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ABSTRACT

Reliable agricultural statistics has become increasingly important to decision makers.
Especially when timely obtained, agricultural information is highly relevant to the
strategic planning of the country. Although remote sensing shows to be of great
potential for agricultural mapping applications, with the benefit of further improving
official agricultural statistics, its potential has not been fully explored. There are very
few successful examples of operational remote sensing application for systematic
mapping of agricultural crops, and they are strongly supported by visual image
interpretation to allow accurate results. Indeed, despite the substantial advances in
remote sensing data analysis, techniques to automate remote sensing data analysis
focusing on agricultural mapping applications are highly valuable but have to maintain
consistency and accuracy. In this context, there continues to be a demand for
development and implementation of computer aided methods to automate the processes
of analyzing remote sensing datasets for agriculture applications. Thus, the main
objective of this thesis is to propose implementation of computer aided methodologies
to automate, maintaining consistency and accuracy, processes of remote sensing data
analyses focused on agricultural thematic mapping applications. This thesis was written
as a collection of two papers related to a core theme, each addressing the following
main points: (i) multitemporal, multispectral and multisensor image analysis that allow
the description of spectral changes of agricultural targets over time; and (ii) artificial
intelligence in modeling phenomena using remote sensing and ancillary data. Study
cases of sugarcane harvest in Sdo Paulo and soybean mapping in Mato Grosso were
used to test the proposed methods named STARS and BayNeRD, respectively. The two
methods developed and tested confirm that remotely sensed (and ancillary) data analysis
can be automated with computer aided methods to model a range of cropland
phenomena for agriculture applications, maintaining consistency and accuracy.
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METODOS SPECTRO-TEMPORAL E BAYESIANO PARA ANALISE DE
DADOS EM SENSORIAMENTO REMOTO AGRICOLA

RESUMO

Informacgdes agricolas confiaveis tem se tornado cada vez mais importantes para 0s
tomadores de decisbes. Especialmente quando sdo obtidas em tempo habil, essas
informacfes sdo altamente relevantes para o planejamento estratégico do pais. Apesar
de o sensoriamento remoto mostrar-se promissor para aplicagcbes em mapeamento
agricola, com potencial de melhorar as estatisticas agricolas oficiais, esse potencial ndo
tem sido amplamente explorado. Existem poucos exemplos bem sucedidos do uso
operacional do sensoriamento remoto para mapeamento sistematico de culturas
agricolas e, para garantir resultados precisos, eles sdo fortemente baseados em
interpretacdo visual de imagens. De fato, apesar dos substanciais avancos em analise de
dados de sensoriamento remoto, novas técnicas para automatizar a analise de dados em
sensoriamento remoto com aplicacbes agricolas sdo desejaveis, especialmente no
propdésito de manter a consisténcia e a precisdo dos resultados. Neste contexto, existe
uma demanda crescente pelo desenvolvimento e implementacdo de métodos
automatizados de andlise de dados de sensoriamento remoto com aplicacbes em
agricultura. Assim, o principal objetivo desta tese € propor o desenvolvimento e a
implementacdo de métodos para automatizar a analise de dados de sensoriamento
remoto em aplicacbes agricolas, com foco na consisténcia e precisdo dos resultados.
Este documento foi escrito como uma colecéo de dois artigos, cada um com foco nos
seguintes pontos: (i) analise multitemporal, multiespectral e multisensor, permitindo a
descricdo das variacdes espectrais de alvos agricolas ao longo do tempo; e (i)
inteligéncia artificial na modelagem de fenédmenos usando dados de sensoriamento
remoto e informacdes complementares de maneira integrada. Dois estudos de caso
referentes ao mapeamento da colheita da cana em Sao Paulo e ao mapeamento da soja
no Mato Grosso foram usados para testar as metodologias batizadas de STARS e
BayNeRD, respectivamente. Os resultados dos testes confirmaram que ambos o0s
métodos propostos foram capazes de automatizar processos de analises de dados de
sensoriamento remoto com aplicagdes agricolas, com consisténcia e precisao.
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1 Introduction

Reliable agricultural statistics has become increasingly important to decision makers.
Especially when timely obtained, agricultural information is highly relevant to the
strategic planning of the country (e.g., inventory control, pricing, etc.) (PINO, 1999).
Until 1938, the official agricultural statistics of Brazil were the sole responsibility of the
Ministry of Agriculture, Livestock and Food Supply (MAPA Ministério da
Agricultura, Pecuaria e Abastecimento). Later, this responsibility was shared with the
Brazilian Institute of Geography and Statistics (IBGEInstituto Brasileiro de
Geografia e Estatistica). From 1938 until the 1970s, several methodologies were
applied by MAPA and IBGE to estimate agricultural statistics under the responsibility
of public agencies (IBGE, 2002). In January 1974, IBGE was decreed the official
agency for agricultural statistics in Brazil. However, these statistics have been estimated
using methods based on subjective techniques. According to IBGE (2002), the estimates
are based on questionnaires distributed to producers or to regional representatives of the
agricultural sector. Despite of the relevance of these estimates, two aspects shall be
pointed out about the data produced by IBGE: (i) the estimates are carried out based on
a subjective method, therefore, it is not possible to statistically treat the errors, and (ii)
the municipality estimate$oducdo Agricola Municipal PAM) are published with a

time lag of about two years (BATISTA et al., 1978; IBGE, 2012b).

A significant improvement in the quality of satellite imagery was observed in 1984 with
the advent of the Thematic Mapper (TM) sensor aboard the Landsat-5 satellite,
widespreading the use of satellite images to map agricultural areas (NELLES

2009). Another important event that increased the use of satellite images for agricultural
applications was the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor
aboard the Terra satellite launched in late 1999 (BECKER-RES&iEA., 2010;
RUDOREFF, B. F. Tet al., 2007). Although the moderate spatial resolution of 250 m of
the MODIS sensor restricts its use to areas of extensive farming (crops planted in large
fields) (RUDORFF, C. Met al., 2007), it is compensated by a wide imaging swath
allowing an almost dayly temporal resolution (PITAR@H al., 2011). Indeed, the
Earth observing imagery counts on a wide range of sensors with different
characteristics, acquiring a huge amount of data with potential use for different

1



applications. Thus, due to its synoptic and systen@taracteristic (JENSEN, 2006),
orbital remote sensing has been pointed out as a valuable tool for mapping and

monitoring agricultural crops.

Although remote sensing has great potential for agricultural mapping applications, with
the benefit of further improving official agricultural statistics in Brazil (MELLCak,
2013a), its potential has not been widely explored for this purpose. There are very few
successful examples of operational use of remote sensing for systematic mapping of
agricultural crops (ATZBERGER, 2013). Among those few examples, we highlight the
Canasat and the Soy Moratorium projects, developed by INPE in partnerships with the
private and public institutions.

Since 2003, the Canasat Project mapped the sugarcane crop in the south-central region
of Brazil (Sado Paulo, Parana, Minas Gerais, Mato Grosso, Mato Grosso do Sul, Goias,
Rio de Janeiro and Espirito Santo States) (RUDORtF&I., 2010). Moreover, since

2006, the Canasat Project mapped the type of sugarcane harvest (i.e., with or without
the straw burning during preharvest) in S&o Paulo State (AGUWSARI., 2011).
Furthermore, the Canasat Project also developed complementary research on topics
such as understanding the dynamics of land use change in response to the expansion of
sugarcane (ADAMl et al.,, 2012b). The Soy Moratorium Project, in its turn,
incorporated the use of satellite imagery in 2009 to identify annual crops in deforested
land after July 24, 2006, followed by air survey to identify soybean plantations among
the pre-selected annual crops (RUDORFF et al., 2011, 2012).

An important point to be highlighted is that the two previously mentioned projects are
strongly supported by visual image interpretation to allow accurate results (ABAMI

al., 2012a). Hence, techniques to automate the remote sensing data analysis (LU;
WENG, 2007) focusing on agricultural mapping applications are highly desirable
(MELLO, 2009; VIEIRA, 2000) but have to maintain consistency and accuracy
(LOVELAND et al., 2002).

Lu and Weng (2007) made a literature review on the subject of image classification
methods and the progress made in terms of improving the classification results. Among

the main features listed by the authors, advances in terms of automating processes for
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remote sensing data analysis converge around:g(@etielopment and use of advanced
algorithms for classification, especially those that incorporate the expert's knowledge;
(i) the use of multispectral, multitemporal and multisensor information; and (iii) the use
of ancillary data (e.g., topography, soil, tabular data, etc.) to complement data collected

by the sensors.

In recent decades, the literature offers some cases of new classification techniques,
focusing on agricultural applications. Sanetsal. (2012), for example, proposed a
classification method that integrates the result of different classifiers and, according to
the authors, achieved more than 80% of overall accuracy for classifications of coffee
plantations in mountain areas of Minas Gerais State, Brazil. The technique of
combining results from different classifiers had already been reviewed and detailed by
Vieira (2000), who achieved an improvement of almost 20% in the value of the kappa

index (COHEN, 1960) for a particular study of crop classification in England.

In addition, the combination of different techniques has also proved to be effective for
classification. Vieiraet al. (2012), for example, proposed the integrated use of data
mining and object based image analysis (OBIA) to identify, with 94% overall accuracy,
sugarcane areas in three municipalities of Sdo Paulo State. In fact, there is a role for the
use and development of new tools for OBIA. The Geographic Data Mining Analyst
(GeoDMA), described by Kortinget al. (2013), is a successful example of

implementing an integrating set of tools.

However, despite the substantial advances in developing new classifiers [e.g., the
Support Vector Machine (MOUNTRAKISt al., 2011)] and new approaches of
automated methodologies for remote sensing data analyses [e.g., combination of
classifiers (SANTOSet al., 2012)], there is still a need for the development of robust
methods (WILKINSON, 2005) focused on image classification for remote sensing
applications in agriculture (ATZBERGER, 2013; VIEIRA, 2000).

In this context, there continues to be a demand for development and implementation of
computer aided methods to automate the processes of analyzing remote sensing datasets

for agriculture applications. Thus, this thesis proposes the implementation of



methodologies to automate processes of remote sgewlsita analyses focused on
agricultural thematic mapping applications.

1.1. Objective, Thesis Structure and Content

The main objective of this thesis is to automate, maintaining consistency and accuracy,
processes of remote sensing data analysis with emphasis on thematic mapping of
agricultural applications. Two main points were addressed:

a) Multitemporal, multispectral and multisensor image analysis that allow the

description of spectral changes of agricultural targets over time;

b) Artificial intelligence in modelling phenomena using remote sensing and
ancillary data.

The working hypothesis was that processes of remotely sensed data analysis focused on
crop mapping can be automated with computer aided methods and produce highly

accurate maps.

This thesis was written as a collection of two papers related to a core theme. Each paper
describes the two aforementioned points. A brief description of the structure of each

paper follows.

Chapter 2: This chapter aims at describing the development and
implementation of a method to synthesize the full information content of a
multispectral-multitemporal remote sensing dataset into a single synthetic image.
It presents the full mathematical structure and conceptual definitions of the
method named Spectral-Temporal Analysis by Response Surface (STARS). A
case study was used to rigorously assess the STARS method, evaluating its
potential to accurately characterize the sugarcane harvest practices in Brazil.

Chapter 3: In this chapter we proposed an innovative method to integrate
remote sensing and ancillary data analysis in a logical perspective. It consists on
the application of Bayesian theory using an artificial intelligence technique
known as Bayesian Networks. The chapter aims at describing the development

and implementation of this new method named Bayesian Networks for Raster
4



Data (BayNeRD). The method was used to model soypkemations in Mato
Grosso State, Brazil, based on vegetation indices, soil maps, roads network,

topography and hydrography data stored in raster format.






2 STARS: a new method for multitemporal remote sensiny

Abstract:

There is great potential for the development of remote sensing methods that integrate
and exploit both multispectral and multitemporal information. This paper presents a
new image processing method: Spectral-Temporal Analysis by Response Surface
(STARS), which synthesizes the full information content of a multitemporal-
multispectral remote sensing image data set to represent the spectral variation over time
of features on the Earth’'s surface. Depending on the application, STARS can be
effectively implemented using a range of different models [e.g., polynomial trend
surface (PTS) and collocation surface (CS)], exploiting data from different sensors, with
varying spectral wavebands and acquiring data at irregular time intervals. A case study
was used to test STARS, evaluating its potential to characterize sugarcane harvest
practices in Brazil, specifically with and without preharvest straw burning. Although the
CS model presented sharper and more defined spectral-temporal surfaces, abrupt
changes related to the sugarcane harvest event were also well characterized with the
PTS model when a suitable degree was set. Orthonormal coefficients were tested for
both the PTS and CS models and performed more accurately than regular coefficients
when used as input for three evaluated classifiers: instance-based, decision-tree, and
neural network. Results show that STARS holds considerable potential for representing
the spectral changes over time of features on the Earth’s surface, thus becoming an
effective image processing method, which is useful not only for classification purposes
but also for other applications such as understanding land-cover change. The STARS

algorithm can be found at www.dsr.inpe.br/~mello.

! This chapter is an adapted version of the paper:

Mello, M. P.; Vieira, C. A. O.; Rudorff, B. F. T.; Aplin, P.; Santos, R. D. C.; Aguiar, D. A. STARS: a
new method for multitemporal remote sensiiiti-E Transactions on Geoscience and Remote
Sensing v. 51, n. 4, p. 1897-1913, 2013.
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2.1. Introduction to STARS

Spaceborne remote sensing is widely used to monitor land-cover change on the Earth’s
surface. However, due to the complexity of land-cover dynamics, it is difficult to
establish patterns that can be standardized to represent and map such change (DeFRIES;
BELWARD, 2000; LAMBIN; GEIST, 2006). By the 1990s, the scientific community

had recognized the value of remote sensing as the chief source of spatial data for driving
wide-area analysis (SELLER& al., 1995). The key characteristics of satellite sensor
images are that they are being continuously recorded at specific spectral wavebands
over the entire Earth and can facilitate observation of environmental change at local to
global scales (APLIN, 2006). As pointed out by DeFries and Belward (2000), the
continuity of spaceborne remote sensing observations is a key factor for the success of

using these data for characterizing change on the Earth’s surface.

A wide range of studies have been conducted over the last decade to improve spectral
(DEMIR et al., 2011b; LANDGREBE, 2005) and temporal (BOVOleDal., 2012;
DEMIR et al.,, 2011a; SMITS; BRUZZONE, 2004) analysis and comprehension of
remotely sensed data related to changes on the Earth’s surface. However, these studies
are often limited spectrally or temporally, either by constraining examination of image
spectral profile (LANDGREBE, 2005) (i.e., multispectral analysis) to only a single date
image (LEE; ERSQY, 2007; SOUTEt al., 2004) or by constraining examination of
image temporal profile (i.e., multitemporal analysis) to only a single spectral layer (e.g.,
a vegetation index time series) (GALFOR® al., 2008; LUNETTAet al., 2006;
SALMON et al., 2011; WARDLOWet al., 2007). Wilkinson (2005) suggests that
satellite sensor image classification results have not significantly improved for a
considerable period of time. Moreover, relatively few integrated multispectral-
multitemporal approaches have been reported in the scientific literature (e.qg.,
BRUZZONE; SMITS,2002; CARRAO et al. 2008). Thus, there is great potential for the
development of remote sensing methods that integrate and exploit both multispectral
and multitemporal information (COPPIN et al., 2004).

