
A Flexible Model for Crosscutting
Metadata-based Frameworks

Eduardo Guerra1, Eduardo Buarque1, Clovis Fernandes1, Fábio Silveira2

1 Aeronautical Institute of Technology (ITA) - Praça Marechal Eduardo Gomes, 50
CEP 12.228-900 - São José dos Campos – SP, Brazil

guerraem@gmail.com, skyedu_b@yahoo.com, clovistf@uol.com.br

2 Federal University of São Paulo (UNIFESP)
Rua Talim, 330 - CEP 12231-280 - São José dos Campos – SP, Brazil

fsilveira@unifesp.br

Abstract. Frameworks aims to provide a reusable functionality and structure to
be used in distinct applications. Aspect-oriented frameworks address
crosscutting concerns and provide ways to attach itself in the application in a
transparent way. However, using aspects the variations in the behavior can only
be customized by aspect inheritance, which can increase exponentially the
number of aspects and difficult the pointcut management. This paper proposes
a flexible model which combines techniques for the insertion of crosscutting
functionality with the structure of a metadata-based framework. This model
allows (a) the maintenance of the class obliviousness, (b) the independence of
the crosscutting technology and (c) the framework customization by
composition. Additionally, the paper presents SystemGlue, which is a
crosscutting framework that implements the proposed concepts. A modularity
analysis was performed in an application that uses this framework to evaluate if
the objectives were achieved.

Keywords: framework, aspect orientation, metadata, software design, software
architecture.

1 Introduction

A framework is a set of classes that supports reuses at larger granularity. It defines an
object-oriented abstract design for a particular kind of application which does not
enable only source code reuse, but also design reuse [1]. The framework's abstract
structure can be filled with its own classes or application-specific ones, providing
flexibility for the developer to adapt its behavior to each application. Besides
flexibility, a good framework also increases the team productivity and makes
application maintenance easier [2] [3].

A framework can contain points, called hot spots, where applications can
customize their behavior [4]. They represent domain pieces that can change among
applications. Points that cannot be changed are called frozen spots, which usually

define the framework's general architecture, which consists in its basic components
and the relationships between them. There are basically two different types of hot
spots, that respectively uses inheritance and composition to enable the application to
add behavior [5]. The use of composition allows the creation of black box
frameworks [6], which scales better and provides a more flexible structure than the
ones that use inheritance.

An aspect-oriented framework [7], like object-oriented frameworks, can be
considered a incomplete reusable application that must be instantiated to create a
concrete software. They can be classified as cross-cutting framework, which
implement non-functional requirements, and application frameworks, that implement
business rules. To specialize the framework behavior to a target application, an
abstract aspect should be specialized, implementing the abstract methods and
configuring the desired pointcuts. This structure based on inheritance is not suitable
for frameworks with a large number of possible behavior variations [8]. For instance,
the number of necessary aspects can grow exponentially based on the number of
possible variabilities.

This paper introduces a flexible model that can be used to create aspect-oriented
frameworks which uses a metadata-based processing to eliminate the drawbacks of
the approach based on aspect inheritance. The present work proposes the usage of
metadata to configure framework variabilities, an internal structure to enable
composition and a metadata definition technique to maintain obliviousness. To
evaluate this properties a complex framework for system integration, ready to be used
in production environments, was implemented and used in a case study. Based on
that, a modularity analysis was performed to verify the proposed model properties.

2 Frameworks

This section aims to describe different kinds of frameworks highlighting their main
characteristics and the way that they provide behavior adaptation. In subsection 1.2,
the mechanisms based on inheritance and composition in object-oriented framework
are described. Next, subsection 2.2 presents the aspect-oriented frameworks and the
drawbacks of using only inheritance to implement the behavior variabilities. Further,
subsection 2.3 introduces the metadata-based frameworks, how they work and how
they are internally structured.

2.1 Object-oriented Frameworks

A framework can be considered an incomplete software with some points that can be
specialized to add application-specific behavior, consisting in a set of classes that
represents an abstract design for a family of related problems. It provides a set of
abstract classes that must be extended and composed with others to create a concrete
and executable application. The specialized classes can be application-specific or
taken from a class library, usually provided along with the framework [1].

Another important characteristic of a framework is the inversion of control [3, 9].
A framework's runtime architecture enables the definition of processing steps that can
call applications handlers. This allows the framework to determine which set of
application methods should be called in response to an external event.

An abstract class can define abstract methods that are invoked from a more general
method in the same class. Those general methods are called template methods [10]
and they define the skeleton of an algorithm in an operation, deferring to subclasses
the redefinition of certain steps without changing the algorithm's structure. Those
abstract methods are called hook methods [5] and must be implemented in the
subclasses for framework adaptation [3].

