Water in the Anthropocene: Challenges for Science & Governance

Bonn, Germany , 21-24 May, 2013 Session: Working with uncertainties: Models & Data I

Towards Participatory-based Water Resilience Index for Coupling Vulnerability, Impacts and Adaptation Strategies at Areas Under Land Use Change

E M Mendiondo^[1], J A Marengo^[2], W Leyh^[1], J Rotava^[1], J Porto^[3], J Ueyama^[3], V Caramori Souza^[4]
 ^[1] EESC, USP, Sao Carlos School of Engineering, University of Sao Paulo, Brazil – <u>emm@sc.usp.br</u>
 ^[2] CCST, INPE, Earth System Science Center, Brazilian Institute for Space Research
 ^[3] ICMC, USP, Inst of Maths & Computing Science, University of Sao Paulo, Brazil
 ^[4] CT, UFAL, Center of Technology, Federal University of Alagoas, Brazil

Contribution

A contribution towards participatory-based water resilience index (*PWRI*_{IVA}) is discussed for crosscutting issues of impact, vulnerability and adaptation (IVA) in the context of Global Water System Project (GWSP)

Interdisciplinary scope

 Common strengths & limits for *PWRI_{IVA}* used by teams faced with resilience to climate change & disaster management of:

- Floods (*PWRI*_{IVA}-*F*), Landslides (*PWRI*_{IVA}-*L*), Droughts (*PWRI*_{IVA}-*D*)

- Novel hypotheses & needs for a new generation of *PWRI*_{IVA}, viable for Anthropocene's conditions:
 - as relevant for <u>dialogue</u> among stakeholders, and
 - as robust to <u>scaling</u> (x,t) processes.

Challenge

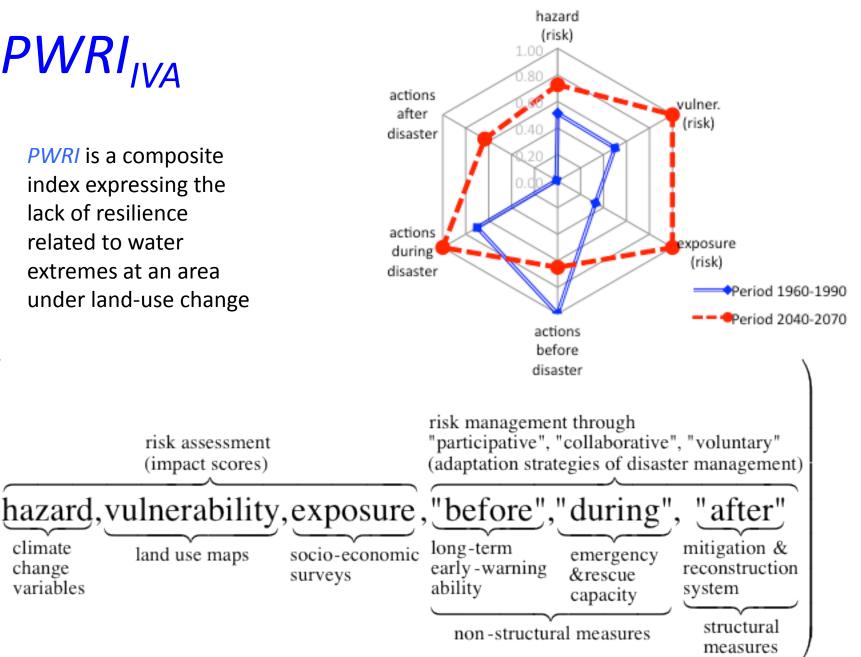
- *PWRI_{IVA}* robustness: variables (with uncertainties) from multisource database.
- Water resilience redefined: how does PWRI_{IVA} incorporate collaborative frameworks or friendly-user domains of GWSP?
- Usage: spatial transects or temporal scenarios

