
sid.inpe.br/mtc-m19/2014/01.21.12.55-TDI

KNOWLEDGE MANAGEMENT APPLIED TO

SOFTWARE TESTING: AN ONTOLOGY BASED

FRAMEWORK

Érica Ferreira de Souza

Doctorate Thesis Course Graduate
in Applied Computing, guided by
Drs. Nandamudi Lankalapalli Vi-
jaykumar, and Ricardo de Almeida
Falbo, approved in February 04,
2014.

URL of the original document:
<http://urlib.net/8JMKD3MGP7W/3FK67N8>

INPE
São José dos Campos

2014

http://urlib.net/xx/yy

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Gabinete do Diretor (GB)
Serviço de Informação e Documentação (SID)
Caixa Postal 515 - CEP 12.245-970
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/6921
Fax: (012) 3208-6919
E-mail: pubtc@sid.inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE INTEL-
LECTUAL PRODUCTION (RE/DIR-204):
Chairperson:
Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)
Members:
Dr. Antonio Fernando Bertachini de Almeida Prado - Coordenação Engenharia e
Tecnologia Espacial (ETE)
Dra Inez Staciarini Batista - Coordenação Ciências Espaciais e Atmosféricas (CEA)
Dr. Gerald Jean Francis Banon - Coordenação Observação da Terra (OBT)
Dr. Germano de Souza Kienbaum - Centro de Tecnologias Especiais (CTE)
Dr. Manoel Alonso Gan - Centro de Previsão de Tempo e Estudos Climáticos
(CPT)
Dra Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação
Dr. Plínio Carlos Alvalá - Centro de Ciência do Sistema Terrestre (CST)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon - Coordenação de Observação da Terra (OBT)
DOCUMENT REVIEW:
Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)
Yolanda Ribeiro da Silva Souza - Serviço de Informação e Documentação (SID)
ELECTRONIC EDITING:
Maria Tereza Smith de Brito - Serviço de Informação e Documentação (SID)
André Luis Dias Fernandes - Serviço de Informação e Documentação (SID)

pubtc@sid.inpe.br

sid.inpe.br/mtc-m19/2014/01.21.12.55-TDI

KNOWLEDGE MANAGEMENT APPLIED TO

SOFTWARE TESTING: AN ONTOLOGY BASED

FRAMEWORK

Érica Ferreira de Souza

Doctorate Thesis Course Graduate
in Applied Computing, guided by
Drs. Nandamudi Lankalapalli Vi-
jaykumar, and Ricardo de Almeida
Falbo, approved in February 04,
2014.

URL of the original document:
<http://urlib.net/8JMKD3MGP7W/3FK67N8>

INPE
São José dos Campos

2014

http://urlib.net/xx/yy

Cataloging in Publication Data

Souza, Érica Ferreira.
So89k Knowledge management applied to software testing: an ontol-

ogy based framework / Érica Ferreira de Souza. – São José dos
Campos : INPE, 2014.

xxvi + 186 p. ; (sid.inpe.br/mtc-m19/2014/01.21.12.55-TDI)

Thesis (Doctorate in Applied Computing) – Instituto Nacional
de Pesquisas Espaciais, São José dos Campos, 2014.

Guiding : Drs. Nandamudi Lankalapalli Vĳaykumar, and Ri-
cardo de Almeida Falbo.

1. software testing 2. knowledge management 3. ontologies
4. knowledge management system. 5. knowledge reuse. I.Título.

CDU 005.94:004.9

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Li-
cense.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/

In memory of my father Osvaldo Dias de Souza

v

ACKNOWLEDGEMENTS

First, I would like to gratefully thank my father Osvaldo Dias de Souza (in memo-
rian), my mother Maria Aparecida Ferreira de Souza, my brothers Edevaldo Ferreira
de Souza and Éder Luiz Ferreira de Souza, and my beloved Giovani Volnei Meinerz,
for their support, encouragement, patience, and unconditional love and care during
the time I devoted to this PhD thesis. It was crucial so I could have the strength to
go ahead.

Next, I need to sincerely thank my advisors Dr. Nandamudi Lankalapalli Vijaykumar
and Dr. Ricardo de Almeida Falbo, for their guidance, understanding, and most im-
portant, friendship during the development of this work. Without their mentorship,
I may never have gotten to where I am today.

