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Abstract: In this paper, a periodic variation detected in the longitude phase drift first derivative of 
a sun-synchronous satellite (CBERS) is modeled and filtered, aiming at improving the performance 
of the autonomous satellite orbit control procedure presented by the authors in a previous work [1]. 
This new filtering process can be thought of as being a second smoothing layer applied to the 
ground track drift first derivative. This is done with the help of a curve fitting process, where an 
algebraic expression is used to match the time evolution curve resulting from the first smoothing 
layer. In this way, the curve fitting becomes an optimization process where one wishes to find out 
what are the values of the considered algebraic expression that best minimize the residuals between 
the two curves. Here, these parameters are found with help of an Evolutionary Algorithm. As a 
bonus, the mentioned procedure also provides another way to determine the value of the second 
time derivative of the longitude phase drift at Equator. Moreover, it was possible to discover that 
the fourth coefficient of the geopotential is the main source of the periodic variation present in the 
longitude phase drift first derivatives. The behavior of the whole system is evaluated by means of 
simulations of a CBERS-like phased remote sensing satellite orbits for both realistic and worst case 
conditions of solar activity.  
 
Keywords: autonomous orbit control, autonomous navigation, ground track drift estimation, 

parameter optimization 

1 Introduction 
In a former study [1], it was analyzed a version of an autonomous orbit control procedure that 
makes use of improved orbit estimates provided by a simplified GPS-based navigator [2] and of 
variable amplitude semi-major axis corrections, in order to keep the ground track phase drift at the 
Equator, D, of a CBERS-like sun-synchronous satellite within its allowed variation range. The 
CBERS (China-Brazil Earth Resources Satellite) satellite program is a Chinese-Brazilian project 
aimed at the monitoring of Earth’s natural resources. The approach used in [1] calculates the semi-
major axis maneuver amplitude in order to maximize the time between consecutive maneuvers and 
minimizing, in this way, the maneuver application number. For sun-synchronous orbit satellites in 
phase with the Earth’s rotation, D is the parameter that presents the higher frequency of corrective 
maneuvers application. A polynomial approach [3] recently proposed to calculate the second time 
derivative of the ground track phase drift, Dɺɺ , of such kind of satellites was also used in that former 
article [1]. It helped reducing the uncertainty present in the computed Dɺɺ , allowing more precise 
calculations of the semi-major axis maneuver amplitudes and contributing to reduce the number of 
applied maneuvers, as originally desired.  
The simplified GPS navigator improves the nominal geometric navigation solution provided by 
GPS receivers. This is done by directly using the GPS solution as input (observations) for a real 
time Kalman filtering process. The orbital state vector has been extended in order to include the 
systematic error that is imposed to the GPS geometric solution by the changes in the set of satellites 
which are visible to the receiver.  
The investigation of the results obtained in the previous work [1] allowed to observe that, even after 
the application of a smoothing procedure, a periodic variation has still remained in the computed 

first time derivative of the ground track phase drift, Dɺ . Since this derivative is needed to foresee 
the time evolution of the ground track phase drift itself, it shall be accurately estimated. The precise 



knowledge of the future time evolution of the ground track drift is required  if one intends to 
increment the degree of confidence of the orbit maneuver computation process.  

One observed that the period of the mentioned cyclic variation onDɺ was of about one day. It was 
also verified that this periodic variation has the geopotential as its main source.  
In this article, the cyclic perturbation on the smoothed Dɺ  is presented, studied and a filtering 
procedure for it is proposed. The filtering procedure makes use of a curve fitting process, where a 
line plus sine formula is used to generate an approximate curve for the cyclic perturbation curve of 