Example

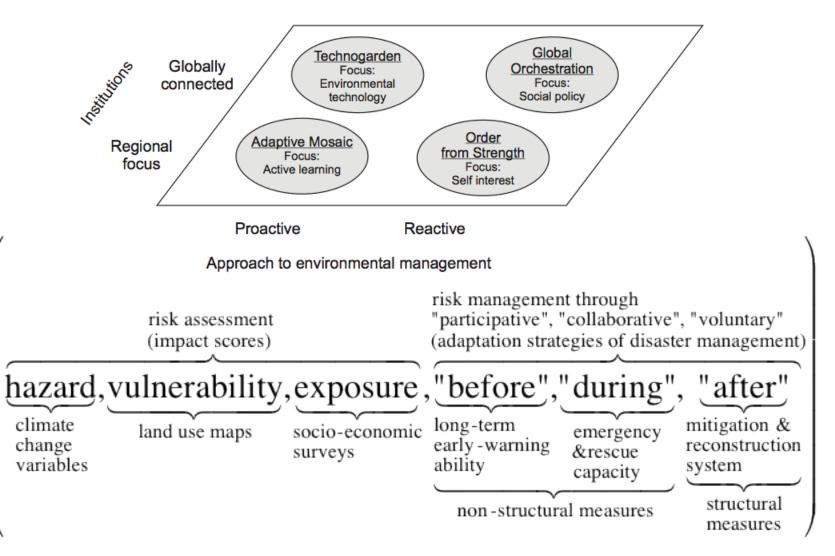
- We outline some of these yardsticks and brainstorm lessons learnt on *PWRI_{IVA}* from an ongoing IVA project Assessment of Impacts and Vulnerability to Climate Change in Brazil and Strategies for Adaptation Options, FAPESP 2008/58161-1.
- Interdisciplinary teams among components, ranging complex scales and with the crosscutting question:
- "...although levels of uncertainty of data coexist among groups, which postures towards *PWRI*_{IVA} can be feasibly translated from risk-schemes into resilience-scoresand-actions...?

Method

- *PWRI*_{IVA}: risk assessment * risk management.
- *PWRI*_{IVA} acknowledges:
 - <u>multisource variables</u> for several types of hazards
 - <u>flexible layouts:</u> each group can redefine their own
 PWRI_{IVA} at participatory/comparable platforms
 - <u>Non-dimensional weights</u> factoring hazard, exposure, vulnerability, and management steps before, during and after the occurrence of hazards

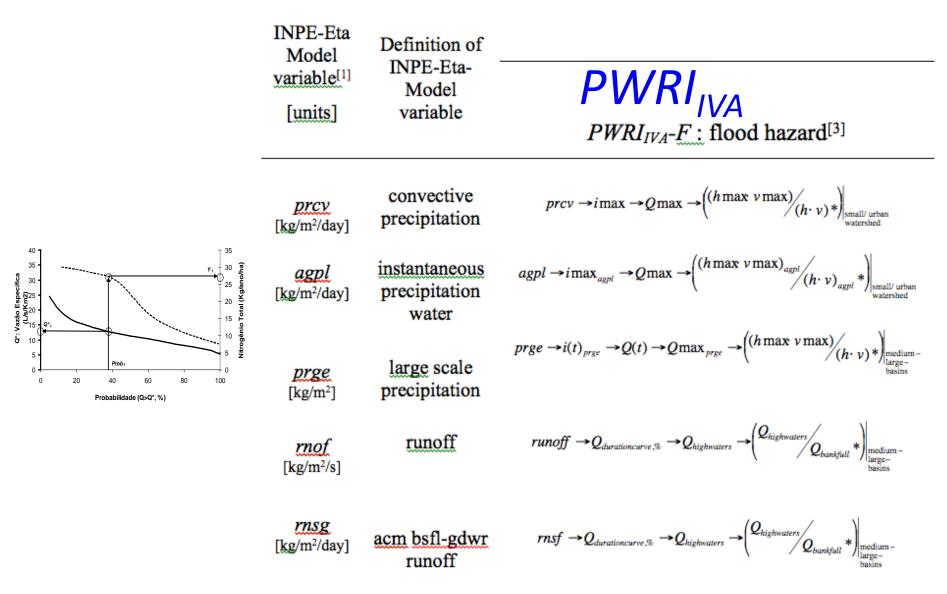

PWRI_{IVA}

climate


change

variables

PWRI is a composite index expressing the lack of resilience related to water extremes at an area under land-use change


