 of	
 ten	
 sea	
 elephants	
 in	
 Antarctica	
 (red	
 lines).	
 	
 16	

Figure	
 3.5	
 –	
 Trajectories	
 of	
 three	
 cities	
 of	
 Rondônia.	
 Left	
 and	
 right	
 picture	
 present	
 their	

boundaries	
 in	
 2001	
 and	
 2005.	
 Legend:	
 blue	
 polygon	
 is	
 “Costa	
 Marques”	

municipality;	
 yellow	
 is	
 “São	
 Francisco	
 do	
 Guaporé”	
 and	
 green	
 is	

“Seringueiras”.	
 ..	
 16	

Figure	
 3.6	
 –	
 Example	
 of	
 coverages:	
 rain	
 in	
 the	
 state	
 of	
 Rio	
 de	
 Janeiro,	
 Brazil,	
 in	
 11	

January	
 2011.	
 ..	
 17	

Figure	
 3.7	
 –	
 Example	
 of	
 coverages:	
 variation	
 of	
 chlorophyll	
 in	
 a	
 lake	
 of	
 the	
 Amazon	

rainforest.	
 ..	
 18	

Figure	
 3.8	
 –	
 Observations	
 of	
 a	
 moving	
 car	
 and	
 different	
 kinds	
 of	
 interpolation	

functions.	
 ..	
 19	

Figure	
 3.9	
 –	
 Events	
 of	
 meningitis	
 in	
 Belo	
 Horizonte	
 city.	
 ...	
 20	

Figure	
 3.10	
 –	
 The	
 proposed	
 data	
 model.	
 ...	
 21	

Figure	
 4.1	
 –	
 Data	
 types	
 as	
 building	
 blocks.	
 ..	
 24	

Figure	
 5.1	
 –	
 Software	
 architecture:	
 Implementation	
 of	
 the	
 algebra.	
 	
 43	

Figure	
 5.2	
 –	
 A	
 simplified	
 UML	
 class	
 diagram	
 of	
 the	
 ST	
 module.	
 	
 44	

	

	

xiv	

Figure	
 5.3	
 –	
 Ten	
 sea	
 elephant	
 trajectories	
 loaded	
 by	
 the	
 STLoader	
 module	
 from	
 a	

KML	
 file	
 and	
 the	
 distance	
 between	
 two	
 of	
 them.	
 	
 47	

Figure	
 5.4	
 –	
 Meetings	
 of	
 two	
 sea	
 elephants.	
 ...	
 50	

Figure	
 5.5	
 –	
 Spatiotemporal	
 cluster	
 of	
 at	
 least	
 3	
 animals.	
 ...	
 53	

	

	

xv	

LIST OF SYMBOLS

⇒ Implication. A ⇒	
 B means if A is true then B is also true. If A is false
then nothing is said about B.

∨	
 Logical disjunction. The statement A ∨ B is true if A or B (or both) are
true; if both are false, the statement is false.

∧	
 Logical conjunction The statement A ∧ B is true if A and B are both
true; else it is false.

=	
 Equality. The expression x = y means x and y represent the same thing
or value.

≠	
 Inequality. The expression x ≠ y means that x and y do not represent
the same thing or value.

<	
 Is less than. The expression x < y means x is less than y.

>	
 Is greater than. The expression x > y means x is greater than y.

≤	
 Is less than or equal to. The expression x ≤ y means x is less than or
equal to y.

≥	
 Is greater than or equal to. The expression x ≥ y means x is greater
than or equal to y.

{ }	
 Set. {a,b,c} means the set consisting of a, b, and c.

|	
 Such that. S = {(x,y) | 0 < y < f(x)} means the set of (x,y) such that y is
greater than 0 and less than f(x).

∈ Is an element of. The expression a ∈ S means a is an element of the
set S.

∅ Empty set. It means the set with no elements.

	

	

	

xvi	

	

	

	

xvii	

SUMMARY

Page.

1	
 INTRODUCTION	
 ..	
 1	

1.1.	
 The	
 Proposal	
 ...	
 2	

1.2.	
 Document	
 Structure	
 ...	
 3	

2	
 RELATED	
 WORK	
 ..	
 5	

2.1.	
 Changes	
 in	
 Objects	
 ...	
 5	

2.1.1.	
 Moving	
 Objects	
 and	
 Trajectories	
 ..	
 6	

2.2.	
 Changes	
 in	
 Fields	
 ..	
 7	

2.3.	
 Events	
 	
 ..	
 7	

2.3.1.	
 Continuants	
 and	
 Occurrents	
 ...	
 8	

2.3.2.	
 Event	
 Representation	
 ..	
 8	

2.4.	
 Our	
 Approach	
 ...	
 9	

3	
 FOUNDATIONS	
 ...	
 11	

3.1.	
 Observations	
 ..	
 11	

3.2.	
 Data	
 Abstractions	
 ...	
 13	

3.2.1.	
 Time	
 Series	
 ..	
 14	

3.2.2.	
 Trajectory	
 ..	
 15	

3.2.3.	
 Coverage	
 ...	
 16	

3.2.4.	
 Interpolation	
 Functions	
 ...	
 18	

3.3.	
 Objects	
 and	
 Events	
 ...	
 19	

4	
 AN	
 AGEBRA	
 FOR	
 SPATIOTEMPORAL	
 DATA	
 ..	
 23	

4.1.	
 Primitives	
 Data	
 Types	
 ...	
 24	

	

	

xviii	

4.2.	
 Observations	
 ..	
 25	

4.3.	
 Interpolator	
 ..	
 26	

4.4.	
 SpatioTemporal	
 ..	
 26	

4.4.1.	
 Time	
 Series	
 ..	
 28	

4.4.2.	
 Trajectory	
 ..	
 30	

4.4.3.	
 Coverage	
 and	
 Coverage	
 Series	
 ..	
 32	

4.4.4.	
 Additional	
 Functions	
 ...	
 36	

4.5.	
 Object	
 	
 ..	
 38	

4.6.	
 Event	
 	
 ..	
 40	

5	
 PROOF	
 OF	
 CONCEPT	
 AND	
 EXAMPLES	
 ..	
 43	

5.1.	
 Software	
 Architecture	
 ..	
 43	

5.2.	
 Code	
 Examples	
 ...	
 47	

5.2.1.	
 Meeting	
 of	
 Two	
 Animals	
 ...	
 48	

5.2.2.	
 Spatiotemporal	
 Clusters	
 ..	
 50	

5.2.3.	
 Flood	
 ...	
 53	

6	
 FINAL	
 REMARKS	
 AND	
 FUTURE	
 WORK	
 ..	
 57	

6.1.	
 Next	
 Steps	
 Related	
 to	
 Software	
 Implementation	
 ..	
 58	

6.2.	
 Comparison	
 with	
 Previous	
 Work	
 ..	
 59	

ANNEX	
 A	
 –	
 TOWARDS	
 A	
 DYNAMIC	
 GEOSPATIAL	
 DATABASE	
 MODEL	
 	
 67	

ANNEX	
 B	
 –	
 MOVING	
 OBJECTS	
 AND	
 SPATIAL	
 DATA	
 SOURCES	
 ..	
 83	

	

1	

1 INTRODUCTION

The age of big geospatial data has come. Mobile phones, social networks and

GPS (Global Positioning System) devices create useful data for planning better

cities, capturing human interactions and improving life quality. Geosensors

allow scientists to observe the world in novel ways. Space agencies worldwide

plan to launch around 260 Earth observation satellites over the next 15 years.

We now have large spatiotemporal data sets in many application domains.

These massive data sets have motivated a challenge for GIScience. We need

models that represent spatiotemporal data sets from different areas and that

lead to good quality software.

In GIScience, static geospatial information is represented following well-

established models and concepts. This includes the dichotomy between object-

based and field-based models. Objects are identifiable geographical units with

spatial and non-spatial attributes and fields are mapping from spatial locations

to values of a property (COUCLELIS, 1992; GOODCHILD, 1992; WORBOYS

and DUCKHAM, 2004). Examples of long-standing concepts are vector and

raster data structures, topological operators, spatial indexing, and spatial joins

(EGENHOFER; FRANZOSA, 1991; RIGAUX et al., 2002). Most existing

geographical information systems (GIS) and spatial database systems are

grounded in these concepts. However, there is no consensus on how to

represent spatiotemporal information in computational systems.

Many existing proposals of spatiotemporal data models focus on representing

the evolution of objects and fields over time. Pelekis et al. (2004) review some

of these models and consider that most of them are data-specific; each one

addresses a class of spatiotemporal data. Some proposals are specific for

discrete changes in objects (WORBOYS, 1994; YUAN, 1999; HORNSBY;

EGENHOFER, 2000), others for moving objects (MARK et al., 1999; GÜTING

et al., 2000; ISO, 2008) and still others for fields or coverage (PEUQUET;

DUAN, 1995; LIU et al., 2008; OGC, 2006b; MENNIS, 2010). However, many

	

2	

applications need to combine different classes of such data. For example,

environmental change and natural disaster monitoring have to deal with moving

objects as well as with fields. Thus, we need spatiotemporal data models as

generic as possible to support such applications.

To properly capture changes in the world, representing evolution of objects and

fields over time is not enough. We also need to represent events and

relationships between events and objects explicitly (WORBOYS, 2005). Events

are occurrents (GALTON; MIZOGUCHI, 2009). They are individual happenings

with definite beginnings and ends. The demand for models that describe events

has encouraged recent research on spatiotemporal data modeling (WORBOYS;

HORNSBY, 2004; GALTON, 2004; GALTON; WORBOYS, 2005; HORNSBY;

COLE, 2007; WORBOYS, 2005).

1.1. The Proposal

To meet all these demands, this thesis proposes a data model for

spatiotemporal information using an algebraic specification. The main

contribution of this work is an extensible algebra to represent variation of

objects and fields over time as well as events. The proposed data types and

functions can model and capture changes in many areas, including location-

based services, public health, and environmental and natural disaster

monitoring. Algebras describe data types and their operations in a formal way,

independently of programming languages. By separating specification from

implementation, they help to develop interoperable, reliable and expressive

applications (FRANK; KUHN, 1995; FRANK, 1999).

The presented model starts with observations, revisiting the Sinton’s classical

work (SINTON, 1978). Recent research draws attention to the importance of

using observations as a basis for designing geospatial applications.

Observations are our means to assess spatiotemporal phenomena in the real

world (KUHN, 2009). Kuhn (2005) argues that: “All information ultimately rests

on observations, whose semantics is physically grounded in processes and

	

3	

mathematically well understood. Exploiting this foundation to understand the

semantics of information derived from observations would produce more

powerful semantic models”.

The proposed algebra is extensible. It defines data types as building blocks for

other types. Three data types are defined as abstractions built on observations:

time series, trajectory, and coverage. Using these types, we can construct

objects and events. The algebra represents events explicitly, besides objects

and fields. An event contains information about when and where it occurred and

its involved objects.

Since algebraic specifications are language-independent, programmers can

translate them into software using programming languages of their choice. As

an example, we have tested and validated the proposed algebra by

implementing its data types and functions using the C++ language. Two

modules have been developed on top of the geospatial software library TerraLib

(CÂMARA et al., 2008).

1.2. Document Structure

The content of this document basically comes from three papers:

(1) Ferreira, K. R.; Câmara, G.; Monteiro, A. M. Towards a Dynamic

Geospatial Database Model. In: The International Conference on

Emerging Databases (EDB 2011), 2011, Incheon, Korea. The Third

International Conference on Emerging Databases (EDB 2011).

Incheon, Korea, 2011. v. 1.

(2) Ferreira, K. R.; Vinhas, L.; Monteiro, A. M.; Câmara, G. Moving

Objects and Spatial Data Sources. (Accepted for publication in

September 2012 in the journal “Revista Brasileira de Cartografica”).

	

4	

(3) Ferreira, K. R.; Câmara, G.; Monteiro, A. M. An Algebra for

Spatiotemporal Data: From Observations To Events. (Accepted for

publication in October 2012 in the journal “Transactions in GIS”).

Chapter 2 describes some existing spatiotemporal data models and related

work. It is a summarized and revised version of paper (1) together with the

related work reported in paper (3).

Chapter 3 and 4 present the foundations and the algebraic specification of the

proposed data model. They come from the core of paper (3), extending it with

new examples of the algebra data types and with useful additional functions.

Chapter 5 describes how the proposed algebra was tested and validated and

presents its use examples. This chapter merges some parts of paper (2) with

some use examples of paper (3). Besides that, this chapter provides details

about the algebra implementation using the geographical software library

TerraLib.

Chapter 6 concludes the work. Annex A and B contain the complete papers (1)

and (2), respectively. Since the core of paper (3) is entirely presented along this

thesis, it has not been annexed to this document.

	

	

5	

2 RELATED WORK

This chapter presents a review of some existing spatiotemporal data models

and related work, grouping them in three categories: (1) models that represent

changes in objects; (2) models that represent evolution of fields over time; and

(3) models that represent events explicitly.

2.1. Changes in Objects

Some authors distinguish instantaneous from continuous changes in objects

(GALTON, 2004; GÜTING and SCHNEIDER, 2005). Cases of instantaneous

changes arise mostly due to legal rules that demand an immediate change in an

object. When a government creates laws that alter municipality limits, changes

take effect instantaneously. Continuous changes refer to a constant variation

over time and space. Examples include the movement of cars on a highway and

of migratory animals. In these cases, the spatial locations of cars and animals

change continuously over time.

Galton (2004) points out the difference between bona fide and fiat object

behavior over time. Bona fide objects are grounded in features of physical

reality, such as rivers and forest regions. Fiat objects are the artificial products

of human cognitive acts, such as municipality limits and land parcels. He argues

that: “Both these objects might change over time, but typically the bona fide

entity will undergo gradual change whereas the fiat entity undergoes sudden

change (as a result of the boundary being redrawn from time to time).” He uses

the terms “gradual” and “sudden” to refer to continuous and instantaneous

changes, respectively. Güting and Schneider (2005) distinguish discrete from

continuous changes and argue that classical research on spatiotemporal

database has focused on discrete changes of all the spatial entities. They

define moving objects as entities whose spatial location or boundary change

continuously over time and propose a model to deal with them.

	

6	

Worboys (1994), Yuan (1999) and Hornsby and Egenhofer (2000) propose

models to represent instantaneous changes in objects. Worboys (1994)

proposes a unified spatiotemporal object model that defines two data types, ST-

simplexes and ST-complexes, and a set of operations over them, such as ST-

Union, ST-Intersection and ST-Difference. Yuan (1999) defines a three-domain

model to represent variation of objects over time in relational database systems,

using normalized tables and a spatial graph. Hornsby and Egenhofer (2000)

present a model for changes in identifiable objects, expressing operations like

create, destroy and continue existence.

2.1.1. Moving Objects and Trajectories

Recent growth of mobile computing has motivated much work on moving

objects. Mark et al. (1999), Güting et al. (2000) and ISO (2008) propose models

that represent continuous changes in the spatial location or extent of objects.

Mark et al. (1999) define the concept of geospatial lifeline that models an

individual’s movement as a time-stamped record of locations. Güting et al.

(2000) define an algebra, data types and operations over them, for moving

objects. Interest in location-based applications led to an ISO (2008) standard

that defines a moving feature as an object whose geometry moves as a rigid

body.

Based on the algebra proposed by Güting et al. (2000), there are two main

initiatives of Moving Object Database (MOD) systems, SECONDO (GUTING;

SCHNEIDER, 2005) and Hermes (PELEKIS et al., 2008). Both extend the SQL

type system with data types to represent moving objects, such as moving point

and moving region, and a set of functions to deal with them. SECONDO is an

extensible database system prototype designed at the FernUniversität in

Hagen. Hermes is a MOD engine that has been implemented as an Oracle data

cartridge.

Spaccapietra et al. (2007) propose a conceptual model for trajectories of

moving objects. They define trajectories as countable journeys that are

	

7	

semantically segmented by defining a temporal sequence of time intervals when

the object position changes (moves) and stays fixed (stops). In the data mining

research area, many algorithms, techniques and languages have been

proposed to detect patterns of trajectories (LAUBE et al., 2005; BOGORNY et

al., 2009; SAKR; GÜTING, 2011).

2.2. Changes in Fields

To represent fields, Goodchild (1992) proposes two models: sampling and

interpolation-based field and tessellation-based field. Cova and Goodchild

(2002) define object-field as a mapping from continuous field to discrete objects.

Liu et al. (2008) introduce the concept of general field and show how

conventional fields as well as object-fields can be seen as specializations of it.

A general field has three dimensions in space plus one dimension in time.

Efforts on standardization led to the OGC Coverage Standard (OGC, 2006b).

This standard uses the term coverage to refer to field and defines it as a feature

that associates positions in a spatial, temporal or spatiotemporal domain to

attribute values. Although its definition includes spatiotemporal domains, only

coverages with spatial domains are described in its UML class diagrams. For

example, the domain of CV_DiscretePointCoverage consists in a set of points

(GM_Point) and of CV_DiscreteCurveCoverage in a set of curves (GM_Curve).

Raster is a particular representation of fields based on a regular cell grid. Some

models are specific to represent changes in raster. Peuquet and Duan (1995)

propose a model that groups changes in raster cells by time of occurrence.

Mennis (2010) extends the conventional map algebra to multidimensional

raster, including two or three dimensions in space and one dimension in time.

2.3. Events

Before talking about event representation, the next section introduces what

event means.

	

8	

2.3.1. Continuants and Occurrents

According to Galton (2008), in philosophical ontology there is a long-standing

classification of real world phenomena into continuants and occurrents.

Continuants (or endurants) are entities whose identities remain constant as they

undergo change, such as an aircraft and a volcano. They are present as a

whole at each moment of their existence. Occurrents are entities that happen or

occur, like a flight and an eruption. They cannot undergo change and only exist

as a whole across the interval over which they occur.

In the ontology literature, there is not a universal agreement about what events

and processes are and how they are classified, continuants or occurrents.

Some ontologies classify both as occurrents, such as SNAP/SPAN (GRENON;

SMITH, 2004). Others categorize processes as continuants and events as

occurrents, such as EXP/HIST (GALTON, 2008). This thesis follows the

definitions and classifications proposed by Galton and Mizoguchi (2009). An

event is an occurrent. It is an individual episode with a definite beginning and

end. An event is a chunk of some process. A process is indefinitely extended in

time. They are the “stuff” of which events are composed of.

2.3.2. Event Representation

Some spatiotemporal data models represent event explicitly. Worboys and

Hornsby (2004) propose a unified model for objects and events. This model

defines two kinds of relationships, object-event and event-event, following the

idea that an event can affect or be associated to one or more objects or events.

Some examples of object-event relationships are splitting and merger (“the

event e1 created or destroyed the boundary between objects o1 and o2”). Some

examples of event-event relationship are initiation and termination (“the

occurrence of event e1 started or terminated the event e2”). Galton and Worboys

(2005) refine such relationships for events, states, and processes in dynamic

networks.