Dɺ . Next, the parameters of the formula that defines the approximate curve are varied until it 
matches the original curve. In this way, the curve fitting process becomes an optimization process 
where the parameters of the approximate curve are the unknown variables and one desires to find 
out what are the parameters values that best minimize the residuals between the two curves. Here, 
these parameters are found with the help of a hybrid Evolutionary Algorithm. The GEO + ES 
algorithm [5] was applied to the problem, in order to conjugate the good convergence properties of 
the Generalized Extremal Optimization - GEO [6] algorithm with the self-tuning characteristics 
present in the Evolution Strategies – ES methods [7]. As a bonus, the mentioned procedure also 

provides another way to determine good estimates of Dɺɺ .  
The behavior of the system is evaluated by means of numeric simulation of CBERS-like phased 
remote sensing satellite orbits. For the CBERS satellite series the maximum allowable variation 
range for D is ±4km. The aim of the paper is to verify the impact the addition of a second smoothing 

layer applied to Dɺ has on the performance of the entire autonomous control system, when compared 
to the results already obtained for the same satellite in the previous works. Both realistic and worst 
case conditions in terms of solar activity were considered in the simulation. 

2. The Cyclic Perturbation, Its Source and the Proposed Filter 
In an attempt to find out what was causing the cyclic perturbation on Dɺ  a realistic orbit propagation 
software were run several times. On each one of these runs a specific perturbation source routine was 
deactivated, such as sun and moon gravitational attraction, solar radiation pressure, atmospheric drag, 
and, finally, the number of terms used in the geopotential force model. It turned out that this last one was, 

in fact, the source of the cyclic perturbation seen on Dɺ , as it can be seen with help of  Figure 1.a. It 
shows the behavior of the time evolution of  when the geopotential coefficients are successively added to 
the orbit simulation process. As it can be observed, when terms up to J4 are added the cyclic perturbation 
appears, fact that remains true for higher order terms. Apart from selectively deactivating the perturbation 
sources as just described, the methodology used to calculate the smoothed observations of Dɺ  presented 
in Fig. 1.a is the same one already described in [1].  
 

18140 18142 18144 18146 18148 18150 18152 18154 18156

Time, T (MJD)

-600

-400

-200

0

200

400

600

G
ro

un
d 

T
ra

ck
 D

ri
ft

 F
ir

st
 D

er
iv

at
iv

e 
(m

/d
ay

)

J2 
J3 
J4 
J15 

 
18140 18142 18144 18146 18148 18150 18152 18154 18156

Time, T (MJD)

-600

-400

-200

0

200

400

600

G
ro

un
d 

T
ra

ck
 D

ri
ft

 F
ir

st
 D

er
iv

at
iv

e 
(m

/d
ay

)

J15 
Line
Line + Sine

Curve fitting equations:
Line = 20.2* (T-T0) - 84 
Line + Sine =  20.2* (T-T0) - 84 + 55*sin(6.29*(T-T0)+5.0)
Obs.: T0 = 18142

 
Figure 1.a - Effect of the Geopotential on Dɺ      Figure 1.b - Filtering Equations for Dɺ  
 
Further investigation has shown that the frequency of this cyclic perturbation remains the same 
during the entire simulation interval (one year) and for both moderate and critical solar conditions 
used in this paper (see section 4). Only the amplitude of the oscillation varies, the higher ones 
occurring with critical solar condition. This fact motivated the development of the filtering 



procedure presented here. As can be seen in Fig. 1.b, most of the cyclic perturbation is easily 
modeled by the sum of an inclined line and a sine. Then, the filter model takes the following 
equation:       
 )xtSin(x  xxtxt),(D 54321f +⋅⋅++⋅=xɺ  (5) 

where fDɺ is the value of Dɺ  predicted by the filter at a given time instant, t (days); x1 is the line 
slope, in m/day2; x2 is the line value at t=T0, in m/day (T0=18142 in the example given in Fig. 1.b); 
x3 is amplitude of the cyclic perturbation, in m/day; x4 is the frequency of the cyclic perturbation, in 
rad/day and x5 is the angular phase of the cyclic perturbation, in rad. In Eq. 5, the x values are the 
unknowns of the curve fitting process. The optimal x values, that is, the values of the x variables 
that produce the best match among the filter model curve and observed data of Dɺ , will be computed 
in the sense of  minimizing the sum of squared residuals. Mathematically: 
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Subject to:     xmin <= x <= xmax 

