
An Algebra for Spatiotemporal Data: From Observations
to Events

Karine Reis Ferreira, Gilberto Camara and
Antônio Miguel Vieira Monteiro

Image Processing Division, Brazil National Institute for Space Research

Abstract
Recent technological advances in geospatial data gathering have created massive data sets with better
spatial and temporal resolution than ever before. These large spatiotemporal data sets have motivated a
challenge for Geoinformatics: how to model changes and design good quality software. Many existing
spatiotemporal data models represent how objects and fields evolve over time. However, to properly
capture changes, it is also necessary to describe events. As a contribution to this research, this article
presents an algebra for spatiotemporal data. Algebras give formal specifications at a high-level abstrac-
tion, independently of programming languages. This helps to develop reliable and expressive applications.
Our algebra specifies three data types as generic abstractions built on real-world observations: time series,
trajectory and coverage. Based on these abstractions, it defines object and event types. The proposed data
types and functions can model and capture changes in a large range of applications, including location-
based services, environmental monitoring, public health, and natural disasters.

1 Introduction

The age of big geospatial data has come. Mobile phones, social networks and GPS devices
create data useful for planning better cities, capturing human interactions and improving
quality of life. Geosensors allow scientists to observe the world in novel ways. Space agencies
worldwide plan to launch around 260 Earth observation satellites over the next 15 years.
These massive data sets present a challenge for Geoinformatics. To use these large spatiotem-
poral data sets properly, we need innovative software designs. As a contribution to this design
challenge, this article presents an algebra for spatiotemporal data. The types and functions of
the algebra can model data from many sources, including moving objects, remote sensing
images, and geosensors.

Our model takes observations as a starting point, revisiting the classical work of Sinton
(1978). This approach follows the ideas of Kuhn (2005): “All information ultimately rests on
observations, whose semantics is physically grounded in processes and mathematically well
understood. Exploiting this foundation to understand the semantics of information derived
from observations would produce more powerful semantic models”.

The model is set forth as an algebraic specification, describing data types and operations
in a language-independent and formal way. By separating specification from implementation,
algebras help to develop reliable and expressive GIS applications (Frank 1999, Frank and

Address for correspondence: Karine Reis Ferreira, DPI, Image Processing Division, INPE, National Institute for Space Research, Av. dos
Astronautas 1758, 12227-001, São José dos Campos, SP, Brazil. E-mail: karine@dpi.inpe.br
Acknowledgements: The research that led to this article was partially funded by the Brazilian National Research Council (CNPq) under
grant CTInfo 560130/2010-4. Additional support is provided by the São Paulo Research Foundation (FAPESP) under grant 2008/
58112-0. Gilberto Câmara’s research has additional funding support from CNPq under grant 304752/2010-0. We thank the reviewers for
their assistance in improving the article.

bs_bs_banner

Research Article Transactions in GIS, 2013, ••(••): ••–••

© 2013 John Wiley & Sons Ltd doi: 10.1111/tgis.12030



Kuhn 1995). Programmers can translate algebraic specifications into software using languages
and environments of their choice. As an example, we have implemented the algebra using the
open source TerraLib geospatial software library (Câmara et al. 2008).

2 Related Work

To design spatiotemporal models, it is important to look at works that discuss change in
objects (individual geographical units) and in fields (mappings from spatial locations to
values). Relevant early results on object change include the bitemporal model of Worboys
(1994) and the three-domain model of Yuan (1999). These models track changes on the
boundaries and attributes of an object, keeping its identity. These models have been extended
by works such as Hornsby and Egenhofer (2000), who present a change description language
with operations like ‘create’, ‘destroy’ and ‘continue existence’. The recent growth of mobile
computing inspired much work on moving objects, notably the foundational algebra of Güting
et al. (2000). Interest on location-based applications led to an ISO (2008) standard that defines
a moving feature as an object whose geometry moves as a rigid body.

To change in fields, Peuquet and Duan (1995) propose a model that groups changes in
raster cells by time of occurrence. Liu et al. (2008) introduce the idea of a general field with
three spatial plus one temporal dimension to generalize previous definitions of fields. Mennis
(2010) extends the conventional map algebra to include three-dimensional space and time.
Efforts on standardization led to the OGC coverage definition (OGC 2006). A coverage asso-
ciates positions in a spatial, temporal or spatiotemporal domain to attribute values.

A further line of research is that of geospatial ontologies, which group real world phe-
nomena in continuants and occurrents (Galton 2008). Continuants are entities whose identi-
ties remain constant as they undergo change, such as an aircraft and a volcano. Occurrents are
entities that happen or occur, like a flight or an eruption. On the geospatial domain, ‘objects’
and ‘fields’ are taken as continuants and ‘events’ as occurrents (Galton and Mizoguchi 2009).
In this view, modeling only objects and fields misses part of the semantics of change. One also
needs to consider events and the relations between events and objects (Worboys 2005). Fol-
lowing these ideas, Worboys and Hornsby (2004) propose a model combining objects and
events, defining event-event and event-object relations. Galton and Worboys (2005) refine
these relations for events, states, and processes in dynamic networks. Hornsby and Cole
(2007) model events associated with moving objects and propose an approach to extract pat-
terns of movements from them.

In this article, we put together ideas from these three areas, proposing an algebra that rep-
resents objects, fields and events. We argue there are three key data types for spatiotemporal
data: time series, trajectory, and coverage, from which we can derive the object and event
types. Using this step-by-step approach, the resulting algebra is useful for building many differ-
ent applications.