PWRI-F_{IVA} & Land Use Change

Land use change scenarios & policies

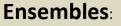
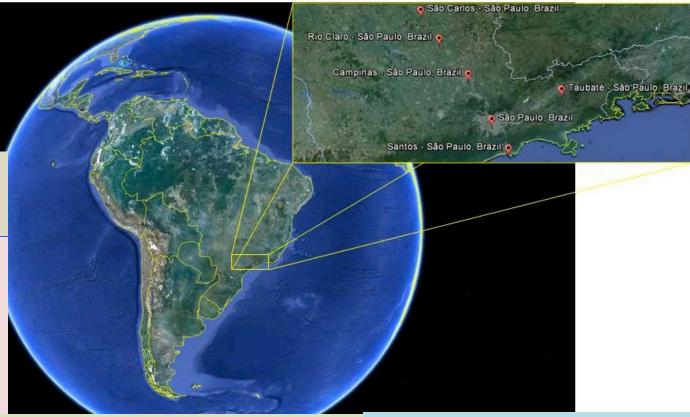

			_	-	
PWRI _{IVA}		Reactive	proactive	Reactive	proactive
South		Scenario development for period 2010-2100 (horizontal axis)			
American	Component	"Global Orches- tration" (GO)	"Technogarden" (TG)	"Order from Strength" (OS)	"Adapting Mosaic" (AM)
impacts on	Flood prone areas impacted (total area degraded)	×		*	
floods from				/	$ \rightarrow $
global					
scenarios	Direct Drivers: Hard Flood Control Risk Exposition Climate Change	++	+→0	0	$0 \rightarrow -$
2010-2100		+++	0+	++	+→0 +
Globally Regional focus Proactive Approach to environmental management Arrows indicate the development over time of issues named in the left-most column.	Land-use Change	+	0	++	$+ \rightarrow 0$
	FPC threats (frequency of flood disasters)				
	Major Drivers:		0		
Full lines indicate the best case, dashed lines the worst case envisaged	Poverty Climate Change	++	ŏ	++	+ 0
for each scenario. The row below the arrows for each issue contains a	Flood exposition	-	+	+	0
qualitative indication of changes in the relevant drivers.	Security to cope with				*
The symbols indicate: "++": strongly increasing pressure by this driver; "+":	flood disasters				
increasing pressure; "0": no change when compared to today; "–":	Elements:				
decreasing pressure; " $-$ –": strongly decreasing pressure; " \rightarrow ": a change in	Preparedness Capacity building		+		++
the pressure of the driver during the scenario. Source: Mendiondo (2005).	Early Warning Act	Ő	++	0	+

Table 1- Relations of INPE-Eta variables with Participatory Water Resilience Index – PWRI and factors of vulnerability, impact and adaptation IVA

Legend: Asterisk "*" depicts hazard benchmark score for water hazard resilience; [1] Scenario A1B (runs #1, #2, #3), period 2010-2100, at grid cells of 40x40km, Δt = 6h; [3] Ref.: Mendiondo, E M (2010) Reducing vulnerability to water-related disasters in urban areas of the humid tropics, In: J Parkinson, C Tucci & J Goldenfum (eds.) UNESCO Urban Series, Vol. 6, "Chapter 6, p.109-127.