Eq. 6 represents an optimization problem where the objective function to be minimized, F(x), is the 
sum of the squared residuals, r(t). Considering that tk is the time instant of the most recent 
observation of Dɺ , the time interval for the curve fitting is chosen by means of n, the number of 
observation samples of Dɺ  previous to tk that will be considered.  

3. Autonomous Control Procedure Overview 
A block diagram of the autonomous control system considered in the present article is given in 
Figure 2. It gives an overview of the full simulation loop.  
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Figure 2. Block Diagram of the Autonomous Control System 

 

Except by the new filtering procedure for ,Dɺ  the control system is basically the same already 
described and used in [1]. For this reason, here, only a brief description will be given. The precise 
orbit estimates provided by the realist orbit propagation (Orbit Simulation block) are used in the 
block “GPS Navigation Solution”, where random and bias errors equivalent to those of the real GPS 
estimates are added to the precise orbit estimates. In [1], root mean square random errors of 100m in 
position and 1m/s in velocity and systematic variations (bias) with values of the order of 100m and 
duration of about 1 to 15 minutes were used for the coarse GPS geometric estimates. The same 
values are used in the present article. The Simplified Navigator takes the position components of the 
GPS Navigation Solution as inputs and refines them by means of a Kalman filtering process which 
incorporates a procedure for automatic treatment of observation biases. Next, Raw Observations of 
the ground track drift are computed from each set of improved orbit estimates supplied by the 
simplified navigator. These raw observations are preprocessed in real time by the block 
“Observations Smoothing and Compression”, in order to achieve data smoothing and redundancy 
reduction. The new filtering procedure by curve fitting for Dɺ  presented in this article is applied in 
this block and allows also obtaining filtered values of Dɺɺ . Finally, the computed observations of D, 
Dɺ , and Dɺɺ  are used within the Maneuver Determination process, where the instants of orbit 
correction applications are defined and their respective amplitudes calculated. Here, unlike what 
was done in [1], information about Kp and F10.7 are no longer furnished to this block, but only the 



control ranges. Once defined the need of a maneuver, its execution occurs within the block 
“Maneuver Application”, where its amplitude and the corresponding changes in the orbital 
parameters of the satellite are calculated and imposed, closing the simulation loop. 
The following two conditions are used to verify the need of a corrective maneuver: 
 )(tD M  > Dmax - ns.σ(tM)  or (1) 

 )(tD 1M+  > Dmax - ns.σ(tM) (2) 

where )(tD M and )(tD 1M+  are the smoothed values for D at instants tM and tM+1, respectively. Dmax is 

a previously chosen control limit; σ(tM) is the standard deviation of );(tD M  tM is the time instant of 

the last (m-th) observation sample of D  known and ns is a real number. The idea behind condition 
2 is to use it to apply a maneuver at an instant tM if the estimated value for the ground track drift at 
tM is less than the allowed limit but the value foreseen for tM+1, the next maneuver verification 
moment, is greater than the allowed limit. The smoothed value )(tD M  is obtained from the raw 
values of D by means of the same weighted moving average procedure [4] described and used in 
[1]. By its turn, the raw observations of D are computed from the orbit estimates issued by the 
simplified navigator using: 

 ( )]P/QN

∆α
[∆aD e +

+Ω⋅=  (3) 

where ae is the mean Equator radius, ∆Ω  is the right ascension of the ascending node deviation 
from the reference value; ∆α  is argument of latitude deviation from the reference value; N, P and Q 
are three integer numbers used to define the number of orbit revolutions completed by the satellite 
in one day, including its fractional part. The argument of latitude itself is given by Mωα += , the 
sum of the perigee argument and the mean anomaly of the satellite, respectively. 
The future estimate for )(tD 1M+  is calculated assuming constant solar flux during the time interval 
between two successive maneuvers, which implies in having constant aɺ  (a being the orbit semi-
major axis) and parabolic time evolution curve for D. Mathematically: 