I must also express my gratitude to the Brazilian Institute for Space Research
(INPE) for it valued institutional support and the necessary human and physical
resources essential to perform all the research activities.

My sincere recognition and gratefulness to Coordination for the Improvement of
Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior - CAPES) and São Paulo Research Foundation (Fundação de Amparo
à Pesquisa - FAPESP), not only for providing the funding which allowed me to
undertake this research, but also for giving me the opportunity to attend conferences
and meet so many interesting worldwide researchers.

I also have to thank the members of my PhD committee, Professors Monalessa Perini
Barcellos (UFES), Otávio Augusto Lazzarini Lemos (UNIFESP), Rafael Duarte
Coelho dos Santos (INPE), Walter Abrahão dos Santos (INPE), for their input,
valuable discussions, and helpful suggestions.

I would like to thank Dr. Adilson Marques da Cunha, from the Brazilian Aeronautics
Institute of Technology (ITA), which was the coordinator of a Brazilian National
Water Agency research and develepment project, whereby I got the real data applied
on the case studies of my research.

I would like to acknowledge Dra. Gláucia Braga e Silva and Dr. Ronaldo Arias for the
support and attention given to the case studies used in this thesis. I also would like
to acknowledge Marcos da Silva Specimille for contribute in the final development
of this thesis PhD.

vii

Finally, I would like to thank all my fellow postgraduate students of the Applied
Computing Division at INPE for helping me keep things in perspective and making
everything much more pleasurable.

viii

ABSTRACT

Software development organizations are seeking to add quality to their products.

Testing processes are strategic elements to manage projects and product quality.
However, advances in technology and the emergence of increasingly critical

applications make testing a complex task and a large number of information is

generated. In fact, software testing is a knowledge intensive processo In view of
this, these organizations have shown a growing interest in knowledge

management programs, which in turn support the improvement of testing

procedures. In this context, testing knowledge should be captured and represented

in an affordable and manageable way, and therefore, could make use of principles
of Knowledge Management (KM). One of the main KM problems is how to

represent knowledge. Ontologies are particularly important for KM. With respect

to knowledge representation and Knowledge Management Systems (KMS),

ontologies can help manipulating the knowledge items represented, by
minimizing ambiguity and vagueness in the interpretation of the shared

understanding regarding the domain. In this context, this work aims to define an

ontology-based framework for guiding KM initiatives in the software testing

domain, supported by KMS. This framework is subjected to a proof of concept,
and as a result a Testing KM Portal was developed using actual knowledge items

extracted from two software projects.

ix

xi

GESTÃO DE CONHECIMENTO APLICADO A TESTE DE SOFTWARE: UM

FREMAWORK DE BASE ONTOLÓGICA

RESUMO

Organizações de desenvolvimento de software vêm buscando, cada vez mais,

agregar qualidade aos produtos gerados. Os processos de teste são elementos
estratégicos para a condução de projetos de desenvolvimento e qualidade do

produto. No entanto, os avanços tecnológicos e o surgimento de aplicações cada

vez mais críticos tornam a atividade de teste uma tarefa complexa e um grande

volume de conhecimento é gerado. De fato, o teste de software é um processo
de conhecimento intensivo. Diante disso, tais organizações têm mostrado um

crescente interesse por programas gerenciamento do conhecimento gerado, que

consequentemente apoiam a melhoria dos processos de teste. Assim, o

conhecimento de teste deve ser capturado e representado em uma forma
acessível e controlável, e, portanto, pode fazer uso dos princípios da Gestão do

Conhecimento (GC). Um dos principais problemas na GC é a forma de

representar o conhecimento. Ontologias são particularmente importantes para

GC. No que diz respeito a representação do conhecimento e Sistemas de Gestão
do Conhecimento (SGC), ontologias podem ajudar a manipular ontologias pode

ajudar a manipular os itens de conhecimento representados, minimizando a am-

biguidade e imprecisão na interpretação do entendimento comum sobre o

domínio. Neste contexto, este trabalho tem define um framework de base
ontológica para orientar iniciativas de GC no domínio de teste de software,

apoiado por SGC. Este framework é submetido a uma prova de conceito, e

como resultado, um Portal de GC para teste de software foi desenvolvido

utilizando itens de conhecimento reais extraídos de dois projetos de software.