	

9	

Hornsby and Cole (2007) model events associated to moving objects and

propose an approach to extract patterns of movements from them. An event

contains its name, the identifier of the object associated to it, the spatial region

where it occurred, and the instant when it happened. Worboys (2005) presents

a pure event oriented model, using an algebraic approach. He argues that

“happenings should be upgraded to an equal status with things in dynamic geo-

graphic representations” and suggests ways of doing so.

2.4. Our Approach

This thesis focuses on defining an extensible algebra that covers the whole

process to obtain events from raw observations. We represent events explicitly,

besides the variation of objects and fields over time. This is the main difference

between our approach and the previous ones described in this chapter. In the

proposed model, an event contains information about when and where it

occurred and its involved objects. We do not define types of relationships

between objects and events neither between events and events. These kinds of

relationships, as the ones defined by Worboys and Hornsby (2004) and Galton

and Worboys (2005), can be constructed on top of the presented model.

	

10	

	

11	

3 FOUNDATIONS

This chapter presents the base concepts on which the proposed algebra is

grounded, illustrating them with real examples. It is basically part of the paper

entitled “An Algebra for Spatiotemporal Data: From Observations To Events”

that has been accepted for publication in the journal “Transactions in GIS”.

3.1. Observations

The proposed model starts with observations, which are our means to assess

spatiotemporal phenomena in the real world (KUHN, 2009). It uses

observations as the basis for spatiotemporal modeling, following Sinton’s

approach (SINTON, 1978). According to Sinton, there is an inherent structure to

geographical information. For him, an observation should have three attributes:

space, time and theme (the term “theme” refers to the real-world phenomenon

or to the object being observed). He argues that we can create generalizations

of geographical information based on how these attributes (space, time and

theme) are assessed. In a general way, we observe the world by fixing one

attribute, controlling another and measuring the other. This means to: (1) keep

one attribute constant; (2) vary the second attribute in a controlled way; and (3)

measure the third attribute, taking into consideration the constraints of the

second attribute. This produces six possible combinations, shown in Figure 1.

	

12	

Figure 3.1 – The six possible combinations of measuring the world proposed by Sinton
(1978).

This work proposes three data types, time series, coverage and trajectory, to

represent the combinations (1), (2) and (3) presented in Figure 1:

1) Fixing location, controlling time, and measuring theme results in a

time series.

2) Fixing time, controlling location, and measuring theme results in a

coverage.

3) Fixing theme, controlling time, and measuring location results in a

trajectory.

We consider that these three data types are necessary and sufficient to model

spatiotemporal data. All the six combinations presented in Figure 1 can be

modeled as time series, trajectory or coverage. We do not need additional data

types to represent the combinations (4), (5) and (6). Combination (4) occurs in

cases like “measuring arrival times by runners in a marathon”. In this case, it is

possible to get this type of information by analyzing trajectories of runners,

without needing an additional data type. As an example of combination (5),

	

13	

Sinton proposes a “vegetation map” that could be obtained by finding out all

locations of a given land cover type. This is an awkward way to get a land cover

map. Usually, such maps are obtained by a systematic data collection over a

given area, resulting in coverages. Sinton suggests “tide tables” as an example

for combination (6). Since such tables can be obtained from a time series that

maps times to tide heights at a specific location, an additional type is needless.

Thus, we consider that only three data types (time series, coverage, and

trajectory) are necessary to model all possible combinations of theme, time, and

space.

3.2. Data Abstractions

The model defines three data types as abstractions built on observations: time

series, trajectory, and coverage. Using these types, we can create different

views on the same observation set, meeting application needs. Consider a set

of cars equipped with GPS and air pollution sensors. Figure 2 shows tracks of

three cars in a city during one day. These cars produce an observation set,

where each one contains a car identity, a time instant, a location and an air

pollution value. The observations are taken at each hour.

From this data, we can extract three different kinds of information: (1) how the

average air pollution varies over time in the city; (2) how the cars move over

time and space; (3) how pollution varies within the city limits. A typical query in

the case (1) is “When the average pollution in the city was greater than x for

more than five hours?”; in the case (2) is “How long did car c01 stay in the south

region of the city?”; in the case (3) is “What city district had the worst pollution

index in this day?”. Thus, each application needs different queries and each

kind of query is suited to a specific data type. Taking the whole city as a fixed

reference, we can get a time series that represents the variation of the average

air pollution in the city per hour. Considering each car an individual object, we

can get a set of trajectories. Fixing the whole day as a time reference and taking

	

14	

all observations at that day, we can create a coverage to represent the air

pollution variation within the city limits during that day.

	

Figure 3.2 – Different views on observations produced by moving cars.

3.2.1. Time Series

A time series represents the variation of a property over time. It is obtained from

observations that measure values at controlled times in a fixed location. Figures

3(a) and 3(b) show time series used in disease surveillance of dengue in the

city of Recife, Brazil (REGIS et al., 2009). Dengue is a viral disease transmitted

by the Aedes aegypti mosquitoes. These mosquitoes lay their eggs in standing

water; the eggs hatch in hot weather. To assess dengue risk, health services

use buckets of water as egg traps. Figure 3(a) shows five meteorological

stations and one temperature time series. A second set of time series

represents the number of mosquito eggs gathered weekly from egg traps.

Figure 3(b) presents egg traps (red points) in a district of Recife and a time

series produced by one of them.

	

15	

(a) (b)

Figure 3.3 – Examples of time series: (a) temperature collected by meteorological

stations and (b) number of mosquito eggs gathered from one egg trap in a district of
Recife (Brazil).

3.2.2. Trajectory

A trajectory represents how locations or boundaries of an object change over

time. Figures 4 and 5 show examples of trajectories. Figure 4 presents routes of

ten sea elephants in Antarctica. These animals are monitored by a project

called MEOP - “Marine Mammal Exploring the Oceans Pole to Pole”

(http://www.inpe.br/crs/pan/pesquisas/telemetria.php). Figure 5 shows the

evolution of three city limits in the Brazilian state of Rondonia from 2001 to

2005.

	

16	

Figure 3.4 – Trajectories of ten sea elephants in Antarctica (red lines).

Figure 3.5 – Trajectories of three cities of Rondônia. Left and right picture present
their boundaries in 2001 and 2005. Legend: blue polygon is “Costa Marques”

municipality; yellow is “São Francisco do Guaporé” and green is “Seringueiras”.

3.2.3. Coverage

A coverage represents the variation of a property in a spatial extent at a time.

For every location within such extent, it is possible to compute a value of this

property. The variation of air pollution in the city districts during one day (Figure

2) is represented by a coverage that has the observations obtained by all cars.

Figure 6 shows examples of coverages, where each one is represented by a

grid associated to a time. Each coverage is a grid associated to a time. These

grids contain the rain variation in the state of Rio de Janeiro during the natural

	

17	

disaster of 11 January 2011. Each cell contains an estimated value of

precipitation, in millimeter per hour (mm/h).

Figure 3.6 – Example of coverages: rain in the state of Rio de Janeiro, Brazil, in 11
January 2011.

A set of observations in an Amazon rainforest lake is shown as red points in

Figure 7, in four different months. Each observation measures the chlorophyll

value, among other properties, at a specific location and time. These

observations are taken to analyze the variation of chlorophyll within the lake

over time. Usually, a kriging interpolation function is used to estimate values at

non-observed locations in the lake. In our model, the observations of each

month are represented as a coverage whose spatial extent is the limits of the

lake.

	

18	

September, 2003 November, 2003

February, 2004 June, 2004

Figure 3.7 – Example of coverages: variation of chlorophyll in a lake of the Amazon

rainforest.

3.2.4. Interpolation Functions

Since observations are discrete by nature, we need to combine them with

interpolation functions to approximate continuous change. Interpolators

estimate values at locations in space and moments in time for which there is no

data (KNOTTERS et al., 2010). Consider two observations of a moving car

(Figure 2), one at instant 4 and the other at 8, shown in Figure 8 (a). There are

different methods to estimate car location at the non-observed time 6. Choices

include a linear interpolator (Figure 8 (b)) or a method that uses a street map as

a spatial constraint, as in Figure 8 (c). The proposed algebra allows a user to

choose the most suitable interpolation function for each type instance.

	

19	

	

Figure 3.8 – Observations of a moving car and different kinds of interpolation functions.

	

3.3. Objects and Events

The model defines objects as continuants and events as occurrents. An object

is an identifiable entity whose spatial and non-spatial properties can change

over time. It is present as a whole at each moment of its existence (GALTON;

MIZOGUCHI, 2009). Examples of objects are cars (Figure 2), egg traps (Figure

3), sea elephants (Figure 4), cities (Figure 5) and cities of Rio de Janeiro

(Figure 6). An event is an individual episode with a definite beginning and end.

It only exists as a whole across the interval over which it occurs. An event does

not change over time. It can involve one or more objects, and an object can be

involved in any number of events (GALTON; MIZOGUCHI, 2009). The

proposed model represents events and their involved objects explicitly. We can

derive events from specific conditions of spatial and non-spatial properties of

objects. If we know what conditions lead to an event, we can express them

using operations over the proposed types.

Consider the following objects and conditions that lead to events. The objects

are the cities of Angra dos Reis and Recife and a group of sea elephants. A

‘flood’ event occurs in Angra if “rain is more than 10 mm/hour for more than 5

hours”. A ‘dengue epidemic’ event happens in Recife when “the average

temperature is above 30o C for more than a week and more than 50 eggs on

average were found in the egg traps in the same week”. A ‘meeting of two

animals’ event occurs when “the minimal distance between two sea elephants is

shorter than 2 meters”. We can express these conditions through operations on

	

20	

time series, trajectories and coverages, which in turn are built from

observations.

The proposed model can also represent events that are not directly derived

from conditions of objects. Since we have information about when and where an

event happened, we can represent it using the model. Examples include

occurrences of crimes or diseases in a city. Figure 9 presents occurrences of

meningitis in Belo Horizonte city (black points). Each event has a spatial

location and a time of occurrence. We can also associate each event to the

district object where it occurred. Figure 10 presents an overview of the

proposed model.

Figure 3.9 – Events of meningitis in Belo Horizonte city.

	

21	

	

Figure 3.10 – The proposed data model.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

22	

	
 	

23

4 AN ALGEBRA FOR SPATIOTEMPORAL DATA

This chapter presents an algebraic specification of the data model described in

Chapter 3. It is basically part of the paper entitled “An Algebra for

Spatiotemporal Data: From Observations To Events” that has been accepted for

publication in the journal “Transactions in GIS”.

Data types are used to express abstractions. A data type is a set of values and

a collection of operations on those values that defines their behavior. An

algebraic specification of a data type T consists in: (1) a syntactic description

which defines the names, domains, and ranges of the operations of T; and (2) a

semantic specification which contains a set of axioms in the form of equations

which relate operations of T to each other (GUTTAG et al, 1978). In our

specification, functions and type signatures use monospaced font. Type names

are given in TitleCase and function names in lowercase. Sets are enclosed by

curly braces and square brackets denote parameterized types.

The proposed algebra defines data types as building blocks to create other

types, as shown in Figure 11. It starts defining a set of primitive types: Number,

Value, Time, Chronon and Geometry. Then, it specifies the Observations and

Interpolator types that are used to build the spatiotemporal data types. The

spatiotemporal types are TimeSeries, Trajectory, Coverage and

CoverageSeries. They implement an abstract interface defined by the

SpatioTemporal type. Object type is built from Trajectory and TimeSeries.

Event is created from Object.

	

24	

Figure 4.1 – Data types as building blocks.

4.1. Primitives Data Types

There are three primitive types: Value, Time and Geometry. Value is a generic

type to express attribute values that can be an Integer, Float, String or

Boolean. Typical operations on Value type include less_than, greater_than,

equal_to, max, and min. The meanings of such operations are evident when

applied to numerical types. When applied to textual and boolean types, we

consider the alphabetical order.

Time is a generic type that can be an Instant or a Period. Our types Time,

Instant and Period are compliant with TM_GeometricPrimitive, TM_Instant

and TM_Period defined in the ISO temporal model (ISO, 2002). Operations on

Time include equals, before, after, begins, ends, during, contains,

overlaps, meets, overlappedBy, metBy, begunBy and endedBy. They

compare two time instances based on the temporal relationships of Allen

(1991). Their behavior when applied to instants and periods is described in the

ISO standard (ISO, 2002). Chronon is a generic type to represent temporal

resolutions.

	

25	

Geometry is a generic type compliant with the Geometry type defined in the

OGC Geometry Model (OGC, 2006a). It can be a Point, Line, Polygon,

MultiPoint, MultiLineString, or MultiPolygon type. Operations on

Geometry include equals, touches, disjoint, crosses, within, overlaps,

contains and intersects, as defined by OGC (2006a). The types are:

Number:	
 	
 Integer,	
 Float	

Value:	
 	
 Number,	
 String	
 and	
 Boolean	

Time:	
 	
 Instant,	
 Period	

Chronon:	
 	
 Year,	
 Month,	
 Week,	
 Day,	
 Hour,	
 Minute,	
 Second.	

Geometry:	
 	
 Point,	
 Line,	
 Polygon,	
 MultiPoint,	
 	

MultiLineString,	
 MultiPolygon.	

These types and their operations are well-known and have already been

defined in the adopted standard. We also define a null type, Null, to represent

invalid values. In what follows, we omit the null type in the function signatures

for clarity. Functions can return Null types in some cases, as described in the

axioms. This behavior should be considered when implementing the algebra.

4.2. Observations

type:	
 	
 Observations	
 [F:Type,	
 C:Type,	
 M:Type]	
 	

operations:	
 	

new:	
 	
 {(F,C,M)1,(F,C,M)2,…,(F,C,M)n}	
 →	
 Observations	
 |	
 n>0	

	
 reference:	
 Observations	
 →	
 F	
 	
 	

	
 positions:	
 Observations	
 →	
 {C1,…,Cn}	
 	
 	

	
 measure:	
 Observations	
 x	
 C	
 →	
 M

	

26	

An observation is a tuple of three elements (F,C,M) of any types. The

Observations type represents a set of observations and has three type

parameters. Following Sinton (1978), the first type is the fixed reference (F), the

second is the controlled attribute (C) and the other is the measured attribute (M).

The constructor new builds an observation set from a set of tuples of types F, C

and M. Reference returns the value of the fixed attribute. The positions

function reports the controlled attribute values. Measure returns the observed

value associated to a given position.

4.3. Interpolator

type:	
 	
 Interpolator	
 [F:Type,	
 C:Type,	
 M:Type]	

operations:	
 	

estimate:	
 Interpolator	
 x	
 Observations[F,C,M]	
 x	
 C	
 →	
 M	

The Interpolator type defines a generic interface for interpolation methods. A

programmer will create concrete implementations of it, one for each

interpolation method. It has no constructor, since it is an interface to other

concrete types. The Interpolator type has only a function called estimate.

This function takes an observation set and a position in space or time of the

same type of the controlled attribute. Then, it calculates a value (M) valid for that

position.

4.4. SpatioTemporal

type:	
 	
 SpatioTemporal	
 	

operations:	
 	

	
 	
 	
 observations:	
 SpatioTemporal	
 →	
 Observations	
 	

	
 interpolator:	
 SpatioTemporal	
 →	
 Interpolator	

	
 begins,	
 ends:	
 SpatioTemporal	
 →	
 Instant	

	

27	

boundary:	
 SpatioTemporal	
 →	
 Geometry	

after,	
 before,	
 during:	
 SpatioTemporal	
 x	
 Time	
 	

→	
 SpatioTemporal	

	
 intersection,	
 difference:	
 SpatioTemporal	
 x	
 Geometry	
 	

→	
 {st1,…,stn}	
 |	
 st:	
 SpatioTemporal	
 and	
 n≥0	

axioms:	

	
 st1,st2:	
 SpatioTemporal;	
 t:	
 Time;	
 g:	
 Geometry;	

	
 before(st1,begins(st1))	
 =	
 Null	
 	

	
 after(st1,ends(st1))	
 =	
 Null	

	
 during(before(st1,t),t)	
 =	
 Null	

	
 during(after(st1,t),t)	
 =	
 Null	

	
 after(before(st1,t),t)	
 =	
 Null	
 	

	
 before(after(st1,t),t)	
 =	
 Null	

	
 difference(st1,boundary(st1))	
 =	
 ∅	

	
 intersection(st1,boundary(st1))	
 =	
 {st1}	

	
 within(boundary(st1),g)=	
 TRUE	
 ⇒	
 intersection(st1,g)	
 =	
 {st1}	

	
 disjoint(boundary(st1),g)	
 =	
 TRUE	
 ⇒	
 intersection(st1,g)	
 =	
 ∅	

	
 intersection(st1,g)	
 =	
 {st2}	
 ⇒	
 difference(st2,g)	
 =	
 ∅	

	
 intersection(st1,g)	
 =	
 {st2}	
 ⇒	
 boundary(st2)	
 =	
 g	

The	
 SpatioTemporal type provides an abstract interface to the concrete types

time series, trajectory, and coverage. It contains common operations of these

three types. These concrete types inherit SpatioTemporal operations and

	

28	

implement them according to their needs, conforming to the axioms above. As

this type is only a generic interface, it has no instances.

The spatiotemporal types are built from an observation set and an interpolator.

The operations observations and interpolator return these two building

elements. Begins and ends return its initial and final times. Boundary reports its

spatial extent. After, before and during return a subset of a

SpatioTemporal instance, whose temporal range is after, before and during a

given time. Intersection and difference select subsets a SpatioTemporal

instance, whose geometries intersect and do not intersect, respectively, a given

geometry.

4.4.1. Time Series

type:	
 	
 TimeSeries	
 [G:Geometry,	
 T:Time,	
 V:Value]	
 	

	
 inherits	
 SpatioTemporal	
 	

operations:	
 	

	
 new:	
 Period	
 x	
 Observations[G,T,V]	
 x	
 Interpolator[G,T,V]	
 	

	
 	
 	
 →	
 TimeSeries	
 	
 	

	
 value:	
 TimeSeries	
 x	
 T	
 →	
 V	

	
 min,	
 max:	
 TimeSeries	
 →	
 V	

	
 less,	
 greater,	
 equals:	
 TimeSeries	
 x	
 V	
 →	
 {ts1,ts2,…,tsn}	
 	

	
 	
 	
 	
 	
 	
 |	
 ts:	
 TimeSeries	
 and	
 n	
 ≥	
 0	

axioms:	

ts1,ts2:	
 TimeSeries;	
 t1,tn:	
 Time;	
 v:Value;	
 	
 	

p:	
 Period;	
 obs:	
 Observations;	
 interp:	
 Interpolator;	

ts1=	
 new(p,obs,interp)	
 ⇒	
 begins(ts1)	
 =	
 begin(p)	

	

29	

ts1=	
 new(p,obs,interp)	
 ⇒	
 ends(ts1)	
 =	
 end(p)	

value(ts1,t1)	
 =	
 	

estimate(interpolator(ts1),observations(ts1),t1)	

after(t1,ends(ts1))	
 ∨	
 before(t1,begins(ts1))	

	
 ⇒	
 value(ts1,t1)	
 =	
 Null	

value(after(ts1,t1),t1)	
 =	
 Null	

value(before(ts1,t1),t1)	
 =	
 Null	

less(ts1,min(ts1))	
 =	
 ∅	

greater(ts1,max(ts1))	
 =	
 ∅	

equals(ts1,v)	
 =	
 {ts2}	
 ⇒	
 min(ts2)	
 =	
 max(ts2)	
 =	
 v	

less(ts1,v)	
 =	
 {ts2}	
 ⇒	
 max(ts2)	
 <	
 v	
 	

greater(ts1,v)	
 =	
 {ts2}	
 ⇒	
 min(ts2)	
 >	
 v	

boundary(ts1)	
 =	
 reference(observations(ts1))	

positions(observations(ts1))={t1,...,tn}	
 ⇒	
 begins(ts1)	
 ≤	
 t1	

positions(observations(ts1))={t1,...,tn}	
 ⇒	
 ends(ts1)	
 ≥	
 tn	
 	
 	
 	
 	

TimeSeries is parameterized by Geometry (G), Time (T) and Value (V) types.