 )(tD 1M+  = )(tD M + )(tD M
ɺ ∆t  + 1/2 )(tD M

ɺɺ (∆t)2 (4) 

where ∆t = tM+1-tM = ∆tCS is the elapsed time among two successive compressed samples of D  
supplied to the “Maneuver Determination" block by the “Observations Smoothing and 
Compression” block (see Figure 2), ∆tCS , being the time window considered for the observations of 

D , considered in the compression process. It is important to mention that the block “Observations 
Smoothing and Compression” receives samples of D from “Raw Observations” block and calculates 
the smoothed D  values at a pace given by the time interval ∆tS and supplies samples of D  to the 
“Maneuver Determination” block at a pace given by the time interval ∆tCS, where ∆tCS > ∆tS 

(usually ∆tCS/∆tS > 10). The value of )(tD M
ɺ

 is obtained from a three-stage procedure, of the block 

“Observations Smoothing and Compression”. These three stages are the followings: i) Dɺ  values are 

numerically calculated; ii) Dɺ  values are smoothed, generating Dɺ ; iii) Dɺ  values are filtered, 

generating D
ɺ

. The values of Dɺ are calculated using: 
 ( ) ( )1-kk1-kkk t-t)(tD-)(tD)(tD =ɺ  (5) 

where tk-tk-1 = ∆tS is the elapsed time among two successive samples of D . By its turn, the values 

of D  at the instants tk-1 and tk are obtained by smoothing the values of D supplied to the 
“Observations Smoothing and Compression” block by the “Raw Observations” block at the same 

instants. Next, )(tD k
ɺ  values are smoothed using the same weighted moving average procedure [4] 

used for D, generating the values of )(tD k
ɺ . Finally, the filtering procedure described in section 2 is 

applied. After choosing a time interval for the filter, ∆tF, the corresponding number of data samples, 
n, is calculated from n=INT(∆tF/∆tS) and the GEO+ES [5] algorithm is applied to the minimization 



problem defined in Eq. 6, retrieving x*, the best solution found for the filter. Among the 

components of x*, x1
* corresponds to )(tD k

ɺɺ
, the filtered value of )(tD k

ɺɺ . In this way, )(tD k
ɺɺ

is 

directly obtained from filtering the values of )(tD k
ɺ . From x*, one also has x2

* = )(tD n-k
ɺ

, the filtered 
value for the first derivative of the ground track drift at the instant, tk-n, that is, at the beginning of 

the filtering interval (tk-n=T0=18142, in the example of Fig. 1.b). The value of )(tD k
ɺ

 is taken as the 
value of the linear component of the fitted curve in the time tk: 

 F
*
1

*
2Fkn-kk txxt)(tD)(tD)(tD ∆⋅+=∆⋅+= ɺɺɺɺ

 (6) 

It is worth mentioning that )(tD k
ɺ

 and )(tD k
ɺɺ

 values are calculated after constant time intervals 

equal to ∆tS (that is: ∆tS = tk+1 – tk = constant) and when the number of ∆tS intervals matches ∆tCS, 

the corresponding values of )(tD k
ɺ

 and )(tD k
ɺɺ

 are taken as the values of )(tD M
ɺ

 and )(tD M
ɺɺ

, that is: 
the input values of the “Maneuver Determination” block, used in Eq. 4. For the time interval when 

the filter is not yet being applied to the Dɺ  data (just after a maneuver execution, for instance), the 

values of )(tD k
ɺ

 are supplied to the “Maneuver Determination” block, instead of the value of 

)(tD k
ɺ

, which is not yet available. In these cases, for replacing the missing )(tD k
ɺɺ