LIST OF FIGURES

Page

2.1 Knowledge Spiral . 16
2.2 Overview of the steps that compose the KDD Process 21
2.3 Search and selection mapping process . 29
2.4 Distribution of the selected studies over the years 37
2.5 Distribution over research type . 40
2.6 Percentage of the selected studies per problems reported 41
2.7 Percentage of the selected studies per purposes reported 42
2.8 Percentage of studies per category . 43
2.9 Types of knowledge managed . 44
2.10 Technologies used to implement KM . 45

3.1 Kinds of ontologies, according to their level of dependence on a particular
task or point of view. 56

3.2 Systematic Approach for Building Ontologies (Systematic Approach for
Building Ontologies (SABiO)) . 57

3.3 Software Process Ontology Pattern Language (SP-OPL) 62
3.4 Enterprise Ontology Pattern Language (E-OPL) 63
3.5 Search and selection SLR process . 66

4.1 Testing-Knowledge Management (T-KM) Framework components 78
4.2 Software Process Ontology Pattern Language (SP-OPL) patterns acces-

sible from the entry point EP3. 81
4.3 ROoST: sub-ontologies . 81
4.4 ROoST´s Testing Process and Activities sub-ontology. 82
4.5 The ROoST’s Testing Artifacts sub-ontology. 85
4.6 ROoST’s Testing Techniques sub-ontology. 88
4.7 ROoST’s Testing Environment sub-ontology. 91
4.8 Transformation of Generalization Sets 95
4.9 Fragment on the mapping classes with stereotype <<category>>,

<<kind>> and <<subkind>> . 96
4.10 Fragment on the mapping classes with stereotype <<Role>> 97
4.11 Fragment on the mapping relations . 98
4.12 SPARQL query on test cases . 98
4.13 T-KM Process . 100

5.1 Importance of KM to Software Testing Process Activities. 108

xiii

5.2 Useful of Knowledge Management (KM) in activities of Testing Planning 108
5.3 Test environment resources . 109
5.4 Importance of KM to Test Level . 109
5.5 Type of knowledge . 109
5.6 Making Tacit Knowledge Explicit . 110
5.7 Artifacts more appropriate for reuse . 111
5.8 Purpose of applying KM in Software Testing 111
5.9 Expected Benefits of applying KM in Software Testing 112
5.10 Testing KM Portal Use Case Diagram 114
5.11 Package Diagram of Testing Knowledge Management Systems (KMS). . 116
5.12 Class diagram of KM Portal. 116
5.13 Class diagram of Testing KM Portal. 117
5.14 Page Explorer of WEKA . 122
5.15 Aba associação com algumas regras geradas 123
5.16 Loading existing knowledge items . 125
5.17 Main page of Testing Knowledge Management Portal (TKMP) 126
5.18 Types of Knowledge Items . 127
5.19 Creating Knowledge Item - Test Case . 128
5.20 Create Test Case - Specific Information 128
5.21 Items Pending from Evaluation . 129
5.22 Items Pending from Evaluation (Common User) 130
5.23 Evaluating Knowledge Item . 131
5.24 Knowledge Item View - Evaluation . 131
5.25 Search Knowledge Items - Search Criteria 132
5.26 Test Cases returned . 133
5.27 View Test Case returned . 134
5.28 View Test Case returned - Specific Information 134
5.29 View Test Case returned - Test Case Result 135
5.30 View Test Case returned - Incident . 135
5.31 View Test Case returned - Valuation tab 136
5.32 Valuing Knowledge Items . 136
5.33 Maintenance of Knowledge Items . 137
5.34 Yellow Pages window . 138
5.35 Visualize Profile . 138
5.36 Maintenance of Knowledge Items . 139

A.1 SP-OPL patterns accessible from the entry point EP3 166
A.2 Work Product Taxonomy (WPT) . 166
A.3 Procedure Taxonomy (PRT) . 167

xiv

A.4 The Process and Activity Execution Process and Activity Execution
(PAE) ontology pattern . 168