New builds a TimeSeries from a temporal range (Period), an observation set

and an interpolator. These observations have a fixed geometry (G) and

measured values (V) at controlled times (T). The interpolator estimates values

(V) at times (T) during the temporal range of the series. Value uses the

interpolator to provide a value at a given time. If this given time is outside the

temporal range, value returns Null. All these behaviors are described in the

axioms. Min	
 and max return its minimum and maximum values. Less, greater

and equal select subsets of a time series whose values are, respectively, less

	

30	

than, greater than or equal to a given value. It inherits and implements the

SpatioTemporal operations. For example, boundary returns the fixed

geometry of its observations, as described in the axioms.

The temperature measures of Figure 3 (a) can be represented by an

Observations[Point,	
 Instant,	
 Float] type. The station location (Point) is

fixed and the temperature (Float) is measured at controlled instants (Instant).

We can build a TimeSeries[Point,	
 Instant,	
 Float] using these

observations. The observations of the each traps of Figure 3 (b) map to

Observations[Point,	
 Period,	
 Integer]. The trap location (Point) is fixed

and the number of eggs (Integer) is measured at controlled times (Period).

We can capture the variation of the eggs in the traps as a TimeSeries[Point,	

Period,	
 Integer].

4.4.2. Trajectory

type:	
 	
 Trajectory	
 [V:Value,	
 T:Time,	
 G:Geometry]	
 	

	
 inherits	
 SpatioTemporal	

operations:	
 	

	
 new:	
 	
 Period	
 x	
 Observations[V,T,G]	
 x	
 	

Interpolator[V,T,G]	
 →	
 Trajectory	
 	

value:	
 Trajectory	
 x	
 T	
 →	
 G	

axioms:	

	
 tj:	
 Trajectory;	
 t1,tn:	
 Time;	
 g:	
 Geometry;	

	
 p:	
 Period;	
 obs:	
 Observations;	
 interp:	
 Interpolator;	

	
 	
 tj	
 =	
 new(p,obs,interp)	
 ⇒	
 begins(tj)	
 =	
 begin(p)	

	
 tj	
 =	
 new(p,obs,interp)	
 ⇒	
 ends(tj)	
 =	
 end(p)	

	

31	

	
 value(tj,t1)	
 =	
 	

estimate(interpolator(tj),observations(tj),t1)	

	
 after(t1,ends(tj))	
 ∨	
 before(t1,begins(tj))	
 ⇒	
 	

value(tj,t1)=Null	

	
 value(after(tj,t1),t1)	
 =	
 Null	

	
 value(before(tj,t1),t1)	
 =	
 Null	

	
 positions(observations(tj))	
 =	
 {t1,...,tn}	
 ⇒	
 begins(tj)	
 ≤	
 t1	

	
 positions(observations(tj))	
 =	
 {t1,...,tn}	
 ⇒	
 ends(tj)	
 ≥	
 tn	

	
 measure(observations(tj),tn)	
 =	
 g	
 ⇒	
 	

within(g,boundary(tj))	
 =	
 TRUE	
 	

Trajectory is parameterized by Value (V), Time (T) and Geometry (G) types.

New constructs a Trajectory from a temporal range, an observation set and an

interpolator. The observations have a fixed identity (V) and measured

geometries (G) at controlled times (T). Value uses the interpolator to provide a

geometry at a given time. When this given time is out of the Trajectory

temporal range, value returns Null. All these behaviors are described in the

axioms. It inherits SpatioTemporal operations and implements them according

to its needs. For example, boundary returns a bounding box that contains all

measured geometries of a trajectory.

The observations of each sea elephant of Figure 4 is described as an instance

of Observations[Integer,	
 Instant,	
 Point]	
 type. The animal identity

(Integer) is fixed and its location (Point) is measured at controlled times

(Instant). We can capture this data as an instance of Trajectory[Integer,	

Instant,	
 Point]. The observations of each city shown in Figure 5 is

described by an instance of Observations[String,	
 Period,	

	

32	

MultiPolygon]	
 type, where each observation contains the city’s identity

(String) and a boundary (MultiPolygon) valid during a period. From these

observations, we build an instance of a Trajectory[String,	
 Period,	

MultiPolygon]	
 which captures the variation of the city’s boundary. During the

temporal range 2001 and 2012, each city’s trajectory has two observations, one

valid for period [2001, 2004] and the other for period [2005, 2012].

4.4.3. Coverage and Coverage Series

type:	
 Coverage	
 [T:Time,	
 G:Geometry,	
 V:Value]	
 	

	
 	
 	
 inherits	
 SpatioTemporal	
 	

operations:	
 	

	
 new:	
 	
 Geometry	
 x	
 Observations[T,G,V]	
 x	
 Interpolator[T,G,V]	

	
 	
 	
 	
 	
 	
 →	
 Coverage	
 	

	
 value:	
 Coverage	
 x	
 G	
 →	
 V	

	
 min,	
 max:	
 Coverage	
 →	
 V	

	
 less,	
 greater,	
 equals:	
 Coverage	
 x	
 V	
 →	
 Coverage	

axioms:	

cv1,cv2:	
 Coverage;	
 g:	
 Geometry;	
 v:	
 Value;	
 obs:	
 Observations;	
 	

interp:	
 Interpolator;	
 t:	
 Time;	
 	

	
 cv1	
 =	
 new(g,obs,interp)	
 ⇒	
 boundary(cv1)	
 =	
 g	

	
 begins(cv1)	
 =	
 begin(reference(observations(cv1)))	
 	
 	

	
 ends(cv1)	
 =	
 end(reference(observations(cv1)))	
 	

	
 value(cv1,g)	
 =	
 estimate(interpolator(cv1),observations(cv1),g)	

	
 disjoint(g,boundary(cv1))	
 =	
 TRUE	
 ⇒	
 value(cv1,g)	
 =	
 Null	

	

33	

	
 less(cv1,min(cv1))	
 =	
 Null	

	
 greater(cv1,max(cv1))	
 =	
 Null	

	
 equals(cv1,v)=cv2	
 ⇒	
 min(cv2)=	
 max(cv2)=	
 v	

	
 less(cv1,v)=cv2	
 ⇒	
 max(cv2)<v	
 	

	
 greater(cv1,v)=cv2	
 ⇒	
 min(cv2)>v	

	
 less(equals(cv1,v),v)	
 =	
 Null	

	
 greater(equals(cv1,v),v)	
 =	
 Null	

	
 cv2	
 ∈	
 intersection(cv1,g)	
 ⇒	
 boundary(cv2)=	
 g	
 	

	
 cv2	
 ∈	
 difference(cv1,g)	
 ⇒	
 boundary(cv2)	
 =	
 boundary(cv1)	

Coverage is parameterized by Time (T), Geometry (G) and Value (V). New builds

a Coverage from three elements: (1) a geometry that defines the coverage

spatial extent or boundary; (2) an observation set that has a fixed time and

measured values at controlled geometries; and (3) an interpolator. In most

cases, the boundary is a Polygon. However, the boundary can be other

geometry types. For moving cars in a highway, the boundary could be a

MultiLineString.

Value provides a value at a given location, using the interpolator. If this given

location is outside the coverage boundary, Value returns Null. All these

behaviors are described in the axioms. Min and max return the minimum and

maximum values. Less, greater and equal select the coverage observations

whose values are less than, greater than or equal to a given value. They return

a new coverage built on such selected observations. Coverage inherits and

implements SpatioTemporal operations. For example, boundary returns the

coverage’s spatial extent.	

type	
 	
 CoverageSeries	
 [G:Geometry,	
 T:Time,	
 CV:Coverage]	
 	

	

34	

inherits	
 SpatioTemporal	
 	

operations:	
 	

	
 new:	
 Period	
 x	
 Observations[G,T,CV]	
 x	
 Interpolator[G,T,CV]

	
 	
 →	
 CoverageSeries	
 	
 	
 	
 	

	
 snapshot:	
 CoverageSeries	
 x	
 T	
 →	
 CV	
 	

timeseries:	
 CoverageSeries	
 x	
 Point	
 →	
 TimeSeries	
 	

axioms:	

cs:	
 CoverageSeries;	
 c:	
 Coverage;	
 t1,tn:	
 Time;	
 l:	
 Point;	
 	

obs:	
 Observations;	
 interp:	
 Interpolator;	
 p:	
 Period;	
 	

cs	
 =	
 new(p,obs,interp)	
 ⇒	
 begins(cs)	
 =	
 begin(p)	
 	

cs	
 =	
 new(p,obs,interp)	
 ⇒	
 ends(cs)	
 =	
 end(p)	
 	

snapshot(cs,t1)	
 =	
 	

estimate(interpolator(cs),observations(cs),t1)	

snapshot(after(cs,t1),t1)	
 =	
 Null	
 	

	
 snapshot(before(cs,t1),t1)	
 =	
 Null	

	
 after(t1,ends(cs))	
 ∨	
 before(t1,begins(cs))	
 ⇒	
 	

snapshop(cs,t1)	
 =	
 Null	

	
 begins(timeseries(cs,l))	
 =	
 begins(cs)	

	
 ends(timeseries(cs,l))	
 =	
 ends(cs)	

	
 boundary(cs)	
 =	
 reference(observations(cs))	

	
 measure(observations(cs),t1)	
 =	
 c	
 ⇒	
 	

boundary(cs)	
 =	
 boundary(c)	

	

35	

	
 measure(observations(cs),t1)	
 =	
 c	
 ⇒	
 begins(c)	
 =	
 begin(t1)	

	
 measure(observations(cs),t1)	
 =	
 c	
 ⇒	
 ends(c)	
 =	
 end(t1)	

	
 positions(observations(cs))	
 =	
 {t1,...,tn}	
 ⇒	
 begins(cs)	
 ≤	
 t1	

	
 positions(observations(cs))	
 =	
 {t1,...,tn}	
 ⇒	
 ends(cs)	
 ≥	
 tn	

CoverageSeries	
 is an auxiliary type that represents a time-ordered set of

coverages that have the same boundary. This type is useful in many

applications. It is parameterized by Geometry (G), Time (T) and Coverage (CV)

types. Taking coverages as measured units, we construct a CoverageSeries

from: (1) a temporal range (Period); (2) an observation set that has a fixed

boundary (G) and measured coverages (CV) at controlled times (T); and (3) an

interpolator that estimates coverages at non-observed times. Snapshot uses

the interpolator to provide a coverage at a given time. If this given time is out of

the coverage series temporal range, snapshot returns Null. Timeseries

returns a time series associated to a given location within the coverage series

boundary.

Consider the hourly observations of air pollutions of Figure 2 obtained by cars

moving in the city during one day. We can capture all observations of the same

hour as an instance of Observations[Period,	
 Point,	
 Float]. These

observations have a fixed time (Period) with measured air pollution values

(Float) at controlled locations (Point). There are 24 instances of

Observations, each leading to a Coverage[Period,	
 Point,	
 Float]. These

coverages can be grouped in a CoverageSeries[Polygon,	
 Period,	

Coverage], producing an hourly coverage set of air pollution in the city in one

day. In the rain grids of Figure 6, all observations of the same grid are

represented as an instance of Observations[Period,	
 Point,	
 Float].

These observations have a fixed time (Period) and rain values (Float) at

controlled cell locations (Point). We encapsulate each instance of

	

36	

Observations as a Coverage[Period,	
 Point,	
 Float]. Then, we group all

coverages from 11 January 2011 as an instance of CoverageSeries[Polygon,	

Period,	
 Coverage].

Considering the chlorophyll measurement shown in Figure 7, all observations of

the same month are represented as an instance of Observations[Instant,	

Point,	
 Float]. Each observation is associated to the instant when it was

collected. We encapsulate each instance of Observations as a

Coverage[Period,	
 Point,	
 Float]. Each coverage is associated to the

period that represents a month. Then, we group all coverages as an instance of

CoverageSeries[Polygon,	
 Period,	
 Coverage].

4.4.4. Additional Functions

The proposed signatures for TimeSeries, Trajectory, Coverage and

CoverageSeries types provide minimal interfaces. From those functions, a

user can build more complex ones. In this section, we give some examples of

additional functions.

Some	
 additional	
 operations	
 for	
 TimeSeries:	
 	

min,	
 max,	
 mean,	
 sum,	
 mult:	
 TimeSeries	
 x	
 Chronon	
 →	
 TimeSeries	

union:	
 	
 TimeSeries	
 x	
 TimeSeries	
 →	
 TimeSeries	

Min, max, mean, sum, and mult aggregate time series values considering a

given temporal resolution (Chronon) and return a new time series. They

calculate each value of the new time series by taking the minimum, maximum,

average, sum or multiplication of all values in the same time resolution. Union

computes the union between two given time series ts1 and ts2 and returns a

new one ts3. For each time tn of ts1 and ts2, it gets the observations ob1n of ts1

and ob2n of ts2 at time tn. If ob1n exists, it uses it to create ts3. If ob1n does not

exist and ob2n exists, it uses ob2n to create ts3.

	

37	

Some	
 additional	
 operations	
 for	
 Trajectory:	
 	

distance:	
 Trajectory	
 x	
 Trajectory	
 →	
 TimeSeries	

enters,	
 exits,	
 reaches,	
 leaves:	
 Trajectory	
 x	
 Geometry	
 	

→	
 {tj1,…,tjn}	
 |	
 tj:	
 Trajectory	
 and	
 n≥0	

speed:	
 	
 Trajectory	
 →	
 TimeSeries	

direction:	
 	
 Trajectory	
 →	
 TimeSeries	

linearPath:	
 	
 Trajectory	
 →	
 Line	

convexhullPath:	
 Trajectory	
 →	
 Polygon	

necklacePath:	
 	
 Trajectory	
 →	
 PolygonSet	

Distance computes the distance between two trajectories, tj1 and tj2. It returns

a time series that maps time to the Euclidean distance between both at that

time. Enters, exits, reaches and leaves select subsets of a trajectory that

enter, exit, reach or leave a given geometry. They are based on the spatial

relations between the trajectory geometry tjg and a given geometry g. If tjg is

disjoint from g at ti and within g at ti+1, the trajectory enters g in period [ti, ti+1]. If

tjg is within g at ti and disjoint from g at ti+1, it exits g in period [ti, ti+1]. If tjg is

disjoint at tn and touches at tn+1, it reaches g in period [tn, tn+1]. If tjg is intersects

at tn and disjoint at tn+1, it leaves g in period [tn, tn+1].

Speed and direction return the velocity and direction variation over time.

LinearPath, convexhullPath and necklacePath return trajectory

approximations, based on the ones defined by Hornsby and Egenhofer (2002).

LinearPath, convexhullPath and necklacePath are specific to trajectories

whose G is a Point. Therefore, when we apply them to trajectories whose

geometries are not points, we consider their centroids.

Some	
 additional	
 operations	
 for	
 CoverageSeries:	
 	

	

38	

min,	
 max,	
 mean,	
 sum,	
 mult:	
 CoverageSeries	
 →	
 TimeSeries	

min,	
 max,	
 mean,	
 sum,	
 mult:	
 CoverageSeries	
 x	
 Geometry	
 	

→	
 TimeSeries	

Min, max,	
 mean,	
 sum	
 and	
 mult aggregate values of a coverage series and

return a time series. We can define a spatial restriction given a geometry, as

presented in the second signature. They compute each value of the returned

time series by taking the minimum, maximum, average, sum and multiplication

of all values of the coverage series at a specific time. If there is a spatial

restriction, they consider only the values whose locations intersect the given

geometry.

4.5. Object

type:	
 Object[ID:Value,	
 TS:TimeSeries,	
 TJ:Trajectory]	
 	

operations:	
 	

	
 new:	
 	
 ID	
 x	
 TS	
 x	
 TJ	
 →	
 Object	

	
 id:	
 Object	
 →	
 ID	

timeseries:	
 Object	
 →	
 TS	

trajectory:	
 Object	
 →	
 TJ	

state:	
 Object	
 x	
 Time	
 →	
 (Value,	
 Geometry)	
 	

axioms:	
 	

	
 o:	
 Object;	
 t:	
 Time;	
 v:	
 Value;	
 g:	
 Geometry;	
 	

	
 id(o)	
 =	
 reference(observations(trajectory(o)))	

	
 intersects(boundary(trajectory(o)),	

boundary(timeseries(o)))	
 =	
 TRUE	

	
 begins(trajectory(o))	
 =	
 begins(timeseries(o))	

	

39	

	
 ends(trajectory(o))	
 =	
 ends(timeseries(o))	

	
 state(o,t)	
 =	
 	

(value(timeseries(o),t),	
 value(trajectory(o),t))	
 	

An object is an identifiable entity whose spatial and non-spatial properties can

change. The Object type is parameterized by its identity type (ID), a

TimeSeries (TS) that represents the variation of its non-spatial property and a

Trajectory (TJ) that describes the change of its spatial property. An object can

have one or more non-spatial properties, but we consider only one in the type

definition for simplicity. New constructs an Object. Id, timeseries and

trajectory access the object parts. State returns the state of an object at a

given time, that is, the values of its spatial and non-spatial properties at that

time.

Each car of Figure 2 maps to an Object	
 [Integer,	
 TimeSeries[Polygon,	

Period,	
 Float],	
 Trajectory[Integer,	
 Instant,	
 Point]]. Each car’s

identity is represented by an Integer, its air pollution measures by a

TimeSeries and its location change by a Trajectory. Each sea elephant of

Figure 4 maps to an Object[Integer,	
 ∅,	
 Trajectory[Integer,	
 Instant,	

Point]], where its identity is represented by an Integer and its location

variation by a Trajectory. Since the sea elephants do not have non-spatial

properties, they have no associated time series. Each city of the state of Rio de

Janeiro in Figure 6 maps to an Object[String,	
 TimeSeries[Polygon,	

Instant,	
 Float],	
 Trajectory[String,	
 Period,	
 Polygon]]. The city

name is its identity (String), the average rain variation is a TimeSeries and its

boundary variation is a Trajectory. In this case, the Trajectory has a single

geometry.