3 From Observations to Events

We start with observations, our means to assess spatiotemporal phenomena in the real world
(Kuhn 2009). According to Sinton (1978), there is an inherent structure to geographical informa-
tion. For him, an observation should have three attributes: space, time and theme (the term
“theme” refers to the real-world phenomenon or object being observed). He argues that we can

2 K Ferreira, G Camara and A Monteiro

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)



create generalizations of geographical information based on how these attributes (space, time
and theme) are assessed. In a general way, we observe the world by fixing one attribute, control-
ling another and measuring the other. Observations are obtained by: (1) keeping one attribute
constant; (2) varying the second attribute in a controlled way; and (3) measuring the third
attribute, given the constraints of the second attribute. This produces six possible combinations:

1. Fixing space, controlling time, and measuring theme.
2. Fixing theme, controlling time, and measuring space.
3. Fixing time, controlling space, and measuring theme.
4. Fixing time, controlling theme, and measuring space.
5. Fixing space, controlling theme, and measuring time.
6. Fixing theme, controlling space, and measuring time.

This work proposes three data types, time series, trajectory and coverage to represent the
combinations (1), (2) and (3). We consider that these three data types are necessary and suffi-
cient to model spatiotemporal data. All the six combinations above can be modeled using
these three data types. We do not need additional data types to represent the combinations (4),
(5) and (6).

As an example of combination (4), Sinton proposes a “vegetation map” created by finding
all locations of a given land cover type. However, these maps are more likely produced by a
systematic data collection over a given area, resulting in coverages. Combination (5) occurs in
cases like “measuring arrival times by runners in a marathon”. It is possible to get this type of
information by analysing trajectories of runners. Sinton suggests “tide tables” as an example
of combination (6). Since such tables can be obtained from time series that map times to tide
heights at a specific location, there is no need for an additional type. Thus, using Occam’s
razor, only three data types (time series, coverage, and trajectory) are needed to model all com-
binations of theme, time and space.

3.1 Data Abstractions

Using the time series, trajectory, and coverage types, we can define different views on the same
observation set, meeting application needs. Take Figure 1 which shows the tracks of three cars
equipped with GPS and air pollution sensors in a city. These cars produce a set of observa-
tions, each one containing a car identity, a time instant, a location and an air pollution value.
Suppose the observations are collected hourly during one day. From this data it is possible to

Figure 1 Different views on observations produced by moving cars

An Algebra for Spatiotemporal Data 3

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)



extract three different representations. Taking the city as a spatial reference, we can build a
time series that shows the variation of the average air pollution per hour in the city. Consider-
ing each car an individual object, we can get a set of trajectories. Fixing the whole day as a
time reference and taking all observations at that day, we can create a coverage that conveys
how pollution varied within the city limits during that day.

A time series represents the variation of a property over time in a fixed location.
Figures 2a and b show time series used in disease surveillance of dengue in the city of Recife in
Brazil (Regis et al. 2009). Dengue is a viral disease transmitted by mosquitoes. These mosqui-
toes lay their eggs in standing water; the eggs hatch in hot weather. To assess dengue risk,
health services use buckets of water as egg traps. Figure 2a shows five meteorological stations
and one of the associated temperature time series. The second set of time series shows the
number of mosquito eggs gathered weekly from the egg traps. Figure 2b presents egg traps
(red points) in a district of Recife and a time series produced by one of them.

A trajectory represents how locations or boundaries of an object evolve over time.
Figures 3a and b show trajectories. Figure 3a presents routes of sea elephants in Antarctica.
Figure 3b shows the evolution of three city limits in the Brazilian state of Rondonia from 2001
to 2005.

A coverage represents the variation of a property within a spatial extent at a time. Putting
together the air pollution observations obtained by all cars of Figure 1 produces a coverage
that shows how pollution varies in the city during one day. Other examples of coverages
appear in Figure 4, which shows grids with the rain variation in the state of Rio de Janeiro
during the natural disaster of 11 January 2011. We have grids in 15-minute intervals and each
grid cell contains an estimated value of precipitation, in millimeters per hour (mm/h). Figure 4
also shows the cities of the state of Rio de Janeiro, which will be used in the examples of
events.

Since observations are discrete, they need to be combined with interpolation functions to
approximate continuous change. Interpolators estimate values at locations in space and
moments in time for which there is no data. Consider two observations of a moving car
(Figure 1), one at instant 4 and the other at 8, shown in Figure 5a. There are different methods
to estimate car location at the non-observed time 6. Choices include a linear interpolator

Figure 2 Examples of time series: (a) temperature collected by meteorological stations; and (b)
number of mosquito eggs gathered from one egg trap in a district of Recife, Brazil

4 K Ferreira, G Camara and A Monteiro

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)



(Figure 5b) or a method that uses a street map as a spatial constraint, as in Figure 5c. The pro-
posed algebra allows choosing the most suitable interpolation function for each case.

3.2 Objects and Events

Our model defines objects as continuants and events as occurrents. An object is an identifiable
entity whose spatial and non-spatial properties can change over time. It is present as a whole
at each moment of its existence (Galton and Mizoguchi 2009). Examples of objects are cars
(Figure 1), egg traps (Figure 2), sea elephants and municipalities (Figure 3) and cities of the
state of Rio de Janeiro (Figure 4). An event is an individual episode with a definite beginning
and end. It only exists as a whole across the interval over which it occurs. An event does not
change over time. It can involve one or more objects, and an object can be involved in any

Figure 3 Examples of trajectories: (a) tracking of sea elephants in Antarctica; and (b) evolution of
three Rondônia’s municipality limits during 2001 and 2005

Figure 4 Example of coverage: rain in the state of Rio de Janeiro, Brazil, on 11 January 2011

Figure 5 Observations of a moving car and different kinds of interpolation functions

An Algebra for Spatiotemporal Data 5

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)



number of events (Galton and Mizoguchi 2009). In our model, we can derive events from spe-
cific conditions of spatial and non-spatial properties of objects. If we know what conditions
lead to an event, we can express events using operations over the proposed types.