The main framework class can also have some instance variables and delegate part
of the execution to them. Those instances must obey a known protocol, extending an
abstract class or implementing an interface, for the framework to be able to invoke
methods on them. In this case, the hook methods invoked by the template methods are
located in other classes, which are called hook classes. Thus, for framework
adaptation it is not necessary to extend the framework main class and the developer
must only change the instance that composes it. That instance can be taken from the
framework's own class library or can be application-specific.

A framework is neither pure blackbox nor pure whitebox. The whitebox strategy is
more difficult to use, because the developer must know details about the framework's
internal structure. It is also more flexible, because it gives more freedom for choosing
what should be overridden by the subclass. The blackbox strategy hides the
implementation details and composes the application functionality with hook classes.
It is also less flexible, since the application can interfere only in certain points. In
whitebox, the implementation must be chosen when the class is instantiated, and in
blackbox it can be changed later. A pattern language for framework evolution [6]
suggests that a framework should start being whitebox, which is more flexible, and
when the extension points became more clear, it should evolve to a blackbox strategy.

2.2 Aspect-oriented Frameworks

Aspect-oriented programming [12] is a programing paradigm, whose main goal is
to modularize cross-cutting concerns. The adoption of this paradigm by the software
development community is still happening and it is usually used encapsulated inside
tools and frameworks, such as JBoss Application Server [13, 14] and Spring [15,16].

The modularization capabilities of aspect-oriented programing can be used to
improve object-oriented frameworks. Using aspects, it is possible to add features in an
existent object-oriented framework without the modification of the original source-
code [17]. This modularization of framework's features brings other benefits such as
functionalities that can be easily disabled and potentially used in other contexts.

 Other possibility is the creation of an aspect-oriented framework [7] that can be
classified as cross-cutting framework, which implement non-functional requirements,
and application frameworks, that implement business rules. Like object-oriented
frameworks, those can be considered a incomplete reusable application that must be
instantiated to create a concrete software. A framework's abstract aspect must be

specialized to be weaved in the desired pointcuts and to add implementation in the
hook methods, like represented in Fig. 1.

An abstract aspect cannot use composition in extension points, because its
invocation is transparent for the application, which do not have direct access to the
aspect to set the hook classes. The composition can be used in this context only if the
hook classes are instantiated using a Factory Method [10], which is a type of hook
method.

Framework Abstract Aspect

abstract
pointcut Advice

hook method hook method

Application Concrete Aspect

concrete
pointcut

hook
implemetation

hook
implemetation

extends

Fig. 1. The structure of an aspect-oriented framework.

A study about existent aspect-oriented frameworks [7] analyzed 13 frameworks
and all of them contains a small number of functional variabilities. That can indicate
that the existent model does not scale for a large number of possible behavior
variations.

Indeed, based on this structure, every variability in those frameworks should be
modeled as hook methods in the main abstract aspect. For variabilities whose
behaviors can be combined the number of possible advices grows exponentially with
the number of variabilities [8]. The concrete pointcuts also became granular and hard
to manage.

2.3 Metadata-based Frameworks

The framework structures has evolved and recent ones make use of introspection [18]
[19] to access at runtime the application classes metadata, like their superclasses,
methods and attributes. As a result, it eliminates the need for the application classes to
be coupled with the framework abstract classes and interfaces. The framework can,
for instance, search in the class structure for the right method to invoke. The use of
this technique provides more flexibility to the application, since the framework reads
dynamically the classes structure allowing them to evolve more easily [20].

When a framework uses reflection [20][21] to access the class elements and
execute its responsibilities, sometimes the class intrinsic information is not enough. If
framework behavior should differ for different classes, methods or attributes, it is
necessary to add a more specific meta-information to enable differentiation. For some
domains, it is possible to use marking interfaces, like Serializable in Java Platform, or
naming conventions [22], like in Ruby on Rails [23]. But those strategies can be used
only for a limited information amount and are not suitable for situations that need
more data.

Metadata-based frameworks can be defined as frameworks that process their logic
based on the metadata of the classes whose instances they are working with [24]. In
those, the developer must define into application classes additional domain-specific or
application-specific metadata to be consumed and processed by the framework. The
use of metadata changes the way frameworks are build and how they are used by
software developers [25].

 The developer's perspective in the use of those frameworks has a stronger
interaction with metadata configuration than in method invocation or class
specialization. In traditional frameworks, the developer must extend its classes,
implement its interfaces and create hook classes for the behavior adaptation. He also
have to create instances of those classes, setting information and hook class instances.
Using metadata-based frameworks, programming focus is on declarative metadata
configuration and the method invocation in framework classes is smaller and
localized.

The basic processing in a metadata-based framework consists in the metadata
reading from the target object, followed by its processing. In this process, the
metadata read is used to adapt framework behavior and to apply introspection to
access and modify the application object.