Non-spatial properties of an object can be derived from coverage series. For

example, the average rain variation within the city limits can be extracted from

the coverage series presented in Figure 6, using CoverageSeries operations.

	

40	

The next chapter presents a case study that includes this example. Using

operations over objects, we can answer questions that combine the variation of

spatial and non-spatial properties like “where are all the cars now and what are

the pollution indexes associated to them?” and “where were the cars when the

pollution indexes associated to them were more than x?”.

4.6. Event

type:	
 Event	
 [ID:Value,	
 T:Time,	
 G:Geometry]	
 	

operations:	
 	

	
 new:	
 	
 ID	
 x	
 T	
 x	
 G	
 x	
 {obj1,	
 obj2,...,	
 objn}	
 →	
 Event	
 	

	
 	
 	
 	
 |	
 obj:	
 Object	
 and	
 n	
 ≥	
 0	
 	
 	

	
 id:	
 Event	
 →	
 ID	

	
 time:	
 Event	
 →	
 T	

location:	
 Event	
 →	
 G	

objects:	
 	
 Event	
 →	
 {obj1,	
 obj2,...,	
 objn}	

axioms:	
 	

	
 e:	
 Event;	
 o:	
 Object;	
 t:	
 Time;	
 v:	
 Value;	
 g:	
 Geometry;	
 	

	
 o	
 ∈	
 objects(e)	
 ∧	
 time(e)	
 =	
 t	
 ⇒	
 state(o,t)	
 ≠	
 Null	
 	

	
 o	
 ∈	
 objects(e)	
 ∧	
 location(e)	
 =	
 g	
 	

	
 	
 ⇒	
 intersects(boundary(trajectory(o)),	
 g)	
 =	
 TRUE	
 	
 	

An event is an individual episode with a definite beginning and end which can

involve one or more objects. The Event type is parameterized by the types of

its identity (ID), time (T) and spatial location (G). New constructs an event from

an identity, a time of occurrence, a geometry that stands for the event’s

location, and the objects involved in the event. The events of flood, dengue

	

41	

epidemic and animal meeting described in Section 3.3 can be mapped to

instances of Event[Integer,	
 Period,	
 Polygon]. Each instance has the

event’s identity (Integer), when it occurred (Period) and the region where they

happened (Polygon). These events involve objects. The flood event is

associated to the city of Angra dos Reis. The dengue epidemic happened in the

city of Recife. The meeting event involves two sea elephants.

Using operations over sets of events, we can answer questions like “how many

meetings did animal a1 participate and where did they occur?”, “what meetings

occurred near island x?”, “when and in which districts did dengue epidemics

occur in Recife?”, “which are all events that occurred in Rio?” and “what floods

have occurred in Angra dos Reis during the last 5 years and what have been

their average rains?”.

	

42	

	

43	

5 PROOF OF CONCEPT AND EXAMPLES

This chapter describes how the proposed algebra was tested and validated and

presents its use examples. We have implemented the algebra data types and

functions, using the C++ programming language, on top of the geographical

software library TerraLib (CÂMARA et al., 2008). TerraLib is an open source

library base to build geographical information systems.

5.1. Software Architecture

We have developed two new modules called ST and STLoader on top of

TerraLib DataAccess module, as shown in Figure 12. The ST module contains

all data types and functions of the proposed algebra. Each type and its

operations were implemented as classes and their methods. Figure 13 shows a

simplified UML (Unified Modeling Language) class diagram of the ST module.

Figure 5.1 – Software architecture: Implementation of the algebra.

The classes AbstractObservationSet, TimeSeries Trajectory, Coverage,

CoverageSeries, Object and Event implement the algebra’s types

	

44	

Observations, TimeSeries, Trajectory, Coverage, CoverageSeries,

Object and Event, respectively. The classes PointCoverage and

RasterCoverage specialize the Coverage class. PointCoverage represents

coverages whose observations are taken by measuring values at controlled

locations (that is, G is a Point type). RasterCoverage represents coverages that

use raster structures to associate locations to values. The proposed class

architecture is extensible. We can extend it to other kinds of coverages. For

example, we can also specialize the Coverage class for isolines and

triangulated irregular network (TIN), creating the classes LineCoverage and

TINCoverage.

Considering the examples of coverages shown in Section 3.2.3, each

precipitation grid (Figure 6) is represented as an instance of RasterCoverage

and all chlorophyll observations of the same month (Figure 7), as an instance of

PointCoverage.

Figure 5.2 – A simplified UML class diagram of the ST module.

	

45	

The abstract classes AbstractInterpValueAtTime,

AbstractInterpGeometryAtTime, AbstractInterpValueInGeometry and

AbstractInterpCoverageAtTime implement the Interpolator type of the

algebra. All these classes have an operation called estimate that calculates

values at non-observed positions. The types of the estimated value and of the

position vary according to each interpolator. AbstractInterpValueAtTime

estimates values of the type Value (Number, Boolean or String) at non-

observed times. AbstractInterpGeometryAtTime estimates geometries at non-

observed times. AbstractInterpValueInGeometry estimates values of the type

Value at non-observed locations. AbstractInterpCoverageAtTime estimates

coverages at non-observed times.

NearestValueAtTimeInterpolator, NearestGeometryAtTimeInterpolator,

IDWInterpolator and NearestCoverageAtTimeInterpolator are concrete classes

that implement the abstract interpolators. Given a non-observed time, the

estimate function of the first class provides the closest measured value to that

given time. The estimate function of the second class provides the nearest

measured geometry to the given non-observed time. As an example, to

estimate the car location at non-observed time 7 in Figure 8,

NearestGeometryAtTimeInterpolator provides the measured location at time 8.

When estimating the car location at time 5, it gives the measured location at

time 4.

IDWInterpolator implements an Inverse Distance Weighted (IDW) interpolator.

NearestCoverageAtTimeInterpolator provides the closest measured coverage to

the given non-observed time. As an example, to estimate the coverage at non-

observed time “December, 2003” in Figure 7,

NearestCoverageAtTimeInterpolator gives the closest measured coverage, that

is, the coverage at time “November, 2003”. As the proposed class architecture

is extensible, the idea is to improve this module by providing many other kinds

of interpolators, for example kriging for coverages and street-based interpolator

for trajectories.

	

46	

As defined in the algebra, the classes TimeSeries, Trajectory, Coverage and

CoverageSeries are composed of an observation set (AbstractObservationSet)

and of an interpolator (AbstractInterpValueAtTime,

AbstractInterpGeometryAtTime, AbstractInterpValueInGeometry or

AbstractInterpCoverageAtTime). The Object class is composed of TimeSeries

and Trajectory. The Event class is composed of Object.

The DataAccess module of TerraLib can load data sets with spatial and

temporal information from different kinds of data sources, such as PostGIS

databases as well as KML and GeoTif files. The STLoader module is

responsible for transforming these data sets into instances of the

spatiotemporal types defined in the ST module. To perform this transformation,

we have proposed a strategy based on metadata files. The strategy and its

validation using trajectories of moving objects have been reported in a paper

entitled “Moving Objects and Spatial Data Sources”. Annex B presents the

complete paper.

The paths of ten sea elephants presented in Figure 4 are stored in a KML file as

sets of spatial locations associated to time stamps. Using the proposed strategy

(shown in Annex B), the STLoader module loads and transforms these sets into

instances of the Trajectory class of the ST module. Thus, using the Trajectory

functions we can analyze these sets as moving object trajectories. For example,

we can answer questions like: (1) Where was animal1 at time t5? (2) When did

animal1 reach the island x and how long did it stay in this island? (3) When and

where did animal1 and animal2 meet each other (considering a meeting when

the distance between two animals is less than 10 meters)? (4) Where and when

was there a spatiotemporal cluster of animals?

Figure 14 shows the ten sea elephant trajectories (colored lines at the bottom)

loaded by the STLoader module from the KML file and the distance between

two of them. As defined in the algebra, the distance operation between two

trajectories results in a time series, shown in the left side of the picture.

	

47	

Figure 5.3 – Ten sea elephant trajectories loaded by the STLoader module from a
KML file and the distance between two of them.

5.2. Code Examples

This section presents pseudo code examples of how to get events from

spatiotemporal data types, using the proposed data types and functions. Using

the data sets presented in Section 3, this section shows three code examples

that cover all data types and a substantial set of functions. The code uses the

following conventions.

The statement “Type	
 instance(p1,p2,…,pn)” builds an instance called

“instance” of the type “Type” using the set of parameters “p1,p2,…,pn”. This is

equivalent to the new constructor. The command “Event	
 ev("Meeting",	
 p,	

b,	
 objs)” creates the instance “ev” of the type “Event” with four parameters,

“Meeting”, “p”, “b”	
 and	
 “objs”. To execute an operation “operation” whose

first parameter is the instance “instance” and the others are “p1,p2,…,pn”, we

use the command “instance.operation(p1,p2,…,pn)”. It is equivalent to

“operation(instance,p1,p2,…,pn)”. For example, “tj1.distance(tj2)”

	

48	

executes operation “distance” of the instance “tj1” with the parameter “tj2”. It

is equivalent to “distance(tj1,tj2)”.

To represent a set of instances of a type “Type”, we use “set<Type>”. The

statement “for	
 each	
 element	
 in	
 set	
 {…}” executes the commands between

brackets “{…}” for each “element” of the “set”. For example, the command

“set<TimeSeries>	
 result” creates a set called “result” of instances of

“TimeSeries”. To access each instance “ts” of “result”, we use “for	
 each	

ts	
 in	
 result”. The statement “Type	
 inst1	
 =	

inst2.operation(p1,p2,…,pn)” creates an instance called “inst1” of the type

“Type” from the result of the operation “operation”. For example, “TimeSeries	

dist	
 =	
 tj1.distance(tj2)” builds the instance “dist” of the type

“TimeSeries” from the operation “distance”.

5.2.1. Meeting of Two Animals

Considering two sea elephants (identifiers 43 and 44) shown in Figure 4, the

following code creates events of “meeting of two animals” that occur when “the

distance between two sea elephants is less than 10 meters”:

Trajectory	
 tj1;	

Trajectory	
 tj2;	

LoadTrajectories("metadata.xml",	
 tj1,	
 tj2);	

	

set<Object>	
 objs;	

Object	
 seaElephant43(43,	
 0,	
 tj1);	

Object	
 seaElephant44(44,	
 0,	
 tj2);	

objs.add(seaElephant43);	
 	

objs.add(seaElephant44);	

	

TimeSeries	
 dist	
 =	
 tj1.distance(tj2);	
 	
 	

set<TimeSeries>	
 result	
 =	
 dist.less(10.0);	

	

	

49	

set<Event>	
 meetings;	

for	
 each	
 ts	
 in	
 result	

{	

	
 	
 	
 Period	
 	
 	
 	
 	
 	
 p(ts.begins(),	
 ts.ends());	

	
 	
 	
 Trajectory	
 	
 tj	
 =	
 tj1.during(p);	

	
 	
 	
 Geometry	
 	
 	
 	
 b	
 =	
 tj.boundary();	

	
 	
 	
 	

	
 	
 	
 Event	
 ev("Meeting",	
 p,	
 b,	
 objs);	

	
 	
 	
 meetings.add(ev);	

}

The code above creates two trajectories “tj1” and “tj2” and loads them from

the KML file presented in Figure 4 through a function called

“LoadTrajectories”. This function is part of the STLoader module and loads

trajectories from different data sources based on metadata files, as described in

Annex B. The metadata file “metadata.xml” describes the two trajectories to be

loaded. We do not inform explicitly what interpolator should be used. In this

case, the function “LoadTrajectories” associates the default interpolator

“NearestGeometryAtTimeInterpolator” to each trajectory. Afterwards, the code

creates two objects “seaElephnat43” and “seaElephnat44” whose identifiers are

“43” and “44” and trajectories are “tj1” and “tj2”. These objects do not have

non-spatial properties, that is, they do not have time series associated to them.

We create the set of objects “objs” and add “seaElephnat43” and

“seaElephnat44” to it.

To identify a meeting, we calculate the distance between “tj1” and “tj2”, using

the function “distance”. It gives the time series “dist”. So, we select parts of

“dist” whose values are less than 10, using the operation “less”. It returns the

time series set “result”. Each time series “ts” of “result” indicates an event.

From each “ts”, we get the period (“p”) and the region (“b”) where the meeting

occurred. Then, we create an event “ev” using such information and its involved

	

50	

objects “seaElephnat43” and “seaElephnat44”, which are in the object set

“objs”. All events are added to the set “meetings”.

Figure 15 shows three events of meetings between two animals detected using

the code above. The location of each event is presented as a red rectangle at

the bottom of the picture. This picture also presents the distance between the

two animals as a time series. Observing this time series, we can identify when

these events occurred. There are three parts of it whose values are less than

10.

Figure 5.4 – Meetings of two sea elephants.

5.2.2. Spatiotemporal Clusters

Considering five sea elephant paths presented in Figure 4, the following code

creates events of “spatiotemporal cluster of animals”. We consider that a

spatiotemporal cluster occurs when “the sum of the distances among the

animals (at least three) is less than 10 meters for at least 15 consecutive days”:

	

51	

set<Trajectory>	
 paths;	

LoadTrajectories("metadata5.xml",	
 paths);	

	

set<Object>	
 objs;	

Object	
 seaElephant40(40,	
 0,	
 paths[0]);	
 	

Object	
 seaElephant41(41,	
 0,	
 paths[1]);	

Object	
 seaElephant42(42,	
 0,	
 paths[2]);	

Object	
 seaElephant43(43,	
 0,	
 paths[3]);	

Object	
 seaElephant44(44,	
 0,	
 paths[4]);	

objs.add(seaElephant40);	

objs.add(seaElephant41);	
 	

objs.add(seaElephant42);	

objs.add(seaElephant43);	

objs.add(seaElephant44);	

	

TimeSeries*	
 distancePerDay	
 =	
 MinDistancePerDay(paths);	

set<TimeSeries>	
 result	
 =	
 distancePerDay.less(10.0);	

	

set<Event>	
 clusters;	

for	
 each	
 ts	
 in	
 result	

{	

	
 	
 	
 if(ts.ends()	
 -­‐	
 ts.begins()	
 >	
 15)	

	
 	
 	
 {	

	
 	
 	
 	
 Period	
 	
 	
 	
 	
 	
 p(ts.begins(),	
 ts.ends());	

	
 	
 	
 	
 Geometry	
 	
 	
 	
 l	
 =	
 GetLocation(paths,	
 p);	

	
 	
 	
 	
 	
 	
 	
 Event	
 ev("ST	
 Cluster",	
 p,	
 l,	
 objs);	

	
 	
 	
 	
 clusters.add(ev);	

	
 	
 	
 }	

}

The code above creates a set of trajectories “paths” and loads the trajectories

of five sea elephants from the KML file presented in Figure 4 through a function

called “LoadTrajectories”. This function is part of the STLoader module and

	

52	

loads trajectories from different data sources based on a metadata file, as

described in Annex B. In this example, the metadata file “metadata5.xml”

describes the five sea elephants to be loaded. We do not inform explicitly what

interpolator should be used. In this case, the function “LoadTrajectories”

associates the default interpolator “NearestGeometryAtTimeInterpolator” to

each trajectory. Afterwards, the code creates five objects “seaElephnat40”,

“seaElephnat41”, “seaElephnat42”, “seaElephnat43”, “seaElephnat44” and

“seaElephnat45” from the loaded set of trajectories “paths”. These objects do

not have non-spatial properties, that is, they do not have time series associated

to them. We create the set of objects “objs” and add these objects to it.

To identify spatiotemporal clusters, the function “MinDistancePerDay” calculates

a time series that contains the sum of the three minimal distances among the

five animals per day. To create the time series “distancePerDay”, this function

calculates the distances among all five trajectories using the operations

“distance” and selects only the three minimal distances per day. So, we select

parts of “distancePerDay” whose values are less than 10, using the operation

“less”. It returns the time series set “result”. Each time series “ts” of “result”

whose temporal range is greater than 15 days (ts.ends()	
 -­‐	
 ts.begins()	
 >	
 15)

indicates an event. The period of each event is created from the temporal range

(“p”) of “ts”. The event location (“l”) is computed through the function

“GetLocation” that gives the region of the trajectories “paths” associated to

period “p”. All events are added to the set “clusters”.

Using the code above, we have found one event of spatiotemporal cluster.

Figure 16 shows the location of this event as a red rectangle at the bottom of

the picture. This figure also presents the time series “distancePerDay”

calculated in the code above.

	

53	

Figure 5.5 – Spatiotemporal cluster of at least 3 animals.

5.2.3. Flood

Using the rain grids presented in Figure 6, the following code creates events of

“flood” in Angra city that occur if “rain is more than 10 mm/hour for more than 5

hours”:

CoverageSeries	
 cvseries;	

LoadCoverageSeries("metadata.xml",	
 cvseries);	

	

DataSet	
 cities;	

LoadDataSet("postgis&...&br_cities",	
 cities);	

Polygon	
 angraLimits	
 =	
 cities.getGeometry("Angra	
 dos	
 Reis");	

	

TimeSeries	
 maxRainInAngra	
 =	
 cvseries.max(angraLimits);	

TimeSeries	
 maxRainInAngraPerHour	
 =	
 maxRainInAngra.max(HOUR);	

	

54	

set<TimeSeries>	
 result	
 =	
 maxRainInAngraPerHour.greater(10);	
 	

	

Object	
 angraCity("Angra	
 dos	
 Reis",	
 maxRainInAngraPerHour,	
 0);	

set<Event>	
 floods;	

for	
 each	
 ts	
 in	
 result	

{	

	
 	
 	
 if(ts.ends()	
 -­‐	
 ts.begins()	
 >	
 5)	

	
 	
 	
 {	

	
 	
 	
 	
 Period	
 	
 time(ts.begins(),	
 ts.ends());	

	
 	
 	
 	
 Event	
 ev("Flood",	
 time,	
 angraLimits,	
 angraCity);	

	
 	
 	
 	
 floods.add(ev);	

	
 	
 	
 }	

}	

The code above creates a coverage series “cvseries” and loads it from the

precipitation grids shown in Figure 6 through a function called

“LoadCoverageSeries”. Each grid associated to a time is a geotif file. This

function is part of the STLoader module and loads coverage series from different

data sources based on the metadata file “metadata.xml”, following the approach

described in Annex B. In this case, the metadata file contains the name and

path of each geotif file and the time associated to it. Internally, the function

“LoadCoverageSeries” creates an instance of the RasterCoverage type for each

grid. Since we do not inform explicitly what interpolator should be used, this

function associates the default interpolator

“NearestCoverageAtTimeInterpolator” to the coverage series.

The boundary of Angra city called “angraLimits” is get from the data set

“cities” loaded from a PostGIS database through the function “LoadDataSet”.