Consider the following objects: the cities of Rio and Recife and a group of sea elephants.
A ‘flood’ event occurs in Rio if “rain is more than 10 mm/hour for more than 5 hours”. A
‘dengue epidemic’ event happens in Recife when “the average temperature is above 30°C for
more than a week and more than 50 eggs on average were found in the egg traps in the same
week”. A ‘meeting of two animals’ occurs when “the minimal distance between two sea
elephants is less than 2 meters”. These constraints are expressed through operations on time
series, trajectories and coverages, which in turn are built from observations (Figure 6).

4 An Algebra for Spatiotemporal Data

We use data types to express our abstractions. A data type is a set of values and a collection of
operations on those values that defines their behavior. An algebraic specification of a data type
T consists of: (1) a syntactic description which defines the names, domains, and ranges of the
operations of T; and (2) a semantic specification which contains a set of axioms in the form of
equations which relate operations of T to each other (Guttag and Horning 1978). In what
follows, functions and type signatures use monospaced font. Type names are given in Title-
Case and function names in lowercase. Sets are enclosed by curly braces and square brackets
denote parameterized types.

4.1 Primitive Data Types

There are three primitive types: Value, Time and Geometry. Value is a generic type to express
attribute values that can be Integer, Float, String or Boolean. Typical operations on Value

Figure 6 The proposed model

6 K Ferreira, G Camara and A Monteiro

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)



include less_than, greater_than, equal_to, max, and min. The meaning of such operations is
evident when applied to numerical types. When applied to textual and boolean types, we con-
sider the alphabetical order.

Time is a generic type that can be an Instant or a Period. The types Time, Instant and
Period match the types TM_GeometricPrimitive, TM_Instant and TM_Period defined by the
ISO temporal model (ISO 2002). Operations on Time include equals, before, after, begins,
ends, during, contains, overlaps, meets, overlappedBy, metBy, begunBy and endedBy. They
compare two time instances based on the temporal relationships of Allen (1983). Their behav-
ior when applied to instants and periods is described in the ISO standard (ISO 2002). Chronon
is a generic type to represent temporal resolutions.

Geometry is a generic type compliant with the Geometry type defined in the OGC Geom-
etry Model (OGC 2006). It can be a Point, Line, Polygon, MultiPoint, MultiLineString, or
MultiPolygon type. Operations on Geometry include equals, touches, disjoint, crosses,
within, overlaps, contains and intersects, as defined by OGC (2006). The types are:

Number: Integer, Float
Value: Number, String and Boolean
Time: Instant, Period
Chronon: Year, Month, Week, Day, Minute, Second.
Geometry: Point, Line, Polygon, MultiPoint, MultiLineString, MultiPolygon.

We also define a null type, Null, to represent invalid values. In what follows, we omit the
null type in the function signatures for clarity. Functions can return Null types in some cases, as
described in the axioms. This behavior should be considered when implementing the algebra.

4.2 Observations

type Observations [F:Type, C:Type, M:Type]
operations:

new: {(F,C,M)1,(F,C,M)2, . . . ,(F,C,M)n} → Observations | n>0
reference: Observations → F
positions: Observations → {C1, . . . ,Cn}
measure: Observations x C → M

An observation is a tuple of three elements (F,C,M) of any types. The Observations type
has three type parameters. Following Sinton (1978), the first type is the fixed reference (F), the
second is the controlled attribute (C) and the other is the measured attribute (M). The con-
structor new builds an observation set from a set of instances of types F, C and M. Reference
returns the value of the fixed attribute. The positions function reports the variation of the con-
trolled attribute and measure returns the observed value associated to a position.

4.3 Interpolator

type Interpolator [F:Type, C:Type, M:Type]
operations:

estimate: Interpolator x Observations[F,C,M] x C → M

Interpolator is a generic interface for interpolation methods. As it is an interface to other con-
crete types, it has no constructor. The estimate function takes an interpolator, an observation
set and a position in space or time, and calculates a value of the measured attribute (M) for
that position.

An Algebra for Spatiotemporal Data 7

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)



4.4 SpatioTemporal

type SpatioTemporal
operations:

observations: SpatioTemporal → Observations
interpolator: SpatioTemporal → Interpolator
begins, ends: SpatioTemporal → Instant
boundary: SpatioTemporal → Geometry
after, before, during: SpatioTemporal x Time → SpatioTemporal
intersection, difference: SpatioTemporal x Geometry → {st1,. . .,stn}

| st: SpatioTemporal
axioms:

st1,st2: SpatioTemporal; t: Time; g: Geometry;
before(st1,begins(st1)) = Null
after(st1,ends(st1)) = Null
during(before(st1,t),t) = Null
during(after(st1,t),t) = Null
after(before(st1,t),t) = Null
before(after(st1,t),t) = Null
difference(st1,boundary(st1)) = Ø
intersection(st1,boundary(st1)) = {st1}
within(boundary(st1),g) = TRUE ⇒ intersection(st1,g)= {st1}
disjoint(boundary(st1),g) = TRUE ⇒ intersection(st1,g)= Ø
st2 ∈ intersection(st1,g) ⇒ difference(st2,g)= Ø
st2 ∈ intersection(st1,g) ⇒ boundary(st2)= g

The SpatioTemporal type provides an abstract interface to the concrete types time series,
trajectory, and coverage. These concrete types implement the SpatioTemporal operations
according to their needs. This type is an abstract interface and has no instances.