Application



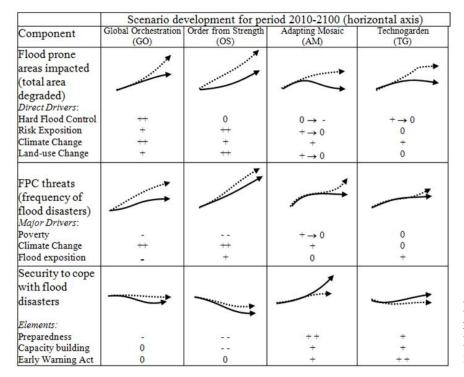
Eta_HadCM3 (A1B;40kmx6h) Runs: Low-, midi-, high-, ctrl

Time periods : 1960-1990; 2010-2040; 2040-2070; 2070-2100

variable [unit.]

prcv	[kg/m2/day]
agpl	[kg/m2/day]
prge	[kg/m2]
rnof	[kg/m2/s]
rnsg	[kg/m2/s]

Definition


convective precipitation instantaneous precipitation water large scale precipitation runoff acm bsfl-gdwr runoff

Sites:

São Carlos: 22.0178° S, 47.8908° W Rio Claro: 22.4108° S, 47.5608° W Campinas: 22.9069° S, 47.0613° W Sao Paulo: 23.5000° S, 46.6167° W Santos: 23.9667° S, 46.3333° W Taubaté: 23.0333° S, 45.5500° W

Water Resilience Opportunity-WRO

- Water Resilience Opportunity: adaptation capacity of comparing PWRI_{IVA} values over time between reactive and proactive scenarios.
- WRO lets monetary values be included, demonstrative pilot experiments like signboards or web-mapping collaborative scores can be further developed from this *PWRI*_{IVA}.

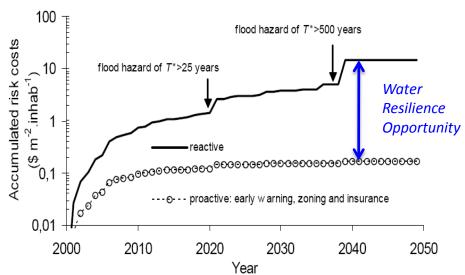
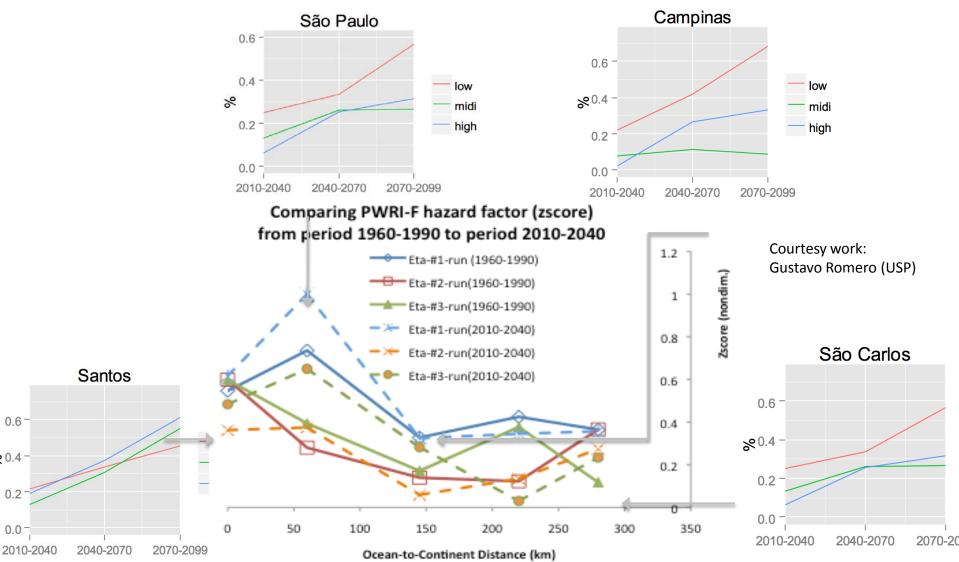
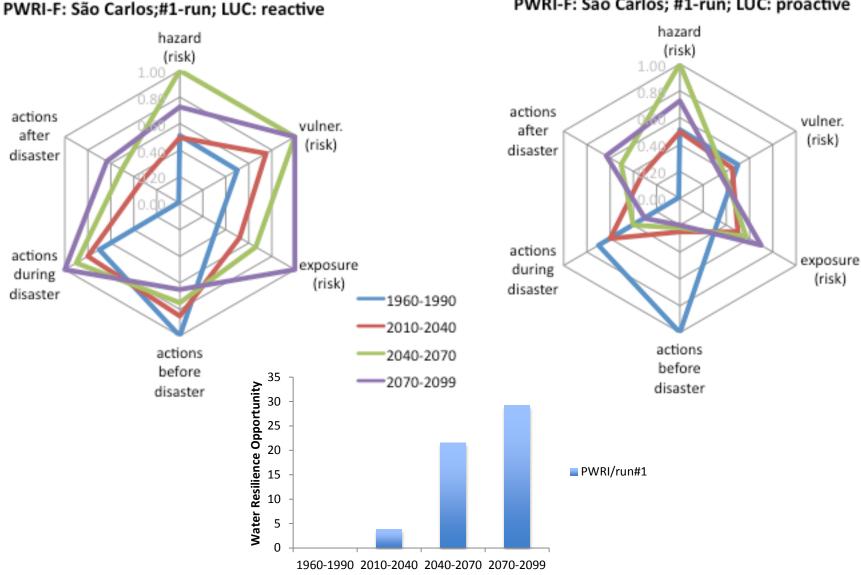