We use the operation “max” and the spatial restriction “angraLimits” to get the

time series “maxRainInAngra”. This time series maps times to the maximum rain

in Angra city. Since the rain grids are taken at 15-minute intervals, the time

series “maxRainInAngra” also contains values at each 15 minutes. So, we

	

55	

aggregate “maxRainInAngra” by taking the maximum precipitation values per

hour, using the operation “max” and chronon “Hour”. This returns the new time

series “maxRainInAngraPerHour”. Then, we select parts of

“maxRainInAngraPerHour” whose values are more than 10 mm/hour, using the

operation “greater”. This provides the new time series set “result”.

Each event of flood “ev” is created from a time series “ts” of “result” whose

temporal range is greater than 5 hours (“if(ts.ends()	
 -­‐	
 ts.begins()	
 >	
 5)”) .

All events are	
 associated to the object “angraCity” and are added to the set

“floods”.

	

56	

	

57	

6 FINAL REMARKS AND FUTURE WORK

This thesis presents an extensible algebra for spatiotemporal data. Taking

observations as basic building blocks, the algebra constructs three data types,

time series, trajectory and coverage. This allows us to define different views on

the same observation set, meeting application needs. Considering coverages

as measured units, we extend the algebra defining the coverage series type.

Using these types, we can define objects and events. The proposed data types

and functions can model and capture changes in a large range of applications,

including location-based services, public health, and environmental and natural

disaster monitoring.

The proposed model addresses both instantaneous and continuous changes in

objects, as discussed in Section 2.1. Paths of animals (Figure 4) as well as

changes of municipality limits (Figure 5) can be represented as instances of

Trajectory type. The boundary variation of a city is represented by a set of

observations. Each observation contains its valid boundary in a period and the

periods of all observations cover the whole timeline of the city. Therefore, for

every time during this timeline, there is a valid boundary of the city and the

interpolator always provides it.

A limitation of the proposed model is to consider only two-dimensional space.

Since OGC geometry types can be built using 3-dimensional coordinates (x, y

and z), we intend to solve this limitation in future work. The Event type contains

information about when and where it occurred as well as its involved objects.

However, the algebra does not express how events are related to other events.

These kinds of relationships, as defined by Worboys and Hornsby (2004) and

Galton and Worboys (2005), can be built on top of our model. We intend to

extend the model to represent these relationships, such as “event e3 is

composed of events e1 and e2” and “event e1 initiates event e2”.

We also plan to define functions to create types from other types. For example,

we can create a set of TimeSeries from the CoverageSeries composed of

	

58	

instances of RasterCoverage presented in Figure 6. In this case, each time

series will be associated to a cell or pixel and will contain the variation of rain in

that cell over time. We can create a CoverageSeries composed of instances of

PointCoverage from the TimeSeries shown in Figure 3 (a) or (b). From weather

satellite images represented as CoverageSeries, we can think about extracting

trajectories of storms or hurricanes.

The algebra was tested and validated using the TerraLib geospatial software

library. An alternative would be to extend an existing spatial database system,

such as PostGIS or Oracle Spatial, with the proposed types and functions.

However, we have chosen to implement it in a general-purpose library that can

access spatiotemporal data from different sources, including databases, files

and web services (Figure 12). This approach requires transforming the spatial

and temporal information stored in different data file formats and databases into

the algebra types. This thesis proposes a strategy to do this transformation

based on metadata files. This strategy has been validated using trajectories of

moving objects, as presented in Annex B. As future work, we intend to extend

and use this strategy for time series, coverage, converge series and events,

which can also come from different data sources.

6.1. Next Steps Related to Software Implementation

The three next steps related to software implementation are:

(1) Study new and intuitive ways to display spatiotemporal information

and the results of operations over it. As an example, the system

shown in Figure 14 displays the sea elephant trajectories through an

animation over time. However, there is no interaction between the time

series generated by the operation distance and the trajectories. As a

starting point, we intend to construct such interactions.

(2) Develop interfaces with other software tools for statistical analyses

and data mining of the proposed data types. As a beginning, we plan

	

59	

to develop interfaces with the R spacetime package (PEBESMA,

2011) and with the module Weka-STPM (BOGORNY et al., 2011).

These interfaces will allow us to use R packages for statistical analysis

and to create semantic trajectories for data mining using Weka

system.

(3) Provide a mechanism that allows a user to write scripts with a set of

operations over the proposed data types, as the code examples

shown in Section 5.2. Scripts can be written and executed "on-the-fly",

without explicit compile and link steps. The idea is to use well-known

script languages, such as LUA and Python.

6.2. Comparison with Previous Work

This section presents a comparison between the data types proposed in this

thesis and the closest ones defined in previous models. We first compare the

Trajectory type with the previous models ISO (2008) and Güting et al. (2000).

Trajectory allows geometry deformations over time, whereas the ISO moving

feature model does not (ISO, 2008). Therefore, the proposed model can cope

with applications where entities change their shape, like oil spills and boundary

changes in cities. The moving point and moving region types defined by Güting

et al. (2000) always consider a predefined interpolation function, without

allowing a user to choose other interpolation methods. Since Trajectory is

built from an observation set and an interpolator, we can explicitly choose the

most suitable interpolation function for each instance.

The Coverage type is consistent with existing field or coverage definitions

(GOODCHILD, 1992; COVA; GOODCHILD, 2002; OGC, 2006b; LIU et al.,

2008). Regularly and irregularly spaced sample points can be represented by

Coverage[Point,	
 Value,	
 Polygon] and isolines by Coverage[Line,	

Value,	
 Polygon]. We can also specialize Coverage for tessellation structures,

such as raster and triangulated irregular network (TIN). Although OGC

	

60	

coverage definition includes spatiotemporal domains, only coverages with

spatial domains are described in its UML class diagrams. OGC coverage with

spatiotemporal domain can be mapped to the CoverageSeries type. Besides

that, we use an algebra to define our types instead of using UML diagrams.

Formal definitions are better than CASE tool diagrams for GIS type

specifications (Frank and Kuhn 1995). Such diagrams are not suitable for large

problems, where the amount of documentation becomes overwhelming.

Galton (2004) distinguishes punctual (instantaneous) events from durative ones

(those that take time). The Event type can be used to represent both instances

of punctual events (using Instant) and durative ones (using Period). Events

associated to moving objects, such as those discussed by Hornsby and Cole

(2007), can also be expressed using the Event type. This work focuses on

defining an algebra that covers the whole process to obtain events from raw

observations. It does not define types of relationships between objects and

events neither between events and events. These kinds of relationships, like the

ones defined by Worboys and Hornsby (2004) and Galton and Worboys (2005),

can be built on top of the proposed model.

	

61	

REFERENCES

ALLEN, J. F. Time and time again: the many ways to represent time.

International Journal of Intelligent Systems, v. 6, n. 4, p. 341-355, July,

1991.

BOGORNY, V.; KUIJPERS, B.; ALVARES, L. O. ST‐DMQL: A semantic

trajectory data mining query language. International Journal of Geographical
Information Science, v. 23, n.10, p. 1245-1276, 2009.

BOGORNY, V.; AVANCINI, H.; CESAR DE PAULA, B.; KUPLICH, C. R.;

ALVARES, L. O. Weka-STPM: a software architecture and prototype for

semantic trajectory data mining and visualization. Transactions in GIS, v. 15,

n. 2, p. 227–248, April, 2011.

CÂMARA, G.; VINHAS, L.; FERREIRA, K. R.; QUEIROZ, G. R.; SOUZA, R. C.

M.; MONTEIRO, A. M. V.; CARVALHO, M. T.; CASANOVA, M. A.; FREITAS, U.

M. Terralib: An open-source GIS library for large-scale environmental and

socio-economic applications. In: HALL, B.; LEAHY, M. (eds.) Open source
approaches to spatial data handling. Berlin, Springer-Verlag (ISBN 978-3-

540-74830-4), p. 247-270, 2008.

COUCLELIS, H. People manipulate objects (but cultivate fields): beyond the

raster-vector debate in GIS. In: FRANK, A. U.; CAMPARI, I.; FORMENTINI U.

(eds). Theory and methods of spatio-temporal reasoning in geographic
space. Berlin: Springer-Verlag, p. 65-77, 1992.

COVA, T. J.; GOODCHILD, M. F. Extending geographical representation to

include fields of spatial objects. International Journal of Geographical
Information Science, v. 16, n. 6, p. 509-532, 2002.

	

62	

EGENHOFER, M.; FRANZOSA, R. Point-set topological spatial relations.

International Journal of Geographical Information Systems, v. 5, p. 161-

174, 1991.

FRANK, A.; KUHN, W. Specifying Open GIS with functional languages. In:
INTERNATIONAL SYMPOSIUM ON ADVANCES IN SPATIAL DATABASES,

4., 19995, Portland. Proceedings… Springer-Verlag, 1995. v. 951, p.184-195.

Egenhofer, M. and Herring, J. (Eds.), Lecture Notes in Computer Science,

FRANK, A. One step up the abstraction ladder: combining algebras - from

functional pieces to a whole. In: THE INTERNATIONAL CONFERENCE ON

SPATIAL INFORMATION THEORY (COSIT), 1999, Stade, Germany.

Proceeedings… Stade: Spring Verlag, 1999. p. 95-108. Freksa, C. and Mark,

D. (Eds.) Lecture Notes in Computer Science.

GALTON, A. Fields and objects in space, time and space-time. Spatial
Cognition and Computation Journal, v. 4, n. 1, p. 39-68, March 2004.

GALTON, A.; WORBOYS, M. Processes and events in dynamic geo-networks.

In: THE INTERNATIONAL CONFERENCE ON GEOSPATIAL SEMANTICS

(GEOS 2005), 2005, Mexico. Proceedings… Spring Verlag, 2005. V. 3799, p.

45-59. Rodriguez, M. A.; Cruz, I. F.; Levashkin, S.; Egenhofer, M. J. (Eds.).

Lecture Notes in Computer Science, Springer-Verlag.

GALTON, A. Experience and history: processes and their relation to events.

Journal of Logic and Computation, v. 18, n. 3, p. 323-340, June 2008.

GALTON, A.; MIZOGUCHI, R. The water falls but the waterfall does not fall:

New perspectives on objects, processes and events. Applied Ontology, v. 4,

n. 2, p. 71-107, 2009.

GOODCHILD, M. Geographical data modeling. Computers and Geosciences,
v. 18, n. 4, p. 401-408, 1992.

	

63	

GRENON, P. ; SMITH, B. SNAP and SPAN: Towards dynamic spatial ontology.

Spatial Cognition and Computation Journal, v. 4, n. 1, p. 69-104, March

2004.

GÜTING, R. H.; BÖHLEN, M. H.; ERWIG, M.; JENSEN, C. S.; LORENTZOS,

N. A.; SCHNEIDER, M.; VAZIRGIANNIS, M. A foundation for representing and

querying moving objects. ACM Transactions of Database Systems, v. 25, n.

1, 2000.

GÜTING, R. H.; SCHNEIDER, M. Moving objects databases. San Francisco,

CA: Morgan Kaufmann, 2005. 389 p.

GUTTAG, J. V.; HOROWITZ, E.; MUSSER, D. R. Abstract data types and

software validation. Communications of ACM, v. 21, 1978.

HORNSBY, K.; EGENHOFER, M. Identity-based change: A foundation for

spatiotemporal knowledge representation. International Journal of
Geographical Information Science, v. 14, n. 3, p. 207-224, 2000.

HORNSBY, K.; EGENHOFER, M. J. Modeling moving objects over multiple

granularities. Annals of Mathematics and Artificial Intelligence. v. 36, n. 1-2,

p.177-194, September, 2002.

HORNSBY, K.; COLE, S. Modeling moving geospatial objects from an

event‐based perspective. Transactions in GIS, v. 11, n. 4, p. 555-573, 2007.

INTERNATIONAL STANDARD ORGANIZATION (ISO). Geographic
information — temporal schema (ISO 19108). Geneva, 2002.

INTERNATIONAL STANDARD ORGANIZATION (ISO). Geographic
information — Schema for moving features (ISO 19141). Geneva, 2008.

KNOTTERS, M.; HEUVELINK, G. B. M.; HOOGLAND, T.; WALVOORT, D. J. J.

A disposition of interpolation techniques. Wageningen, Statutory Research

Tasks Unit for Nature and the Environment. 2010.

	

64	

KUHN, W. Geospatial semantics: why, of what, and how? Journal of Data
Semantics, v. 3, p. 1-24, 2005.

KUHN, W. A functional ontology of observation and measurement. In:

International Conference on GeoSpatial Semantics (GeoS 2009), 2009,

Mexico City, Mexico. Proceedings… Spring Verlag,, 2009. Lecture Notes in

Computer Science.

LAUBE, P.; IMFELD, S.; WEIBEL, R. Discovering relative motion patterns in

groups of moving point objects. International Journal of Geographical
Information Science, v. 19, n. 6, p. 639–668, July, 2005.

LIU, Y.; GOODCHILD, M. F.; GUO, Q.; TIAN, Y.; WU, L. Towards a general

field model and its order in GIS. International Journal of Geographical
Information Science, v. 22, n. 6, p. 623-643, 2008.

MARK, D.; EGENHOFER, M. J.; BIAN, L.; HORNSBY, K.; ROGERSON, P.;

VENA, J. Spatio-temporal GIS analysis for environmental health using

geospatial lifelines. In: INTERNATIONAL WORKSHOP ON GEOGRAPHY AND

MEDICINE (GEOMED’99), 2., 1999, Paris. Proceeding... Paris, France, 1999.

MENNIS, J. Multidimensional map algebra: design and implementation of a

spatiotemporal GIS processing language. Transactions in GIS, v. 14, n. 1, p.

1-21, 2010.

OPEN GEOSPATIAL CONSORTIUM (OGC). OpenGIS implementation
specification for geographic information - simple feature access - part 1:

common architecture. Open Geospatial Consortium, 2006a. Available at:

<www.opengeospatial.org/>. Access at: 09/11/2012.

OPEN GEOSPATIAL CONSORTIUM (OGC). OpenGIS abstract specification

topic 6: Schema for coverage geometry and functions. Open Geospatial

Consortium, 2006b. Available at: <www.opengeospatial.org/>. Access at:

09/11/2012.

	

65	

PEBESMA, E. Classes and methods for spatio-temporal data in R: the

spacetime package. Munster, Germany: Institute for Geoinformatics, University

of Munster,. 2011. Available at: <http://cran.R-

project.Org/web/packages/spacetime/vignettes/spacetime.Pdf>. Access at:

09/11/2012.

PELEKIS, N.; THEODOULIDIS, B.; KOPANAKIS, I.; THEODORIDIS, Y.

Literature Review of Spatio-Temporal Database Models. The Knowledge
Engineering Review, v. 19, n. 3, p. 235-274, 2004.

PELEKIS, N.; FRENTZOS, E.; GIATRAKOS, N.; THEODORIDIS, Y. HERMES:

Aggregative LBS via a trajectory DB engine. In: ACM SIGMOD’ 08

CONFERENCE, 2008, Vancouver, BC, Canada. Proceedings… Vancouver:

ACM, 2008.

PEUQUET, D. J.; DUAN, N. An event-based spatiotemporal data model

(ESTDM) for temporal analysis of geographical data. International Journal of
Geographical Information Science, v. 9, n. 1, p. 7-24, 1995.

REGIS, L.; SOUZA, W. V.; FURTADO, A. F.; FONSECA, C. D.; SILVEIRA, J.

C.; RIBEIRO, P. J.; MELO-SANTOS, M. A. V.; CARVALHO, M. S.; MONTEIRO,

A. M. An entomological surveillance system based on open spatial information

for participative dengue control. Anais da Academia Brasileira de Ciências, v.

81, p. 655-662, 2009.

RIGAUX, P.; SCHOLL, M.; VOISARD, A. spatial databases: with application to

GIS. San Francisco, USA: Morgan Kaufmann, 2002.

SAKR, M. A.; GÜTING, R. H. Spatiotemporal pattern queries. Geoinformatica,

v. 15, p. 497–540, 2011.

SINTON, D. The inherent structure of information as a constraint to analysis:

Mapped thematic data as a case study. In: Dutton G (ed.) Harvard papers on

	

66	

geographic information systems. Reading, MA, Addison-Wesley, v. 7, p. 1-

17, 1978.

SPACCAPIETRA, S.; PARENT, C.; DAMIANI, M.; MACEDO, J. A. F.; PORTO,

F.; VANGENOT, C. A conceptual view on trajectories. Data & Knowledge
Engineering, v. 65, p. 126-146, 2008.

WORBOYS, M. F. A Unified Model for Spatial and Temporal Information. The
Computer Journal, v. 37, n. 1, 1994.

WORBOYS, M.; HORNSBY, K. From Objects to Events: GEM, the Geospatial

Event Model. In: INTERNATIONAL CONFERENCE ON GISCIENCE, 3., 2004,

Berlin. Proceedings…Spring Verlag, 2004. V. 3234, p. 327-343. Egenhofer, M.;

Freska, C. and Miller, H. (eds.), Lecture Notes in Computer Science.

WORBOYS, M. F.; DUCKHAM, M. GIS - a computing perspective. 2. ed. Boca

Raton: CRC Press, 2004.

WORBOYS, M. Event-oriented approaches to geographic phenomena.

International Journal of Geographical Information Science, v. 19, n. 1, p. 1-

28, 2005.

YUAN, M. Use of a Three-domain representation to enhance gis support for

complex spatio-temporal queries. Transactions in GIS, v.3 n.2, p.137-159,

1999.

	

67	

ANNEX A – TOWARDS A DYNAMIC GEOSPATIAL DATABASE MODEL

This annex presents a paper published in the International Conference on Emerging

Databases - EDB 2011, Incheon, Korea (Ferreira et al, 2011):

Towards a Dynamic Geospatial Database Model
Karine Reis Ferreira,

Gilberto Camara,
Antônio Miguel Vieira Monteiro

DPI – Image Processing Division, INPE – National Institute for Space Research,

Av. dos Astronautas 1758, 12227-001 São José dos Campos, SP, Brazil

{karine, gilberto, miguel}@dpi.inpe.br

Since most existing spatio-temporal database models are specific to meet a particular set of
applications, there is a need for a more general one which is not application-oriented and can be
used for a new generation of dynamic geographical information systems. Thus, this work aims to
identify a set of requirements for a new database model, called Dynamic Geospatial Database
Model (DyGeo Model), able to represent and query different geospatial data dynamics and so to
support different kinds of spatio-temporal applications. These requirements were defined based on
an analysis of distinct geospatial data dynamics and on a critical review of ten spatio-temporal
database models proposed in literature during the past two decades.

Key Words: dynamic geospatial data, spatio-temporal database model, dynamic geographic information
systems.

	

68	

1. INTRODUCTION

The recent technological advances in geospatial data collection, such as Earth
observation and GPS satellites, wireless and mobile computing, radio-frequency
identification (RFIDs), and sensor networks, have motivated new types of
applications which handle spatio-temporal information. Examples include animal
tracking and oil spill on the ocean, land parcel changes, as well as environmental
change monitoring based on satellite images. To meet this demand, it is necessary
to represent dynamic geospatial information in spatial databases and geographical
information systems (GIS).