In [24], a pattern language for metadata-based frameworks was described,
addressing the main issues about how to structure internally metadata-based
frameworks. The patterns Delegate Metadata Reader and Metadata Processor
combined enable the extension of the metadata schema, providing a solution that
allow the insertion of new application-specific hook classes in the framework
execution. This solution is used in APIs like Bean Validation [26] and frameworks
like JColtrane [27].

The metadata consumed by the framework can be defined in different ways.
Naming conventions [22] uses patterns in the name of classes and methods that has a
special meaning for the framework. To exemplify this there are the Java Beans
specification [28], which use method names beginning with 'get' and 'set', and the
JUnit 3 [29], which interprets methods beginning with 'test' as test cases
implementation. Ruby on Rails [23] is an example of a framework known by the
naming conventions usage.

Conventions usage can save a lot of configurations but it has a limited
expressiveness. For some scenarios the metadata needed are more complex and
naming conventions are not enough. An alternative can be setting the information
programmatically in the framework, but it is not used in practice in the majority of the
frameworks. Another option is metadata definition in external sources, like XML files
and databases. The possibility to modify the metadata at deploy-time or even at
runtime without recompile the code is an advantage of this type of definition.
However, the definition is more verbose because it has to reference and identify
program elements. Furthermore, the distance that configuration keeps from the source
code is not intuitive for some developers.

Another alternative that is becoming popular in the software community is the use
of code annotations, that is supported by some programming languages like Java [30]
and C# [31]. Using this technique the developer can add custom metadata elements
directly into the class source code, keeping this definition less verbose and closer to

the source code. The use of code annotations is called attribute-oriented programing
[32].

Prior studies report a successful use of attribute-oriented programming in different
contexts [33], like serialization, web service endpoints and interface to databases. It is
also used in a fractal component model implementation [34] and in conjunction with
Model-driven Development [35]. A recent experiment about the usage of metadata
revels that the use of these frameworks reduces the application coupling and can
increase the team productivity [36].

3 Proposed Model

This section presents the proposed model for metadata-based crosscutting
frameworks. The word “crosscutting” was used instead of “aspect-oriented” since the
model can also be applied to other implementation strategies like the use of dynamic
proxies [19] and composition filters [37]. For simplification, in the model description
the strategies are referenced as aspects, unless the differentiation is relevant in the
context.

This model’s goal is to provide a flexible structure for a crosscutting framework to
be able to deal with a large number of variabilities. Other characteristics considered
were the preservation of the class obliviousness and an easy framework adaptation for
distinct architectures. The following subsections present the proposed practices to
achieve these goals.

3.1 Metadata for Behavior Adaptation

Since an aspect can intercept the execution of different classes without their
knowledge, it is hard to differentiate the execution for each one. The main strategy of
the existent aspect-oriented frameworks for behavior differentiation is to provide
different aspects for each possibility [7]. These aspects inherit from a framework
abstract aspect specializing its behavior. As presented in the previous section, this
model has serious drawbacks for a large number of variabilities, specially when they
differ in a granular way among the classes and methods.

The foundation of the proposed model is to use class metadata to differentiate
framework behavior. In aspects, the pointcuts are already defined based on class
metadata, like class package, class name, method name, method return, parameter
types and others. It can even use domain-specific or application-specific metadata
defined in code annotations. Despite metadata defined can also be used for pointcut
definition, this model proposes that this metadata should be consumed by the
framework to enable differentiation of the execution logic among the classes.

It should define which variations are possible in the framework execution and
provide a metadata schema to enable this differentiation. The metadata can be defined
using code annotations, XML files, databases, code conventions or using a
combination of this strategies. When a method execution is intercepted, the

framework should read its intrinsic and domain-specific metadata and use it to
parameterize its execution.

Among the benefits of this approach, it is possible to highlight that the use of
metadata enable the existence of a single framework aspect. That aspect should be
specialized only to define a more specific pointcut where it should be applied in the
target application.

3.2 Intercepting Technology Independence

One of the requirements that should considered in the construction of a framework is
the adaptability for different architectures and applications. The actual aspect
implementations in Java language are not a standard adopted by all applications.
Examples of aspect implementations in Java are AspectJ [15], Spring AOP [16] and
JBoss AOP [38]. Additionally, other solutions provide functionality that allow the
insertion of components that can intercept the execution of a component method, such
as dynamic proxies [19], EJB 3 interceptors [39] and CDI interceptors [40].

To enable framework independence about how execution should be intercepted in
the architecture, this model proposes the encapsulation of the framework main
functionality in a component, like illustrated in Fig. 2. This component can be
invoked by different kinds of software components which can intercept the
application execution, such as aspects, filters and proxies.

Framework
Main Component

Aspect

Composition
Filter

Dynamic
Proxy

E
X

E
C

U
T

IO
N

{
Execution is
intercepted

by the
component

which fits
better in the
architecture.