Novel multispectral-multitemporal methods are likely to be of particular benefit where
they are sufficiently robust and adaptable to be used in a range of applications, such as

land-cover inventorying [e.g., change detection (LAMBIN; LINDERMAN, 2006;
8



LAMBIN; STRAHLER, 1994)], environmental monitorin@.p., deforestation (SILVA

et al., 2008)], or resource management [e.g., maximizing agricultural productivity
(BARGIEL; HERRMANN, 2011)], and in a range of different circumstances. For
instance, if we are interested in monitoring agricultural crops over the growing season,
it may be desirable to take into account the gradual spectral change of each crop
(VIEIRA, 2000). In contrast, if we are interested in detecting harvest, it may be
desirable to consider the abrupt spectral change that occurs at the time the crop is
harvested (MELLO, 2009). It may be also desirable to constrain data dimensionality to

avoid both high computational costs and the Hughes phenomenon (HUGHES, 1968).

This paper presents an advanced image processing method to represent the spectral-
temporal behavior of features on the Earth’s surface: Spectral-Temporal Analysis by
Response Surface (STARS). STARS uses the concept of response surfaces for spectral-
temporal analyses of multitemporal-multispectral remote sensing data (VIEIRA, 2000).
It allows the use of image data from different sensors with varying spectral wavebands
and irregular time intervals. Moreover, different model options can be used to fit the

response surfaces according to the application.

This work draws on earlier tests using response surfaces to map agriculture fields (e.g.,
Epiphanioet al. (2010)), although these tests were limited to classification analysis.
This new work presents the full mathematical structure of STARS and its conceptual
definitions and treats STARS as a generic image processing method that can be used not
only for classification but also for other applications such as understanding land-cover
change. Within this context, a case study was used to test the STARS method,
evaluating its potential to characterize sugarcane harvest practices in Brazil. In the next
section, the STARS methodology is described in full. Then, in Section 2.3, Brazilian
sugarcane agriculture is introduced. This is followed, in Section 2.4, by an outline of the
research materials and methods employed in the application of STARS for the
sugarcane harvest case study. In Section 2.5, the results of STARS and subsequent
classification of the STARS outputs are presented, discussed, and rigorously assessed in

terms of accuracy. This leads to final concluding comments in Section 2.6.



2.2. STARS methodology
2.2.1. Rationale

The STARS method operates by representing the full information content of a
multitemporal-multispectral remote sensing image data set as a single synthetic

multicoefficient image (MCI).

A multispectral remote sensing image of a specific area cor@aspgctral wavebands,

with L lines perC columns. At each ground resolution element, usually represented as a
pixel, there is a spectral profile formed by Sspectral wavebands. When this pixel is
imaged over time afl dates, a 3-D spectral-temporal space (STS) is formed. For
modeling purposes, we shall assume that STS is formed by two independent variables,
namely, time 1) and spectrums], and one dependent variable representing the observed
values of the sensor)( such as reflectance or band transformation (e.g., vegetation
index).

Thus, for each pixel, there anepoints distributed within the STS, whares given by

the total sum of the number of the spectral wavebands farddtes. These points can

be obtained from several observations of sensors with different spectral wavebands that
represent the spectral-temporal profile of the pixel. In short, the idea is to establish a
model that describes the STS points based on the function

r =f(t,9). (2.1)

The model that represents the relationship between depenyland(independent,§)
variables is denominated the spectral-temporal response surface model and vkll have
coefficients to be estimated for each pixel. Therefore, each coefficient will compose a

specific synthetic band of the MCI. An overview of the STARS is presented in Fig. 2.1.

2 Thesvariable can also represent arbitrary labels instead of spectral wavebands, but it may cause a lack
of robustness (MELLO, 2009).
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Figure 2.1 - Framework of the STARS method.

2.2.2. Spectral-temporal response surface model

The modeling of the spectral-temporal response surface assumes that the variables in the
STS should be of the same magnitude, or else, they should be rescaled (VIEIRA, 2000).

As discussed by Watson (1992), there are several options for modeling the function
shown in Eg. 2.1, and the choice used will depend on the purpose of the application.
Two models tested by Vieira (2000) are particularly useful to represent Earth surface
changes: (i) the polynomial trend surface (PTS) model that can generate relatively
smooth surfaces representing gradual change such as crop growth and (ii) the
collocation surface (CS) model that can generate relatively sharp surfaces representing

abrupt change such as crop harvest.
2.2.2.1. Polynomial Trend Surface

PTS is a polynomial regression model that describes the distribution trend of the STS
points (WATSON, 1992). Therefore, since PTS models tend to describe the general
behavior of observed values on the spectral-temporal response surfaces, it is expected
that their use minimizes problems associated with aberrant or noisy data such as cloud
or cloud shadow in multitemporal images (VIEIRA, 2000). On the other hand, by
describing general behavior, a PTS model may obscure important extreme values

observed.
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PTS is considered to be a special case of the ddm&rar regression model (KUTNER

et al., 2005). In response surface interpolations, Watson (1992) describes the PTS as a
bivariate linear combination expressed in terms of powers and cross products of the two

independent variables (in this cas@nds). With the conditiork < n, thek coefficients

can be estimated using any method to solve overdetermined systems (e.g., least

squares).

The system of simultaneous linear equations for the PTS model with degesethe

form

7

d
r=2 2 B, )t e (2.2)
i=0 j=0

where thek coefficients are denoted IB/(from /% to A1) that will be estimated to their

best unbiased point estimators, which are denotedBiffrom S, to f,_,), and &
represents the error vector assumed to be uncorrelated with mean equal to zero and
variance equal t@®. For PTS models with two independent variables (e.ands), k

will depend on d following the relationship

k:@iggi@. (2.3)

For each pixel, the system in Eq. 2.2 can be written in matrix form as

r=XB+e (2.4)

wherer is a column vector witin observed values{ (commonly known aslesign
matrix) is a full column rank matrix (i.e., linearly independent columns) thahhags/s
by k columns containing powers and cross product terms of independent vayisles,
a column vector wittk coefficients to be estimated, agds a column vector witm

error elements.

As pointed out by Forsythe (1957), the solution of Eq. 2.4 toffingsing
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B=(X'X)"'X'r (2.5)

might be inaccurate due to the fact tkabecomes progressively more ill-conditioned

as the degree of polynomials increases. However, Mather (1976) suggests that the
modified Gram-Schmidt (MGS) orthonormalization (BJORCK, 1967) is an alternative
to obtain a more accurate solution. This solution does not require matrix inversion but
works upon theX matrix and is accurate even in badly conditioned problems, although
the degree of accuracy is affected by the size of the residuals (MATHER, 1976). The
use of the MGS orthonormalization has other advantages such as the minimization of
computation roundoff errors and the independence of the terms of the equation (and
then, the orthonormal coefficients are uncorrelated). This independence is important
because it makes it possible to add or remove terms without the need to recalculate the
existing ones. This fact enables some estimated orthonormal coefficients to be discarded
in order to reduce dimensionality (see DRAPER; SMITH, 1966).

Thus, we can rewrite Eq. 2.4 using the orthonormal corresponding system given by

r=Qa+e (2.6)

whereQ is an orthonormal matrix with rows byk columns, calculated using MGS
orthonormalizationgr is a column vector witlk orthonormal coefficients (i.e., from
to ak1); and € is a column vector withn eror elements associated with the

orthonormalized system.

As pointed out by Mather (1976), the solution using MGS orthonormalization requires
two steps: (i) the conversion &f to its orthonormalized correspondiqgand (ii) the
determination of the orthonormal coefficiers Considering that these orthonormal
coefficients are abstract and cannot be directly interpreted, it might be interesting to
convert them into the regular coefficients of the original PTS moggl This
conversion can be done by the QR factorization (GOLUB; VAN LOAN, 1996), where

the Qmatrix is the sam® in the MGS process.
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The MGS orthonormalization is carried out as follovfsve call X+, X+, ..., X« the
column vectors oK (the symbol ¥” represents all row elements within a column), then

the first orthonormal column vector of @Qe., 1) is given by

X1

R

dx1 (2.7)
where M+1|| represents the norm of the column veater For the following column
vectors ofQ, theith column vectordx) is calculated using an iterative process given by
I-1 steps:

1 QL X
qii):x*i—< /1 l)q“
q*lq*l

0@ =g — asqly Qo
k4, 4 (1;2(1*2 *

(2.8)

(i-2)

i - Qi 19
- (%9
Q191
and its subsequent normalization is given by
i—1
Qi = Qii : (2 9)
*1 T i—1 . .
o]

The normalization to find)+; is performed prior to the calculation of the next column

VECtOr Chi+1.

As discussed by Draper and Smith (1966) and Golub and van Loan (1996), the solution
for the orthonormal system in Eq. 2.6 according to the orthonormality characteristic

Q’Q =1, where lis the identity matrix, is given by the least squares as

a=Q'r. (2.10)

If desirable, the regular coefficients of the PTS mogelc&n be calculated using the

QR factorization. Thus, through the QR factorization, we can write
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X = QR (2.11)

whereR is a square upper triangular matrix wkthows byk columns, with its elements

calculated by

Thus, using Eq. 2.11 in Eqg. 2.5, the least squares solution becomes

RB=Q'r. (2.13)

The solution of this upper triangular system will estimate the regular coefficients of the
PTS model £) using, for instance, backward substitution. Another way to estifste
using the relationship between EQgs. 2.10 and 2.13. Thus, the conversion of the

orthonormal coefficients to S can be made b§ = R~'a.
2.2.2.2. Collocation Surface

CS is a model that uses the distances among the STS points to fit a surface that passes
through alln points (WATSON, 1992). Spectral-temporal response surfaces fitted with
CS models tend toward horizontal planes as the distance instpé&ane of the STS
increases (HARDY, 1971). Thus, this model is recommended for use both when remote
sensing images are relatively free of noise and when the images were acquired from

sensors with similar spectral characteristics.

Given the set ol points, the procedure solves the system of simultaneous linear

equations estimating thecoefficientsd. The CS model in matrix form is given by

r=D65+¢ (2.14)

whereg is a column vector with eror elements associated with the collocation model,

and Dis the distance matrix, i.e.,
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el d(pi,p2) -+ d(pi,pr)

d(p27p1) €2 s d(p27pk)

D- (2.15)

d(pr,p1) d(pr.p2) - ek

with

Api,pj) = [ (ts = 1) + (55— 55)2 + € (2.16)

whered(p;,p) is a function of the distance between the projections oftthandjth

points on the & plane of the STS. This distance is modified by the nonnegative constant
e, which, in the case of relatively small-scale variations in distances, can be set to zero
(HARDY, 1971).

It is worth mentioning that in the CS model, there is no dimensionality reduction since

k =n. Therefore, Eq. 2.14 is a square system, and its stable solution can be found to be
the same as for Eq. 2.4 using MGS orthonormalization, after replXcegd S for D

and 9, respectively (GOLUB; VAN LOAN, 1996). Then, the conversion of the
orthonormal coefficients into the regular coefficients of the CS mdjléd performed

the same way as in the PTS model.
2.2.3. Multi-Coefficient Image

Response surfaces may be comparated either directly (e.g., by difference) or indirectly
(e.g., by estimated coefficients). The main advantage of using the estimated coefficients
Is that this approach tends to represent the form of the reponse surface, which makes the
method more robust (VIEIRA, 2000).

The MCI hasL lines perC columns andk synthetic bands formed by tlkeestimated
coefficients for each pixel in a study area (witHines perC columns). Thus, the
estimated coefficients that compose kheands of the MCI represent the information
content of the multispectral-multitemporal remote sensing image data set for the study
area. For example, in the PTS modglrepresents the surface offset with regard to the
STS origin (KUTNERet al., 2005). Indeed, each estimated coefficient, in some way,

contains the description of the spectral variation over time.
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2.3. Sugarcane agriculture context

The possible consequences of £&acumulation in the atmosphere due to the use of
fossil fuels, as well as the rise of oil prices, have triggered a considerable global interest
in biofuels, which are considered relatively low-pollution energy sources (LE{BE,

2009). Hoogwijket al. (2005) cite studies that project future growth of biofuels to
supply between 5% and 50% of global energy demand. The potential for any biofuel to
mitigate greenhouse gas (GHG) emissions is determined by the balance of emissions
during all production steps, including agroindustrial ones, and biofuel consumption
(MACEDO et al., 2008). Thus, agricultural management techniques have a major role
in calculating such balance (KIM et al., 2009).

Of all biofuels, ethanol derived from sugarcane offers the highest GHG reduction rate
when compared with gasoline (WALTE® al., 2008). However, some management
techniques such as preharvest burning (BH), which can make manual harvesting easier,
decrease this biofuel mitigating potential, since CO,,Gid particulate material are
emitted through this process (FIGUEIREDO; LA SCALA JR., 2011; GALD£Sl.,

2009; GOLDEMBERCGxet al., 2008; KIRCHHOFFet al., 1991). Moreover, the practice

of BH has been identified as the cause of an increase in respiratory diseases, as
measured by hospital admissions data, mainly among children and senior citizens
(CANCADO et al., 2006; LARAet al., 2005; URIARTEet al., 2009). In addition,
leaving straw on the fields (i.e., not burning) decreases soil and water loss and helps in

the maintenance of soil carbon storage (GALDOS et al., 2009).

Given the detrimental environmental consequences of BHs, Sdo Paulo State, which is
responsible for 60% of ethanol production in Brazil, has pledged agreement to a “Green
Ethanol” Protocol (for more details, see Lucon and Goldemberg (2010)). This protocaol,
agreed among the Sao Paulo State Secretary of Environment, the Sugarcane Industry
Union, and the supplier associations and ethanol producers, aims to gradually reduce
straw burning in sugarcane plantations, leading to a complete cessation of the practice
by 2014 for mechanized areas (terrain sled®2%) and 2017 for nonmechanized areas

(terrain slope > 12%).
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Since 2006, the Brazil's National Institute for Sp&tesearch (INPE) has monitored
adherence to this protocol through remote sensing. To achieve this, visual interpretation
has been used to analyze at least one image coverage per month over harvest seasons
(AGUIAR et al.,, 2011; RUDORFFet al., 2010). Visual image interpretation is
particularly effective for distinguishing BH fields and green harvested (GH) fields (i.e.,
nonburned) due to the strong contrast between dark burned fields, where bare soil is
dominant after harvest (see Fig. 2.2), and bright GH fields, where a layer of dry leaves
(straw) covers the ground after harvest (see Fig. 2.3). The dark or bright contrast
indicates whether the sugarcane field was BH or GH, and this remains very evident for
several days or even weeks after harvest (AGUBRl., 2011). However, although
visual interpretation can be effective for sugarcane harvest characterization, it is a
laborious task and not practical for very large areas or very regular surveys. Alternative
automated classification procedures hold considerable potential here, particularly since
crop monitoring is required for such a large area throughout the April to December
harvest season (RUDORIeEal., 2010).

Figure 2.2 - BH sugarcane field, highlighting (inset) its appearance in a false color composite
TM/Landsat-5 image.
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Figure 2.3 - Mechanized sugarcane harvest without BH (called GH), showing the straw
remaining on the ground and highlighting (inset) its appearance in a false color
composite TM/Landsat-5 image.

2.4. Research materials and methods

This section presents the materials and methods employed in the application of STARS
to a sugarcane classification case study. Specifically, two types of sugarcane harvest
practices are investigated: with BH and GH. Fig. 2.4 shows a flowchart summarizing
the methods employed in the application of STARS to the case study. In short, 66
original wavebands (11 images, each with six spectral wavebands) of a multitemporal-
multispectral Landsat data set were georeferenced and radiometrically corrected
(including atmospheric correction). The resulting 66 georeferenced surface reflectance
wavebands were then used as input for STARS, which ran under 20 different scenarios.
Each scenario generated a different MCI, andktegnthetic bands of each MCI were

used as input for three classifiers, producing 60 classified thematic maps. The
georeferenced surface reflectance wavebands were also used together with a 5m
Systeme Pour I'Observation dela Ter(8POT) image and field data to create a
reference thematic map, which was used to select both the training and the testing

samples for classification and accuracy assessment, respectively.
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Figure 2.4 - Flowchart summarizing the application of STARS to the case study.