A.5 The Work Product Participation (WPPA)ontology pattern. 169
A.6 Procedure Participation (PRPA) ontology pattern. 169
A.7 Human Resource Participation (HRPA) ontology pattern. 170
A.8 Resource Participation (RPA) ontology pattern. 170
A.9 Enterprise-Ontology Pattern Language (E-OPL) 171
A.10 Multi-Organization Arrangement (MOAR) 172
A.11 Organizational Teams (OTD) . 172
A.12 Team Roles (TEAR) . 173
A.13 Team Allocation (TEAA) . 173

A.1 Question 01. Importance of KM to Software Testing Process Activities . 175
A.2 Question 06. Making Tacit Knowledge Explicit 179
A.3 Question 07. Testing artifacts more appropriate for reuse 180

B.1 Tables of Mantis and TestLink . 184
B.2 Process to loading knowledge items from Mantis and TestLink 185
B.3 Loading the data corresponding to Incident 185
B.4 Insertion of data corresponding to Incident 186

xv

LIST OF TABLES

Page

2.1 Classification of techniques types . 13
2.2 Research questions and their rationales 25
2.3 Keywords of the Search String of the Mapping 28
2.4 Results from the selection stages . 30
2.5 Selected Studies . 30
2.6 Publication Sources . 37
2.7 Research focus from the software testing perspective along the years . . . 38
2.8 Distribution over research focus regarding the KM perspective 38
2.9 Distribution over research type . 39
2.10 Distribution of related problems (motivation) 40
2.11 Distribution of purposes . 42
2.12 Distribution of explicit knowledge . 43
2.13 Distribution of technologies used . 44
2.14 Research questions and their rationales 49

3.1 Main features of the languages for ontology modeling 58
3.2 Domain-Related Ontology Patterns (DROPs) in the SP-OLP 60
3.3 Research questions and their rationales 64
3.4 Keywords of the Search String of the SLR. 65
3.5 Result of the Selection Process Stages of the SLR. 66
3.6 Comparison of the ontologies for software testing 73

4.1 ROoST Verification . 92
4.2 ROoST Instantiation . 94
4.3 Characteristics for “beautiful ontologies” in ROoST 99

5.1 Survey Questions and their Relations with the Mapping Study and ROoST106
5.2 Attributes TestLink . 119
5.3 Attributes MantisBT . 119
5.4 Attributes analyzed (first 20 records) . 121
5.5 Search Criteria . 132

A.1 Importance of KM to Software Testing Process Activities 175
A.2 Usefulness of KM in sub-activities of Testing Planning 177
A.3 Test Environment Resources . 177
A.4 Importance of KM to Test Levels . 178
A.5 Type of knowledge . 178

xvii

A.6 Making Tacit Knowledge Explicit . 179
A.7 Artifacts more appropriate for reuse . 180
A.8 Purpose of applying KM in Software Testing 181
A.9 Expected Benefits of applying KM in Software Testing 182

xviii

LIST OF ABBREVIATIONS

AOC Attitude and Orbit Control

DCTA Departamento de Ciência e Tecnologia Aeroespacial

DROPs Domain-related Ontology Patterns

E-OPL Enterprise Ontology Pattern Language

FDIR Fault Detection Isolation and Recovery

FSM Finite State Machines

HRPA Human Resource Participation

ICAMMH Amazon Integration and Cooperation for Modernization of Hydrologi-
cal Monitoring