The framework main component
is executed receiving the

invocation context.

Fig. 2. Independence of the framework and intercepting component.

This practice allow the application to choose how the crosscutting framework
should be attached to it. It makes the framework invocations more flexible and enable
it to adapt easily to distinct environments. The authors consider this practice is
advisable, not only to frameworks based on metadata, but for every crosscutting
framework.

3.3 Metadata Extension

As presented in the previous sections, one of the weaknesses of the current model
adopted for aspect-oriented frameworks relies in the usage of aspect inheritance for
behavior specialization. By using metadata for framework adaptation (subsection 3.1)

and decoupling the main component from the execution interception (subsection 3.2),
it is possible to use a model based on composition.

Fig. 3 illustrates the process proposed in this model. When the framework main
component receives an invocation by one of the intercepting components, it invokes a
class responsible for metadata reading that returns a representation of that
information. This representation, called Metadata Container [24], can contain only the
metadata retrieved, or moreover classes for which part of the execution can be
delegated. These classes, created based on the class metadata, are called Metadata
Processors [24].

Framework
Main

Component

1. receives
information about

the invocation

Metadata
Processor

Metadata
Processor

Metadata
Processor

Metadata
Container

2. invokes to create
the Metadata

Container

3. create a class
composed by
processors

4. execute the framework main logic
delegating steps to the processors

Metadata
Reader

Fig. 3. Creation and execution of metadata processors.

Using this structure, it is possible to create application-specific metadata
processors, enabling the extension of the framework functionality. To make it
possible, a mapping that links each metadata type to a class that reads it should be
created. Based on that mapping, the class responsible for reading metadata delegate
the reading of these types to the Metadata Reader Delegate classes [24]. These classes
are responsible for the creation of the Metadata Processors, like presented on Fig. 4.

Metadata
Type

Metadata
Reader

Delegate

mapping

Metadata
Processor

3. creates a processing class
based on the metadata which
composes the metadata container

Metadata Container

Metadata
Processor

Metadata
Processor

Metadata
Processor

Metadata
Reader

1. finding a new
metadata type, look

in the mapping for
the class which

should process it

2. creates the class
and delegate the
reading of the
metadata to it

Fig. 4. Delegating the metadata reading.

If an application needs to extend the framework functionality, the first step is to
create a new metadata type, which can be for instance an annotation or an XML
element. The next step is to create the reader delegate class and map it to the created
metadata type. Further, the metadata processor with the desired behavior should also
be implemented and returned as the result of the reader delegate execution. Since the

processor would compose the metadata container, the execution of framework should
be delegated to it.

This approach provides a solution that enables the extension of the framework
behavior using composition. It allows processors to be combined in a more natural
way without an explosion on the number of classes to support the combination of
variabilities.

3.4 Domain Annotations

Especially when the metadata is defined using code annotations, the application class
receives directly information about the framework concern. This creates a semantic
coupling between the class and the framework, which reduces the application
modularity.

To enable the usage of attribute-oriented programming without compromising the
obliviousness, the present model proposes the use of domain annotations. The domain
annotation concept was introduced by [41] in an attempt to introduce annotations in
the context of Domain-driven Design [42]. The main idea is to represent domain
concepts using annotations and not others related to non-functional and crosscutting
concerns.

This model proposes the mapping of domain annotations to framework
annotations, providing a decoupling of the application classes with the framework
metadata. This mapping represents a translation of how the framework should deal
with a class or a method which represents a given domain concept. This mapping also
brings other benefits like a better modularization [43] and a reduction in the
duplication of configurations [44].

Fig. 5 illustrates this mapping. The framework annotation should annotate the
domain annotation instead of the class directly. The mapping can be called dynamic
when the framework is prepared to search at runtime for its annotations inside other
annotations. The mapping is static if a tool change the domain annotations to the
framework annotations at compile time. For instance, Daileon is a tool which
provides a function library that facilitate the implementation of a dynamic mapping
and a tool for the static mapping [45].

Application
Class

@DomainAnnotation

Domain
Annotation

@FrameworkAnnotation

Framework
Annotation

Fig. 5. Domain annotations mapping.

4 Implemented Framework – Esfinge SystemGlue

The software developed to demonstrate the proposed model in the present work is
Esfinge SystemGlue [46], which is an open-source framework which aims to enable

the creation of distinct integration profiles for a given application. It was developed to
solve a problem in a real application in which different clients needs to invoke distinct
methods to integrate with their systems. The framework had already been functionally
tested using ClassMock [47] and can be considered ready to be used in a production
environment.

The next subsections describes the framework functionalities, its strategy for
metadata definition and its internal structure.