The research materials and methods employed in the application of STARS are detailed

in the following subsections.
2.4.1. Study area

The study area, shown in Fig. 2.5, is a densely cultivated sugarcane region in Sdo Paulo
State, well represented by the two harvest types practiced: BH and GH. This region is
located in the northern part of Sdo Paulo State and comprises three municipalities,
namely, Guara, Ipud, and S&o Joaquim da Barra. In total, these municipalities cultivated
about 60,000 ha of sugarcane in 2001 (IBGE, 2012b), with significant areas harvested
both BH and GH. The year 2001 was used to test STARS due to the availability of a
series of cloud-free Landsat sensor images, plus a strong field reference data set used to
both train classifiers and assess classification results.
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Figure 2.5 - Location of the study area, in Sdo Paulo State, Brazil, highlighting the
municipalities of Guard, Ipud, and Sao Joaquim da Barra in a false color
composite ETM+/Landsat-7 image acquired on July 29, 2001.

2.4.2. Multitemporal Landsat sensor images

Eleven cloud-free Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic
Mapper Plus (ETM+) images were acquired in 200% (L1), covering dates from the
beginning of the harvest season in April to the end of the harvest season in December
(RUDORFF et al., 2010) (see Table 2.1).

Table 2.1 - Summary of the 11 Landsat images used.

Image # Sensor/Satellite Date Day of year
1 ETM+/Landsat-7 Apr. 08, 2001 98
2 TM/Landsat-5 Apr. 16, 2001 106
3 TM/Landsat-5 May 02, 2001 122
4 TM/Landsat-5 May 18, 2001 138
5 TM/Landsat-5 Jun. 03, 2001 154
6 TM/Landsat-5 Jul. 05, 2001 186
7 ETM+/Landsat-7 Jul. 29, 2001 210
8 ETM+/Landsat-7 Aug. 14, 2001 226
9 TM/Landsat-5 Sep. 07, 2001 250
10 TM/Landsat-5 Oct. 25, 2001 298
11 ETM+/Landsat-7 Dec. 04, 2001 338
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Analysis was conducted using six of the Landsat @gshsspectral wavebands,
corresponding to the blue (bl), green (b2), red (b3), near-infrared (NIR, b4), and
shortwave infrared (SWIR, b5 and b7) parts of the electromagnetic spectrum. The

spatial resolution of Landsat TM/ETM+ is 30 m.
2.4.3. Image georeferencing

The remote sensing images were georeferenced using 21 ground control points collected
with a dual-frequency Global Positioning System (GPS) receiver with differential
correction based on the two nearest stations in the Brazilian Network for Continuous
Monitoring (RBMC: Rede Brasileira de Monitoramento Continuo), i.e., UBER and
MGUB, which are both located in the municipality of Uberlandia, Minas Gerais State,
Brazil. The coordinates of these control points were projected according to the
WGS84/UTM-23S map projection system, achieving positional errors of less than
50 cm. The images were georeferenced using first-degree polynomials and nearest-
neighbor resampling, and the output images had a root-mean-square error of less than

0.5 pixels, as recommended by Dai and Khorram (1998).
2.4.4. Image radiometric correction

As recommended by Sorgg al. (2001), atmospheric correction should be taken into
consideration in preprocessing for applications where a common radiometric scale is
assumed among the multitemporal remote sensing data set. Thus, each Landsat image
(see Table 2.1) was converted from digital number to radiance and then to top of
atmosphere reflectance (apparent reflectance), as proposed by Markham and Barker
(1986), using the parameters presented by Chaedexl. (2009). When used for
multitemporal analysis, Schroedet al. (2006) recommended the use of radiometric
normalization rather than atmospheric correction of each image. In this case, the July
29, 2001 image (image #7 in Table 2.1) was atmospherically corrected and used as a

base image for subsequent radiometric normalization of the remaining ten images.

Image #7 was chosen for atmospheric correction since: (i) this is from a central period
in the multitemporal data set (see Table 2.1), and (ii) this is a Landsat-7/ETM+ image,

and the Landsat-7 satellite orbits in tandem with the EOS Terra satellite sensor for near-
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coincident observations; hence, the aerosol optigath product from Terra’s MODIS

could be used to estimate the visibility parameter in the atmospheric correction
procedure (OLIVEIRAet al.,, 2009). Image #7 was then converted from top of
atmosphere reflectance to surface reflectance using the Second Simulation of the
Satellite Signal in the Solar Spectrum (6S) algorithm (VERMO&tEal., 1997).
Eventually, using the processed image #7 surface reflectance as base, the other ten
Landsat images listed in Table 2.1 were radiometrically normalized based on the
iteratively reweighted multivariate alteration detection (IR-MAD) transformation
(CANTY; NIELSEN, 2008; CANTYet al., 2004) [with penalization parameter set to
zero (NIELSEN; CANTY, 2005)]. After this normalization, it could be assumed that all
Landsat sensor images were converted to surface reflectance and that all six spectral

wavebands of the two Landsat sensors shared the same radiometric characteristics.
2.4.5. Spectral-temporal profile investigation

Since STARS aims to represent spectral response over time, it is important to have
some knowledge about the spectral-temporal profile of the classes of interest prior to
applying STARS. If the spectral profiles of the classes are different over time, it is
expected that STARS will be able to represent each class of interest (enabling classifiers
to distinguish these classes). Mello (2009) used six spectral wavebands of TM/Landsat-
5 (b1 to b5 and b7) acquired at six different dates throughout the harvest season of 2007
to investigate the dynamic spectral-temporal nature of BH and GH sugarcane fields in
Séo Paulo State (see Fig. 2.6).

Fig. 2.6 shows that the two harvest events (BH and GH) present distinct spectral

responses over time. The spectral-temporal dynamic of the BH sugarcane field (see
Fig. 2.6, left-hand side) is characterized by a minor reflectance decrease in the green
waveband (b2) and a minor reflectance increase in the red waveband (b3). A significant
reduction in the reflectance value is observed in the NIR waveband (b4) due to biomass
removal during burning and harvest (see Fig. 2.2). The SWIR wavebands (b5 and b7)
are strongly affected by soil type and moisture content (CARTER, 1991; GAUSAMAN

al., 1969; MELLO, 2009).
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Figure 2.6 — Spectral-temporal dynamic of BH and GH sugarcane fields. Source: Adapted from
Mello (2009).

The spectral-temporal dynamic of the GH sugarcane field (see Fig. 2.6, right-hand side)
is characterized by relatively high reflectance values in all visible spectral wavebands
(b1, b2, and b3) due to the bright reflectance of dry matter (straw). In the NIR waveband
(b4), reflectance is generally quite low due to biomass loss (GAUSEtAdL, 1969).

In the SWIR wavebands (b5 and b7), reflectance is relatively high due to the low water
content of the straw that remains on the ground (CARTER, 1991) (see Fig. 2.3). As the
sugarcane crop gradually regrows after harvest, either BH or GH, the fields’ spectral
profiles over time tend to become similar to those observed before harvest.

In the spectral-temporal analysis of sugarcane harvested fields, it is important to
consider the timing of the harvest event. Indeed, although the spectral dynamic of a field
GH in May can be similar to that of a field GH in October, the spectral-temporal
response surfaces of these fields will be different as a result of the different dates of the
harvest event, since the spectral profile of a harvested field (BH or GH) changes over
time (see Fig. 2.6). Thus, for labeling purposes, each BH or GH sugarcane field
appearing on any of the 11 Landsat images (see Table 2.1) is labeled according to the
image number in which the harvest event was observed. The thematic classes are
summarized in Table 2.2. If the sugarcane field was not harvested, it is labeled as

unharvested (UH).
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Table 2.2 - Summary of the 23 thematic classes used in classifications.

Description Label
Pre-harvest burning identified on the image #1 BHO1
Pre-harvest burning identified on the image #2 BHO2
Pre-harvest burning identified on the image #3 BHO3
Pre-harvest burning identified on the image #4 BHO4
Pre-harvest burning identified on the image #5 BHO5
Pre-harvest burning identified on the image #6 BHO6
Pre-harvest burning identified on the image #7 BHO7
Pre-harvest burning identified on the image #8 BHO8
Pre-harvest burning identified on the image #9 BHO9
Pre-harvest burning identified on the image #10 BH10
Pre-harvest burning identified on the image #11 BH11
Green harvesidentified on the image #1 GHO1
Green harvesidentified on the image #2 GHO02
Green harvesidentified on the image #3 GHO03
Green harvesidentified on the image #4 GHO04
Green harvesidentified on the image #5 GHO5
Green harvesidentified on the image #6 GHO06
Green harvesidentified on the image #7 GHO7
Green harvesidentified on the image #8 GHO08
Green harvesidentified on the image #9 GHO09
Green harvesidentified on the image #10 GH10
Green harvesidentified on the image #11 GH11
Unharvested sugarcane UH

2.4.6. Reference map creation

The reference map was populated using field data and visual interpretation of the
Landsat sensor images (see Table 2.1) in two steps: (i) a thematic map with the classes
sugarcane and nonsugarcane was generated using the method described byeRudorff

al. (2010) and evaluated by Adami al. (2012), and (ii) the thematic map with these
classes was then used to evaluate the harvested sugarcane (BH and GH), as described by
Aguiar et al. (2011). This interpretation generated a thematic map with 22 classes of
sugarcane harvested with BH and GH, depending on the image number in which the

harvest event was visually observed. Moreover, the sugarcane fields that were not
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harvested throughout the harvest season were atdssa8 UH. Eventually, the
reference map has 23 thematic classes, as described in Table 2.2.

To improve the detail of the reference map to a spatial resolution of 5m, a
panchromatic SPOT-5 high-resolution geometry image acquired on October 7, 2002
was used to delineate the sugarcane fields precisely. Finally, an erosich filter
(HARALICK et al., 1987) was applied to the reference map to discard border pixels,
preventing both misclassification due to spectrally mixed pixels and underestimation of

the classification accuracy due to positional uncertainty (FOODY, 2002).
2.4.7. Multi-Coefficient Image testing

It is expected that the MCI is able to represent the spectral-temporal information content
of the 11 Landsat images (see Table 2.1) and, according to their spectral-temporal
profile, indicates not only the harvest date but also whether the harvest practiced was
BH or GH.

Based on the 11 multitemporal-multispectral Landsat sensor images (see Table 2.1)
used in this case study, the variables that define the coordinates of the STS points were:
the image date acquisitioh ¥ 1), given in day of year; the central wavelength amfhe
Landsat spectral wavebah¢s=1), given in micrometers; and the observed values
given by the surface reflectanae=(p), varying from 0 to 1. In order to standardize all
variables to the same magnitude, the variablaad were rescaled to a closed interval

between 0 and 1, as suggested by Vieira (2000), before running STARS.

The MCI is the result of STARS and depends on the model used to describe the
spectral-temporal response surface for every pixel in the study area. The PTS model can
be simple, by setting the degree to ode=(1), and the complexity is increaseddas

increases. As discussed by Kuteeml. (2005), the degree must be correctly chosen to

% At a spatial resolution of 5 m, an erosion filter with a window of 13 x 13 eliminates a border of two
Landsat pixels.

“ After the radiometric normalization procedure, the six corresponding spectral wavebands of all Landsat
images were considered to having the ETM+ central wavelengths, since an ETM+ image was used as
base in the radiometric normalization procedure. Thuwgs six levels. The central wavelength values
considered were presented by Chareteal. (2009).
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produce a suitable response surface, i.e., neitloesnhall to inadequately describe the
surface nor too big to produce large anomalies in the surface. In order to evaluate
different degrees for the PTS model and also differences between the orthonormal and
the regular coefficients for both the PTS and CS models, we ran STARS with 20

different scenarios and generated 20 MCls, as summarized in Table 2.3.

Table 2.3 - Summary of the 20 MCls tested.

MCl#  Model d k Type of coeff.
MCI 01 PTS 1 3

MCI 02 PTS 2 6

MCI 03 PTS 3 10

MCI 04 PTS 4 15

MCI 05 PTS 5 21

Orthonormal

MCI 06 PTS 6 28

MCI 07 PTS 7 36

MCI 08 PTS 8 45

MCI 09 PTS 9 55

MCI 10 CSs - 66

MCI 11 PTS 1 3

MCI 12 PTS 2 6

MCI 13 PTS 3 10

MCI 14 PTS 4 15

MCI 15 PTS 5 21

Regular

MCI 16 PTS 6 28

MCI 17 PTS 7 36

MCI 18 PTS 8 45

MCI 19 PTS 9 55

MCI 20 PTS - 66

d: degree of polynomial&k number of coefficients, given by Eq. 2.3.

Finally, thek synthetic bands of each MCI, instead of the 66 Landsat multitemporal-
multispectral wavebands, were used as input attributes for classification. Three
classifiers were tested, as described below. As recommended by Vieira (2000), each
synthetic band of each MCI was individually rescaled to a closed interval between 0 and
1 before classification to avoid significant differences in magnitude, which can affect
the performance of some classifiers (TSO; MATHER, 2009). Since we compared 20
MCls as the input for three different classifiers, we generated 60 classification products.
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2.4.8. Classification

Three classification techniques were selected for comparison, enabling rigorous
evaluation of the STARS method. First, instance-based classification was performed,
which does not rely on a model to classify the data. Second, decision-tree classification
was performed, which creates a simple interpretable model from the data, although it
may be relatively inefficient. Third, neural-network classification was performed, which
creates an accurate model, although it may not necessarily be easily interpretable (TAN
et al., 2006).

Instance-based classification is based on the instances themselves, instead of a model
derived from labeled instances. This type of classifier uses the labeled data themselves
to classify unlabeled data. Unlike most classification algorithms, there is no need for a
preliminary step to create a model from the labeled data — unlabeled instances are
compared with all labeled ones, and a majority vote determines the label for that
instance, assigning a label to an instance based on the majority count of labels on
nearby instances. (The algorithm is also known as k-nearest neighbors.) Usually, a
limiting number (a small positive integer) is used; hence, only this number of labeled
instances is considered when deciding a label. We set this value to 7 (hence, the
classifier will be referred to as IB7). This algorithm is computationally more demanding
than the other two classifiers, particularly if the labeled data set is very large, but it has
the advantage of being able to deal with practically any kind of data distribution (AHA
et al., 1991).

Decision trees are classification algorithms that attempt to classify single instances of
the data by comparing the values of their attributes with decision rules. These rules are
stored in the classifier model, created in a preliminary step, which uses the labeled
instances to create a set of hierarchical rules for posterior classification. The main
advantage of this algorithm is that a decision-tree is easily interpretable by humans as
long as it is kept simple (i.e., without too many rules). The main disadvantage of the
algorithm is that in its canonical form, the rules correspond to orthogonal cuts or
separations in the attribute space — if the classes on the data are orthogonally separable,
the algorithm will yield accurate classification results and relatively simple trees, but

otherwise, the rule set may become too large for interpretation, even with accurate
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classification results. In this experiment, we usexJd.8 implementation (WITTENt
al., 2011) of the C4.5 algorithm (QUINLAN, 1993) for decision-tree classification. This

classifier will be referred to as J48.