Static geospatial information is represented in GIS following well-established
ideas. These ideas include object-based and field-based models [1], vector and
raster data structures, topological operators [2], spatial indexing as well as spatial
joins and operations [3]. In recent years, database management systems (DBMS)
have been extended to handle 2D static geospatial information and there has been a
major effort to standardize basic components for such data [4].

However, there is no consensus on how to represent spatio-temporal information
in computational systems. According to Worboys [5], there are four stages in
introducing temporal capacity into GIS and most current proprietary technologies
are in stage zero, that is, they do not deal with spatio-temporal information. In GIS
literature, there are many proposals of spatio-temporal database models.
Nevertheless, Pelekis et al. [6] consider that most existing models are application-
oriented, focusing on particular aspects of spatio-temporal data. They are not
general enough to be a basis for a new generation of dynamic geographical
information systems.

Therefore, this work aims to identify a set of requirements for a more general
and not application-oriented model called Dynamic Geospatial Database Model
(DyGeo Model). The main idea is to define a new model able to represent and
query different geospatial data dynamics and then to support different kinds of
spatio-temporal applications. Following this idea, the first phase aims to identify a
consistent set of requirements that the DyGeo model must meet.

The DyGeo model requirements have been identified based on an analysis of
distinct geospatial data dynamics and on a critical review of ten spatio-temporal
database models. So, section 2 analyses distinct geospatial data dynamics and
illustrates each one with real spatio-temporal applications. Section 3 provides a
critical review of ten spatio-temporal database models proposed in GIS literature
during the past two decades. They are well-known models which have high number
of citations in the literature. The DyGeo model requirements are presented in
section 4 and section 5 concludes this work.

	

69	

2. DYBAMIC GEOSPATIAL DATA

Based on the dichotomy, geo-objects and geo-fields, to represent geospatial data
[1], dynamic geospatial data can be represented by either (1) Geo-objects which
vary over time or (2) Geo-fields which change over time. In the first
representation, there are three cases: (1.1) Geo-object whose geometry is fixed but
its non-spatial attributes change over time; (1.2) Geo-object whose geometry
changes discretely over time and whose non-spatial attributes also can change; and
(1.3) Geo-objects whose geometry changes continuously over time and whose non-
spatial attributes also can change.

Since the spatial component of a geo-object is represented by geometries, such
as polygons, lines and points, this work uses the term “geometry” for the geo-
object spatial component. Besides that, the term “non-spatial attributes” refers to
features associated to geo-object which are represented by primitive data types,
such as numbers and texts.

Regarding geo-objects which change over time, the difference between discrete
and continuous geometry changes is pointed out by Galton [7] when he explains
the difference between bona fide and fiat object behavior over time. Bona fide
objects are grounded in features of physical reality, such as rivers and forest
regions, and fiat objects are the artificial products of human cognitive acts, such as
municipality limits and land parcels. So, he says “Both these objects might change
over time, but typically the bona fide entity will undergo gradual change whereas
the fiat entity undergoes sudden change (as a result of the boundary being redrawn
from time to time).” In this work, “gradual change” is called continuous change
and “sudden change” is called discrete change.

Guting and Schneider [8] also talked about this difference, saying that
“Regarding kinds of changes, a major distinction concerns discrete changes and
continuous changes. Classical research on spatio-temporal database has focused on
discrete changes of all the spatial entities. In contrast, the term moving objects
emphasizes the fact that geometries change continuously.”

In order to illustrate the main features of each geospatial data dynamic presented
above, the following sections present four real applications and their demands on
representing and querying dynamic geospatial information. They are: (1) Dengue
Fever Monitoring; (2) Municipal Management; (3) Movement Monitoring; and (4)
Amazon Deforestation Monitoring.

Universities and research institutes in Brazil have been involved in a cooperative
project called SAUDAVEL which aims at building a surveillance system to
control, warn and intervene in epidemic and endemic diseases, like Dengue Fever
and Leptospirosis [9]. The central experiment of this project is being carried out in
Recife, Brazil. Mainly, it consists in giving out egg traps for Aedes aegypti and
Aedes albopictus mosquitoes in different locations around the city and in counting
the number of mosquito eggs found in each trap weekly. Then, this data is

	

70	

processed together with environmental information, resulting in risk maps for
public health interventions.

In this first application, each egg trap can be considered as a fixed geosensor,
that is, a sensor which collects information at different times associated to a fixed
location. The location of each trap does not change over time, only its attributes,
such as number of mosquito eggs. So, each egg trap can be represented by a geo-
object whose geometry is fixed but its non-spatial attributes change over time.
Besides that, some important queries associated to this application are: (1) What
was the monthly mosquito egg average for each trap? (2) Which month presented
the biggest number of mosquito eggs? (3) When and where were more than 80
mosquito eggs collected by each trap? (4) How many eggs were collected in the
summer season? (5) Which district had the biggest/smallest number of mosquito
eggs?

Figure 1 shows a set of egg traps (represented by red points) in a Recife’s
district called “Engenho do Meio” and a time series generated by the egg trap
EM124. This time series represents the number of collected eggs (axis y) by date
(axis x).

Figure 1. SAUDAVEL egg traps.

Municipal management applications deal with municipality related issues,
such as urban land parcels and municipal limit changes. In this application, each
urban parcel boundary as well as each municipal limit change discretely over time
and their non-spatial attributes can also vary (e. g. the municipal government and
the parcel owner). As an instance, Figure 2 shows changes in Rondônia’s
municipality limits. In this example, three municipalities “Costa Marques”, “São
Francisco do Guaporé” and “Seringueiras” had the same limits from 2001 to 2004,
and then, on the first day of 2005 they suddenly changed due to new laws.

Movement Monitoring refers to applications which monitor and analyze object
motions, such as animal, vehicle and person movement. These kinds of
applications consist in tracking objects by getting their locations as well as other

	

71	

information such as animal temperature and vehicle velocity at different times. In
this case, the object locations vary continuously over time and the concept of
trajectory is very important. Some related queries are: (1) Where was object o1 at
time t5? (2) When did object o1 enter a specific region r10 and how long did it stay
in this region? (3) When and where did objects o1 and o2 meet each other
(considering a meeting when the distance between two objects is less than 2
meters)? (4) Where and when was there a spatio-temporal cluster of objects?

Figure 2. Rondônia’s municipality limits in 2001 (left picture) and in 2005 (right
picture). Legend: blue polygon is “Costa Marques” municipality; yellow is “São

Francisco do Guaporé” and green is “Seringueiras”.

The Brazilian Amazon deforestation has been monitored since 1988 by
National Institute for Space Research (INPE) through a project called PRODES. It
is responsible for calculating Amazon deforestation and for identifying deforested
regions in each year through satellite images, by using a well-established
methodology [10]. Each deforested region evolves continuously and nonlinearly
over time and this evolution must be represented in order to allow a specialist to
refine its analysis by recognizing patterns of deforested regions [11] and how these
patterns evolve over time [12]. A real example of a deforested region evolution is
shown in Figure 3.

Figure 3. Evolution of a deforested area. Source: [10].

In this case, each deforested region can be represented by a geo-object whose
geometry changes continuously over time and some important queries are: (1)
What was the state of a specific deforested region like in 2003? (considering that
this specific deforested region was observed in 2002 and in 2005, but not in 2003)
(2) What was the area and perimeter variation over time of a specific deforested
region? (3) How did a specific deforested region evolve over time between 2000
and 2008? (4) How did the deforested regions that started less than 2 kilometers

	

72	

far from river r1 evolve over time? (5) When did a specific deforested region reach
municipality x?

Besides the polygonal representation of each deforested region, PRODES project
also generates sets of classified images to represent deforestation process. Figure 4
shows an example of the deforestation process in a specific region in Amazon,
based on four classified images from different times. These images can be better
represented by a geo-field which change/evolve over time since geo-object concept
does not exist in this case.

Some important queries associated to it are: (1) Given a pixel or cell, how has
the forest status been varying in this cell over time? (2) What was the deforestation
in this specific region like in 2001? (considering that there is no classified image
from 2001.) (3) How many hectares were deforested in this specific region over
time?

Figure 4. Sequence of four classified images from different years that represent the
deforestation process in a specific region in Amazon rainforest. In these images, there are

basically three classes: river (dark gray), forest (gray), and deforested area (light gray). Source:
[10].

3. SPATIO-TEMPORAL DATABASE MODELS: A CRITICAL REVIEW

During the past two decades, many spatio-temporal database models have been
proposed in GIS literature. This section presents a critical review of ten models
which propose an ontology of space and time and its representation through data
types, relationships and operations thereon. They are well-known models which
have high number of citations in GIS literature and are shown in Figure 5.

The Time-Slice Snapshot [13] is the simplest model of them. This model works with
a set of snapshots, where each one is a raster layer which represents a state of
the real world at a given time, like a photograph. Each snapshot is a collection of

	

73	

temporally homogeneous units and there are no explicit temporal relations among
snapshot. It has two main limitations: (1) operations among snapshots must compare
them exhaustively; and (2) redundant storage because a complete snapshot is produced
at each time slice, duplicating all unchanged data.

The Space-Time Composite (STC) model [13] is an evolution of Snapshot model, by
considering vector objects which change over time instead of raster time-slice layers.
The mechanics of this model begin with a base layer which represents the objects at
some starting time. After this, each change decomposes the space over time into
increasingly smaller fragments (objects with geometries) with its own distinct history.
Despite being very simple, it is important because it introduces the idea of representing
spatial objects which vary over time.

The Unified Spatio-Temporal Object Model (STOM), proposed by Worboys [14],
defines basically two spatio-temporal data types, ST-simplexes and ST-complexes, and a
set of operations over them, such as ST-Union, ST-Intersection and ST-Difference. ST-
simplex is an ordered pair<S, T>, where S is a simplex data type and T is a bitemporal
element (BTE). A simplex is either a single point, or a finite straight line segment or a
triangular area. And BTE is a temporal data type composed of event and transaction
time. At last, a ST-complex is a finite set of ST-simplexes. The main disadvantage of
the STOM model is not to consider changes in object attributes, that is, in the textual
and numerical extents of geographical objects.

Figure 5. Spatio-temporal database models.

The main idea of Event oriented Spatio-Temporal Data Model (ESTDM) [15] is to
group changes by time of occurrence, ordering changes in locations within a
predetermined geographical area. The time associated with each change, called event, is
stored in increasing order from initial time t0 to the latest time tn. The set of changes Ci
recorded for any time ti consists of the set of each location (x, y) which changed since ti-

1, and its new value v. Its two main characteristics are: (1) the events are recorded when
changes occur, that is, in any temporal resolution; (2) a value v is recorded only when it
is different from the last one found along the scan line. So, this model does not have the

	

74	

two limitations of Snapshot model because it stores only the changed cells by each
event. Besides that, it defines a very simple event concept, without exploring concepts
related to it, such as, semantics or relationships.

The Three-domain model [16] mainly focuses on how to represent geo-objects which
vary over time in a relational database system by using normalized tables and a spatial
graph as well as on how to query them by using SQL language. The proposed database
schema consists in four tables, one for each domain (semantic, temporal and spatial) and
another for the domain link. It can also be implemented in spatial DBMS, as PostGIS
and Oracle Spatial, by using its support to deal with spatial information. It is a simple
model, which does not define spatio-temporal data types and operations. It only uses the
data types and query language provided by DBMS.

Moving Object defines a robust algebra, data types and operations, in two levels of
abstraction, abstract and discrete, to deal with moving objects. Moving Object refers to
entities whose geometries change continuously over time, such as, cars, aircraft, ships,
mobile phone users, polar bears, hurricanes, forest fires, or oil spills in the sea [8]. The
authors propose an algebra with two main data types, moving points and moving
regions, and a set of auxiliary types, such as moving real and moving int. Besides that,
this algebra defines a set of operators over these data types, such as trajectory, distance,
direction, and velocity. Its principal disadvantage is not to consider geo-fields which
vary over time. For instance, a hurricane must be represented in this model as a moving
region. Nevertheless, in some applications, the best representation of a hurricane is a
geo-field which varies over time and not an object. As a prototype of spatio-temporal
database, the moving object model was implemented in SECONDO, a database system
that is extensible by algebra modules (http://dna.fernuni-hagen.de/Secondo.html/).

The Geospatial Lifeline Model [17] defines a geospatial lifeline concept which
models an individual’s movement as a time-stamped record of locations. The basic
element of lifeline data is a triple <Id, Location, Time>, where Id is a unique identifier
of the individual, Location is a spatial descriptor (such as a coordinate pair, a polygon
and a street address), and Time is the time stamp when the individual was at that
particular location. Besides that, this model proposes different types of trajectories or
movement approximations, such as, threads, beads, necklaces, and convex hulls [18].
Depending on the desired granularity and on the application type, distinct types of
trajectories are essential. For example, in animal tracking, the convexhull trajectory is
necessary in order to define a habitat. So, although this model does not define
operations over moving objects, it defines important different types of trajectories. In
the Moving Object model only the linear or thread trajectory is extracted from moving
points (through the operator trajectory).

The Hierarchal model, proposed by Yuan [19], provides an interesting way of
organizing, using hierarchical layers, dynamic geographical phenomena which posses
both field and object characteristics. It is based on a sequence of snapshots called state
layers. Therefore, it has redundant storage problem like the Snapshot model. Besides the
snapshots, this model also stores the objects which represent the phenomena. These
objects are extracted from the state layers. Thus, these two representations of

	

75	

phenomena, geo-fields and geo-objects, are used to improve the spatio-temporal query
processing and operations. Finally, this model also defines the concepts of event and
process only to organize the data layers in different levels.

The Geospatial Event Model (GEM), proposed by Worboys and Hornsby [20], is
interesting because it introduces an event concept and relationships between events and
geo-objects in a model based on spatial objects. It defines two kinds of relationships,
object-event and event-event, following the idea that an event can affect or be associated
to one or more objects or events of different types. Some examples of object-event
relationships are splitting and merger (An event that creates/destroys a boundary
between objects). Some examples of event-event relationship are initiation and
termination (The occurrence of event A starts / terminates event B). However, it is a
model which defines only data types but not operations over them.

The Moving Feature Model, proposed by the International Organization for
Standardization (ISO), defines a conceptual schema for moving feature [21]. The term
feature refers to an abstraction of real world phenomena and moving feature refers to
features whose geometries move over time. This schema includes a set of classes,
attributes, associations, and operations which provides a common conceptual
framework to deal with feature geometry which moves as a rigid body. Therefore, it
supports changes of location, translation and rotation of a feature, but not other change
types, such as, the feature deformation and changes in non-spatial attributes of a feature.
The main advantage of this model is to define a generic type called one-parameter
geometry which represents the variation of feature geometry with respect to any single
variable, such as pressure, temperature, or time. However, its main disadvantages are
not to consider feature geometry deformation and changes in feature non-spatial
attributes.

4. TOWARDS A DYNAMIC GEOSPATIAL DATABASE MODEL

Since most existing spatio-temporal database models are specific to meet a particular set
of applications, there is a need for a more general one which is not application-oriented
and can be used for a new generation of dynamic geographical information systems.
This new model must be able to represent and query distinct geospatial data dynamics
and so to support different kinds of spatio-temporal applications. Therefore, based on
the different geospatial data dynamics shown in section 2 and on the reviewed models
in section 3, this section presents a set of requirements which this new model, called
Dynamic Geospatial Database Model (DyGeo Model), must meet.

Sections 4.1 to 4.5 describe requirements that are related to “what” the DyGeo model
must represent and query. Sections 4.6 and 4.7 describe requirements related to “how” it
can be clearly and usefully defined and formalized.

4.1 Represent both Geo-Fields and Geo-Objects which Vary over Time

	

76	

The models presented in section 3 can be grouped in two classes: (1) models which are
specific to represent geo-fields that change over time and (2) models which are specific
to represent geo-objects that change over time. Still in the second class, there is a subset
of models specialized in representing geo-objects whose geometries change
continuously over time. This classification is shown in Table 1.

Considering these models and the applications presented in section 2, the question
that arises is: What database model is able to support the four applications, that is, able
to represent and query the information generated by them? Unfortunately, there is no
single model general enough to support them. So, we could use different models, one
for each application. For example, the Moving Object model to support the Movement
Monitoring application, STOM model to Municipal Management and ESTDM Model to
represent the images of Deforestation Monitoring. However, in this case, how to
combine dynamic geospatial data from different applications in our analysis? How to
mix, for instance, trajectories of animals in the Amazon forest with the deforestation
process (represented by a set of classified images at different times)? There is no model
that defines this kind of operations.

Therefore, there is a lack of a single model able to represent and query geo-fields as
well as geo-objects which vary over time, considering discrete and continuous geometry
and non-spatial attribute changes of geo-objects. Representing these different geospatial
data dynamics, the DyGeo model should be able to support different kinds of
applications, such as the four applications presented in section 2.

Table 1. Classification of existing spatio-temporal models.

Geo-Fields which change
over time

Geo-Objects which change over time

Discrete geometry change Continuous geometry change

Snapshot Model, ESTDM
Model, and Hierarchal
Model

STC Model, STOM Model
Three-domain Model, and
GEM Model

Moving Object Model,
Geospatial lifeline, and Moving
Feature Model

4.2 Define Operations between Geo-Fields and Geo-Objects which Vary over
Time

Besides representing and querying geo-fields as well as geo-objects which vary over
time, the DyGeo model must define operations between them. For example, considering
the monitoring of animals in the Amazon forest (represented by geo-objects whose
geometries change continuously over time) and the deforestation process (represented
by geo-fields which change over time), the model should be able to answer questions

	

77	

like: (1) When did animal a1 go into forested areas? (2) How long did animal a1 stay in
deforested areas? And what was its mean temperature during this period?

Another example of question which requires operations between geo-fields and geo-
objects which vary over time is “How many hectares were deforested in each
municipality?”, presented in section 2.1. In this case, the answer must take into account
geo-objects whose geometries vary discretely over time (municipality limit changes) as
well as geo-fields which change over time (deforestation process).

In order to answer queries between geo-fields and geo-objects which vary over time,
the DyGeo model must define a set of operators which receive both as parameters and
combine them. For example, to answer the question “When did animal a1 go into
forested areas?”, the model must provide an operator able to compute the class,
deforested or forest (see Figure 4), for each animal location. So, if the animal a1 were in
a deforested area at time t5 and in a forest area at time t6, where t5 < t6, we could
conclude that it went into a forest area between t5 and t6.

4.3 Define Spatio-Temporal Interpolators

Since computational systems are discrete, continuous processes are often represented in
them as a set of discrete measures. For example, the tracking of an animal is represented
by a set of its locations, each one measured in a specific time. Likewise, the Amazon
deforestation process is measured by detecting deforested regions at distinct times.