4.1 General View

SystemGlue aims to provide an structure that allows the application to configure
distinct integration profiles, enabling the invocation of different functionality
according to the context. It uses metadata to define what should be executed after or
before an application method execution. It supports method invocation, scheduling
and message sending that can be executed based on conditions and asynchronously.
The framework also uses metadata and code conventions to map the parameters and
the returns among the invocations. The metadata definition can be defined in a
flexible way using a combination of annotations and XML documents.

The following example exemplify the usage of annotations to configure the
execution of functionality before and after a method execution. While the methods are
invoked, their parameters and returns can be mapped and used among subsequent
executions based on their names, which can be defined respectively by the parameter
annotation @Param and the method annotation @ReturnName.

SystemGlue metadata configuration with annotations.

 @Executions ({
 @Execute(clazz=InteligenceIntegration.class,
 method="getTargetInfo",
 when=ExecutionMoment.BEFORE,
 rule="order.targets.size==0") ,
 @Execute(clazz= UnitsIntegration.class,
 method="sendOrder",
 when = ExecutionMoment.AFTER,
 async = true)
})
public void saveOrder(@Param("order") Order order){
 //core functionality implementation
 }

4.2 Flexible Metadata Definition

The use of framework annotations direct in the application methods can be useful for
executing functionality which should always be invoked. Since to change the code
annotations the code should be re-compiled, it is not a good solution to allow the
configurations to be changed for distinct integration profiles.

SystemGlue also supports the metadata definition using XML files. This approach
allow a more decoupled definition, which is more suitable for define metadata in
situations where more than one metadata set is necessary for one class [48], which is
the case for integration profiles. The next code presents an example of the same
metadata defined in the previus example represented in an XML file.

SystemGlue metadata configuration using XML.

<systemglue>
 <class name="expl.OrderService">
 <method name="saveOrder" params="expl.Order">
 <execute class="expl.InteligenceIntegration"
 method="getTargetInfo" when="BEFORE"
 rule="order.targets.size == 0"/>
 <execute class="expl.UnitsIntegration"
 when="AFTER" method="sendOrder" async="true"/>
 <execute/>
 </method>
 </class>
</systemglue>

For the framework to load an XML file it is necessary to invoke the method
loadXMLFile() in the class MetadataRepository. This file can define metadata for
more than one class and a class can have metadata defined in more than one file.

A drawback of the presented approaches is that if different methods needs the same
metadata configuration, the code to define it should be duplicated. It reduces
maintainability making difficult general modifications in the metadata definition.

To avoid this problem, an alternative for metadata definition is the usage of domain
annotations [41], which represents concepts related to the application domain and are
defined by the application. These annotations can be mapped to the SystemGlue
metadata using annotations or in the XML file, providing an indirect configuration.
Considering that the framework functionality is crosscutting, the domain annotations
preserve the classes obliviousness [43], since they would not contain information
about a crosscutting concern.

Next code listing presents an example of the domain annotation mapping using
annotations. The SystemGlue annotations are used in the domain annotation
@OrderModification instead of directly on the class method. The framework
recognize this indirect configuration and add this metadata to all methods configured
with it. This practice facilitate changes, since the modification of the framework
annotations would affect all methods annotated with the domain annotation. A
domain annotation can annotate other domain annotation providing an specialization
mechanism.

SystemGlue configuration of domain annotations.

//annotation definition
@Executions({
 @Execute(clazz = InteligenceIntegration.class,
 when=ExecutionMoment.AFTER, method="getTargetInfo",
 rule="order.targets.size==0"),

 @Execute (clazz= UnitsIntegration.class,
 when = ExecutionMoment.AFTER, method="sendOrder",
 async = true)
})
public @interface OrderModification{}

//method definition
@OrderModification
public void saveOrder(@Param("order") Order o){}

The use of domain annotations can also be combined with XML definition. The
metadata configuration can refer to an annotation instead of the method directly.
Using this approach, the annotation can be simply defined without framework
annotations. Next code listing presents an instance of the domain annotation metadata
definition in the XML.

Referencing the domain annotation in the XML file.

<systemglue>
 <annotation name="expl.OrderModification">
 <execute class="expl.InteligenceIntegration"
 method="getTargetInfo" when="BEFORE"
 rule="order.targets.size == 0"/>
 <execute class="expl.UnitsIntegration"
 when="AFTER" method="sendOrder" async="true"/>
 </annotation>
<systemglue>

It is important to highlight that any combination of these techniques can be used
together in the same method to define the invocation of distinct functionality. Despite
the advantages and drawbacks, each one is more applicable to a different scenario.

4.3 SystemGlue Internal Structure

One of the requirements considered in the construction of SystemGlue is that it should
to be adaptable for different architectures. To enable SystemGlue functionality to be
inserted in the most natural way to the application architecture, the main functionality
is encapsulated in a component, named SystemGlueExecutor, which does not crosscut
the application functionality.