Observations and interpolator return the two building elements of a SpatioTemporal type.
Begins and ends return its initial and final times. Boundary reports its spatial extent. After,
before and during return a subset of a SpatioTemporal instance, whose temporal range is after,
before and during a given time. Intersection and difference select subsets of a SpatioTemporal
instance, whose geometries intersect and do not intersect, respectively, a given geometry.

4.5 Time Series

type TimeSeries [G:Geometry, T:Time, V:Value] inherits SpatioTemporal
operations:

new: Period x Observations[G,T,V] x Interpolator[G,T,V]
→ TimeSeries

value: TimeSeries x T → V
min, max: TimeSeries → V
less, greater, equals: TimeSeries x V → {ts1,. . .,tsn}

| ts: TimeSeries
axioms:

ts1,ts2: TimeSeries; t1,tn: Time; v: Value;
p: Period; obs: Observations; interp: Interpolator;

8 K Ferreira, G Camara and A Monteiro

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)



ts1= new(p,obs,interp) ⇒ begins(ts1) = begin(p)
ts1= new(p,obs,interp) ⇒ ends(ts1) = end(p)
value(ts1,t1) = estimate(interpolator(ts1),observations(ts1),t1)
after(t1,ends(ts1)) n before(t1,begins(ts1)) ⇒ value(ts1,t1)=Null
value(after(ts1,t1),t1) = Null
value(before(ts1,t1),t1) = Null
less(ts1,min(ts1)) = Ø
greater(ts1,max(ts1)) = Ø
ts2 ∈ equals(ts1,v) ⇒ min(ts2) = max(ts2) = v
ts2 ∈ less(ts1,v) ⇒ max(ts2) < v
ts2 ∈ greater(ts1,v) ⇒ min(ts2) > v
boundary(ts1) = reference(observations(ts1))
positions(observations(ts1))={t1,. . .,tn} ⇒ begins(ts1) � t1

positions(observations(ts1))={t1,. . .,tn} ⇒ ends(ts1) � tn

TimeSeries is parameterized by Geometry (G), Time (T) and Value (V) types. New builds
a TimeSeries from a temporal range (Period), an observation set and an interpolator. These
observations have a fixed geometry (G) and measured values (V) at controlled times (T). The
interpolator estimates values (V) at times during the temporal range of the series. Value uses
the interpolator to provide a value at a given time. If this given time is outside the temporal
range, value returns Null. Min and max return its minimum and maximum values. Less,
greater and equal select subsets of a time series whose values are, respectively, less than,
greater than or equal to a given value. It inherits and implements the SpatioTemporal opera-
tions. For example, boundary returns the fixed geometry of its observations.

The temperature measures of Figure 2a can be represented by an Observations[Point,
Instant, Float] type. The station location (Point) is fixed and the temperature (Float) is meas-
ured at controlled times (Instant). We can build a TimeSeries[Point, Instant, Float] from these
observations. The egg traps of Figure 2b map to Observations[Point, Period, Integer]. The
trap location (Point) is fixed and the number of eggs (Integer) is measured at controlled times
(Period). We can capture the variation of the eggs in the egg traps as a TimeSeries[Point,
Period, Integer].

4.6 Trajectory

type Trajectory [V:Value, T:Time, G:Geometry] inherits SpatioTemporal
operations:

new: Period x Observations[V,T,G] x Interpolator[V,T,G]
→ Trajectory

value: Trajectory x T → G
axioms:

tj: Trajectory; t1,tn: Time; g: Geometry;
p: Period; obs: Observations; interp: Interpolator;
tj= new(p,obs,interp) ⇒ begins(tj) = begin(p)
tj= new(p,obs,interp) ⇒ ends(tj) = end(p)
value(tj,t1)= estimate(interpolator(tj),observations(tj),t1)
after(t1,ends(tj)) n before(t1,begins(tj)) ⇒ value(tj,t1)=Null
value(after(tj,t1),t1) = Null
value(before(tj,t1),t1) = Null

An Algebra for Spatiotemporal Data 9

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)



positions(observations(tj)) = {t1,. . .,tn} ⇒ begins(tj) � t1

positions(observations(tj)) = {t1,. . .,tn} ⇒ ends(tj) � tn

measure(observations(tj),tn) = g ⇒ within(g,boundary(tj))=TRUE

Trajectory is parameterized by Value (V), Time (T) and Geometry (G) types. New con-
structs a Trajectory from a temporal range, an observation set and an interpolator. Trajectory
observations have a fixed identity (V) and measured geometries (G) at controlled times (T).
Value uses the interpolator to provide a geometry at a given time. When this given time is out
of the Trajectory temporal range, value returns Null. It inherits SpatioTemporal operations and
implements them according to its needs. For example, boundary returns a bounding box that
contains all measured geometries of a trajectory.

Observations of each sea elephant of Figure 3a is described as an instance of Observation-
s[Integer, Instant, Point]. The animal’s identity (Integer) is fixed and its location (Point) is
measured at controlled times (Instant). We can capture this data as an instance of Trajectory-
[Integer, Instant, Point].

Each city in Figure 3b is described by an Observations[String, Period, MultiPolygon],
where each observation contains the city’s identity (String) and a boundary (MultiPolygon)
valid during a period. From these observations, we build an instance of a Trajectory[String,
Period, MultiPolygon] which captures the variation of a city’s boundary. During the temporal
range 2001 and 2012, each city’s trajectory has two observations, one valid for the period
[2001, 2004] and the other for the period [2005, 2012].

We now compare our Trajectory type with previous models such as ISO (2008) and
Güting et al. (2000). Trajectory allows geometry deformations over time, whereas the ISO
moving feature model does not (ISO 2008). Therefore, our model can cope with applications
where entities change their shape, like oil spills and boundary changes in cities. The moving
point and moving region defined by Güting et al. (2000) always consider a predefined interpo-
lation function, without allowing a user to choose other interpolation methods. As Trajectory
is built from an observation set and an interpolator, we can choose the most suitable interpo-
lation function for each instance.

4.7 Coverage and Coverage Series

type Coverage [T:Time, G:Geometry, V:Value] inherits SpatioTemporal
operations:

new: Geometry x Observations[T,G,V] x Interpolator[T,G,V]
→ Coverage
value: Coverage x G → V
min, max: Coverage → V
less, greater, equals: Coverage x V → Coverage

axioms:
cv1,cv2: Coverage; g: Geometry; v: Value; obs: Observations;
interp: Interpolator; t: Time;
cv1= new(g,obs,interp) ⇒ boundary(cv1) = g
begins(cv1)= begin(reference(observations(cv1)))
ends(cv1)= end(reference(observations(cv1)))
value(cv1,g) = estimate(interpolator(cv1),observations(cv1),g)
disjoint(g,boundary(cv1))=TRUE ⇒ value(cv1,g) = Null
less(cv1,min(cv1)) = Null

10 K Ferreira, G Camara and A Monteiro

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)



greater(cv1,max(cv1)) = Null
equals(cv1,v)=cv2 ⇒ min(cv2)= max(cv2)= v
less(cv1,v)=cv2 ⇒ max(cv2)<v
greater(cv1,v)=cv2 ⇒ min(cv2)>v
less(equals(cv1,v),v) = Null
greater(equals(cv1,v),v) = Null
cv2 ∈ intersection(cv1,g) ⇒ boundary(cv2)= g
cv2 ∈ difference(cv1,g) ⇒ boundary(cv2)= boundary(cv1)

Coverage is parameterized by Time (T), Geometry (G) and Value (V). New builds a Cov-
erage from three elements: (1) a geometry that defines the coverage spatial extent or bound-
ary; (2) an observation set that has a fixed time and measured values at controlled geometries;
and (3) an interpolator. In most cases, the boundary is a Polygon. However, the boundary can
be other geometry types. For moving cars in a highway, the boundary could be a Multi-
LineString.

Value provides a value at a given location, using the interpolator. If the location is outside
the coverage boundary, value returns Null. Min and max return the minimum and maximum
values. Less, greater and equal select the coverage observations whose values are less than,
greater than or equal to a given value. They return a new coverage built on such selected
observations. Coverage inherits and implements SpatioTemporal operations. For example,
boundary returns the coverage’s spatial extent.

type CoverageSeries [G:Geometry, T:Time, CV:Coverage] inherits SpatioTemporal
operations:

new: Period x Observations[G,T,CV] x Interpolator[G,T,CV]
→ CoverageSeries

snapshot: CoverageSeries x T → CV
timeseries: CoverageSeries x Point → TimeSeries

axioms:
cs: CoverageSeries; c: Coverage; t1,tn: Time; l: Point;
obs: Observations; interp: Interpolator; p: Period;
cs = new(p,obs,interp) ⇒ begins(cs)= begin(p)
cs = new(p,obs,interp) ⇒ ends(cs)= end(p)
snapshot(cs,t1) = estimate(interpolator(cs),observations(cs),t1)
snapshot(after(cs,t1),t1) = Null
snapshot(before(cs,t1),t1) = Null
after(t1,ends(cs)) n before(t1,begins(cs)) ⇒ snapshop(cs,t1)= Null
begins(timeseries(cs,l))= begins(cs)
ends(timeseries(cs,l))= ends(cs)
boundary(cs) = reference(observations(cs))
measure(observations(cs),t1)= c ⇒ boundary(cs) = boundary(c)
measure(observations(cs),t1)= c ⇒ begins(c) = begin(t1)
measure(observations(cs),t1)= c ⇒ ends(c) = end(t1)
positions(observations(cs)) = {t1,. . .,tn} ⇒ begins(cs) � t1

positions(observations(cs)) = {t1,. . .,tn} ⇒ ends(cs) � tn

CoverageSeries is an auxiliary type that represents a time-ordered set of coverages that
have the same boundary. This type is useful in many applications. It is parameterized by

An Algebra for Spatiotemporal Data 11

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)



Geometry (G), Time (T) and Coverage (CV) types. Taking coverages as measured units, we
construct a CoverageSeries from: (1) a temporal range (Period); (2) an observation set that
has a fixed boundary (G) and measured coverages (CV) at controlled times (T); and (3) an
interpolator that estimates coverages at non-observed times. Snapshot uses the interpolator to
provide a coverage at a given time. If this given time is outside the coverage series temporal
range, snapshot returns Null. Timeseries returns a time series associated to a given location
within the coverage series boundary.

Consider the hourly observations of air pollution of Figure 1 obtained by cars moving in
the city during one day. We can capture all observations from the same hour as an instance of
Observations[Period, Point, Float]. These observations have a fixed time (Period) with meas-
ured air pollution values (Float) at controlled locations (Point). There are 24 instances of
Observations, each leading to a Coverage[Period, Point, Float]. These coverages can be
grouped in a CoverageSeries[Polygon, Period, Coverage], producing an hourly coverage set
of air pollution in the city on one day. In the rain grids of Figure 4, all observations of the
same grid are represented as an instance of Observations[Period, Point, Float]. These observa-
tions have a fixed time (Period) and rain values (Float) at controlled cell locations (Point). We
encapsulate each instance of Observations as a Coverage[Period, Point, Float]. Then, we
group all coverages from 11 January 2011 as an instance of CoverageSeries[Polygon, Period,
Coverage].

Our Coverage type is consistent with existing field or coverage definitions (Cova
and Goodchild 2002, Goodchild 1992, Liu et al. 2008, OGC 2006). Regularly and irregularly
spaced sample points can be represented by Coverage[Point, Value, Polygon] and isolines by
Coverage[Line, Value, Polygon]. We can also specialize Coverage for tessellation structures,
such as raster and TIN. OGC coverage with spatiotemporal domains can be mapped to our
CoverageSeries type.

4.8 Additional Functions

The proposed signatures for TimeSeries, Trajectory, Coverage and CoverageSeries types
provide minimal interfaces. From those functions, a user can build more complex ones. In this
section, we give some examples:

min, max, mean, sum, mult: TimeSeries x Chronon → TimeSeries

These operations aggregate time series values considering a given temporal resolution
(Chronon) and return a new time series:

distance: Trajectory x Trajectory → TimeSeries
enters, exits, reaches, leaves: Trajectory x Geometry → {tj1,. . .,tjn}

| tji = Trajectory
speed: Trajectory → TimeSeries
direction: Trajectory → TimeSeries

Distance computes a time series with the distance between two trajectories. Enters,
exits, reaches and leaves select subsets of a trajectory that enter, exit, reach or leave a
given geometry. They are based on the spatial relations between the geometries of a trajectory
and a given geometry. Speed and direction return the velocity and direction variation over
time:

min, max: CoverageSeries → TimeSeries

12 K Ferreira, G Camara and A Monteiro

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)



Min and max aggregate values of a coverage series and return a time series. We compute
each value of the returned time series by taking the minimum and maximum value of a cover-
age at a specific time.

4.9 Object

type Object [ID:Value, TS:TimeSeries, TJ:Trajectory]
operations:

new: ID x TS x TJ → Object
id: Object → ID
timeseries: Object → TS
trajectory: Object → TJ
state: Object x Time → (Value, Geometry)

axioms:
o:Object; t:Time; v:Value; g:Geometry;
id(o) = reference(observations(trajectory(o)))
intersects(boundary(trajectory(o)), boundary(timeseries(o)))= TRUE
begins(trajectory(o)) = begins(timeseries(o))
ends(trajectory(o)) = ends(timeseries(o))
state(o,t) = (value(timeseries(o),t), value(trajectory(o),t))

An object is an identifiable entity whose spatial and non-spatial properties can change.
The Object type is parameterized by its identity type (ID), a TimeSeries (TS) that represents
the variation of its non-spatial property and a Trajectory (TJ) that describes the change of its
spatial property. An object can have one or more non-spatial properties, but we consider only
one in the type definition for simplicity. New constructs an Object. Id, timeseries and trajec-
tory access the object parts. State returns the state of an object at a given time, that is, the
values of its spatial and non-spatial properties at that time.

Each car of Figure 1 maps to an Object [Integer, TimeSeries[Polygon, Period, Float], Tra-
jectory[Integer, Instant, Point]]. Each car’s identity is represented by an Integer, its air pollu-
tion measures by a TimeSeries and its location change by a Trajectory. Each sea elephant of
Figure 3 maps to an Object[Integer, Ø, Trajectory[Integer, Instant, Point]], where its identity is
represented by an Integer and its location variation by a Trajectory. Since the sea elephants do
not have non-spatial properties, they have no associated time series. Each city of the state of
Rio de Janeiro in Figure 4 maps to an Object[String, TimeSeries[Polygon, Instant, Float], Tra-
jectory[String, Period, Polygon]]. The city name is its identity (String), the average rain varia-
tion is a TimeSeries and its boundary variation is a Trajectory. In this case, the Trajectory has
a single geometry.

4.10 Event

type Event [ID:Value, T:Time, G:Geometry]
operations:

new: ID x T x G x {obj1, obj2,. . ., objn} → Event
| obj: Object and n � 0

id: Event → ID
time: Event → T
location: Event → G
objects: Event → {obj1, obj2,. . ., objn}

An Algebra for Spatiotemporal Data 13

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)



axioms:
e:Event; o:Object; t:Time; v:Value; g:Geometry;
o ∈ objects(e) ∧ time(e) = t ⇒ state(o,t) � Null
o ∈ objects(e) ∧ location(e) = g
⇒ intersects(boundary(trajectory(o)), g) = TRUE

An event is an individual episode with a definite beginning and end which can involve one
or more objects. Event is parameterized by the types of its identity (ID), time (T) and spatial
location (G). New constructs an event from an identity, a time of occurrence, a geometry that
stands for the event’s location, and the objects involved in the event. The events of flood,
dengue epidemic and animal meeting described in Section 3.2 can be mapped to instances of
Event[Integer, Period, Polygon]. Each instance has the event’s identity (Integer), when it
occurred (Period) and the region where they happened (Polygon). These events involve
objects. The flood event is associated to the city of Rio. The dengue epidemic happened in the
city of Recife. The meeting event involves two sea elephants.

Using operations over sets of events, we can answer questions like “how many meetings
did animal a1 participate in and where did they occur?”, “what meetings occurred near island
x?”, “when and in which districts did dengue epidemics occur in Recife?”, “which are all
events that occurred in Rio?” and “what floods have occurred in Rio during the last 5 years
and what have been their average rains?”.

Galton (2004) distinguishes punctual (instantaneous) events from durative ones (those
that take time). The Event type can be used to represent both instances of punctual events
(using Instant) and durative ones (using Period). Events associated with moving objects, such
as those discussed by Hornsby and Cole (2007), can also be expressed using Event.

5 Model Validation and Example

We tested and validated our algebra using a C++ open source geospatial software library called
TerraLib (Câmara et al. 2008). Each type and its operations were implemented as classes and
their methods. We also created classes to represent sets, such as TimeSeriesSet and ObjectSet,
and used R-tree and B-tree for indexing geometries and times.

This section presents code examples, using the following conventions. The statement “Type
instance(p1,p2,. . .,pn)” builds an instance of a type using a set of parameters “p1,p2,. . .,pn”.
This is equivalent to the new constructor. The code “Trajectory a1_tj(a1_obs,interp)” creates
a Trajectory instance “a1_tj” with parameters “a1_obs” and “interp”. An operation whose
first parameter is the instance and the other parameters are “p1,p2,. . .,pn” is “instance.
operation(p1,p2,. . .,pn)”. This is the same as “operation(instance,p1,p2,. . .,pn)”. For example,
“a1_tj.distance(a2_tj)” gives the distance of “a1_tj” and “a2_tj”. The command “for each
element in set {. . .}” executes the commands between brackets “{. . .}” for each “element” of
a “set”.

Figure 7a shows the code to create events of “meeting of two animals” that occur when
“the distance between two sea elephants is less than 2 meters”. We create two trajectories
“a1_tj” and “a2_tj” from observation sets “a1_obs” and “a2_obs” and interpolator
“interp”. These are trajectories of sea elephants “a1” and “a2”, read from a KML file whose
metadata is described by a XML file called “tracks.xml”, as described in Ferreira et al. (2012).
Using “distance” between “a1_tj” and “a2_tj”, returns the time series “dist”. The function
“less” selects the subsets of “dist” whose values are less than 2 m, yielding the set of time

14 K Ferreira, G Camara and A Monteiro

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)



series “tsSet”. Each time series “ts” of “tsSet” leads to an event. From each “ts”, we create
an event “ev” with the time (“m_per”) and place (“m_region”) of a meeting between sea
elephants “a1” and “a2”.

Figure 7b shows the code to create events of “flood” in Rio, using the grids described in
Figure 4. A ‘flood’ event occurs if “rain is more than 10 mm/hour for more than 5 hours”. The
coverage series “cs” is built from these grids using function “createCS”, based on a metadata
file “metadata.xml” and an interpolator “interp”. To select the part of “cs” inside Rio de
Janeiro city, we use the operation “intersection” that returns a coverage series “rioCS” whose
boundary is the limits of Rio “rioLim”. We use operation “max” over “rioCS” to get the time
series “rain”. It maps times to maximum precipitation values in Rio. Since the rain grids are
taken at 15-minute intervals, the time series “rain” also contains values at each 15 minutes.
So, we aggregate “rain” by taking the maximum precipitation values per hour, using the
operation “max” and chronon “Hour”, resulting in the time series “rainPerHour”. Then, we
select parts of “rainPerHour” whose values are more than 10 mm/hour, using “greater”,
getting a new time series set “tsSet”. Each flood event “ev” is created from a time series “ts”
of “tsSet” whose extent is greater than five hours. All events are associated to object “rio”.

6 Final Remarks

This article presents an algebra for spatiotemporal data types. We capture the inherent struc-
ture of geospatial observations using three types, time series, trajectory and coverage. Based on
these types, the algebra allows defining objects and events. The proposed data types and func-

Figure 7 Code to create events of: (a) “meeting of two animals”; and (b) “flood”

An Algebra for Spatiotemporal Data 15

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)



tions can model and capture changes in a large range of applications, including location-based
services, environmental monitoring, public health, and natural disasters.

A limitation of our model is to consider only two dimensional space. Since OGC geometry
types can be built using 3-dimensional coordinates (x, y and z), we intend to solve this limita-
tion in future work. In its current version, the algebra does have types that express relation-
ships between objects and events or between events and events. These kinds of relationships,
as defined by Worboys and Hornsby (2004) and Galton and Worboys (2005), can be built on
top of our model. We intend to extend our algebra to represent these relationships, such as
“event e3 is composed of events e1 and e2” and “event e1 initiates event e2”.

We tested the algebra using the TerraLib software library. We chose to implement it in a
general-purpose library that can access spatiotemporal data from different sources, including
databases, files and web services. The next step is to develop an interface with the R software
for statistical analysis. This includes a mapping from our types to the ones proposed by
Pebesma (2011) to handle spatiotemporal data in R structures.