IT Information Technology

INPE Instituto Nacional de Pesquisas Espaciais

KDD Knowledge Discovery in Databases

KM Knowledge Management

KMS Knowledge Management Systems

LL Lesson Learned

MND-TMM Ministry of National Defense-Testing Maturity Model

MOAR Multi-Organization Arrangement

OBDH On-Board Data Handling

OCL Object Constraint Language

ODE Ontology-based software Development Environment

OP Ontology Patterns

OPL Ontology Pattern Language

xix

OTD Organizational Teams

OWL Ontology Web Language

PAE Process and Activity Execution

PRPA Procedure Participation

PRT Procedure Taxonomy

RDF Resource Description Framework

RPA Resource Participation

ROoST Reference Ontology on Software Testing

SABiO Systematic Approach for Building Ontologies

SIA Inertial Systems for Aerospace Application

SLR Systematic Literature Review

SPARQL Protocol and RDF Query Language

SPO Software Process Ontology

SPP Software Process Planning

SPS Standard Process Structure

SP-OPL Software Process Ontology Pattern Language

SQL Structured Query Language

STOWS Software Testing Ontology for Web Service

T-KM Testing-Knowledge Management

TKMP Testing Knowledge Management Portal

TEAA Team Allocation

TEAR Team Roles

TOM Test Ontology Model

UFO Unified Foundational Ontology

xx

UML Unified Modeling Language

XML eXtensible Markup Language

WEKA Waikato Environment for Knowledge Analysis

WPPA Work Product Participation

WPT Work Product Taxonomy

xxi

CONTENTS

Page

LIST OF ABBREVIATIONS

1 INTRODUCTION . 1
1.1 Motivation . 2
1.2 Problem Characterization . 4
1.3 Objectives . 4
1.4 Research Method . 5
1.5 Organization of this Thesis . 8

2 KNOWLEDGE MANAGEMENT IN SOFTWARE TESTING . 11
2.1 Software Testing . 11
2.2 Knowledge Management . 15
2.3 Knowledge Management applied to Software Testing 21
2.3.1 Study based on a Systematic Mapping 22
2.3.2 Related Work: Secondary study addressing KM in Software Testing . . 23
2.3.2.1 Research Method for the Mapping 24
2.3.2.2 Data extraction and synthesis . 28
2.3.2.3 Classification scheme . 32
2.3.3 Limitations of this mapping . 35
2.3.4 Results . 36
2.3.4.1 Discussion of reviewed studies . 46
2.3.4.2 SLR in ontology-based KM initiatives 48
2.4 Final remarks about this chapter . 53

3 ONTOLOGIES FOR SOFTWARE TESTING 55
3.1 Ontologies . 55
3.2 Ontology Pattern Languages . 60
3.3 Software Testing Ontology: Systematic Literature Review 63
3.3.1 Review Protocol . 63
3.3.2 Conducting the Review . 65
3.3.3 Review Results . 66
3.3.4 Discussion . 71
3.4 Final remarks about this chapter . 76

xxiii

4 AN ONTOLOGY-BASED FRAMEWORK FOR KNOWLEDGE
MANAGEMENT IN SOFTWARE TESTING 77

4.1 Framework Overview . 77
4.2 Reference Ontology on Software Testing (ROoST) 78
4.2.1 Ontology Engineering Approach . 79
4.2.2 Testing Process and Activities sub-ontology 82
4.2.3 Testing Artifacts sub-ontology . 84
4.2.4 Testing Techniques sub-ontology . 87
4.2.5 Testing Environment sub-ontology . 89
4.2.6 ROoST Evaluation . 92
4.3 Process for applying Knowledge Management in Software Testing 99
4.4 Final remarks about this chapter . 103

5 APPLICATION OF THE PROPOSED FRAMEWORK 105
5.1 Diagnosis by means of a Survey . 105
5.2 Definition of the Scope Testing KM Initiative 112
5.3 Developing the Testing KM Portal . 113
5.3.1 Test Case . 118
5.3.2 Mined Item . 120
5.3.3 Loading Existing Knowledge Items . 124
5.4 Testing Knowledge Management Portal (TKMP) 125
5.4.1 Knowledge Item Creation . 127
5.4.2 Knowledge Items Evaluation . 129
5.4.3 Knowledge Item Search . 132
5.4.4 Knowledge Items Valuation . 134
5.4.5 Knowledge Items Maintenance . 136
5.4.6 Yellow Pages . 137
5.4.7 Discussion Forums . 138
5.5 Evaluation . 139
5.6 Final remarks about this chapter . 141

6 CONCLUSIONS . 143
6.1 General considerations . 143
6.2 Contributions . 144
6.3 Main Limitations and Difficulties . 146
6.4 Future Work . 146
6.5 Final remarks about this thesis . 147

xxiv

REFERENCES . 149

ANNEX A - Ontology Pattern Language: SP-OPL and E-OPL . . . 165

APPENDIX A - Survey: KM in software testing 175

APPENDIX B - Loading Existing Knowledge Items 183

xxv

1 INTRODUCTION

During the last decades, with the emergence of new technologies, more advanced
techniques have been applied in software development, in order to achieve high-
quality software products (THRANE, 2011). Thus, more efficient techniques to qualify
a software product should be incorporated in its development lifecycle, ensuring a
well-managed process. This applies, in particular, in critical systems, such as systems
for space applications, systems for nuclear power plants, medical equipment, among
others.