Other components, such as dynamic proxies or aspects, are responsible to intercept
the application methods invocation and delegate the execution to the main
component. This flexibility is important to allow the execution to be inserted in a way
which fits better in the application architecture. SystemGlue provides implementation
of reflection dynamic proxies [19], which creates proxies based only on interfaces,
and CGLib proxies [49], which supports proxies based on classes. The framework
was also tested using Spring AOP [15] and EJB3 Interceptors [39], however these
implementations are not provided with the framework to avoid more dependencies.

The framework follows the basic structure proposed in the section 3, as presented
in Fig. 6. The SystemGlue main component retrieves the metadata container from a

metadata repository when it receives an invocation. The repository is populated with
information retrieved from XML files and from the class annotations. The metadata
container is composed by instances of the type MethodExecutor, which represents the
executions that should be made after and before the application method.

SystemGlue
Executor

Metadata
Repository

Annotation
Metadata
Reader

XML
Metadata
Reader

invoked when a
class is inserted in

the repository

inserts data
retrieved from a
XML document

Metadata
Container

retrieves
Metadata
Container

invokes the appropriate
Method Executors that

compose Metadata Container

Metadata
Processor

Metadata
Processor

Method
Executor

Fig. 6. SystemGlue internal organization.

5 Modularity Analysis

This section presents an evaluation of the model modularity, by analyzing a case
study that used Esfinge SystemGlue framework and verifying if it was able to achieve
the proposed characteristics. As a tool to this analysis, this work used a Dependency
Structure Matrix [50], which is a matrix that basically shows the dependence between
all the elements in a given software.

The interpretation of a DSM is made by noticing that both rows and columns have
the same information: they represent a complete list of system entities whose
dependence should be mapped. Each cell of the matrix represent the number of
dependences between the entity represented by the line to the entity represented in the
column.

To evaluate if the model allows the fulfillment of the modularity requirements, a
fictitious case study was prepared with an application that plays the role of a Hospital
ERP and three other applications representing softwares that integrate with it. It uses
Esfinge SystemGlue to integrate the applications by using the domain annotations
functionality. Figure 7 shows the DSM created based on the developed software.

The domain annotations are in the package br.com.lab.integration (C, D, E, G, H, I
and J), classes responsible to activate the main features of the application are in the
package br.com.lab.controller (B and F), SystemGlue’s annotations are in the
package net.sf.systemglue.annotations (K, L, M, N, O and P), and the remaining
packages represent the classes responsible for the integration functionality (Q, R and
S).

Based on the DSM extracted from the case study, it is possible to draw some
conclusions about the system modularity. The main application classes only depends
on the domain annotations. This dependence is highlighted by the yellow rectangles.
Since the domain annotations express domain information, the application classes
does not contain even a semantic dependence with integration concerns.

The domain annotations depend on the SystemGlue annotations to define each
one's configuration. The SystemGlue annotations are highlighted by the green
rectangle, while the dependences are highlighted by the orange rectangles. The classes
responsible for the integration concern, highlighted in the blue rectangle, are
completely decoupled of the rest of the system.

Fig. 7. Modularity analysis using a DSM.

Hence, the framework enables configuration profiles on metadata integrations with
domain annotations, since the application classes deal with the main features and have
no syntactic or semantic dependencies of classes that perform the integrations. Then
SystemGlue has the responsibility to activate the points of integration. Based on that
it is possible to conclude that the proposed model allows the fulfillment of this
modularity requirements.

6 Conclusions

This work proposes a new model for crosscutting frameworks which enables it to
deal with a high number of behavior variations. It is probably not suitable for domains
with a small number of behavior variations. It proposes the use of metadata to enable
the framework to use composition as the strategy for behavior extension. The model
also proposes techniques for decoupling the component responsible for the method
interception and the use of domain annotations to enable the usage of attribute-
oriented programming without compromising the obliviousness.

This model was used to build a framework named SystemGlue which aims to
provide a flexible structure to enable the creation of distinct integration profiles for
one application. It naturally deals with a high number of variations, including the
possibilities of parameters and return mapping and the combinations of functions to
be invoked before and after the application method execution. The integration
functions can also be invoked conditionally and be executed asynchronously

according to the configurations. The framework also provide flexible alternatives for
metadata configuration and for attaching it in an architecture. A modularity analysis
was performed in a case study that instantiated SystemGlue and the decoupling model
requirements were evaluated.

References

1. R. Johnson; B. Foote. “Designing reusable classes”, In Journal Of Object-Oriented Programming, v.1, n.
2, p. 22-35, Jun./Jul. 1988.

2. Wirfs-Brock, R.; Johnson, R.. “Surveying current research in object-oriented design”. In:
Communications of the ACM, September 1990, Volume 33 , Issue 9, p. 104-124.