, the polynomial 

method proposed in [3] is used in order to calculate )(tD k
ɺɺ  estimates. For this aim, it is considered 

that the onboard autonomous control system of the satellite allows the reception of the required 
values of Kp and F10.7 as inputs, which are provided by internal sensors or by telecommand from the 
ground. 
Only the application of positive corrections to the orbit semi-major axis is considered for the 
maintenance of D inside the control ranges. Each semi-major axis increment to be applied to the 
satellite orbit is computed with the aim of changing the value of Dɺ  such that the further minimal 
value of D, after the maneuver application, be equal to a previously chosen inferior limit, Dmin. The 
maximization of the time interval between the executions of two successive maneuvers is implicit in 
this strategy. 
Considering some approximations which can be assumed for phased sun-synchronous orbits like, 
the maneuver size in terms of semi-major axis variation, ∆a, is calculated by [8]: 

 ( )  )(tD)(tD
a

a

3

T
 a MCM

e

Rte −+ −−=∆ ɺɺ

π
 (7) 

where Tte is the average solar day (86400s=1day); aR is the semi-major axis of the reference orbit, ae 

is the mean Equator radius and )(tD MC
−ɺ  is the last preprocessed value of D

ɺ
. Case D

ɺ
 is not 

available, Dɺ  is used instead. )(tD M
+ɺ is calculated with help of the following equation (adapted from 

[9]): 

 ( ) ( )   D)(tD  )(tD  2      D)(tD  )(tD  2     )(tD minMMminMMM −−=−−= +++ ɺɺɺɺɺ  (8) 

where Dmin is a previously specified inferior limit of the allowed variation range of D. 
Then, the tangential velocity increment, ∆VT, is finally calculated by: 

   V
a 2

a
 V

R
T

∆=∆  (9) 

where V is the magnitude of the velocity vector of the satellite. 

4. Autonomous Control Test Results 
The performance of the autonomous orbit control procedure just proposed was verified through the 
execution of a realistic simulation of its application to a CBERS-like satellite, in the same way it 
was done in [1]. Figure 3 shows the solar profiles considered in the simulation. 



   
Figure 3. Critical and Moderate Solar Profiles Considered in the Tests 

 
A maximal rate of about one maneuver application per orbit period (~100 min) was imposed. It was 
also considered a GPS observation rate (and consequently the navigator output rate) of one estimate 
each nine seconds. Only one among sixty orbit estimates sets successively issued by the navigator is 
used by the control system (meaning a rate of one data each nine minutes, that is, ∆tS = 9min). . 
After each autonomous maneuver execution the smoothing processes [4] applied to D and Dɺ  were 
restarted, in the same way it was done in [1]. In these processes the time windows of 8h and 40h 
were used for D and ,Dɺ  respectively. The same time windows were used for moderate and critical 
solar activity conditions. All other parameters of the smoothing not explicitly mentioned here were 
set as in [1]. Time intervals of 12 and 5 days with no maneuver occurrences were observed, 
respectively for moderate and critical solar activity scenarios. The vectors xmin = [ -200, -1500, 10, 
6.2, 0.0] and xmax = [ 200, 1500, 100, 6.4, 2π] were used in Eq. 6. Within the autonomous control 
simulation loop, the GEO + ES algorithm was run each time it was necessary to find the parameters 
of the filter used for estimating the smoothed values for Dɺ  (section 2). Since a maneuver, in 
general, imposes a significant change in Dɺ , the only restriction observed in the filter application is 
to collect enough amount of data, i.e., a time interval without maneuvers greater than ∆tF. For each 
run, a thousand generations were allowed to occur within the algorithm and this limit was used as a 
stopping criterion. Three mutations per variable were used, so l j=l=3. The limits for varying b were 
set to bMIN=1.05 and bMAX=10. The values of δ=0.0 and of α=0.3 were used. The four parameters 
just mentioned are internal parameters for GEO + ES. 
The results of the current study, considering moderate solar activity condition, are shown in Fig.s 4 
and 6 for the ground track drift time evolution and the semi-major axis maneuvers, respectively. For 
comparison purposes, Fig.s 5 and 7 present the results obtained in [1] for the same conditions.  