The lack of use of mechanisms for assuring software quality, mainly in critical soft-
ware, can cause significant losses. Classic examples in which defects in software were
the main causes of failure are: the number of processors Pentium Intel due to a
defect in math coprocessor (Floating Point Unit), becoming known as “Pentium
FDIV bug” (PECHEUR, 2000); self-destruction of the rocket Ariane 5, due to an er-
ror in the control software (PECHEUR, 2000); Therac-25 medical electron accelerator
(1985-1987)(LEVESON; TURNER, 1993), which caused several losses of human lives;
and the Mars Climate Orbiter (1999) (NASA, 2014).

Quality is a desirable element for any kind of product including software. However,
regardless of the product, obtaining quality is not an easy task. In the context of
software quality, it is necessary to adopt a technical perspective and consider several
factors that affect product construction and influence the judgment of users, such
as: product complexity, conformance to requirements, number of people involved,
tools, defect level, defect origins, and costs associated with the presence of defects
and their removal (GODBOLE, 2006; KOSCIANSKI; SANTOS, 2007). Thus, it is clear
that among these factors, Verification & Validation (V&V) performs an important
role in assessing and achieving the quality of a software product.

Software development is an error prone process. To achieve software quality, it is
essential to perform V&V activities throughout the software development process.
Verification determines whether the developed products of a given activity conform
to the requirements of that activity. Validation refers to whether the software satisfies
its intended use and the user needs (IEEE, 1990).

V&V activities can be static and dynamic. Dynamic V&V activities require the exe-
cution of a program, while static V&V activities do not involve program execution.
Static V&V are typically done by means of technical reviews and inspections. Dy-
namic V&V are done by means of testing (MATHUR, 2012). Thus, software testing

1

consists in dynamic V&V of the program behavior against the expected behavior
(ABRAN et al., 2004).

Currently, software testing is considered as a process consisting of activities, tech-
niques, resources and tools. Advances in technology and the emergence of increa-
singly critical applications make testing a complex task. During software testing, a
large number of information is generated. In fact, software testing is a knowledge in-
tensive process, and thus it is important to provide computerized support for tasks
of acquiring, processing, analyzing and disseminating testing knowledge for reuse
(ANDRADE et al., 2013). In this context, testing knowledge should be captured and
represented in an affordable and manageable way, and therefore, software testing
could make use of principles of KM.

With respect to KM, one of the main problems is how to represent knowledge. A
KMS should support the integration of information from diversified sources, wherein
a decision maker manipulates information that someone else has conceptualized and
represented. So, a KMS must minimize ambiguity and imprecision in interpreting
shared information. This can be achieved by representing the shared information
using, for example, ontologies (KIM, 2000). An ontology is an explicit specification
of a conceptualization (GRUBER, 1993). Ontologies are particularly important for
KM, since they bind KM activities together, allowing a content-oriented view of
KM (STAAB et al., 2001). An ontology can be used to define a shared vocabulary
to be used in the KMS to facilitate knowledge communication, integration, search,
storage and representation (BENJAMINS et al., 1998).

1.1 Motivation

Software Testing area has drawn a significant attention in both industrial and aca-
demic areas. Several different models for test process improvement have been used
in order to guide testing. However, this alone is not enough to improve the organiza-
tional testing process. According to Andrade et al. (2013), one of the characteristics
of software testing is that it has a large intellectual capital component and can thus
benefit from the use of the experience gained from past projects.

Currently, software has become more and more critical with complex application
domains, making the testing process increasingly important. Some examples are
the systems developed at National Institute for Space Research (Instituto Nacional
de Pesquisas Espaciais (INPE)) involving critical software embedded in scientific
equipment on board satellites and/or stratospheric balloons. This makes the software

2

becomes increasingly more complex and, consequently, knowledge-intensive (NATALI

et al., 2004).

In this context, the use of experiences of members or lessons learned must be taken
into consideration. However, experiences gained are confined to each individual and
this is not known or shared by other team members (at least not formally) (WU;

XUEMEI, 2009; ABDULLAH et al., 2011; DESAI, 2011; ANDRADE et al., 2013). Fur-
thermore, there is a loss of intellectual capital in the organization, due to limited
knowledge of each individual and the turnover of staff (NOGESTE; WALKER, 2003;
WU; XUEMEI, 2009; DESAI, 2011).