3. M. Fayad, D. Schmidt, R. Johnson, “Application frameworks”, in Building Application Frameworks:
Object-oriented Foundations of Frameworks Design, New York: Wiley, 1999. Chap. 1, p. 3-27.

4. Pree, W. Design Patterns for Object-Oriented Software Development. Addison Wesley / ACM Press,
1995.

5. Pree, W. “Hot-spot-driven development”, In “Building application frameworks: object-oriented
foundations of frameworks design”, New York: Wiley, c1999, Chap. 16, p. 379-393.

6. Don, R.; Ralph, J. “Evolving Frameworks: A Pattern Language for Developing Object-Oriented
Frameworks”. In proceedings of the Third Conference on Pattern Languages of Programming, 1996.

7. Camargo, V.; Masiero, P. “Frameworks Orientados a Aspectos”. In: XIX Simpósio Brasileiro de
Engenharia de Software – SBES 2005. Uberlândia : 2005. Proceedings... p. 200-216.

8. Guerra, E.; Silva, J.; Silveira, F.; Fernandes, C. “Using Metadata in Aspect-Oriented Frameworks”. In:
2nd Workshop on Assessment of Contemporary Modularization Techniques (ACoM.08) at OOPSLA,
2008, Nashville - EUA.

9. Bosch, J.; Molin, P.; Mattsson, M.; Bengtsson, P.; Fayad, M. “Framework Problems and Experiences”.
In: Building Application Frameworks – Object-oriented Foundations of Frameworks Design. Wiley,
c1999, Chap. 3, p. 55-83.

10. E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements of Reusable Object-Oriented
Software”, Addison-Wesley, 1994.

11. Jacobsen, E.; Nowack, P. “Frameworks and Patterns: Architectural Abstractions”. In: Building
Application Frameworks – Object-oriented Foundations of Frameworks Design. Wiley, c1999, Chap. 2,
p. 29-54.

12. Kiczales, G.; Lamping, J.; Menhdhekar, A.; Maeda, C.; Lopes, C.; Loingtier, J.; Irwin, J. “Aspect-
oriented programming”. In European Conference on Object-oriented Programming, 1997.
Proceedings... p. 220–242.

13. Fleury, M.; Reverbel, F. “The JBoss Extensible Server”. In ACM/IFIP/USENIX 2003 International
Conference on Middleware. Rio de Janeiro: 2003. Proceedings... p. 344-373.

14. Jamae, J.; Johnson, P. “JBoss in Action: Configuring the JBoss Application Server”. Manning
Publications, 2009.

15. Laddad, R. “AspectJ in Action: Enterprise AOP with Spring Applications “. Manning Publications, 2nd
edition, 2009.

16. Walls, C.; Breidenbach, R. “Spring in Action”. Manning Publications; 2nd edition, 2007.
17. Silva, Maria Tania; Braga, Rosana; Masiero, Paulo Cesar. Evolução Orientada a Aspectos de um

Framework OO. In: 1º Workshop de Manutenção de Software Moderna, 2004, Brasilia - DF.
18. F. Doucet, S. Shukla, R. Gupta, “Introspection in system-level language frameworks: meta-level vs.

Integrated.” In Source Design, Automation, and Test in Europe, 2003. Proceedings... [S.l.: s.n], 2003. p.
382-387.

19. I. Forman, N. Forman, “Java reflection in action”. Greenwich: Manning Publ., 2005.
20. B. Foote, J. Yoder, “Evolution, architecture, and metamorphosis”, In Pattern Languages of Program

Design 2. Boston: Addison-Wesley Longman, 1996. Chap. 13, p. 295-314.
21. Maes, P. “Concepts and Experiments in Computational Reflection”. In The International Conference on

Object-oriented Programming, Systems, Languages and Applications – OOPSLA 1987. Proceedings...
p. 147-169.

22. N. Chen, “Convention over configuration”, 2006. Available at
<http://softwareengineering.vazexqi.com/files/pattern.html>, accessed on 17 dez. 2009.

23. Ruby, S.; Thomas, D.; Hansson, D. “Agile Web Development with Rails”. Pragmatic Bookshelf, Third
Edition, 2009.

24. E. Guerra, J. Souza, C. Fernandes, “A pattern language for metadata-based frameworks”, In Conference
on Pattern Languages of Programs, 16., 2009, Chicago. Proceedings… , 2009.

25. L. O'Brien, “Design patterns 15 years later: an interview with Erich Gamma, Richard Helm and Ralph
Johnson”. InformIT, Oct. 22, 2009. Available at <http://www.informit.com/articles/article.aspx?
p=1404056>, accessed on 26 dez.2009.

26. JSR 303: Bean Validation. 2009. Available at <http://www.jcp.org/en/jsr/detail?id=303> acessed in 17
dez 2009.

27. R. Nucitelli, E. Guerra, C. Fernandes, “Parsing XML Documents in Java Using Annotations”, In XML:
Aplicações e Tecnologias Associadas, 2010, Vila do Conde, Portugal.