Spatio-temporal interpolators for geo-objects whose geometries vary continuously
over time are essential in order to estimate a space in a specific time when there is no
measurement available about it. For instance, in the second application, shown in Figure
2, each municipal limit changes discretely over time. So, in order to answer the question
“what was the limit of Seringueiras municipally in 2003?” we do not need to interpolate
its limits between 2001 and 2005 because it had the same limit from 2001 to 2004.
Otherwise, in the fourth application presented in Figure 3, in order to answer the
question “what was the deforested region like in 2002?” we do need to interpolate it
between 2000 and 2003 because a deforested region evolves continuously over time.

In addition to that, spatio-temporal interpolators for geo-fields which change over
time are also necessary. For example, considering the images presented in Figure 4, in
order to answer the question “what was the deforestation in this specific region like in
2001?” we need to interpolate the images between 2000 and 2003, because we assume
that the deforestation process is continuous over time. In this case, the interpolators can
consider pixel or cell neighborhoods and how they evolve over time.

Actually, spatio-temporal interpolators are mechanisms to approximate discrete
measures to continuous processes. There are different ways to do it. For example,
Hornsby and Egenhofer [18] propose distinct trajectory approximations for moving
point, such as linear, necklace and convexhull, as shown in Figure 6.

	

78	

Figure 6. Types of trajectory approximations. Source: [18].

Therefore, the DyGeo model must provide distinct kinds of spatio-temporal
interpolators for geo-objects whose geometries change continuously over time as well
as for geo-fields which vary over time. These interpolators must be internally used by
most of DyGeo operations and must be selected based on the characteristics of the data,
such as the space and time granularities.

4.4 Represent Semantics of Changes

In some kinds of applications, besides representing spatial changes over time, it is
necessary to associate semantics to them. For example, in the Municipal Management
application, a new urban land parcel can be created through the merging of two old ones
or through the splitting of one parcel. In this case, the application can be interested in
knowing what caused a land parcel merging or splitting. In the animal tracking
application, an animal can die and its sensor can be used to monitor another animal. Or
an animal can be hurt and this state can interfere in its trajectory. So, in this application,
a user can be interested in knowing when and why an animal died as well as when and
why it was hurt.

Regarding the Amazon deforestation monitoring, there are works which study
different patterns of deforested regions and how they evolve over time [11] [12]. They
try to understand who and what causes some specific patterns of deforested areas. For
instance, new small settlements emerge; large farms increase their agricultural area at
the expense of the forest and, then, farmers buy land from small settlers to increase their
property for large-scale agriculture and extensive cattle ranching.

It is important to note that each application has its own semantic scope. Therefore,
the DyGeo model must provide mechanisms that allow each application to define and
represent its change semantics and to consider them in its queries.

4.5 Represent Geospatial Processes and Relationships among them

Nowadays, one research challenge in geospatial science is to define and represent
dynamic geospatial processes and relationships among them [5]. In GIS literature, there

	

79	

are many distinct definitions of geospatial process, depending on the application
domain.

So, the DyGeo model must provide a mechanism that allows an application user to
define geospatial processes based on the application domain and, then, relationships
among them. For example, a user can define the Amazon deforestation as a geospatial
process and the migration of an animal species as another process. And then, the user
can identify relationships between these two processes, such as “the deforestation
process starts up the migration of an animal species in the Amazon”.

Among the models presented in this work, only the GEM Model defines a set of
event-event relationships, such as, initiation and termination (The occurrence of event
A starts / terminates event B).

4.6 Describe the Model by Using Algebraic Specifications

Algebraic specifications provide a mathematical framework for describing abstract data
types. The main advantage of this framework is the capacity of formally describing
required types and operations thereon, independent of programming language and
implementation. Besides that, it is possible to specify semantics of operations [22]. So,
the DyGeo model should be clearly and formally defined by using well-known
algebraic formalisms.

Among the models presented in section 3, the Moving Object Model is the clearest
and best formally defined. It utilizes a many-sorted algebra to express its spatio-
temporal data types and operations.

4.7 Define the Model in Two Levels of Abstraction, Conceptual and Physical

The ANSI-SPARC (American National Standards Institute, Standards Planning And
Requirements Committee) proposes a database architecture based on three levels:
external, conceptual and internal [23].

The external level (user view) describes a part of the database that is relevant to a
particular user. It looks at the world from a particular perspective, for a particular
purpose. The conceptual or logical level is a representation of what data is stored within
the whole database and how it is inter-related. It focuses on describing the model
concepts without worrying about the way the data is physically stored in computational
systems. It is independent of hardware and software. At last, the physical or internal
level is a low-level representation of the entire database. It describes how the database is
physically represented on the computer system.

The description of a database model in all these levels is very useful and important,
mainly the conceptual and physical ones. The conceptual model is important to describe
the main concepts in an understandable way. While the physical one presents
implementation details and is useful to describe how to materialize a conceptual model
in a computational system. Since the external level is related to particular user views

	

80	

and is based on the conceptual model, we believe that it is not essential to understand
the whole database model.

To wrap up this section, Table 2 shows what requirements are met by each model
presented in section 3.

Table 2. Requirements versus existing spatio-temporal database models.
 Requirements
 4.1 4.2 4.3 4.4 4.5 4.6 4.7

Snapshot
ST Composite
STOM √
ESTDM √
Three Domain √
Moving Object √ √ √
Geospatial Lifeline √
Hierarchal Model √
GEM √ √
Moving Feature √

5. CONCLUSION

This work presents a set of requirements for a more general and not application-oriented
model, called Dynamic GeoSpatial Database Model (DyGeo Model), able to represent
and query different geospatial data dynamics and so to support different kinds of spatio-
temporal applications. These requirements are identified based on an analysis of distinct
geospatial data dynamics and on a critical review of some spatio-temporal database
models proposed in literature during the past two decades. This work reviews ten
models which define space and time representations through data types, relationships
and operations thereon. They are well-known models which have high number of
citations in GIS literature.

We believe that the phase of requirements gathering, based on an analysis of distinct
geospatial data dynamics as well as on a critical review of the existing spatio-temporal
database models, is the first step towards the DyGeo model. It is crucial before actually
defining a consistent model. For now on, the next step is to formally define the DyGeo
algebra taking the requirements identified in this work as a basis for its data types and
operators.

REFERENCES

[1] Couclelis, H., “People Manipulate Objects (but Cultivate Fields): Beyond the Raster-Vector
Debate in GIS,” Theories and Methods of Spatio-Temporal Reasoning in Geographic Space,
Frank, A., et al. (eds.). Springer-Verlag, Berlin. pp. 65-77. 1992.

	

81	

[2] Egenhofer, M., Franzosa, R., “Point-Set Topological Spatial Relations,” International
Journal of Geographical Information Systems. vol. 5, pp. 161-174. 1991.

[3] Rigaux, P., Scholl, M., Voisard, A., Spatial Databases with Application to GIS. Morgan
Kaufman, San Francisco, 2002.

[4] Open Geospatial Consortium (OGC), “OpenGIS Implementation Specification for
Geographic information - Simple feature access - Part 1: Common architecture” [online].
(OGC 06-103r3). Available from: www.opengeospatial.org [Accessed 27/01/2009]. 2006.

[5] Worboys, M., “Event-oriented approaches to geographic phenomena,” International Journal
of Geographical Information Science, vol. 19, pp. 1-28. 2005.

[6] Pelekis, N., Theodoulidis, B., Kopanakis, I., Theodoridis, Y., “Literature review of spatio-
temporal database models,” The Knowledge Engineering Review, vol. 19. 2004.

[7] Galton, A., “Fields and Objects in Space, Time and Space-Time,” Spatial Cognition and
Computation Journal, vol. 4, pp. 39-68. 2004.

[8] Güting, R. H., Schneider, M., Moving Objects Databases. Morgan Kaufmann, New York,
2005.

[9] Regis, L., Souza, W. V., Furtado, A. F., Fonseca, C. D., Silveira, J. C., Ribeiro, P. J., Melo-
Santos, M. A. V., Carvalho, M. S., Monteiro, A. M., “An Entomological surveillance system
based on open spatial Information for participative Dengue control,” In Anais da Academia
Brasileira de Ciências. vol. 81, pp. 655-662. 2009.

[10] INPE: “Monitoramento da Floresta Amazônica Brasileira por Satélite (Monitoring the
Brazilian Amazon Forest by Satellite)” [online]. Report, São José dos Campos: INPE,
Available from: http://www.obt.inpe.br/prodes [Accessed 05/04/2010]. 2008.

[11] Silva, M., Camara, G., Souza, R. C., Valeriano, D., Escada, I., “Mining Patterns of Change
in Remote Sensing Image Databases,” In 15th IEEE International Conference on Data
Mining. Houston,TX, USA, 2005.

[12] Mota, J., Camara, G., Escada, I., Bittencourt, O., Vinhas, L., “Case-Based Reasoning for
Eliciting the Evolution of Geospatial Objects,” In Conference on Spatial Information Theory
COSIT 2009, Aber Wrach, France, 2009.

[13] Langran, G., Chrisman, N. R., “A Framework For Temporal Geographic Information,” The
International Journal for Geographic Information and Geovisualization, vol. 25. 1988

[14] Worboys, M. F., “A Unified Model for Spatial and Temporal Information,” The Computer
Journal, vol. 37. 1994.

[15] Peuquet, D. J., Duan, N., “An event-based spatiotemporal data model (ESTDM) for
temporal analysis of geographical data,” International Journal of Geographical Information
Science, vol. 9, pp. 7-24. 1995.

[16] Yuan, M., “Use of a Three-Domain Representation to Enhance GIS Support for Complex
Spatio-temporal Queries,” Transaction in GIS, vol. 3, pp. 137-159. 1999.

[17] Mark, D., Egenhofer, M. J., Bian, L., Hornsby, K., Rogerson, P., Vena, J., “Spatio-
temporal GIS analysis for environmental health using geospatial lifelines,” In 2nd
International Workshop on Geography and Medicine (GEOMED’99). Proceeding... Paris,
France. 1999.

[18] Hornsby, K., Egenhofer, M. J., “Modeling Moving Objects over Multiple Granularities,” In
Annals of Mathematics and Artificial Intelligence, vol. 36, pp. 177-94. 2002.

[19] Yuan, M., “Representing Complex Geographic Phenomena in GIS,” Cartography and
Geographic Information Science, vol. 28, pp. 83-96. 2001.

[20] Worboys, M. F., Hornsby, K., “From objects to events: GEM, the geospatial event model,”
In Third International Conference on GIScience, pp. 327-343, Springer-Verlag, Berlin,
1994.

[21] International Standard Organization (ISO), “Geographic information - Schema for moving
features (ISO 19141)”, 2008.

	

82	

[22] Guttag, J. V., Horowitz, E., Musser, D. R., “Abstract Data Types and Software Validation,”
Communications of ACM, vol. 21. 1978.

[23] Date, C. J., An Introduction to Database Systems. Addison-Wesley, Reading , 2004.

	

83	

ANNEX B – MOVING OBJECTS AND SPATIAL DATA SOURCES

This annex presents a paper accepted in September 2012 for publication in the

Revista Brasileira de Cartografia:

MOVING OBJECTS AND SPATIAL DATA SOURCES
	

Karine Reis Ferreira1
Lúbia Vinhas1

Antônio Miguel Vieira Monteiro1

Gilberto Câmara1

1Instituto Nacional de Pesquisas Espaciais

Divisão de Processamento de Imagens
Av. do Astronautas, 1758 Jardim da Granja São José dos Campos-SP 12227-010

{karine, lubia, miguel, gilberto}@dpi.inpe.br
	

ABSTRACT

	

Moving object is a well-established concept in geographic information system (GIS) science. It is an
entity whose spatial position or extent changes continuously over time. Some examples are cars, animals
and deforested regions. Nowadays, there is a growing demand for GIS tools that are able to handle and
analyze moving objects. Most existing spatial file formats (e.g. KML and GML) and database systems
(e.g. PostGIS) represent spatial and temporal information using structures and types predefined in
specifications written by the International Organization for Standardization (ISO) and the Open
Geospatial Consortium (OGC). However, in these specifications, there is nothing about moving object
representation in data files or databases. Each data producer adopts its own format to do it. Therefore, this
work proposes an interoperable strategy to translate spatial and temporal information stored in different
data sources into moving object trajectories for further analyses. The proposed approach is based on the
processing of an additional metadata file that describes how moving objects are stored in a particular data
source. Grounded on this strategy, we have built a new software module for moving object analysis in a
geographical library called TerraLib. This module architecture is also described in this paper.

Keywords: Geographical information systems (GIS), moving objects, spatial data sources, KML,
PostGIS.
	

	

84	

1. INTRODUCTION

This work extends (FERREIRA et al., 2012), in two ways. First, the strategy

designed only for KML files is generalized to deal with different kinds of spatial

data sources, including database systems such as PostGIS. Second, we

propose a new software architecture based on this extended strategy. To prove

such strategy and architecture, we build a prototype and try out it with animal

tracking and car movement data from different sources.

The recent technological advances in geospatial data collection, such as Earth

observation and GPS satellites, mobile computing, and sensor networks, have

motivated new applications that handle spatiotemporal information. Some

examples are location-based systems, natural disaster and environmental

change monitoring. To support these applications, there is a growing demand

for geographical information systems (GIS) that deal with such information.

Since the beginning of the 2000s, the GIS community has made a serious effort

towards spatial data interoperability. The International Organization for

Standardization (ISO) and the Open Geospatial Consortium (OGC) have

proposed standards to represent and store spatial information in data files and

database systems. Geography Markup Language (GML) (OGC, 2007) and

Keyhole Markup Language (KML) (OGC, 2008) are examples of file formats

proposed by OGC for spatial data interchange. Many agencies and institutions

throughout the word have distributed their spatial data using these formats.

Spatial extensions of traditional Database Management Systems (DBMS), such

as PostGIS and Oracle Spatial, deal with spatial information in compliance with

the OGC Simple Feature Access (SFA) specification (OGC, 2006a) (OGC,

2006b).

The compliance with ISO and OGC standards has assured a high degree of

spatial data interoperability. Many GIS tools and libraries are able to access

spatial data files and databases that follow these standards. Standards are

	

85	

useful to promote spatial data interoperability. However, few results have been

achieved regarding spatiotemporal data interoperability.

Moving object is a well-known category of spatiotemporal data. They are

objects whose spatial positions or extents change continuously over time

(ERWIG et al., 1999). Examples of moving objects are cars, aircraft, ships,

mobile phone users, polar bears, hurricanes, forest fires, and oil spills on the

sea. Although the concept of a moving object is well-established in GIS science,

there is not a standard way to represent it in data files or database systems.

Each data producer adopts its own format to store moving objects. A particular

format specifies the way to encode information and how it is organized.

This work focuses on this class of spatiotemporal data. It proposes an

interoperable strategy to translate spatial and temporal information stored in

different data sources into moving object trajectories for further analyses. The

proposed approach is based on the processing of an additional metadata file

that describes how moving objects are stored in a particular data source. It is an

XML file that must be compliant with a schema proposed in this paper.

Grounded on this strategy, we have built a new software module to deal with

and analyze moving objects in a geographical library called TerraLib (CÂMARA

et al., 2008).

2. RELATED WORK

Erwig et al. (1999) propose a model, called Moving Object Model, which defines

an algebra to deal with moving objects. This algebra specifies three main data

types, moving points, moving lines and moving regions, and a set of operations

over them, such as trajectory and distance. This work is based on this algebra.

Fig. 1 (a) and (b) shows the tracking of an animal and the evolution of a

deforested region. The former is an example of a moving point because the

animal position changes over time. The latter is a moving region, since the

object extent evolves over time.

	

86	

Fig. 1 - Examples of moving objects: (a) an animal tracking and (b) the evolution of a

deforested region.

Although moving object spatial positions or extents change continuously over

time, they are often represented by discrete observations. For instance, Fig. 1

(a) shows an animal tracking through an observation set. Each observation

records a spatial position, represented by a point, and a time instant when the

animal was at that position. Fig. 1 (b) presents the evolution of a deforested

region through three observations. Each one contains the spatial extent of the

deforested region, represented by a polygon, and the year when it was

detected.

Trajectories are countable journeys associated to objects that are moving over

time (SPACCAPIETRA et al., 2008). Different kinds of trajectories can be

extracted from a moving object. For example, if an application is interested in

studying the daily behavior of an animal, it can extract its trajectories by

grouping its daily observations. In another case, the application might extract

trajectories that group the animal observations by its intersection with some

regions of interest.

Based on the algebra proposed by Erwig et al. (ERWIG et al., 1999), there are

two main initiatives of Moving Object Database (MOD) systems, SECONDO

(GUTING and SCHNEIDER, 2005) and Hermes (PELEKIS et al., 2008). Both

extend the SQL type system with data types to represent moving objects, such

as moving point and moving region, and a set of functions to deal with them.

SECONDO is an extensible database system prototype designed at the

	

87	

FernUniversität in Hagen. Hermes is a MOD engine that has been implemented

as an Oracle data cartridge.

ISO defines a conceptual model called Moving Feature Model for features

whose geometries move over time as a rigid body (ISO, 2008). It supports

changes of location, translation and rotation, but not deformation of a feature.

The Moving Object Model is broader than the Moving Feature Model because it

supports geometry deformation over time. By dealing with geometry

deformations, the model can cope with a class of environmental problems, like

deforested region evolution show in Fig. 1 (b), where entity geometries move

and deform over time.

3. THE PROBLEM

Most existing spatial file formats (e.g. KML and GML) and database systems

(e.g. PostGIS) do not provide data types or structures to represent moving

objects. They represent spatial and temporal information using structures and

types predefined in ISO and OGC specifications. However, in these

specifications, there is nothing about moving object representation in data files

or database systems. Each data producer adopts its own format to do it.

Therefore, this work addresses the problem: how to translate spatial and

temporal information stored in different data sources into moving object

trajectories for further analyses?

To illustrate this problem, let us consider two real examples of data sources that

contain spatial and temporal information related to moving objects: a KML file

and a PostGIS database.

3.1. Moving Objects in KML files

KML stands for Keyhole Markup Language and is an OGC standard for

encoding and transporting representations of geographic data, mainly for data

display in an Earth browser. It is an XML file that follows a predefined XML

	

88	

schema. Such schema describes the grammar which KML file instances must

be compliant with. All components of the KML schema are defined in the

namespace with the identifier "http://www.opengis.net/kml/2.2".

The KML Schema defines an element called kml::PlacemarkType to represent

spatial objects and time stamps associated to them. Spatial objects are

represented by five types: kml:MultiGeometryType, kml:PointType,

kml:LineStringType, kml:LinearRingType and kml:PolygonType. It

defines two types for time information: kml:TimeStampType and

kml:TimeSpanType.

The first example is a KML file generated by a project that monitors sea

elephants in the Antarctica (INPE, 2012). This file contains observations of eight

animals during three years. Each observation has an animal location at a

specific time and is represented by a kml::PlacemarkType element. The

animal location is represented by kml::PointType and its associated time by

kml::TimeStampType.

Although KML is used to describe journeys, there is not a predefined type in its

schema that associates spatial and temporal elements to a same trajectory.