  
        Figure 4. Ground Track Drift  Figure 5. Ground Track Drift from [1] 

  
              Figure 6. Maneuvers Figure 7. Maneuvers from [1]  



The values Dmax=3,800m and ns=0 were used in Conditions 1 and 2, considering Dmin=-3,800m in 
Eq. 8. Time intervals of 8h and 40h were used for smoothing D and ,Dɺ  respectively. For the filter, 

∆tF = 5 days was taken. Eleven maneuvers has occurred, with an accumulated ∆a for the period of 
2,034.7m. The major maneuver had ∆a=226.8m and the minor ∆a=152.9m. From Fig. 4, it is 
possible to see that, for the moderate solar activity profile, the new autonomous control version used 
the very limit of the ±4km allowed variation range for D in order to reduce the amount of applied 
maneuvers. When compared with previous results, one can see that there was a substantial reduction 
in the number of applied maneuvers, since in [1], 17 maneuvers were needed against only 11 
maneuvers in the current case. In terms of the accumulated ∆a, both results are practically the same 
(2,092.4m in [1] against 2,034.7m here). 
The results of the current study, when moderate solar activity condition was considered, are shown 
in Fig.s 8 and 10, for the ground track drift time evolution and the semi-major axis maneuvers, 
respectively. For comparison purposes, Fig. 9 and Fig. 11 present the results obtained in [1] for the 
same conditions. The values Dmax=3,800m and ns=0 were used in Conditions 1 and 2, and Dmin=-
3,800m in Eq. 8. The values 8h and 40h were used for smoothing D and ,Dɺ  respectively. For the 

filter, ∆tF = 15 days was used. The number of maneuvers was 14 with an accumulated ∆a for the 
period of 2,959.3m. The major maneuver had ∆a=342.1m and the minor ∆a=90.4m. From Fig. 4, it 
is possible to see that, for the critical solar activity profile, the new autonomous control version also 
respected the very limit of the ±4km (allowed variation range for D) in order to reduce the amount 
of applied maneuvers. When compared with previous results, one can see that the reduction in the 
number of applied maneuvers is even more substantial than the one occurred for the moderate solar 
activity condition. Now, 14 maneuvers were needed against 26 maneuvers here. In terms of the 
accumulated ∆a, both results are practically the same (2,953.0m in [1] against 2,959.3m here).    
 

  
        Figure 8. Ground Track Drift  Figure 9. Ground Track Drift from [1] 

  
           Figure 10. Maneuvers Figure 11. Maneuvers from [1]  

5. Conclusions 
In this article, it was analyzed a version of an autonomous orbit control procedure that makes use of 
improved orbit estimates provided by a simplified navigator. This procedure uses variable amplitude 
semi-major axis corrections in order to keep the ground track drift at equator of a CBERS-like 
satellite within the mission specified allowed variation range. A filter for a cyclic perturbation, 
which is present in smoothed estimates of the first derivative of the ground track drift, was 



proposed, implemented and tested. The filter uses a curve fitting process whose parameters are 
computed with help of an Evolutionary Algorithm. The main conclusion is that the objectives were 
successfully achieved. The results of simulation tests accomplished with the new method shown it 
really has a good capability in removing the cyclic perturbation that is still present in the first 
derivative estimates of the ground track drift delivered by the previous application of algorithm 
presented in reference [1]. This feature improved the autonomous orbit control procedure 
performance the performance, since more accurate calculations of the semi-major axis maneuver 
amplitudes could be computed and the number of applied maneuvers could be reduced. The 
obtained results can be considered very satisfactory and promising.  
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