Figure 3- Simulation of accumulated nominal costs from two policy scenarios of risk management to cope with flood hazards and with growing urbanization at a subtropical basin. Proactive policies have early warning systems, land zoning of flood prone areas and insurance for risk-transfer. Adapted from Mendiondo *et al* (2005).

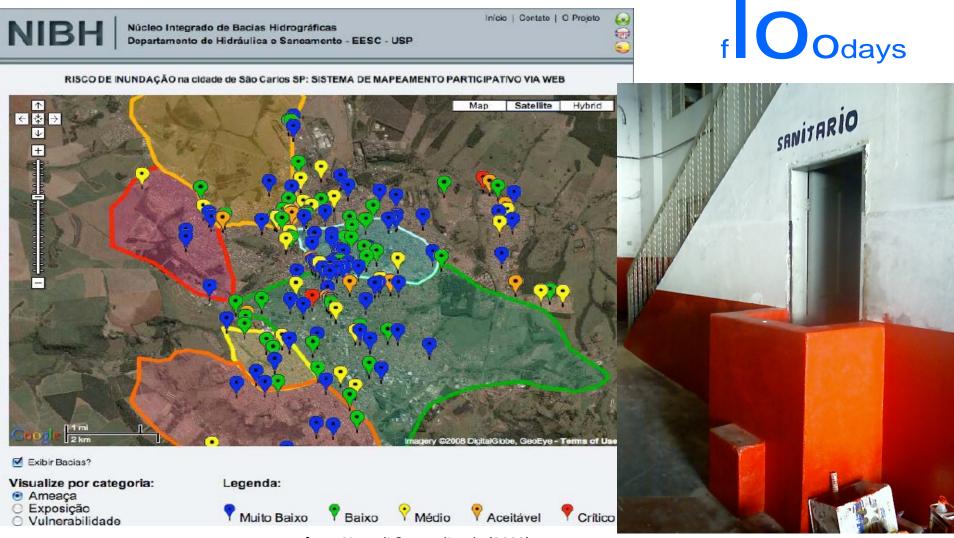

PWRI-F : preliminary results of spatial variability transect of water hazard across areas under change, according to Q1% ÷ Q5%