The third classification method is based on a neural network trained with the back-
propagation algorithm (LOONEY, 1997). Neural networks are generally considered
effective classifiers and, through the combination of linear classifiers, are able to
classify nonlinear data distributions and even disjoint data distributions accurately, as
long as there are enough neurons in the hidden layers to create these combinations.
Neural networks must be trained in a preliminary step to classification. Training with
this algorithm requires a set of labeled data and several passes through the algorithm,
which may be time consuming depending on the neural-network architecture and on the
number of labeled samples. In the classification step, the trained network is used to
derive the classes for unlabeled samples. The main advantage of this algorithm is its
ability to classify data with any type of distribution accurately; its main disadvantage is
that the model (i.e., the trained neural network) is not easily interpretable, and the
determination of the network architecture, particularly the number of neurons in the
hidden layer, is somehow empirical (FAUSETT, 1993). We used a multilayer
perceptron model, i.e., a feedforward neural network, and set the number of neurons in

the hidden layer at 20. Thus, we will refer to this classifier as MLP20.

In each classification, two thirds of the pixels in each class (see Table 2.2) were
randomly selected from the reference map for the training of the classifier. The
remaining third of the reference map pixels was set aside to be used for accuracy

assessment.
2.4.9. Accuracy assessment

The accuracy assessment was conducted by comparing classified and reference data.
The sample size was computed according to the multinomial statistical distribution, as
recommended by Congalton and Green (2009). The sample size should be neither too
small such that it could not detect a difference that is actually important nor too large
such that tiny differences in accuracy are declared statistically significant (FOODY,
2009) at a specific significance leva)(Thus, considering the 23 thematic classes (see
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Table 2.2),0 = 5% and the worst case (where one single class covers about 50% of the
entire study area), the minimum sample size per class was computed as 41 pixels.
Therefore, we used 50 pixels per class, which were randomly collected, for each
classification based on the third of reference data not used for training the classifier.

Statistical tests based on the standardized Gaussian distribztiistrjbution) were
performed, as detailed by Congalton and Green (2009) — pag. 107, for testing the
significance of and between the classifications (represented by their confusion matrices)
using their estimates of kappa inde&} énd kappa’s variance/@) (COHEN, 1960;
HUDSON, 1987). The test of significance of a classification was performed under the
hypotheses K « = 0and H; «# 0, whereas the significance between the differentces o
two estimated kappa indices (pairwise test) was performed under the hypotheses
Ho: (k1 —k2) =0 and H: (k1 — k2) # 0.

For these twZ-tests, H is rejected if the calculated statistigc > zq/2, Wherea/2 is the
confidence level of the two-tailefitest with degrees of freedom assumed to be infinity.
Another interpretation can be made using fihealue related ta.,c Ho is rejected for

p-values smaller thaa.

In this paper, pairwis&-tests were conducted to evaluate differences in accuracy
values: (i) between classifications of MCIs based on orthonormal and regular
coefficients, (i) according to MCI complexity used as input for classifiers, and (i)

among classifiers. We assunted 5% (i.e., 0.05) for all Zests conducted.
2.5. Results and discussion of STARS

This section presents and discusses the results of applying STARS for sugarcane harvest
classification. Examples of fitted spectral-temporal response surfaces will be presented
for both PTS and CS models, followed by illustration of one of the 20 MCls tested (see
Table 2.3). Next, we will present the classifications of the STARS outputs (MCIs) and

the accu racy assessment.
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2.5.1. Spectral-temporal response surface

The main rationale behind STARS is to use a spectral-temporal response surface model
to describe the spectral behavior of pixels over time. To facilitate the comprehension of
how a response surface model can be used in this context, example spectral-temporal
response surfaces are illustrated for a pixel from a sugarcane field GH (GHO04, see
Table 2.2), using both the PTS model (see Fig. 2.7) and the CS model (see Fig. 2.8).

Figure 2.7 — Adjusted spectral-temporal response surface, for a pixel from a sugarcane field GH
(GHO04, see Table 2.2), using the PTS model @ith5 and considering the regular
coefficients.

Figure 2.8 — Fitted spectral-temporal response surface, for a pixel from a sugarcane field GH
(GHO4, see Table 2.2), using the CS model and considering the regular
coefficients.
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The response surface drawn in Fig. 2.7 relatesa®18 model withd = 5, considering

the regular coefficients (i.e., it corresponds to the MCI 15 in Table 2.3). This degree was
chosen because it produces a suitable response surfaaki®is neither too small to
inadequately describe the surface nor too big to produce large anomalies in the surface
(KUTNER et al., 2005)]. Withd =5, the PTS model has 21 coefficierks 1) and

has the form

p="Po+B1T+BeA+ B3>+ BaT A+ - -+ P A’ +€. (2.17)

The spectral-temporal profile of the chosen pixel (see Fig. 2.7) represents typical
spectral behavior and change over time in response to the harvest event that can be
observed at = 0.167 (image #4 of the Landsat images listed inldfa.1). The straw

left on the ground after the mechanical sugarcane harvest (see Fig. 2.3) causes a
substantial increase in the reflectance of the SWIR wavebands (b5 and b7, see Fig. 2.6)
(MELLO, 2009). After the harvest event, a gradual regrowth of the sugarcane field can
be observed from = 0.167 tot = 1. Apparently, there are two inconsistencies on the
estimated reflectance surface shown in Fig. 2.7: (i) the maximum estimated reflectance
is higher than expected, and (ii) there are negative reflectance values. These
inconsistencies are likely associated with both the high degree of the polynomial and the
distribution of the STS points along the wavelength axis since most of them are
concentrated in the visible and NIR wavebands generating anomalies in the fitted
surface. However, these apparent inconsistencies do not pose a problem for subsequent
analysis since we are actually interested in the estimated coefficients and not in the

estimated reflectance values.

The CS model presents the number of coefficidgtedqual ton (i.e.,k =n = 66 in this

work). In Fig. 2.8, it can be noticed that the response surface described by the CS model
is considerably sharper when compared with the surface described by the PTS model
(see Fig. 2.7). It seems that the CS model can better describe the abrupt spectral change
related to the harvest event than the PTS model; although even subtle changes in the
estimated coefficients of the PTS model should be able to detect the harvest event, as

will be described further.
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2.5.2. Multi-Coefficient Image

The two spectral-temporal response surfaces presented (see Figs. 2.7 and 2.8)
correspond to only one pixel, chosen as an example. By fitting a response surface for
every pixel in the study area, each estimated coefficient will compose a synthetic band
of the MCI. In this paper, we tested 20 different MCls by varying the model (PTS or
CS), the degree for PTS model, and considering either the orthonormal or the regular
coefficients (see Table 2.3). It is worth mentioning that, although actual specialized
hardware systems can satisfy the time-critical constraints introduced by the large
amounts of computations usually regarding remote sensing data processinet @EE
2011), it was noticed that the computational time demanded by STARS tended to

increase with the complexity of the models.

Fig. 2.9 presents the estimated orthonormadynthetic band of the MCI 14, described

in Table 2.3. Bright areas correspond to areas where the average spectral responses over
time tend to be high, considering all the six spectral wavebands used. They can be
associated with bare soil areas, which have average reflectance higher than vegetation
(except in the NIR waveband) (PONZONI; SHIMABUKURO, 2007), or they can also

be associated with areas where straw, after mechanical harvest, remained on the ground
for a long period of time (AGUIARet al., 2011; MELLO, 2009) (see Fig. 2.3). Thus,
since an MCI presents not only the spectral information of the pixels in the study area
but also their spectral behavior over time, a classification using an MCI as input can be
considered a multitemporal-multispectral classification. Indeed, the MCI can be used for
various purposes in the context of multitemporal analysis. For instance, band ratios can
be used to create spectral-temporal indices or even land-cover change indices.
Alternatively, synthetic bands can be used for visual interpretation or as input for land-

use and land-cover change models, etc.
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Figure 2.9 — Orthonormal, synthetic band of the MCI computed for the study area.

2.5.3. Classifications

The 20 MCls summarized in Table 2.3 were classified using three classifiers: instance-
based, considering seven nearest neighbors (IB7); a decision-tree, using the J4.8
implementation of the C4.5 algorithm (J48); and a multilayer perceptron model, which
is a feedforward neural network, with 20 neurons in the hidden layer (MLP20). The
classification accuracy values were measured using the estimations of both&appa (
and kappa’s varianced((k)) values, computed through the confusion matrix fache
classification (see an example in Table 2.7). #lamdas () for all 60 classifications are

listed in Table 2.4.

By observing Table 2.4, one can see thdéends to increase as the complexity of the
MCI increases from MCI 01 to MCI 10 (orthonormal coefficients) and from MCI 11 to
MCI 20 (regular coefficients). The number of (input) attributes is definekl ihythe

classifications, and as presented in Table R.Bicreases with the MCI complexity.
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Indeed, the accuracy of the classifications tendst¢oease when MCI complexity
increases due to the fact that more attributes are considered (TSO; MATHER, 2009). It

can also be noticed in Table 2.4 th&k ¥ decreases with increasing MCI complexity.

Table 2.4 - Summary of the estimated kappa and kappa’s variance.

IB7 J48 MLP20
MCI # o G(R) X . G(R) X . G(R) X
10° 10° K 10°

MCI 01 5273 234366  .5245  .234445 3936  .225083
MCI 02 9227 .065034 8264 131529 6236 215125
MCI 03 9727  .024146 9064  .077487  .8000  .146586
MCI 04 .9864 012235 .9409 .050672 8773 .098368
MCI 05 9918  .007380  .9445  .047734  .9273  .061505
MCI 06 .9918 .007380 9573 .037251 9527 .041017
MCI 07 9918  .007380  .9573  .037252  .9509  .042527
MCI 08 9973 .002473 9618 .033439 9573 .037246
MCI 09 9918  .007380  .9673  .028819  .9673  .028817
MCI 10 .9945 .004933 9718 .024928 .9501 .035730
MCI 11 5291 234211 5045 235161  .3636  .217061
MCI 12 8236 1133161 7482 .173685 6182 217496
MCI 13 9291  .060081  .8755  .099716  .8055  .143632
MCI 14 9527 .041029 .9009 .081524 8327 127162
MCI 15 9600  .034971  .9091  .075451  .9282  .060784
MCI 16 9673 .028819 .9064 077476 .9400 .051401
MCI 17 9736  .023361 .9091  .067853  .9345  .055755
MCI 18 .9809 .017038 9227 .065048 .9482 044762
MCI 19 9764  .021000 .9091  .075426  .9582  .036491
MCI 20 .9900 .009004 .9500 .043273 .9691 027266

Fig. 2.10 presents the estimated kappa valdégsn( a graph, which shows that the
acuracy of the three classifiers significantly increases from MCI01 to MCI 04
(orthonormal coefficients) and from MCI 11 to MCI 14 (regular coefficients). Some
further classification improvement is observed for the MPL20 classifier when using
MCI 05 and particularly MCI 15. Classification with MCls of greater complexity does
not significantly increase classification accuracy. However, the Hughes phenomenon
(HUGHES, 1968) was not observed, even for MCI 10 and MCI 20, which can be

attributed to the satisfactory training sample size (ABEND; HARLEY JR., 1969).
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Figure 2.10 — Estimated kappa valugsfor the three classifiers (IB7, J48, and MLP20) applied
to the MCls with (black) orthonormal and (gray) regular coefficients.

In order to analyze the performance of STARS in terms of representing the full
information content of the whole multitemporal-multispectral Landsat image data set,
we performed each of the three classifiers on all 66 georeferenced surface reflectance
wavebands (11 images, each with six spectral wavebands; see Table 2.1). The estimated
kappa values of the three classifications were IB7 =0.998, J48 =0.975, and
MLP20 = 0.961. In terms of th&-test, the IB7 classification using 66 wavebands
presented similar results for the classification using MCI from the MCI 06 on, for
orthonormal coefficients (i.e., MCI 06, MCI 07, ..., MCI 10). The decision-tree classifier
(J48) presented similar results for MCI 08, MCI 09, and MCI 10. Eventually, the neural
network (MLP20) presented similar results from the MCI 06 on, for the orthonormal
coefficients, and from MCI 17 on, for the regular ones (i.e., from MCI 17 to MCI 20).
These results suggest that, depending on the choice of the model used to fit the spectral-
temporal response surfaces (e.g., PTS), STARS does not lead to a loss of information
but represents and also synthesizes the spectral changes over time inside the synthetic
bands of the MCI.

To examine STARS in a wider context, its performance was also confronted with a

classification considering the normalized difference vegetation index (NDVI) (ROUSE
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JRet al., 1973). Eleven NDVI images were computed (i.e., one for each Landsat image,
see Table 2.1) and used as input for the IB7 classifier. The kappa value, estimated at
0.909, attested that this classification was statistically less accurate than the
classifications using MCI from the MCI 03 on, for orthonormal coefficients. This result
means that the ten synthetic bands of MCI 03 (see Table 2.3) performed considerably
more effectively than the 11 NDVI images when used as input for the IB7 classifier.
Indeed, the main disadvantage of using vegetation indices compared with the use of
STARS is that vegetation indices usually account for only two or three wavebands,

whereas STARS exploits all available spectral wavebands of the multitemporal data set.

Furthermore, the IB7 classifier was also performed using as input attributes the results
of a principal component analysis (PCA) (JOLLIFFE, 2002) conducted upon the 66
georeferenced surface reflectance wavebands. The main characteristic of PCA is to
capture and represent the great majority of variability in multilayer data (i.e., the useful
information) within the first few principal components (PCs), and as such, it has been
widely used for dimensionality reduction in remote sensing (FARRELL;
MERSEREAU, 2005). We performed 66 classifications: the first classification using
only the first PC, the second classification using the first two PCs, and so on, until the
66th classification that used all 66 PCs. The kappa value considerably increased from
the first classification until the classification using ten PCs and then stabilized at around
0.995. According toZ-tests, this value represented similar performance to the IB7
classifications using MCI 05 on, for orthonormal coefficients. Despite the high accuracy
values presented in the classifications using PCA, the performance of PCA depends on
the data distribution becoming worse when the data set is not normally distributed
(JIMENEZ; LANDGREBE, 1999; LEEet al., 2010; YATA; AOSHIMA, 2009),
whereas STARS is able to deal with practically any kind of data distribution. Moreover,
some models used in STARS (e.g., PTS) minimize problems associated with aberrant or
noisy data (VIEIRA, 2000), whereas PCA is significantly sensitive to outliers (YANG

et al., 2008). The results suggest, therefore, that the choice of a suitable model (e.g.,
PTS withd =5 and orthonormal coefficients) for STARS can reduce dimensionality
representing the data variability in the synthetic bands of the MCI. Complementarily,
the use of feature selection techniques can redudematically without decreasing

kappa values (VIEIRA, 2000).
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Other studies have explored alternative techniqgoesitomate the process of mapping
sugarcane harvest in Brazil. For instance, Mello (2009) compared the performance of
the maximum likelihood classifier using a range of different input attributes, including
fitted coefficients from spectral-temporal response surfaces, fraction images derived
from linear mixture models (SHIMABUKURO; SMITH, 1991), and the full set of
spectral wavebands from a multispectral-multitemporal Landsat data set. He concluded
that the classification upon the fitted coefficients from spectral-temporal response
surfaces showed better results in terms of accuracy than the classifications using the
other input attributes. Mellet al. (2010b) also used fraction images derived from linear
mixing models as input for the maximum likelihood classifier, and although a relatively
high overall accuracy index was fourd 90%), the authors pointed out the gap for
alternative methods to handle with spectral-temporal dynamics in face of the difficulty
in defining suitable endmembers for the solution of mixing models. Similarly, Aguiar

al. (2009) used fraction images derived from linear mixing models in a decision-tree
procedure to identify sugarcane harvest for the entire S&o Paulo State. Once again,
although the work found a harvested area with 97.7% in accordance with the Sdo Paulo
State Environmental Secretary data for the 2006/2007 crop year, the authors found
difficulties in defining suitable endmembers.