There is nothing to indicate what kml::PlacemarkType elements must be

grouped as the same moving object trajectory. In this example, the KML file

uses a kml::FolderType element to group all observations of the same

animal. However, KML files generated by other producer can use different

elements to do it.

This file also contains visual style elements to describe how the data should be

visualized. Fig. 2 shows the display of this KML file in the Google Earth, where

the red lines represent the sea elephant trajectories.

	

89	

Fig. 2 - Trajectories of sea elephants: display of the KML in the Google Earth software.

3.2. Moving Objects in a PostGIS database

PostGIS extends the PostgreSQL, an open source object-relational database

system, to deal with geographic objects. It is compliant with the OGC Simple

Feature Access (SFA) specification (OGC, 2006a) (OGC, 2006b). It provides a

set of data types to represent geometries, such as st_point and st_polygon,

and of functions to handle these types, such as st_distance and

st_intersection. These types and functions come from the OGC geometry

model. For temporal information, PostgreSQL supports the full set of Structured

Query Language (SQL) date and time types, such as timestamp, interval,

date and time.

The SFA specification uses the term feature tables to refer to tables that have at

least a spatial attribute, stored in a column whose domain is a geometry type. It

proposes two metadata tables: geometry_columns and spatial_ref_sys.

The spatial_ref_sys table holds the numeric identifications and textual

descriptions of coordinate systems used in the spatial database. The

geometry_columns table registers the available feature tables in the database

and metadata about their geometry columns, such as their types and

associated spatial reference systems identifications (srid).

The second example is a PostGIS database that has observations of moving

cars in a city. Fig. 3 shows the trajectories of three cars during a day, where

	

90	

each point represents a car location at a specific time. All observations of all

cars are stored in a feature table, called car_trajectories, that has three

columns: (1) car_id: to store the car identities; (2) location: to store the car

spatial locations (st_point type); and (3) date_time: to store the temporal

information (timestamp type).

Fig. 3 - Trajectories of three cars in a city during a day.

The car_trajectories is a feature table and so the metadata about its

geometry column is registered in the geometry_columns table. However, there

is not a metadata in this database that indicates how to translate the spatial and

temporal information of the car_trajectories table into moving object

trajectories.

3.3. Analyzing Moving Objects

Most GIS tools can access and display geometries and their associated times

from PostGIS databases and KML files. Some of them, such as Google Earth,

can automatically configure timelines and generates animations over time.

However, they are not able to analyze them as moving object trajectories. They

cannot answer questions like: (1) Where was object o1 at time t5? (2) When did

object o1 enter a specific region r10 and how long did it stay in this region? (3)

When and where did objects o1 and o2 meet each other (considering a meeting

when the distance between two objects is less than 2 meters)? (4) Where and

when was there a spatiotemporal cluster of objects?

	

91	

This requires a more specialized tool that is able to: (1) translate geometry

objects associated to time stamps stored in data sources into data structures

that represent moving object trajectories, and (2) analyze trajectories, by

providing functions over its data structures that can answer questions like the

ones presented above. To meet these requirements, we are developing a new

software module in a geographical library called TerraLib (CÂMARA et al.,

2008). Its architecture is described at follow.

4. SOFTWARE ARCHITECTURE

This section describes the architecture of a new software module for moving

object analysis, built in a geographical library called TerraLib. TerraLib is a C++

software library base to build geographical information systems. It is open

source and is developed by the National Institute for Space Research (INPE)

(CÂMARA et al., 2008).

This new module is composed of three other ones, ST (SpatioTemporal),

STLoader and DataAccess, as shown in Fig. 4. The ST module contains data

structures and functions to represent and analyze moving objects. It provides

functions to calculate the distance between two moving objects and the

intersection between a moving object and a region of interest. The distance

operation results in a time series that maps each time to the distance between

the objects at that time. The intersection operation results in patches or

trajectories of a moving object that intersect a region of interest, as shown in

Fig. 5. In this figure, each trajectory represents a patch when the object was

inside the region of interest. Using the ST module functions, a user can answer

questions like the four ones presented in Section 3.3.

	

92	

Fig. 4 - Software architecture.

Fig. 5 - Intersection between a moving object and a region of interest.

The DataAccess module is in charge of accessing data sets from different

sources, such as KML and GML files as well as PostGIS databases. Each

source stores spatial and temporal information using particular predefined

structures. A point is stored in a kml::PointType element in KML files and in a

st_point type in PostGIS databases. So, this module has to know the

particularities of each source to load its data sets.

The STLoader module is responsible for translating the data sets loaded by the

DataAccess into moving object structures of the ST module. To do this, it needs

extra information about how the sources represent moving objects. Let us

consider the PostGIS database presented in Section 3.2. To load its moving

cars, this module has to know that the car_trajectories table contains

	

93	

moving objects. Besides that, it needs to know that its column car_id stores

the car identities, location stores the car locations and date_time contains

the temporal information. To load moving animals from the KML file described in

Section 3.1, this module has to know that all observations of each animal are

grouped in a kml::FolderType element.

Therefore, this module requires an additional metadata file, called moving

object source metadata, which contains this necessary extra information.

5. MOVING OBJECTS SOURCE METADATA

The moving object source metadata is an XML file. XML stands for eXtensible

Markup Language and is a markup language designed to transport and store

structured data. It is a World Wide Web Consortium (W3C) recommendation

and has been widely used to carry and share data mainly in the Web

environment (BRAY et al., 2008). An XML file is structured through user-defined

tags and can be described by a XML Schema. The purpose of an XML Schema

is to define the legal building blocks of an XML document in terms of elements

and attributes that can appear in an XML file. The XML Schema language is

called XML Schema Definition (XSD).

Moving object source metadata files must be compliant with the XML Schema

proposed in this section. This schema is shown in Fig. 6. It defines seven

complex elements: MovingObjectSourceType, DataSourceInfoType,

DataSourceParamsType, MovingObjectInfoType, IdInfoType,

SpatialInfoType and TemporalInfoType.

MovingObjectSourceType is the root element. It encloses all the other

elements that contain metadata about data sources and theirs moving objects.

Information about each data source is described by the DataSourceInfoType

element. It holds the data source name, its type and its access parameters. In

this first version, the metadata file supports two types of data sources, KML and

POSTGIS.

	

94	

Fig. 6 - The Moving Object Source Metadata file schema.

The access parameters are described by the DataSourceParamsType element.

Since each type of data source requires a specific set of access parameters,

this element is composed of key-value pairs instead of predefined elements. To

access a PostGIS database, a user opens a connection that requires, at least,

the database name, the server host name and its available port, the user name

and its password. Otherwise, to access and open a KML file, a system only

needs its path and name. A list of possible access parameters for each data

	

95	

source type is available in the TerraLib documentation available at

www.terralib.org.

MovingObjectInfoType element carries information about the containers in the

data sources that hold moving object observations. It includes: (1) the container

type and name (containerType and containerName elements); (2) where the

object identities are stored (IdInfoType type); (3) where the spatial and

temporal information is stored (SpatialInfoType and TemporalInfoType

types). The container that holds the moving car observations (Section 3.2) is the

table car_trajectories. The identity of each car is stored in the column

car_id. The columns location and date_time store the spatial and temporal

information of each observation.

The IdInfoType element describes where the object identities are stored. The

SpatialInfoType element describes where the spatial information is stored

and its Spatial Reference System Identification (SRID). SRID is a unique

number used to identify projected and local spatial coordinate system

definitions. In the metadata file, the srid is optional since it can be already

registered in the data source. A PostGIS database holds the srid of its feature

tables in the geometry_columns table.

The TemporalInfoType element indicates where the temporal information is

stored as well as its pattern and temporal resolution. Temporal pattern refers to

the format of a textual representation of a date and time. For example, the text

“01-03-2008” is ambiguous; it can represent the first day of March in 2008 or the

third day of January in 2008. So, we have to inform what pattern it follows in

order to understand its right meaning. ISO 8601:2004 (ISO, 2004) proposes

some date and time format representations, such as DD-MM-YYYY or MM-DD-

YYYY, and this work adopts them. The temporal pattern information is optional.

It is only necessary when the temporal data is of a textual type.

	

96	

Temporal resolution refers to the time granularity which must be considered to

deal with temporal information. Each deforested region observation (shown in

Fig. 1 (b)) can have a complete date associated to it (a day, a month and a

year), such as ‘01-01-2003’. Nevertheless, the measurement of deforested

regions is done yearly and so only the year must be considered in this date. In

other words, the time resolution associated to it is YEAR. The possible time

resolutions are: YEAR, MONTH, WEEK, DAY, HOUR, MINUTE and SECOND.

6. EXAMPLES

This section presents the moving object source metadata files related to the two

examples presented in Section 3. These files contain necessary information to

translate the spatial and temporal information in the KML file and in the PostGIS

database into moving animals and moving cars, respectively. They follow the

schema described in the previous section.

6.1. Moving Animals in the KML file

Fig. 7 (a) presents the moving object metadata file related to the KML file

described in Section 3.1. The DataSourceInfo element contains the data

source name (sea_elephants); its type (KML) and its access parameters

(NAME=c://sea_elephants.kml). To access and open a KML file, a system

needs only its name and path. So, we inform only the access parameter NAME.

In this file, there are two MovingObjectInfo elements that describe information

about two containers of moving animal observations. The first container is a

folder (containerType is kml::FolderType) called 40:	
 locations

(containerName). The second one is also a folder (containerType is

kml::FolderType) called 41:	
 locations (containerName). Both folders hold

moving animals observations using the following KML elements: (1)

kml::Placemark::Name to store the animal identities (IdInfo); (2)

kml::Placemark::Point to store the animal locations (SpatialInfo); and (3)

kml::Placemark::TimeStamp to store the temporal information associated to

	

97	

each location (TemporalInfo). The srid of the locations is 4326 that refers to

the reference coordinate system WGS84. And, its temporal resolution is

SECOND.

6.2. Moving Cars in the PostGIS database

Fig. 7 (b) presents the moving object metadata file related to the PostGIS

database described in Section 3.2. The DataSourceInfo element contains the

data source name (cars), its type (POSTGIS) and its access parameters. These

parameters contain necessary information to open a connection to a PostGIS

database: the database name (NAME=stdatabase), the server host name

(HOST=localhost), its available port (PORT=5432) and the user name

(USER=postgres).

Information about how the moving cars are stored in this database is in the

MovingObjectInfo element. The moving car observations are stored in a table

(containerType is Table) called car_trajectories (containerName). The

car identities are stored in a column called car_id (IdInfo). The car spatial

locations are stored in a column called location (SpatialInfo) and their

associated times in a column called date_time (TemporalInfo). We do not

need to inform the srid in this file. It comes from the geometry_columns where

the table car_trajectories is registered.

	

98	

(a) (b)

Fig. 7 - The moving object metadata files: (a) related to the KML file and its moving animals

(Section 3.1); (b) related to the PostGIS database and its moving cars (Section 3.2).

7. PROTOTYPE

We have built a new software module to deal with and analyze moving objects

in the geographical library TerraLib. This module is based on the software

architecture and strategy proposed in this paper. Besides that, we have adapted

the open GIS TerraView to display and analyze moving objects, using this new

module. TerraView is a geographical application built utilizing the TerraLib

library (INPE, 2012). It is open source and developed by INPE.

	

99	

Fig. 8 shows TerraView displaying the trajectories of two sea elephants (blue

and yellow lines at the bottom) and the distance between both. The distance

operation results in a time series (right side of the figure) that maps each time to

the distance between both at that time. TerraView has loaded these two

trajectories from the KML shown in Fig. 2, using the moving object source

metadata file presented in Fig. 7 (a). It can also display them through an

animation over time.

Fig. 8 - TerraView: displaying and analyzing sea elephant trajectories.

We have built this module using three open source C++ software libraries:

Xerces-C++, OGR and libpq. Xerces-C++ (http://xerces.apache.org/xerces-c/) is

able to read and write XML data, checking its compliance with predefined

schemas. It is used to read the moving object source metadata files that are

XML files. OGR is provides read (and sometimes write) access to a variety of

geographical vector file formats, including KML files (http://www.gdal.org/ogr/).

We use the OGR LIBKML Driver to read KML files

(http://www.gdal.org/ogr/drv_libkml.html). To access PostGIS databases, we

use the libpq library (http://www.postgresql.org/docs/8.2/static/libpq.html).

8. FINAL REMARKS

	

100	

The proposed approach consists in loading spatial and temporal information

from data sources as it is and, afterwards, translating it into moving objects

trajectories. To do this, it uses an additional metadata file that describes how

moving objects are stored in a particular data source. This translation is

essential to analyze the original information as moving object trajectories. To

answer the question “when and where did objects o1 and o2 meet each other

(considering a meeting when the distance between two objects is less than 2

meters)?”, we need to structure the original data as moving object trajectories.

This strategy has two main advantages. The first one is that no change in the

original data sources is required. It loads the original data as it is and uses the

metadata file to know how to translate it into moving objects. This feature is

particularly interesting when dealing with database servers and the final

application do not have permission to change them.

The second advantage is that it can be easily extended to other data sources.

In this paper, we show a prototype working with KML files and PostGIS

databases. However, we can easily extend it to other kinds of data sources,

such as GML or Oracle Spatial. To do it, we have to: (1) add the new types of

data sources in the moving object source metadata file schema, including them

in the element type of the DataSourceInfoType type (Fig. 6); and (2) build a

new software piece in the DataAccess module that is able to load spatial and

temporal information from these new data sources.

This proposal allows for dealing with moving objects data using common GIS

spatial files and DBMS spatial extensions. In this perspective, this work

advances towards a new generation of GIS that deals with spatiotemporal data.

References

BRAY, T.; PAOLI, J.; SPERBERG-MCQUEEN, C. M.; MALER, E.; YERGEAU, F.

Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C recommendation. Report.

W3C, 2008.

	

101	

CÂMARA, G.; VINHAS, L.; FERREIRA, K.; QUEIROZ, G.; SOUZA, R. C.; MONTEIRO,

A. M. V.; CARVALHO, M. T.; CASANOVA, M. A.; FREITAS, U. M. TerraLib: An Open

Source GIS Library for Large-scale Environmental and Socio-economic Applications.

Open Source Approaches to Spatial Data Handling, Berlin, Springer-Verlag, 2008.

ERWIG, M.; GUTING, R. H.; SCHNEIDER, M.; VAZIRGIANNIS, M. Spatio-Temporal

Data Types: An Approach to Modeling and Querying Moving Objects in Databases.

GeoInformatica. v. 3, p. 265-291, 1999.

FERREIRA, K. R.; VINHAS, L.; MONTEIRO, A. M. V.; CÂMARA, G. Moving Objects

and KML Files. In: Proceedings of the 28th IEEE International Conference on Data

Engineering (ICDE 2012) Workshop on Spatio Temporal data Integration and Retrieval.

Washington D.C., USA, 2012.

GUTING, R. H.; SCHNEIDER, M. Moving Objects Databases. San Francisco, Morgan

Kaufmann, 2005.

INPE. Projeto MEOP: INPE, 2012. Available at:

<http://www.inpe.br/crs/pan/pesquisas/telemetria.php>. Access data: 12/07/2012.

INPE. TerraView software. São José dos Campos, SP: INPE, 2012. Available at:

<http://www.dpi.inpe.br/terraview_eng/index.php>. Access data: 12/07/2012.

INTERNATIONAL STANDARD ORGANIZATION (ISO). ISO 8601:2004: Data elements

and interchange formats - Representation of dates and times. Report. Geneva,

Switzerland, 2004.

INTERNATIONAL STANDARD ORGANIZATION (ISO). ISO 19141:2008: Geographic

information - Schema for moving features. Report. Geneva, Switzerland, 2008.

OPEN GEOSPATIAL CONSORTIUM (OGC): OpenGIS Implementation Specification

for Geographic Information – Simple Feature Access - Part 1: Common architecture.

Reference number: OGC 06-103r3. Version: 1.2.0. Report. Available at

<http://www.opengeospatial.org>. 2006a.

OPEN GEOSPATIAL CONSORTIUM (OGC): OpenGIS Implementation Specification

for Geographic Information – Simple Feature Access - Part 2: SQL option. Reference

	

102	

number: OGC 06-104r3. Version: 1.2.0. Report. Available at

<http://www.opengeospatial.org>. 2006b.

OPEN GEOSPATIAL CONSORTIUM (OGC). OpenGIS Geography Markup Language

(GML) Encoding Standard. Reference number: OGC 07-036. Version: 3.2.1. Report.

Available at: <http://www.opengeospatial.org>. 2007.

OPEN GEOSPATIAL CONSORTIUM (OGC). OGC KML. Reference number: OGC 07-

147r2. Version: 2.2.0. Report. Available at: <http://www.opengeospatial.org>. 2008.

PELEKIS, N.; FRENTZOS, E.; GIATRAKOS, N.; THEODORIDIS, Y. HERMES:

Aggregative LBS via a Trajectory DB Engine. In: Proceedings of the ACM SIGMOD’ 08

Conference. Vancouver, BC, Canada. 2008.

SPACCAPIETRA, S.; PARENT, C.; DAMIANI, M.; MACEDO, J. A. F.; PORTO, F.;

VANGENOT, C. A conceptual view on trajectories. Data & Knowledge Engineering. v.

65, p. 126-146, 2008.

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	DEDICATORY
	AGRADECIMENTOS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF SYMBOLS
	SUMMARY
	1 INTRODUCTION
	1.1. The Proposal
	1.2. Document Structure
	2 RELATED WORK
	2.1. Changes in Objects
	2.1.1. Moving Objects and Trajectories
	2.2. Changes in Fields
	2.3. Events
	2.3.1. Continuants and Occurrents
	2.3.2. Event Representation
	2.4. Our Approach
	3 FOUNDATIONS
	3.1. Observations
	3.2. Data Abstractions
	3.2.1. Time Series
	3.2.2. Trajectory
	3.2.3. Coverage
	3.2.4. Interpolation Functions
	3.3. Objects and Events
	4 AN ALGEBRA FOR SPATIOTEMPORAL DATA
	4.1. Primitives Data Types
	4.2. Observations
	4.3. Interpolator
	4.4. SpatioTemporal
	4.4.1. Time Series
	4.4.2. Trajectory
	4.4.3. Coverage and Coverage Series
	4.4.4. Additional Functions
	4.5. Object
	4.6. Event
	5 PROOF OF CONCEPT AND EXAMPLES
	5.1. Software Architecture
	5.2. Code Examples
	5.2.1. Meeting of Two Animals
	5.2.2. Spatiotemporal Clusters
	5.2.3. Flood
	6 FINAL REMARKS AND FUTURE WORK
	6.1. Next Steps Related to Software Implementation
	6.2. Comparison with Previous Work
	REFERENCES
	ANNEX A – TOWARDS A DYNAMIC GEOSPATIAL DATABASE MODEL
	ANNEX B – MOVING OBJECTS AND SPATIAL DATA SOURCES
	@4primeirasPaginas.pdf
	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD