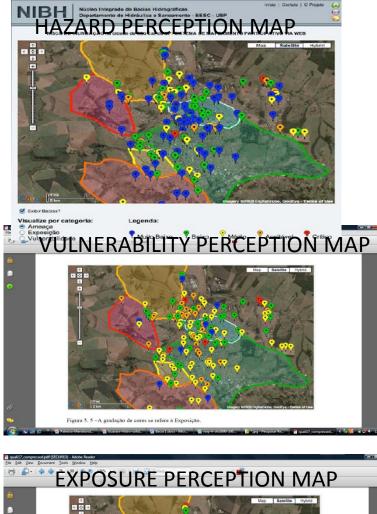
PWRI-F hazard factor (zscore) Series: 1960-1990

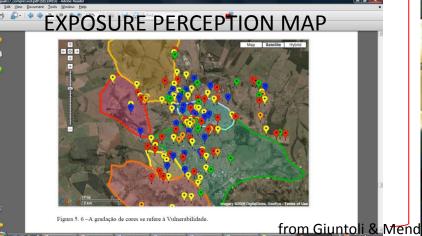

Ocean-to-Continent Distance (km)

Mendiondo, E.M., J.A. Marengo, W.Leyh, J.Ratzea, J.Porto, J. Beyama, V.Caramori Sozza (2013) Towards Participatory-based Water Resilience Index for Coupling Vulnerability, Impacts and Adaptation Strategies at Areas Under Land Use Change, In: Global Water System Project Conference "Water in the Anthropocene", Born, Germany, 21-24 May, 2013, Session: Working with uncertainties: Models & Data I, GWSP Press/BMBF/DFG *PWRI-F*: uncertainties from GCM's hazard factors Change rate between 2010-2040 & 1960-1990 periods fraction of Q1% / Q5% (permanency curves)

Mendiondo, E.M., J & Marengo, W Leyb, J Rotrea, J Porto, J Boyama, V Caramori Souza (2013) Towards Participatory-based Water Resilience Index for Coupling Valuerability, Impacts and Adaptation Strategies at Areas Under Land Use Change, In: Global Water System Project Conference "Water in the Anthropocene", Born, Germany, 21-34 May, 2013, Sessior: Working with uncertainties: Models & Data I, GWSP Press/BMBF/DFG


PWRI-F: 1960 – 2100; reactive & proactive scenarios


Mendiondo, E.M., J.A.Marengo, W.Leyh, J.Rotzen, J.Porto, J. Beyara, V.Caramori Souza (2013) Towards Participatory-based Water Reulience Index for Coupling. Vulnerability, Impacts and Adaptation Strategies at Areas Under Land Use Change, In: Global Water System Project Conference "Water in the Anthropocene", Bonn, Germany, 21-24 May, 2013, Sessior: Working with uncertainties: Models & Data I, GWSP Press/EMBF/DPG


PWRI-F: São Carlos; #1-run; LUC: proactive

Community perception of reactive urban drainage control (no planning, "Order from Strength" Scenario)

from Giuntoli & Mendiondo (2008)

PWRI-F updated from local perception of flood risks through cognitive maps of hazard, vulnerability and exposure to floods

PWRI – Water Resilience Opportunity Next steps forward...

*Because this structure let monetary values be included, demonstrative pilot experiments like signboards or web-mapping collaborative scores can be further developed from this *PWRI*_{IVA} *ADAPTOMETER TECHNOLOGY IS COMING SOON... INSURANCE & SECURITIZATION BEING UPDATED...*

•An example of application of a *PWRI*_{IVA}-*F* at a real case study of Sao Carlos City, Brazil, until the year 2050, is under progress.

•New technologies for *PWRI* to overcome uncertainties: *VGI (VOLUNTEER GEOGRAPHIC INFORMATION) WSN (WIRELESS SENSOR NETWORK)*

•Pathways for future development of *PWRI*_{IVA}-L and *PWRI*_{IVA}-D at Brazilian biomes are summarized for growing urbanization and agriculture drivers,

• A POST-DOC VACANCY ON *PWRI* IS STILL OPEN...! ...(please, send your CV to: emm@sc.usp.br)