Alternatively, El Hajjet al. (2009) proposed an approach using high spatial resolution
multitemporal images to detect sugarcane harvest on Reunion Island, which is an
overseas department of France in the Indian Ocean. However, the success of this
method is highly dependent on the integration of crop model outputs with expert
knowledge, such as the understanding of sugarcane physiology or cultural practices that
can vary considerably over different regions or different timescales (e.g., crop growing
and harvesting seasons) (XAVIE® al., 2006). This makes its uptake impractical
where expert knowledge is limited, as is often the case. Indeed, despite the great overall
potential of remote sensing for agricultural applications (VIEIRA, 2000) including
sugarcane agriculture (ABDEL-RAHMAN; AHMED, 2008), there remains a

considerable need for more robust and widely applicable models (LIN 2088).

In fact, the high kappa values presented in Table 2.4 and Fig. 2.10 indicated that
STARS was effective in describing the spectral-temporal change associated with either
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BH or GH. Aguiaret al. (2011) mapped sugarcane harvest practices during five crop
years in Sdo Paulo State, Brazil, to evaluate the “Green Ethanol” Protocol based on
visual interpretation of Landsat-type images. In the last evaluated year (2010), about 4.7
million ha of sugarcane were harvested, which means that visual interpretation of the
harvest type is a very substantial undertaking, and an alternative automated procedure

would assist the task significantly. STARS seems to offer such an alternative.

In order to evaluate statistically the classification accuracy valissts for each
single classification were performed, and these indicated that all classifications were
significant and, therefore, different from a random classification,a at 5%.
Furthermore, pairwiseZ-tests were performed to compare accuracy values of all

classifications. Results are presented in the following three subsections.
2.5.3.1. Orthonormal versus regular coefficients

The results of the pairwisé-tests comparing the accuracy of classifications based on

orthonormal and regular coefficients are presented in Table 2.5.

Table 2.5 p-values of the pairwisg-tests comparing the classifications based on orthonormal
and regular coefficients.

Orthonormal x Regular IB7 J48 MLP20
MCI 01 x MCI 11 933 .356 .154
MCI 02 x MCI 12 ~0 =0 793
MCI 03 x MCI 13 ~0 .020 .749
MCI 04 x MCI 14 ~0 .001 .003
MCI 05 x MCI 15 ~0 .001 934
MCI 06 x MCI 16 ~0 =0 .186
MCI 07 x MCI 17 .001 =0 .099
MCI 08 x MCI 18 ~ ~0 315
MCI 09 x MCI 19 004 = .261
MCI 10 x MCI 20 .233.008 .208

Gray cell indicates significance @t= 5%.

According to Tables 2.4 and 2.5, for the three classifiers tested, all classifications based
on orthonormal coefficients presented accuracy values equal to or greater than
classifications based on regular coefficients. In fact, orthonormal coefficients are

expected to be better for distinguishing thematic classes since they tend to present little

39



or no correlation between themselves, whereas thdarecoefficients are generally
more correlated with each other (MATHER, 1976). The painiidest presented in
Table 2.5 revealed that for the IB7 and J48 classifiers, the orthonormal coefficients from
the PTS model actually performed better than the regular coefficients for all MCls,
except the simplest ones. Indeed, the simplest MClIs for orthonormal (MCI 01) and
regular (MCI 11) coefficients were not statistically different in terms of accuracy for all
three classifiers. For the MLP20 classifier, all comparisons indicated that they were not
significantly different, except for MCI 04 and MCI 1g € 0.003). The most complex

MCI (MCI 10 and MCI 20) from the CS model were significantly different in terms of
accuracy only for the J48 classifiep £ 0.008) with the best results using the

orthonormal coefficients.

Considering that the model created by the neural-network classifier (MLP20) uses
hyperplanes for the data separation (classification) and these hyperplanes can be in any
possible direction (FAUSETT, 1993; LOONEY, 1997), its performance is not
significantly improved using the orthonormal coefficients. For the decision-tree
classifier (J48), which makes orthogonal separations (QUINLAN, 1993), the
classification performance is improved when using orthonormal coefficients instead of
regular ones. The performance observed for the instance-based classifier (IB7) can be
attributed to the smaller variance of the classes when orthonormal coefficients are used.

Thus, based on the results, we suggest the use of the orthonormal coefficients instead of
the regular ones in order to improve classification performance and avoid both unstable
computational solution (MATHER, 1976) and multicollinearity (KUTNER et al., 2005).

2.5.3.2. Multi-Coefficient Image complexity

Pairwise Z-tests were performed on each classification to evaluate differenaes in
according to the complexity of the MCI used. The tests were conducted considering

orthonormal or regular coefficients.

Orthonormal: For the classifications based on the ten MCIls with orthonormal
coefficients (from MCI 01 to MCI 10), the IB7 presented no significant

differences from the MCI 05 on. Moreover, the MCI 04 also presented good
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accuracy but was slightly less accurate than MC(@8 0.004) and MCI 10

(p = 0.048). No significant differences were found from MCI 06 on, for the
J48 classifier. J48 also presented no differences among MCI from MCI 04 to
MCI 07 and from MCI 05 to MCI08. Eventually, the MLP20 classifier

presented the same accuracy from MCI 06 on.

Regular: For the ten MCls with regular coefficients (from MCI 11 to MCI 20), the IB7
presented the best results for MCI 18 and MCI128 0.075). There were no
significant differences detected among MClIs from MCI 14 to MCI 16; from
MCI 15 to MCI 17; among MCI 16, MCI 17, and MCI 19; and also from
MCI 17 to MCI 19. On the other hand, the J48 classifier presented equivalent
accuracy from MCI 14 on for the PTS model. However, the best performance
of the J48 was presented for the CS model (MCI 20) with0.9500.
Moreover, there was no significant difference between MCI 13 and MCI 14,
even though itZ-test p-value was close to 5% & 0.059). Eventually, the
MLP20 presented the best accuracy for MCI 19 and MCp20@.172).

In general, as shown in Fig. 2.10, accuracy values tended not to rise after a certain
number of synthetic bandsk)( were used as input for classifiers. In terms of
classifications based on MCIs with orthonormal coefficients, the IB7 classifier, for
example, did not improve accuracy from MCI 05 on (i.e., it presented the same accuracy
for classifications based on MCls with 21, 28, 36, 45, 55, and 66 synthetic bands). The
same was observed for the J48 and MLP20 classifiers, which did not improve accuracy
from MCI 06 on. These results show that STARS can also be used to reduce the
dimensionality of multitemporal-multispectral data sets without significant loss of
information. Moreover, for operational purposes, the results indicate that sugarcane
harvest monitoring can be carried out using STARS with a PTS model and a suitable
degree (e.g., MCI05) that demands less computational processing than the more

complex models.
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2.5.3.3. Comparing classifiers

Pairwise Z-tests were also performed comparing the accuracy values of the three
classifiers for each MCI. The results for MCls with orthonormal coefficients are

presented in Table 2.6.

Table 2.6 —p-values of the pairwis&-tests comparing the accuracy values of the three
classifiers for each MCI with orthonormal coefficients.

MCI # IB7 x J48 IB7 x MLP20 J48 x MLP20
MCI 01 .900 ~0 =
MCI 02 ~0 ~0 S
MCI 03 ~0 =0 =
MCI 04 0 ~0 .003
MCI 05 0 ~0 .098
MCI 06 0 ~0 .607
MCI 07 ~0 ~0 AT76
MCI 08 0 ~0 .589
MCI 09 0 ~0 ~1
MCI 10 ~0 ~0 .102

Gray cell indicates significance at= 5%.

In terms of orthonormal coefficients, according to the pairZisests (see Table 2.6),

IB7 and J48 presented the same accuracy only for the simplest MCI (MCI 01) with

p =0.900, but they were more accurate than MLP20. For all other MCIls with
orthonormal coefficients, IB7 presented more accurate indices than J48 and MLP20
classifiers. The best performance observed for the instance-based classifier (IB7) can be
attributed to its ability to deal with practically any kind of data distribution and to the
fact that it is based on the instances themselves, instead of a model derived from labeled
instances. However, other parameters such as the k-nearest neighbor number should be
tested to confirm the superiority of the instance-based classifier.

The J48 classifier presented greater accuracy than MLP20 when classifications were
performed with MCls from MCI 01 to MCI 04. For the more complex MCIs with

orthonormal coefficients, these two classifiers presented equivalent accuracy values.

For all MCls with regular coefficients, IB7 also presented stronger results than the other
classifiers, except for the simplest one (MCI 11) where J48 presented accuracy
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equivalent to IB7 § = 0.257). J48 also presented accuracy values greater than MLP20
for MCls from MCI 11 to MCI 14, whereas MLP20 was more accurate than J48 for
MCls 16, 18, 19, and 20. For MCls 15 and 17, these two classifiers presented equivalent

accuracy values.

According to the accuracy assessment analyses comparing classifications of MCls based
on orthonormal and regular coefficients, from the simplest to the most complex model,
and evaluating three different classifiers, we suggest using MCI 05 with IB7 classifier
for operational sugarcane harvest monitoring in Brazil with STARS. Table 2.7 shows
the confusion matrix regarding the accuracy assessment of the classification by the IB7
classifier running upon MCI 05. Both inclusion and omission errors were distributed
over BH, GH, and UH classes, indicating that the classifier did not tend to misclassify
any particular harvest type. The overall accuracy index of 99.22% confirms the high
accuracy of this classification. Moreover, the ability to distinguish the harvest type (BH
or GH) is even better if we consider the fact that in approximately 44% of
(inclusion/omission error) cases, the classifier chose the right class in terms of harvest

type (BH or GH) and only mistook the harvest date.
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Table 2.7 — Confusion matrix for the classificatiynthe 1B7 classifier running upon MCI 05.

GHO09 GH10 GH11 UH

Classified

BHO1
BHO2
BHO3
BHO4
BHO5
BHO6
BHO7
BHO8
BHO9
BH10
BH11
GHO1
GHO02
GHO03
GHO4
GHO05
GHO06
GHO07
GHO08
GHO09
GH10
GH11
UH

Reference
BHO1 BHO02 BHO3 BHO04 BHO5 BHO6 BHO7 BHO8 BHO09 BH10 BH11 GHO1 GHO02 GHO03 GHO04 GHO05 GHO06 GHO7 GHO08
50
50
50 1
50 1

47

1 50

1 50

49
50
50
50
50
50
49
49
50
50
50
49
1 1
1

50
50
50
48

Descriptions of the 23 thematic classes are presented in Table 2.2. Empty cells are equal to zero.
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2.6. Conclusion to STARS

The STARS method enables representation of the entire information content of a
multitemporal-multispectral remote sensing data set in a single MCI. Using a case study
of sugarcane harvest, it is shown that STARS holds considerable potential for
representing spectral change over time of features on the Earth’s surface. Indeed, the
example presented in this paper demonstrates that this method could be introduced to
automate regional agricultural monitoring activities such as sugarcane harvest

classification.

Two models were tested in modeling spectral-temporal response surfaces. The PTS
model presented smooth spectral-temporal surfaces that can be effective in describing
gradual change on the Earth’s surface such as crop phenology. In contrast, the CS
model presented sharper and more defined spectral-temporal surfaces, useful for
characterizing abrupt change. However, our results showed that abrupt changes related
with the sugarcane harvest event were well characterized also with the PTS model when
a suitable degree was set. Two types of coefficients were tested, and of these,
orthonormal coefficients performed more accurately than the regular ones when using

MCI for classification purposes.

Advantages of STARS include that the method can provide a description of features’
spectral change over time; that image data from different sensors with varying spectral
wavebands and irregular time intervals can be used; that the method is robust, enabling
different model options according to the application; and for some models (e.g., PTS),
that it is economical, as the number of coefficients is smaller than the sum of the
spectral wavebands. Moreover, the synthetic bands of the MCI can be used as input
features for a range of operations, including image classification, visual interpretation,

and creating spectral-temporal indices.

The STARS algorithm has been implemented in R software (R CORE TEAM, 2013)

and can be found at www.dsr.inpe.br/~mello.
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3 BayNeRD: plausible reasoning from observatiorts

Abstract:

This paper describes the basis functioning and implementation of a computer-aided
Bayesian Network (BN) method that is able to incorporate experts’ knowledge for the
benefit of remote sensing applications and other raster data analyses: Bayesian Network
for Raster Data (BayNeRD). Using a case study of soybean mapping in Mato Grosso
State, Brazil, BayNeRD was tested to evaluate its capability to support the
understanding of a complex phenomenon through plausible reasoning based on data
observation. Observations made upon Crop Enhanced Index (CEl) values for the current
and previous crop years, soil type, terrain slope and distance to the nearest road and
water body were used to calculate the probability of soybean presence for the entire
Mato Grosso State, showing strong adherence to the official data. CEIl values were the
most influencial variables in the calculated probability of soybean presence, stating the
potential of remote sensing as a source of data. Moreover, the overall accuracy of over
91% confirmed the high accuracy of the thematic map derived from the calculated
probability values. BayNeRD allows the expert to model the relationship among several
observed variables, outputs variable importance information, handles incomplete and
disparate forms of data, and offers a basis for plausible reasoning from observations.
The BayNeRD algorithm has been implemented in R software and can be found on

internet.

® This chapter is an adapted version of the paper:

Mello, M. P.; Risso, J.; Atzberger, C.; Aplin, P.; Pebesma, E.; Vieira, C. A O.; Rudorff, B. F. T. Bayesian
Network for Raster Data (BayNeRD): plausible reasoning from observaRenmte Sensing

(submitted)
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3.1. Introduction to BayNeRD

Understanding complex phenomena in the field of Earth observation sciences represents
a considerable challenge for scientific analysis (DONNERIL, 2009; MELESSEet

al., 2007). Regarding investigation of large scale phenomena, great progress has been
achieved through recent advances in spaceborne remote sensing data acquistion (LI
al., 2008), together with the availability of high performance computing for remotely
sensed data analysis (LEE al, 2011). To Lu and Weng (2007) the most important
factors driving the success of an inference based on remotely sensed data are: (i) the
availability of high-quality observations (e.g., accurate imagery corrected for
atmospheric effects and ancillary data such as topography, soil, road and census data);
(i) the design of a suitable analytical procedure; and (iii) the analyst’s skills and
knowledge. However, some phenomena are often too complex to be investigated by
conventional methods (RICHARDS, 2005), demanding new computer aided methods to
help characterise phenomena through plausible reasoning inferences based on consistent

data observations (i.e., evidence).

Interactions of probabilities have been identified as the most promising way for a
computer to effect plausible reasoning (JAYNES, 2003). The Bayes' theorem updates
the knowledge drior probability) of a specific event in the light of new/additional
evidence ¢onditional probabilitie}, allowing one to have a plausible reasoning based

on a degree of beliepésteriori probability (McGRAYNE, 2011). Thus, observations
made upon variables that are related to a particular phenomenon can be used to develop
plausible reasoning about the phenomenon, its causes and consequences (JAYNES,
2003). When the number of variables increases or even when the complexity of the
interactions among the variables involved in a phenomenon rises, the Bayesian Network
(BN) is a representation suited to models and handles such tasks (JENSEN; NIELSEN,
2007; PEARL, 1988).