References

Allen J F 1983 Maintaining knowledge about temporal intervals. Communications of the ACM 26: 832–43
Câmara G, Vinhas L, Ferreira K, Queiroz G, Souza R C M, Monteiro A M, Carvalho M T, Casanova M A and

Freitas U M 2008 TerraLib: An open-source GIS library for large-scale environmental and socio-economic
applications. In Hall B and Leahy M (eds) Open Source Approaches to Spatial Data Handling. Berlin,
Springer: 247–70

Cova T J and Goodchild M F 2002 Extending geographical representation to include fields of spatial objects.
International Journal of Geographical Information Science 16(6): 509–32

Ferreira K R, Vinhas L, Monteiro A M V, and Camara G 2012 Moving objects and KML files. In Proceedings of
the Twenty-eighth International IEEE Conference on Data Engineering (ICDE 2012), Workshop on Spatio
Temporal data Integration and Retrieval, Washington, DC

Frank A U 1999 One step up the abstraction ladder: Combining algebras – from functional pieces to a whole. In
Freksa C and Mark D (eds) COSIT: Conference on Spatial Information Theory. Berlin, Springer-Verlag
Lecture Notes in Computer Science Vol. 1661: 95–108

Frank A U and Kuhn W 1995 Specifying Open GIS with functional languages. In Egenhofer M J and Herring J
(eds) Advances in Spatial Databases. Berlin, Springer-Verlag Lecture Notes in Computer Science Vol. 951:
184–95

Galton A 2004 Fields and objects in space, time, and space-time. Spatial Cognition and Computation 1: 39–68
Galton A 2008 Experience and history: Processes and their relation to events. Journal of Logic and Computa-

tion 18: 323–40
Galton A and Mizoguchi R 2009 The water falls but the waterfall does not fall: New perspectives on objects,

processes and events. Applied Ontology 4: 71–107
Galton A and Worboys M 2005 Processes and events in dynamic geo-networks. In Rodriguez M A, Cruz I F,

Levashkin S, and Egenhofer M J (eds) GeoSpatial Semantics (GeoS 2005). Berlin, Springer Lecture Notes in
Computer Science Vol. 3799: 45–59

Goodchild M F 1992 Geographical data modeling. Computers and Geosciences 18: 401–08
Güting R H, Böhlen M H, Erwig M, Jensen C S, Lorentzos N A, Schneider M, and Vazirgiannis M 2000 A

Foundation for Representing and Querying Moving Objects. ACM Transactions of Database Systems 25(1)
Guttag J and Horning J 1978 The algebraic specification of abstract data types. Acta Informatica 10: 27–52
Hornsby K and Egenhofer M 2000 Identity-based change: A foundation for spatio-temporal knowledge repre-

sentation. International Journal of Geographical Information Science 14: 207–24
Hornsby K S and Cole S 2007 Modeling moving geospatial objects from an event-based perspective. Transac-

tions in GIS 11: 555–73
ISO 2002 Geographic Information: Temporal Schema (ISO 19108). Geneva, Switzerland, International Stand-

ards Organization
ISO 2008 Geographic Information: Schema for Moving Features (ISO 19141). Geneva, Switzerland, Interna-

tional Standards Organization
Kuhn W 2005 Geospatial Semantics: Why, of What, and How? Journal of Data Semantics 3: 1–24

16 K Ferreira, G Camara and A Monteiro

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)



Kuhn W 2009 A functional ontology of observation and measurement. In Janowicz K, Raubal M, and
Levashkin S (eds) International Conference on GeoSpatial Semantics (GeoS 2009). Berlin, Springer Lecture
Notes in Computer Science Vol. 5892: 26–43

Liu Y, Goodchild M F, Guo Q, Tian Y, and Wu L 2008 Towards a general field model and its order in GIS.
International Journal of Geographical Information Science 22(6): 623–43

Mennis J 2010 Multidimensional map algebra: Design and implementation of a spatio-temporal GIS processing
language. Transactions in GIS 14: 1–21

OGC 2006 OpenGIS Abstract Specification Topic 6: Schema for Coverage Geometry and Functions. Wayland,
MA, Open Geospatial Consortium

OGC 2006 OpenGIS Implementation Specification for Geographic Information, Simple Feature Access – Part
1: Common Architecture. Wayland, MA, Open GIS Consortium

Pebesma E 2011 Classes and Methods for Spatio-temporal Data in R: The Spacetime Package. Munster,
Germany, Institute for Geoinformatics, University of Munster (available from http://cran.rproject.org/web/
packages/spacetime/vignettes/spacetime.pdf)

Peuquet D J and Duan N 1995 An event-based spatiotemporal data model (ESTDM) for temporal analysis of
geographical data. International Journal of Geographical Information Science 9: 7–24

Regis L, Souza W V, Furtado A F, Fonseca C D, Silveira J C, Ribeiro P J, Melo-Santos M A V, Carvalho M S,
and Monteiro A M 2009 An entomological surveillance system based on open spatial Information for par-
ticipative Dengue control. Anais da Academia Brasileira de Ciências 81: 655–62

Sinton D 1978 The inherent structure of information as a constraint to analysis: Mapped thematic data as a case
study. In Dutton G (ed) Harvard Papers on Geographic Information Systems. Reading, MA, Addison-
Wesley: 1–7

Worboys M 1994 A unified model for spatial and temporal information. The Computer Journal 37: 27–34
Worboys M F and Hornsby K 2004 From objects to events: GEM, the geospatial event model. In Egenhofer M,

Freska C, and Miller H (eds) Third International Conference on GIScience. Berlin, Springer-Verlag: 327–43
Worboys M 2005 Event-oriented approaches to geographic phenomena. International Journal of Geographical

Information Science 19: 1–28
Yuan M 1999 Three-domain representation to enhance GIS support for complex spatio-temporal queries. Trans-

action in GIS 3: 137–59

An Algebra for Spatiotemporal Data 17

© 2013 John Wiley & Sons Ltd Transactions in GIS, 2013, ••(••)