28. JavaBeans(TM) Specification 1.01 Final Release. 1997. Available at
<http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html> acessed in 27 dez 2009.

29. Massol, V.; Husted, T. “JUnit in Action”. Manning Publications, 2003.
30. JSR 175: a metadata facility for the java programming language. 2003. Available at

<http://www.jcp.org/en/jsr/detail?id=175>, accessed on 17 dez. 2009.
31. Miller, J.; Ragsdale, S. “Common language infrastructure annotated standard”. Boston: Addison-

Wesley, 2003.
32. Schwarz, D. “Peeking inside the box: attribute-oriented programming with Java 1.5.” [S.n.t.], 2004.

Available at <http://missingmanuals.com/pub/a/onjava/2004/06/30/insidebox1.html>, accessed on 17.
dez. 2009.

33. Cisternino, A.; Cazzola, W.; Colombo, D. “Metadata-driven library design”. In Library-centric
Software Design Workshop. Proceedings... 2005.

34. Rouvoy, R.; Pessemier, N.; Pawlak, R.; Merle, P. “Using attribute-oriented programming to leverage
fractal-based developments”, In International ECOOP Workshop on Fractal Component Model, 5.,
Nantes, 2006. Proceedings… , 2006.

35. Wada, H.; Suzuki, J. “Modeling Turnpike Frontend System: a Model-Driven Development Framework
Leveraging UML Metamodeling and Attribute-Oriented Programming”. In Proc. of the 8th ACM/IEEE
International Conference on Model Driven Engineering Languages and Sytems (MoDELS/UML 2005),
2005.

36. Guerra, E.; Fernandes, C. “An Experimental Evaluation on Metadata-based Frameworks Usage”,
unpublished.

37. Bergmans, L.; Aksit, M. “Composing crosscutting concerns using composition filters” Commun. ACM,
vol. 44, no. 10, pp. 51–57, 2001.

38. JBoss AOP: Framework for Organizing Cross Cutting Concerns.. Available at
<http://www.jboss.org/jbossaop> acessed in 01 jun 2010.

39. JSR 220: Enterprise JavaBeans 3.0. 2006. Available at <http://www.jcp.org/en/jsr/detail?id=220>,
accessed on 17 dez. 2009.

40. JSR 299: Contexts and Dependency Injection for the JavaTM EE platform. 2009. Available at
<http://www.jcp.org/en/jsr/detail?id=299>, accessed on 17 dez. 2009.

41. Doernenburg, E. “Domain Annotations”. In The Thoughtworks Anthology: Essays on Software
Technology and Innovation, Chapter 10, p. 121-141. Pragmatic Bookshelf, Raleigh, NC, USA, March
2008.

42. Evans, E. “Domain-Driven Design: Tackling Complexity in the Heart of Software”. Addison-Wesley
Professional, 2003.

43. J. Perillo, E. Guerra, J. Silva, F. Silveira, C. Fernandes, “Metadata Modularization Using Domain
Annotations”, In Workshop on Assessment of Contemporary Modularization Techniques 3.,2009,
Orlando. Proceedings…[S.l.: s.n], 2009.

44. J. Perillo “Daileon: Uma Ferramenta Para Habilitar o Uso de Anotações de Domínio”, Trabalho de
Curso (Engenharia de Software) - Curso de Especialização em Tecnologia da Informação, São José dos
Campos: Instituto Tecnológico de Aeronáutica, 2010.

45. Perillo, R. ; Guerra, E.; Fernandes, C. “Daileon: A Tool for Enabling Domain Annotations”. In: 6th
ECOOP'2009 Workshop on Reflection, AOP and Meta-Data for Software Evolution, 2009, Genova.

46. SystemGlue. Available at <http://systemglue.sf.net/> accessed in 14 mai 2010.
47. Guerra, E.; Silveira, F. ; Fernandes, C. “ClassMock: A Testing Tool for Reflective Classes Which

Consume Code Annotations”. In: Workshop Brasileiro de Métodos Ágeis (WBMA 2010), 2010, Porto
Alegre.

48. Fernandes, C.; Ribeiro, D.; Guerra, E.; Nakao, E. “XML, Annotations and Database: a Comparative
Study of Metadata Definition Strategies for Frameworks”. In: XML: Aplicações e Tecnologias
Associadas, 2010, Vila do Conde, Portugal.

49. Code Generation Library - CGLIB. Available at <http://cglib.sourceforge.net/> accessed in 31 jan
2010.

50. Yassine, A. “An Introduction to Modeling and Analyzing Complex Product Development Processes
Using the Design Structure Matrix (DSM) Method”. Quaderni di Management (Italian Management
Review), No.9, 2004.