Neapolitan (2003) defines BNs as graphical structures for representing the probabilistic
relationship among a set of variables via a Directed Acyclic Graph (DAG), and for

calculating probabilistic inference with those variables. BNs can also be defined as
representational structures that are meant to organize one’s knowledge about a

particular phenomenon into a coherent whole (DARWICHE, 2009). The advantages of
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BNs are that they: (i) can deal with a large numiifevariables and can also handle
incomplete data sets (i.e., missing data); (ii) can deal with both numeric and categorical
data simultaneously; (iii) are able to incorporate experts’ knowledge via a participatory
modelling procedure of causal relationships; and (iv) are easy to understand and
visualize through DAGs (HECKERMAN, 1997; UUSITALO, 2007). Notwithstanding
these advantages, BNs have rarely been used in the field of Earth sciences and remote

sensing, and their potential is, as yet, largely unexploited (AGUILERA, 2011).

Although researchers have made substantial advances in developing the theory and
application of BNs (NEAPOLITAN, 2003), the actual use of these networks often
remains a difficult and time-consuming task (AGUILERA al, 2011). In the Earth
sciences, where investigations commonly involve numerous layers of data (e.g., maps
and images), analysis can be difficult because of the need to know both the relationships
among the variables (i.e., conditional (in)dependences) and their probability functions.
In addition, tasks can be time-consuming because they are typically performed
manually. Until now, only a limited number of computer aided methods have been
implemented. Therefore, there is potential for the use of probability theory as a basis for
computer aided plausible reasoning, and BNs as a tool for representing and computing
probabilistic beliefs in the field of Earth sciences (UUSITALO, 2007). Moreover, there

iIs demand for the development and implementation of computer aided methods that
offer a basis for Earth science researchers to understand and model phenomena through

plausible reasoning inferences based on data observations (AGUILERA26t14l).

The aim of this paper is to describe, implement and test a computer aided BN method
that is able to incorporate experts’ knowledge for the benefit of remote sensing
applications and other raster data analyses. The freely available algorithm is named
Bayesian Networks for Raster Data (BayNeRD). Following development of the
approach, BayNeRD was tested on a case study for soybean identification and mapping
in Mato Grosso State, Brazil. The test enabled evaluation of the capability of BayNeRD
to support the understanding of a complex phenomenon through plausible reasoning

based on data observation.
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3.2. Bayesian Networks

A BN for a set oh variables consists of: (i) a network structure, graphically represented
by a DAG with nodes and arcs, that encodes a set of conditional (in)dependence
assertions about the variables; and (ii) a set of probability functions associated with each
variable (NEAPOLITAN, 2003). We use upper-case letters (¢:gV,) to denote both
avariable and its corresponding node, and the same but lower-case letters, (g)dg v
denote the state or value (defining a particular instantiation) of the variable. Then, the
joint probability distribution for any particular instantiation of mNariables in a BN is

given by

P(Vy = vy Yy =) = | [P0 = v @ = ) (3.1)
i=1

wherev; represents the instantiation of variabeand ¢ represents the instantiation of

its parents @ with i varying from 1 ton. Parent variables are those whose instantiations
directly influence other, descendent variables. The arcs (represented by arrows in the
DAG) encode the conditional dependencies (i.e., which variables are parent/descendant
of other variables) (NEAPOLITAN, 2003; PEARL, 1988).The joint probability of any
instantiation of all the variables in a BN can be computed as the product oh only

probabilities. Thus, we can determine any probability of the form

P(Vy|Vy, o, V) (3.2)

whereV; are sets of variables with known valugs i.e., instantiated variables). This
ability to compute posterior probabilities given some evidence is called inference. In the
case of using Eq. (3.2) for inferences about certain phenomena using BayNeRD, we
named the variable that represents the phenomenon asrgjet variableand the
variables that can be used to describe an outline of the phenomesrwnied variables

(i.e., those variables that are somehow related to the phenomenon).

To illustrate the concept, suppose we are interested in inferring soybean occurrence
based on observations of other variables. It is well known that soybean plantations have

certain peculiarities (GARREEt al., 2013), such as: (i) it is preferably not sown in
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areas with steep terrain slope because mechanizaigynbe hindered, and (ii) it is
preferably sown in soils that are apt for agricultural cultivation. Theaybean
occurrence(S) is the target variable with a Binomial statistical distribution and can be
represented by a thematic map with the classes soybean and non-soybean, that mean
soybean presenc& € 1) and soybean absen8e=0), respectively. On the other hand,
terrain slope(T) andsoil aptitude(A) could be, in our example, two context variables.

Since we are interested to infer about S, in this example, Eg. (3.2) becomes

P(S|T,A). (3.3)

Indeed, T andA directly influenceS and so are said to be parentsSoMoreover, since
soil formation processes are strongly influenced by terrain slope (RARK 2001),T
also influencesA and, therefore,T is also a parent oA. These (in)dependence

relationships among the variables are represented by a DAG as shown in Fig. 3.1.

Figure 3.1 — Directed Acyclic Graph (DAG) representing a hypothetical BN graphical model
where the target variablsoybean occurrencéS) is influenced by two context
variables:terrain slope(T) andsoil aptitude(A). Since soil formation processes
are strongly influenced by terrain slopk,is also parent ofA. Variables are
represented by nodes and dependences are represented by arcs between pairwise
nodes.

The representation of conditional (in)dependencies is the essential function of BNs. For
each node in a BN structure, there is a conditional-probability function that relates this
node to its immediate parents. If a node has no parentsTetlgen a prior-probability
function is specified (JENSEN; NIELSEN, 2007). Eventually, once all probability
functions are specified, it is possible to compute the probability of soybean presence
(S =1)in a certain area based on the observed values for BothA'in the same area.

In practical terms, the definition of these probability functions is often the most

complicated part of BN modelling. However, the empirical Bayesian approach suggests
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that the functions can be defined based on obsenstie., from the data (COOPER;
HERSKOVITS, 1992). Melloet al. (2010a) proposed use of pixel counting in
discretized variables to compute probability functions in a BN when employing raster
data (described further).

Aware of the great demand for implemented computer algorithms to help handle and
understand phenomena in the field of Earth observation science, we implemented
BayNeRD in R software (R CORE TEAM, 2013). The algorithm provides researchers a
means of modelling any phenomenon of interest, whereby plausible reasoning

inferences are made based on observations stored in raster data format.
3.3. Framework of the implemented BayNeRD algorithm in R software

R software was used to implement BayNeRD because it is a high-level language and
environment for data analysis and graphics. It is growing in popularity and uptake, and
is freely available for the research community (CRAWLEY, 2007). Furthermore,
among all packages already implemented in R software, there are several developed for
both handling spatial data (BIVANI@t al., 2008) and computing Bayesian analysis
(ALBERT, 2009), especially catnet (BALOV; SALZMAN, 2011) which was designed

for categorical BN.

The BayNeRD algorithm handles data in the GeoTIFF format, which has been widely

used to represent raster data with geographical coordinates. For use in BayNeRD all
raster data (i.e. one GeoTIFF representing each variable) must represent the same
geographic area. Each GeoTIFF corresponds to a variable (node) used in the BN model.
These variables and their (in)dependence relations are used to compute the probability

functions.
3.3.1. Target variable

The variable which directly represent the phenomenon is called the target variable. A

GeoTIFF with data representing the target variableeesence data for training must

be provided. It is later used in the definition of the probability functions. The GeoTIFF

representing the target variable usually has four labels representing the following

thematic classes: (i) target presence observed; (ii) target absence observed; (iii) missing
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data, i.e., no observations were made; and (iv)lpigetside the study area. The latter is
simply used to mask out any pixels that are outside the study area from any of the raster
data layers to be used in BayNeRD. Althougference data for trainingnay contain

more than these four labels, it must have at least two: (i) and (ii). Thus, the target
variable, represented in the general modelYads expected to have a Binomial
statistical distribution that can be instantiat&d=(y) with y assuming either 1 for the

target presence or 0 for the target absence.
3.3.2. Context variables

The context variables are those that exhibit any kind of relationship with the target
variable (such aserrain slopeand soil aptitude as previously discussed). Moreover
context variables may exhibit relationships among themselves, suchtagdive slope
influencing thesoil aptitudedue to the influence of slope in soil formation processes
(PARK et al., 2001). The context variables may contain any sort of observations such as
numerical values (e.gterrain slopegiven in percentage) or categorical data (e.g.,
thematic classes representiagil aptitudefor agriculture cultivation). Moreover, the

context variables may also contain missing data.

One of the main difficulties of using BNs for real problems is the definition of the
probability functions of the model (COOPER; HERSKOVITS, 1992). Therefore
BayNeRD was developed to interact with the user to define, through discretization
processes, the probability functions of the model based on both observed data and users’
knowledge about the phenomenon of interest. Discretization is the process of
representing (approximating) the observed values of a variable using discrete quantities
(e.g., intervals, such as in the process of drawing a histogram).

After the target variable has been entered as reference data for training and the context

variables have been read, the user will be able to design the BN graphical model.
3.3.3. Designing the Bayesian Network graphical model

To design the BN graphical model the user is asked about the (in)dependence relations

among all variables read (i.e., both target and context variables). Since the dependencies

are represented by arcs in a DAG, BayNeRD asks whether an arc exists between
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pairwise variables. For example, if tteerain slope(T) influencessoil aptitude(A), and

both T andA influencesoybean occurrencs), there will be an arc frori to A, an arc

from T to S and another arc fromto S (see Fig. 3.1).Once the graphical representation
of the BN model is defined stating the variables and their (in)dependence relations,
BayNeRD is able to compute the probability functions, which is done based on pixel
counting in discretized variables (MELLO et al., 2010a).

3.3.4. Discretization and probability functions

The discretization divides the range of the observed values for a variable into intervals
and codes the values in the variable according to which interval they belong. In

BayNeRD the discretization is based on choosing the number of intervals defined for
each context variable and can be computed following three implemented criteria: (i)

equidistant intervals, where each interval has the same width; (ii) quantiles, where each
interval tends to have the same number of elements (i.e., pixels); and (iii) manually
defined intervals, where the user defines the upper and lower limits of each interval.

The discretization will have an impact on the computed probability functions. These
probabilities are computed through pixel counting according to both the (in)dependence
relations defined in the BN graphical model and the intervals defined in the
discretization processes. Indeed, both the definition of the BN graphical model and the
discretization processes enable users to add their knowledge about the phenomenon into
the model. The more a data set is accurate and a user is skilled in defining both BN
graphical model and interval limits during discretization processes, the more the data-
based probability functions computed are representative of the real probability functions
(MELLO et al., 2010a).

Let us suppose that therrain slope(T), which does not have parents in the designed
BN model represented in Fig. 3.1, was discretized using four equidistant intervals
between 0 and 100%. By dividing the number of pixels with values lower than 25% by
the total number of pixels observed for the study area one can compute the probability
for the first interval of the discretizéd The probabilities for the remaining intervals of

the discretizedT are computed by pixel counting as described above and the

probabilities for all intervals must sum to 1. Indeed, such a$,ftor all variables that

54



do not have parents in a designed BN these probesiliefine the prior-probability
function. In the case of variables that have parents, such asitlaptitude(A), which

is a descendent df (Fig. 3.1), BayNeRD uses the intervals definedTfand the ones
defined forA to compute the conditional probability function #arin the BN model,

also based on pixel counting (MELLO et al., 2010a).

The user should be sufficiently expert to define suitable discrete intervals for each
context variable so that all scenarios (i.e. combination of parents’ and variable’s
intervals) have representative data to compute probability functions, where a minimum
user-defined quantity of pixels is considered as a representative number. The process of
computing the probability functions of the model is called training, when BayNeRD
defines the probability functions based on the observed values from the data (i.e., by
counting pixels). Using values of probability for plausible reasoning, BNs are able to
infer based on evidence (observed data). Indeed, once BayNeRD is trained, it is able to
answer the question: “what is the probability of target presence feydean), given

the observed values for the context variables (&egain slopeandsoil aptitudg?”.

When the probability that answers this question is calculated for every pixel in the

entire study area, a Probability Image (PI) is formed.
3.3.5. Computing the Probability Image

The PI consists of a raster data (i.e., a matrix matching the same coordinates of the
enteredreference data for training) where each pixel contains the probability of
presence of the target given the values observed (instantiations) for the input variables,

ie.,

PY =1V, = vy, ...V, = vy) (3.4)

If any context variable presents missing data for any specific pixel in the study area, it is
considered as “unobserved” in the model but Eq. (3.4) is computed anyway. It is also
possible to find P(= 1) for pixels where no observation was made for any context
variable. In this case, the computed probability will be the marginal probability for
when Y= 1.
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BayNeRD also allows the user to quantify the infleeenf each context variable on the
probabilities computed for the target variable. This is done through the
Kullback-Leibler (KL) divergence, which is a non-symmetric measure of the difference
between two probability distributions (KULLBACK; LEIBLER, 1951). Thus, it is
possible to measure how mueh Vs, ... andV, individually influence the probability
computed forY by computing KL divergences between conditional and marginal

probabilities in the BN model.

The main result of BayNeRD is the Pl and it can be used in several applications. For
example, the PI can be used to generate a thematic map with classes target and non-
target (e.g., soybean and non-soybean) just by slicing the PI using a limiting probability
value named the Target Probability Value (TPV). Thus, by setting TPV at 50%, for
instance, all pixels with values equal to or greater than 0.5 in the PI will be labelled as
target and the remaining pixels (with values smaller than 0.5) will be labelled as non-
target. But what if the best TPV was 70% instead of 50%? Or even 80%7?

3.3.6. Selecting the Target Probability Value

Apart from a user-defined value, six criteria are implemented in BayNeRD to select the
TPV which best meets a chosen criterion, making use of available reference information
(i.e., areference data for testing). These implemented criteria are: (i) nearest 100%
sensitivity and 100% specificity point (ZWEIG; CAMPBELL, 1993) (for a description

of these two indices see Altman and Bland (1994)); (ii) minimum difference between
sensitivity and specificity; (iii) highest overall accuracy index; (iv) highest kappa index
(COHEN, 1960; HUDSON, 1987); (v) most similar area (number of pixels) matching
the reference data for testing; and (vi) minimum difference between omission and
commission errors (CONGALTON; GREEN, 2009).

3.4. Case study of soybean mapping in Brazil: Material and research methods

The case study involves soybean identification and mapping in Mato Grosso, which is a
major Brazilian soybean producer (about 30% of the total domestic production) and an
important global hub for tropical agricultural production (CONAB, 2013). Mato Grosso

State is located in the Southwest of Legal Brazilian Amazon encompassing an area
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around 900,000 kfi{BRASIL, 2002). Fig. 3.2 shows the location of Mato Grosso State,
highlighting thirty 30 x 30 km plots (and the Landsat path/row covering them) of
reference data produced by Epiphaatoal. (2010) for the crop year 2005/2006 (i.e.,
from August 2005 to July 2006) using visual interpretation of Landsat-5/TM images
and field data. Additional data such as indigenous lands, conservation units, mapped
forests and floodplains were used to mask out areas of no interest for mapping soybean

(as will be described further).

Figure 3.2 — Study area corresponding to the Mato Grosso State, Brazil. The analysis was only
peformed in areas that were not masked out.

Although Brazil is the second largest producer of soybean worldwide (FAO, 2012), the
country does not have a systematic nationwide mapping system for this oilseed.
Tabulated agricultural statistics at municipality level are only released with a delay of
about two years after harvest. The absence of timely and spatial data restricts
investigations related to crop monitoring and forecast. It also hinders the monitoring of
the possible spread of this crop into new, sometimes environmentally-sensitive, areas.
As such, there is demand for the use of satellite sensor images as an accurate, efficient,
timely and cost-effective way to monitor agricultural crops (ATZBERGER, 2013).

Several studies have demonstrated the value of Landsat-like images to monitor
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agricultural crops in Brazil using visual interptgta (R1ZZI; RUDORFF, 2005;
RUDORFFet al., 2010) or even automatically (MELLE al., 2013b; VIEIRAet al.,

2012). However, these methods have certain constraints, notably the limited number of
cloud-free images that are routinely acquired during the crop cycle (ASNER, 2001,
SANO et al.,, 2007). Alternatively, multitemporal approaches using Moderate
Resolution Imaging Spectroradiometer (MODIS) time series images have been
successfully used to monitor soybean plantations in tropical regions such as Mato
Grosso, since the 1-2 day temporal resolution of MODIS minimizes the constraints
related to cloud coverage on satellite sensor images (AR&Q@R, 2011; MACEDGCet

al., 2012; MORTON et al., 2006).

Besides remotely sensed spectral and temporal information, several other context
variables are closely related with soybean occurrence in a given field (e.g., soil type and
infrastructure facilities) (GARRET €t al., 2013). In the present study, this information

is combined within a BN structure to optimize soybean identification and mapping.
Fig. 3.3 shows a flowchart summarising the research material and methods employed in
the soybean mapping case study application of BayNeRD.

Figure 3.3 — Summary of the procedures used in the case study of applying BayNeRD to
identify soybean plantations in Mato Grosso State, Brazil. Table 3.1 provides a
description of the variables used.
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In summary, six context variables and a referenemdtic map were used as inputs in
BayNeRD, where a BN model was defined based on experts’ knowledge. Probability
functions were computed based on pixel counting of discretized variables, allowing
BayNeRD to compute the PI, which was eventually used to produce a thematic map of
soybean occurrence over the study area. This thematic map was then assessed using
reference data. The following subsections describe the research materials and methods

in detail.
3.4.1. Variables

All variables used in this case study, each represented by a raster GeoTIFF, were
resampled to match the grid of the MODIS vegetation indices product (MOD13Q1),
with a nominal spatial resolution of 250 x 250 m (JUSTICE et al., 2002).

Next, two classes of variables were entered:

a) Target variable —soybean occurrenc€S) corresponding to the studied
phenomenon, represented by a thematic map with four classes for the crop
year 2005/2006: (i) target presence observed (i.e., soybean); (ii)target
absence observed (i.e., non-soybean); (iii) missing data (i.e., no observations);
and (iv) pixels outside the study area. This thematic map, produced by
Epiphanio et al. (2010), was used as a reference in this study. In the
BayNeRD modelling,S assumes a Binomial distribution with= s where
s=1 for soybean presence asid 0 for soybean absence. Two thirds of the
pixels in each of the thematic class soybean and non-soybean were randomly
selected from the reference map to composeadference data for training
The remaining third of the reference map pixels was set aside to be used for

accuracy assessmengference data for testing).

b) Context variables — the selected and available variables to compose the model
are listed in Table 3.1. From expert knowledge it is known that each context

variable influences soybean occurrenge (
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Table 3.1 — Summary of the six context variables used in the soybean mapping case study.

Variable Description

C CEI value in the @rrent crop year (2005/2006)
L CEI value in the last crop year (2004/2005)

A Soil Aptitude

T Terrain slope (given in %)

W Distance to the nearestatér body (given in Km)
R Distance to the nearesbRd (given in Km)

"Crop Enhancement Index (RIZ2i al., 2009).

As a remote sensing input, the Crop Enhancement Index [CEI (RIZ1] 2009)] was

used. CEIl was designed to capture the high seasonality of annual crops, particularly
soybean. It uses the Enhanced Vegetation Index [EVI (HUET&., 2002)] values
derived from MODIS images observed at two specific periods of the soybean crop
calendar in the study area. CEI values may vary between [-1,+1] and are calculated, for
each pixel, as

CEl = 100 MaxEVI — MinEVI (3.5)
- MaxEVI + MinEVI + 200 '

where MIinEVlis the minimum observed EVI value between June and August or prior to
the beginning of the crop growing season, when EVI values are close to the minimum
for annual crops; aniflaxEVIis the maximum EVI value observed at the full soybean
development period, occurring between December (earliest sowing) and March (latest
sowing) when EVI values are at their highest for soybean (AR¥O&., 2011; RIZZI

et al., 2009).

In BayNeRD we use@EIl values in the current crop yeéC variable) for 2005/2006. It

is expected that soybean presence leads to high values of CEI (&l1&Z] 2009).
Therefore, sinceoybean occurrenc@fluences the CEI value for the current crop year,

S should be a parent 6fin the BN model. In addition we also uséél values in the

last crop year(i.e., 2004/2005 + variable). We used because soybean plantations in
Mato Grosso present spatially persistent characteristics over time, i.e., if soybean is
sown on a given plot in a given year it is likely that soybean will be sown on the same
plot in the following crop year (RISSO, 2013). THushould be a parent & in the BN

model.
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Soybean occurrends also influenced by soil type (RISSO, 2013), represented here by
the variablesoil aptitude(A). To set thesoil aptitudefor soybean production, we used a
thematic soil map (1:250,000 scale) provided by the Secretariat of Planning and
Coordination of Mato Grosso State (SEPLAN-MT, 2012). This map was produced
within the scope of an ecological-economic zoning project, according to the Brazilian
System of Soil Classification (PALMIEREt al.,, 2002; SANTOSet al., 2006).
Originally, the soil map contained 26 classes (types of soil), which were pooled into two
aptitude classes, low and high, defined by skilled soil experts according to soll
properties such as soil composition, water holding capacity and fertility. The low
aptitude class encompasses the following soils: rock outcrops, gleysols, lithic soils,
quartz sands, planosols, plinthosols, podzolic soils, solonetzic soils, alluvial soils,
cambisols, concretionary soils, organic soils and brunizem soils. On the other hand, the
high aptitude class encompasses ultisols and oxisols (SANSI@E, 2006). Hence,
since Ainfluences S, As a parent of S in the BN model.

The fourth context variable used was tleerain slope(T). To computeT we used
altitude data derived from the Shuttle Radar Topography Mission [SRTM (RABUS

al., 2003)]. T is critical in defining which fields are suitable for soybean production
since it defines suitable areas for large scale mechanized agriculture such as soybean
cultivation (SEERUTTUN; CROSSLEY, 1997; SHAXSON, 1999). Furthermore, land’s
erosive potential increases as slope increases, particularly if soil tilling practices are
employed. Therefor@ is a parent of in the BN model. It is also known thathas a
noticeable influence on soil formation (PARK al., 2001); thug is also a parent A&

in the BN model.

Another variable that influences soybean occurrence idisi@nce to the nearest water

body (W), computed using the hydrographic network provided by the Brazilian
Electricity Sector (ANEEL, 2012). This information includes the major river courses in
Brazil, at a 1:1,000,000 scaM/ was incorporated in this model for several reasons: (i)
the rainfall pattern in Mato Grosso makes irrigation unnecessary, leading farmers to sow
soybean preferably not close to river edges; (ii) Brazilian law safeguards preservation of
natural vegetation in a buffer area around water bodies — up to 500 m, depending on the
width of the water body, based on Brazilian Forest code in force at this evaluation time
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(SILVA et al., 2012); and (iii) short distances to water bodies are generally associated
with higher terrain slopes, hampering the use of these areas for soybean production.
Thus, we expect that the probability of soybean presence increases as the distance to
water body increases. Therefovejs both a parent & in the BN model, sincgoybean
occurrences direct influenced byV, and a descendent ©f sinceterrain slopedirectly

influences the path of flowing water channels.

Thedistance to the nearest roaR)(was computed using the road map, provided by the
Brazilian Institute of Geography and Statistics (IBGE, 2012a). This information
includes the paved and unpaved road network for the entire country at a 1:5,000,000
scale. A close relationship betweaonybean occurrencend distance to roads is
expected because of the logistical issues involved in accessing agricultural areas and
transporting crops. That is, soybean production is expected to occur relatively close to
major roads (FEARNSIDE, 2002). ThereforeisR parent of S in the BN model.

Finally, areas that have no realistic role for commercial soybean production or are
safeguarded by environmental protection laws in Mato Grosso were masked out. These
include: (i) natural forest, identified from the Amazon Deforestation Monitoring Project
(PRODES), carried out by INPE (2013) using the methodology described by
Shimabukuroet al. (1998); (ii) floodplains, identified from SEPLAN-MT (2012); (i)
indigenous lands, identified from Brazil's National Indian Foundation (FUNAI, 2013);
and (iv) protected areas (also called Conservation Units), which are those without
authorization for agricultural exploration, identified from the Brazilian Ministry of the
Environment (MMA, 2013). These layers were overlaid to create a composite mask and
all masked areas were omitted from analysis (see Fig. 3.2). Since some masked areas
are suitable for soybean production in terms of physical properties, this step is important
to minimize compromising the definition of the probability functions when counting

pixels.
3.4.2. Bayesian Network model

Given the (in)dependence relationships among the context variables and between each
context variable and the target variab (ve designed a BN graphical model using a
DAG (JENSEN; NIELSEN, 2007). Fig. 3.4 shows the designed model, where each
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node represents a variable and arcs between pairvasables represent their

dependence relationships.

Figure 3.4 — Directed Acyclic Graph (DAG) encoding assertions of conditional (in)dependence
among the variables and representing the designed Bayesian Network graphical
model for the case study séybean occurrenda Mato Grosso.

3.4.3. Discretization and probability functions

The first step after the definition of the BN graphical model is the discretization of
continuous variables. The number of intervals must be appropriately chosen, i.e., neither
too few to incorrectly describe the variable in the context of the phenomenon of interest
nor too many to compromise the definition of the probability function associated to the

variable and its descendants.

RegardingT, it is well known that soybean is preferably not sown on steep terrain
slopes because mechanized cultivation processes may be hindered. Instead, soybean is
usually sown in flat plateau areas with terrain slope < 6% (RISSO, 2013). A slope of
12% is considered the upper limit for mechanized cultivation (SHAXSON, 1999).
Based on this knowledg&, was discretized into three intervals: one for slopes smaller
than 6%, another for slopes equal to or larger than 6% but smaller than 12%, and the
last for slopes equal to or larger than 12%. Sihdes no parents, a prior probability
function is defined. By pixel counting, BayNeRD computed the prior probability

function for T, considering the defined intervals, i.e., P&T=1<0.06),
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P(0.06 <T=1<0.12) and P(0.12 ¥ =t<+wx). Tis a parent of S, so the probabilities of
soybean occurrence given each defined interval Towere also computed, i.e.,
PE=5s|-o<T=1t<0.06) P6G=5]0.06 I =t<0.12) and P =5 | 0.1ZX T = t < +0).
Fig. 3.5 shows a histogram of the discretizaedhiliable and computed probabilities.

Figure 3.5 — Discretization of context varialkyrain slope (T) into three intervals. The
percentage at the top of each bar represents the probability of finding a pixel
within the defined interval limits, e.g. B{<T=1t<0.06) = 82.9%; and the
percentage at the bottom of each bar represents the conditional probability of
soybean presence given the defined interval limits fdr e.qg.
PE=1]0<T=t<0.06) = 53.6%.

Fig. 3.5 shows that almost 83% of the analysed area consists of flat areas, i.e., terrain
slope smaller than 6%. Additionally, it shows that finding soybean plantations in these
flat areas (probability of 53.6%) is more likely than in areas where slopel®&/
(probability of 1.6%).

CEl (C andL) observations are also critical variables for this case study as they are
closely related tsoybean occurrencfRIZZI et al., 2009).Fig. 3.6a shows a histogram

of L values in the analysed area with bimodal appearance. CEI values less than 0.2 are
usually associated with targets with low (e.g., forest) or medium seasonality (e.qg.,
Cerrado or pasture) (GALFOR& al., 2008; RISS(@t al., 2012). On the other hand,

CEl values greater than 0.2 are strongly associated with high seasonality targets such as
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annual crops like soybean (RUDORE&Fal., 2011, 2012). Based on this knowledge, we

empirically defined four intervals for, las presented in Fig. 3.6b.

(a) (b)

Figure 3.6 — (a) Histogram of context varialil&l value in the last crop yeafl); (b)
discretization ofL into four intervals. The percentage at the top of each bar
represents the probability of finding a pixel within the defined interval limits,
e.g., P(0.26 £ = 1< +) = 7.0%; and the percentage at the bottom of each bar
represents the conditional probability of soybean presence given the defined
interval limits forL, e.g.,P§ = 1] 0.26 £ =1 < +00) = 95.4%.

Indeed, Fig. 3.6b demonstrates the strong relationship bet®vaedL. Although only

11.6% (4.6 + 7.0) of Mato Grosso State presented CEI values equal to or greater than
0.2 in the 2004/2005 crop year, the probability of finding soybean plantations in these
areas in the 2005/2006 crop year is considerably greater than in the remaining part of
the State.

Fig. 3.7 shows a histogram Gfvalues with the same bimodal appearance as discussed
for L, and a boxplot, where a strong relationship between soybean presen€e and
greater than 0.2 is also evident. Indeed, the relationship betWeen S is similar to

that betweerlL. andS because most soybean plantations of crop year 2005/2006 were
sown over the same areas of crop year 2004/2005 due to the spatially persistent
characteristic of soybean crop over time in Mato Grosso (RISSO, 2013). ThGswéor

used the same interval limits defined for L
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Figure 3.7 — Histogram o€El values observed in the current crop yd&) and boxplot
showing the strong relationship between soybean pres&ned) andC greater
than 0.2.

As with T, L andC, we manually defined the upper and lower limits for the remaining
context variables, as stated in Table 3.2. The main advantage of manual definition of

interval limits is that it optimizes experts’ knowledge during the discretization process.

Table 3.2 — Summary of the intervals limits defined for each of the six context variables,
described in Table 3.1.

Interval # C L A T W R
1 [0 ; 0.05) [0 ; 0.05) low [-00 ; 0.06) [-00; 0.5) [0 ; 3.0)
2 [0.05:0.20) [0.05 ;0.20) high [0.06:0.12)  [0.5;1.0) [3.0; 8.0)
3 [0.20:0.26) [0.20 ; 0.26) [0.12;40)  [1.0;2.0)  [8.0; +x0)
4 [0.26;40)  [0.26; +0) [2.0 ; +0)
# of intervals 4 4 2 3 4 3

Intervals are closed on the left and opened on the right, as denoted by [ and ), respectively.

3.4.4. Probability Image

Based on the designed BN model and the probability functions defined, BayNeRD
computes, for each pixel in the study area, the probability of soybean presence given

observations made on the context variables, i.e.,

PS=1|C=c L=, A=aT=tW=w,R=r) (3.6)
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where lower-case letters denote a state or valuenijdg a particular instantiation) of

the respective discretized variable. The resulting Pl was assessed visually and based on
official data (i.e., from IBGE). The Pl was also used to generate thematic maps that
were statistically assessed, based onréference data for testing, to determine the

effectiveness of BayNeRD for characterising soybean cultivation.
3.5. Results and discussion of BayNeRD
3.5.1. Probability Image

The resulting PI (Fig. 3.8) is an image in which every pixel value represents the

calculated probability as defined in Eq. 3.6.

Figure 3.8 — Probability Image (Pl) of soybean presence for the entire Mato Grosso State,
Brazil. Main soybean producer centres and the capital, Cuiaba, are highlighted.
The colour indicates the calculated probability of soybean presence in 2005/2006
given the observations made for the context variables, as expressed by Eq. 3.6.
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The PI shows the spatial distribution of (the praligbof) soybean crops throughout

Mato Grosso territory in crop year 2005/2006. Green coloured pixels represent areas
with higher probability of soybean presence based on observation of the context
variables. Some of the main soybean production centres according to IBGE (2012b) are
highlighted on the Pl and allow us to verify the spatial coherence between Pl and
official soybean statistics. Previous studies that assessed soybean spatial distribution in
Mato Grosso were also consistent with the regions of higher Pl values identified here
(ARVOR et al., 2011; RIZZEt al., 2009).

The higher probabilities shown in Fig. 3.8 highlight traditional centres of soybean
production in the Cerrado biome of Mato Grosso, i.e Primavera do Leste,
Rondondpolis, Sapezal and the central region (Sorriso Southward). More recent
soybean frontiers are in transition regions between Cerrado and the Amazon biome. In
Sorriso municipality Northward (along the BR 163 highway) and Queréncia region,
which are considered to be the newer agricultural frontiers in Mato Grosso (JEPSON,
2009), pasturelands have been converted to soybean production in an accelerated way
(RISSO, 2013).

Fig. 3.9 shows, for a small subset of the study area, the set of variables within different
conditions leading to variations in the calculated soybean presence in crop year
2005/2006 (PI). The region labelled 1 is on a plateau and exhibits ideal conditions for
soybean cultivation based on the designed BN model. CEI valuaadL) are high,
predominantly in the upper discretized intervaD(26);A is high; T is flat (< 6%);Wis

>2 km; and a road crosses this platealRgs < 3 km. Since every context variable
exhibits favourable conditions for soybean presence, the combination of these
conditions results in high probability of soybean presence. The region labelled 2 is on
the edge of the plateau and represents an area where soybean plantations are usually
close to pasture lands. In this case three context variables are favourable for soybean
presence based on the criteria discussed al#gvE §ndR), but CEI values@ andL)

are unfavourable<(0.20). Moreover, there are two water bodies in tbgion further

reduce the probability of soybean plantations. As a result, the probability of soybean
presence in region 2 tended to range between 25 and 50%. The region labelled 3
corresponds to an area of Cerrado, and exhibits more or less the opposite condition to
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that of region 1. In this case, all context variglpeesent unfavourable conditions for

soybean presence, leading to probability values close to zero in the PI.

100%
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Figure 3.9 — Probability Image (PI) of soybean presence and six context variables (described in
Table 3.1) zoomed in on the central part of the Sapezal municipality. The legend
for the context variables followed the intervals stated in Table 3.2. Regions labelled
1, 2 and 3 show respectively, ideal, intermediate and flawed conditions for soybean
cultivation.

Various other combinations of context variables can be found in the study area. The BN
network is adept at dealing with such occurrences. According to KL divergence
(KULLBACK; LEIBLER, 1951), C andL were the most important variables used to
infer about soybean occurrence K+ 0.28 and KL = 0.16). It means that, as pointed

out by Rissoet al. (2012), a proper vegetation index taken at key dates over the crop
calendar can be used to identify specific crops such as soybean @I1&z12006). In

fact, due to its ability and practicability to detect soybean areas, CEl is also used to
monitor soybean plantations in the Brazilian Amazon Biome in the context of the Soy
Moratorium (RUDORFFet al., 2011, 2012). For the remaining context variabBles,

W andR, the KL divergences were 0.009, 0.002, 0.003 and 0.0001, respectively. This
result means that soil type influenced more the calculated probability of soybean

presence then terrain slope, water distance and especially the distance to a road.

The relatively small influence dR on the calculated probability of soybean presence
could be explained by the fact that soybean fields are usually very large, particularly in
Mato Grosso. Hence, even very high transportation costs do not hinder soybean
cultivation (GARRETTet al., 2013). Additionally, most soybean areas in Mato Grosso
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are consolidated (i.e., traditional areas plantedh wsoybean), especially those
surrounding Sapezal, Sorrizo, Rondonépolis and Primavera do Leste, where
transportation logistics have been developed to fit the available road facilities. However,
we expecR to be more influential close to agricultural frontiers such as in the region of
Queréncia (JEPSON, 2009). Indeed, the close relationship between cash crops’
occurrence and proximity to roads has been widely explored, often using models to
predict future scenarios of agriculture expansion (JASIN®KIal., 2005) and
deforestation (SOARES-FILH@t al., 2006). Although modelling such knowledge is

possible in principle using BayNeRD, it was beyond the scope of the present study.

The influence ofl on the calculated probability of soybean presence was minimized by
the fact that most parts (83%) of the study were relatively Tlat §% — Fig. 3.5).
Nevertheless, results showed that soybean is not likely to be sown in steep areas,
corroborating that steep areas are unsuitable for large scale mechanized agriculture
(SEERUTTUN; CROSSLEY, 1997; SHAXSON, 1999). Historically, landholders sow
soybean on flat areas, suchGisapada dos Pareciand those surrounding the BR-163
highway in Mato Grosso central (e.g., Sorriso region), where the large soybean hubs are
located (FEARNSIDE, 2002).

In general, where only one context variable is unfavourable and/or is not strongly
related tosoybean occurrencgsuch asV, which presented Kk = 0.003), any decrease

in the calculated probability of soybean presence is likely to be very small. However if
the context variable has a strong relationship wiybean occurrencgor exampleC,

which presented K&= 0.28), any unfavourable condition of this variable is likely to
decrease soybean probability values substantially. Additionally, the mixing within a
pixel size of 250 x 250 m (defined as our nominal spatial resolution), especially over the
boundaries of defined discretized intervals, could be noted in Fig. 3.9, which presented

yellow coloured pixels surrounding green pixels in the PI.
3.5.2. Creating thematic maps from the Probability Image

The PI, as shown in Fig. 3.8, is the main output of BayNeRD and may be used in a
range of different applications. For example, if one is looking for soybean areas for

environmental supervision of soybean plantations in recent deforested areas, as defined
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in the Soy Moratorium context in Brazil (RUDORFFE al., 2011, 2012), then areas
where the probability of presence of soybean is high could be prioritized and the PI
could be used to guide the logistics of field inspection by regulatory agencies (MELLO
et al., 2010a). The PI can also be used as input for classifiers (gaggrasrobability

for the maximum likelihood classifier) or to mask out low probability areas before

running a classification.

Additionally, the Pl can also be used to produce a thematic map (e.g., for acreage
estimates) by applying a threshold probability value where all pixels with values above
the threshold are allocated to the target thematic class (e.g., soybean). This value, herein
called TPV, can be defined as any real value between 0 and 100%. Apart from a
manually defined TPV, six criteria were implemented in BayNeRD to select a TPV
according to some criterion, as defined in secti@3.6. Selecting the Target
Probability Value”, using reference information (ergference data for testing). The

TPV that produces the most suitable thematic map, following the chosen criterion, is
then called the best TPV.

The goal is to find the TPV that generates the most suitable thematic map showing two
classes: target (soybean) and non-target (non-soybean). Several metrics are discussed in
the literature to access map accuracy (FOODY, 2002; &tilal., 2007). The most

widely used one is the kappa index (COHEN, 1960; SMdT &l., 1999). However, in

the case of binary classifications, Foody (2010) pointed out the advantages of two
complimentary indices: sensitivity and specificity (ALTMAN; BLAND, 1994). These
indices indicate the ability to find true positives (e.g. soybean areas which are correctly
labelled soybean) and true negatives (e.g. non-soybean areas which are correctly

labelled non-soybean), respectively.

By varying the TPV from 0% to 100% different thematic maps were produced.
Obviously, TPV = 0% produced a thematic map where all pixels within the study area
were labelled as soybean. When all pixels were labelled soybean, all true soybean areas
were then labelled as soybean and consequently sensitivity was equal to 100%. On the
other hand, all true non-soybean areas were also labelled as soybean, and consequently
specificity was 0%. With TPV increasing from 0 to 100%, sensitivity decreases while

specificity increases. A useful graph to represent accuracy assessment in terms of these
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two indices is known as a Receiver Operating Cheniatit (ROC) curve (HANLEY;
MCNEIL, 1982). In a ROC curve the sensitivity is plotted on the Y-axis while the X-
axis represents l-specificity. Thus, the upper left corner represents the ideal point of
100% sensitivity and 100% specificity. According to Zweig and Campbell (1993), the
closer the point is to the upper left corner in a ROC curve, the higher the overall
accuracy of the thematic map. Therefore, the umadest 100% sensitivity and 100%
specificity pointcriterion aimed at selecting the TPV that produces a thematic map
where its corresponding point in a ROC curve is closest to the upper left corner, based
on thereference data for testing. Fig. 3.10 shows a ROC curve produced by varying
TPV from 0 to 100%.

Figure 3.10 — Receiver Operating Characteristic (ROC) curve, depicting sensitivity and
specificity indices associated with thematic maps generated from the
Probability Image (P1) by varying the Target Probability Value (TPV) from 0 to
100%. The circle points out the best TPV according to the chosen criterion.

In the ROC curve presented in Fig. 3.10 all points plotted above the diagonal (random
guess) represent a strong classification result (i.e. better than random) (HANLEY;
MCNEIL, 1982). This indicates that the Pl is an accurate representation of the

phenomenon (in this case, soybean occurrence). According tmeidest 100%
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sensitivity and 100% specificity poiatterion, the best TPV should be 47%, resulting

in a thematic map with sensitivity of 90.0% and specificity of 92.2%.Moreover, the
overall accuracy of 91.1% and a kappa value of 0.82 corroborated the fact that this best
TPV produced an accurate thematic map of soybean areas, basedeafertdrece data

for testing. Fig. 3.11 shows the accuracy indices for the Pl-derived thematic maps

generated by varying TPV from 0 to 100%.

Figure 3.11 — Accuracy indices associated with thematic maps generated from the Probability
Image (PI) by varying the Target Probability Value (TPV) from 0 to 100%. The
vertical line identifies the best TPV, according to the chosen criterion,
highlighting the accuracy achieved according to each index (described in the
legend).

A TPV can be defined to be more or less restricted in terms of associating a degree of
bdief, represented by a probability value, in which a pixel can be associated to the
target thematic class, prioritizing either sensitivity or specificity. If the aim is that the
total soybean area of the final thematic map closely matches the official statistics, the
TPV can also be selected accordingly. For example, the thematic map generated with a
TPV equal to 84% is more restrictive in terms of labelling a pixel as soybean but best

matched the official soybean acreage for the 2005/2006 crop year in Mato Grosso.
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Indeed this thematic map presented 6.1 Mha of saybeanly 0.8% higher than the
official data published by IBGE (2012b).

Similar to mapping soybean using remote sensing and environmental variablesf Krug

al. (2013) used various environmental observations such as sea surface temperature and
wind velocity in BNs to investigate coral bleaching along the Bahia State coast, Brazil.
They also pointed out that BNs could be used as a prediction tool, incorporating

evidence from a large data set of environmental observations, as we demonstrated here.

In fact, BayNeRD could be used to infer knowledge about a variety of phenomena
based on observations of variables that are somehow related to the phenomena. For
example, it may be used to identify forested areas susceptible to burning based on
observations of forcing variables such as selective logging, deforestation, rainfall,
distance to roads and land use type of surrounding areas (ARAGAZD, 2008;
SILVESTRINI et al., 2011). Detecting landslide susceptibility based on observations
made upon variables such as slope, soll, lithological classes, terrain curvature, land
cover and rainfall represents another possible application of BayNeRD (EEa4L,

2008). BayNERD could also enable inference about the occurrence of certain fish
species based on data such as sea surface temperature, chlorophyll concentration and
sea surface winds (OLIVEIRAL al., 2010).

3.6. Conclusion to BayNeRD

This paper described the basis functioning and implementation of a computer aided BN
method for raster data analysis: Bayesian Networks for Raster Data (BayNeRD).
BayNeRD provides a new computer-aided method to characterise phenomena through
plausible reasoning inferences based on observations of several variables. The number
of variables is not limited and the sole conditions are an accurate match of raster cells

and the availability of a suitable reference data set.

The case study of mapping soybean areas in Mato Grosso State, Brazil, showed
BayNeRD’s capability to model environmental phenomena. Based on observations
made upon Crop Enhanced Index (CEI) values for the current and last crop years, soll

type, terrain slope and distance to the nearest road and water body, the resulting
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Probability Image (PI) from BayNeRD presented aigpdalistribution of soybean areas
consistent with expert knowledge and official statistical data. Starting from the PI, a
thematic map could be produced depicting the spatial distribution of soybean and non-

soybean areas with overall accuracy greater than 91%.

Advantages of BayNeRD include that it incorporates expert’'s knowledge into the
process; it models the (in)dependence relationships among several observed variables; it
outputs variable importance information, through the Kullback-Leibler divergence; it
can accommodate different forms of data (numerical and categorical); it can handle
incomplete data; it allows computation of probability functions from the data; and it is a
user-friendly implementation in a free software ready to handle raster data sets.

The BayNeRD algorithm has been implemented in R software and can be found on

internet.
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4 Final remarks

This thesis presented two methods, which represent an advance to the development and
implementation of methods for remotely sensed data analysis focused on cropland
mapping applications. These methods were described in full and tested using case

studies of sugarcane harvest and soybean mapping.

Chapter 2 presented the Spectral-Temporal Analysis by Response Surface (STARS)
method in full and showed how STARS may be efficiently used to monitor sugarcane
harvest in Brazil. We tested two different response surface models [i.e., Polynomial
Trend Surface (PTS) and Collocation Surface (CS)] and two types of coefficients (i.e.,
orthonormal and regular) for the description of a multitemporal-multispectral Landsat
dataset of 11 images (six spectral bands). With an overall accuracy of 99%, STARS
performed well when used as input features in classifications aiming to map sugarcane
fields harvested with or without straw burning, and sugarcane fields not harvested by
the end of the crop harvest season. Although tested as input for classifiers, STARS is a
robust method for modelling spectral-temporal changes of agricultural targets on Earth’s
surface. It reduces noise and dimensionality (e.g., PTS model) and may deal with
images acquired at irregular time intervals, by different sensors with multispectral
bands. Additionally, STARS can be used in a range of applications.

Complimentary to the thesis objective, chapter 3 described the Bayesian Network for
Raster Data (BayNeRD), which allows the modelling of complex phenomena
integrating variables into a model to make inferences using plausible reasoning from
observations. This chapter briefly introduced Bayesian Networks (BN) theory and
described how it was used to develop BayNeRD. The case study of soybean mapping in
Mato Grosso State was used to test and evaluate BayNeRD. We integrated two years of
remotely sensed (represented by a crop index named Crop Enhancement Index — CEI)
and ancillary (i.e., topography, soil, roads and water bodies) data into a BN model
which encoded the dependence relationship among these variables and between each
one of them with soybean occurrence in Mato Grosso. The Probability Image (PI) that
resulted from BayNeRD showed strong adherence to the official agricultural statistics
from IBGE. Moreover, the thematic map generated from Pl presented more than 91% of

overall accuracy. Although ancillary data proved to increase accuracy of classifications,
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we found that remotely sensed data had the stromgfistnce, as evidenced by the
calculated probability of soybean presence. This result demonstrated the potential of
remote sensing as a source of data for agricultural monitoring. BayNeRD allowed the
expert to model the soybean occurrence phenomenon, outputted variables’ importance
information, and handled incomplete and different sort of data. Indeed, BayNeRD
showed potential for use in several applications such as for the Soy Moratorium context.

The two methods developed and tested confirm our hypothesis that remotely sensed
(and ancillary) data analysis can be automated through computer aided methods to
model a range of cropland phenomena for agriculture applications, maintaining

consistency and accuracy. Both methods were entirely implemented in R software.
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