The adoption of principles of KM in software testing can assist specialists to pro-
mote the reuse of knowledge, to support processes of testing and even to encourage
management decisions in organizations. There are many benefits of implementing
KM in the software testing domain, such as (LIU et al., 2009; XU-XIANG; WEN-NING,
2010; LI; ZHANG, 2012; ANDRADE et al., 2013): (i) selection and application of bet-
ter suited techniques; (ii) cost reduction; (iii) test effectiveness increase; and (iv)
competitive advantages.

According to O’Leary (1998a), KM formally manages knowledge resources in or-
der to facilitate access and reuse, typically by using advanced Information Techno-
logy (IT). IT-supported KM solutions are built around an organizational structure
that integrates informal, semiformal, and formal knowledge to facilitate its access,
sharing, and reuse (STAAB et al., 2001).

The theme addressed in this thesis, KM in software testing, has considered the
relevance of projects from INPE and Departamento de Ciência e Tecnologia Aeroes-
pacial (Departamento de Ciência e Tecnologia Aeroespacial (DCTA)). In INPE and
DCTA, sectors related to construction of satellites and Satellite Launch Vehicle or
other sectors as critical as these, have some kind of architecture or even automated
environments to qualify software products considered critical (SANTIAGO JÚNIOR,

V. A. and VIJAYKUMAR, N. L. and GUIMARÃES, D. and AMARAL, A. S. and Souza, E. F.

, 2008; LAMAS, 2010a; LAMAS et al., 2010b; SANTIAGO JÚNIOR, V. A. and VIJAYKU-

MAR, N. L. and SOUZA, E. F. and GUIMARÃES, D. and COSTA, R. C., 2012). The use of
strategies to guide on how to work properly with the knowledge within these orga-
nizations assist in supporting the software testing processes, thus ensuring a higher
quality of the software product generated in these projects.

3

1.2 Problem Characterization

Several studies have reported on the problem of software testing knowledge reuse
within organizations (WU; XUEMEI, 2009; ABDULLAH et al., 2011; LI; ZHANG, 2012;
ANDRADE et al., 2013; JANJIC; ATKINSON, 2013). The major problem in organizations
are low reuse rate of knowledge and barriers in knowledge transfer. This occurs
because most of the knowledge in organizations is not treated and it becomes difficult
to articulate (ABDULLAH et al., 2011; LI; ZHANG, 2012; ANDRADE et al., 2013).

The main issue is that test teams do not benefit from the knowledge and experi-
ence acquired, as these are limited to a single individual and, therefore, it becomes
more difficult to bring this knowledge to the organizational level. As a consequence,
the same mistakes are made over and over again and successful practices are not
repeated. Other important issue is that employees are reluctant to share their know-
ledge as they feel that retaining this knowledge is an advantage over their colleagues
and their superiors (KERKHOF et al., 2003; WU; XUEMEI, 2009; ABDULLAH et al.,
2011; DESAI, 2011; ANDRADE et al., 2013).

All the knowledge and experience acquired during a software project can be reused
in the future. Software testing, in general, can benefit from reusing modules, test
cases, testing techniques, lessons learned and personal experiences. To enable testing
knowledge reuse, software organizations should be able to capture this knowledge
and make it available for their staff. However, there are only a few KM solutions
in the context of software testing, as we could perceive by means of a systematic
mapping presented in (SOUZA et al., 2013a).

Even when some KM strategy is applied, it is not always successful to achieve orga-
nizational learning, because the existing communication systems are not appropriate
(WU; XUEMEI, 2009). There are many difficulties in implementing knowledge acqui-
sition, coding, storage and searching functionalities effectively in a KMS, because it
involves all the aforementioned problems, mainly time and interest of the employees
(WU; XUEMEI, 2009; ANDRADE et al., 2013).

1.3 Objectives

The general objective of this thesis is to define a KM framework to manage software
testing knowledge, so that different testing knowledge items are collected, shared,
reused and improved throughout the organization. This general objective can be
divided into the following specific objectives:

4

1. Identify the state of the art on KM applied to software testing through a
Mapping Study;

2. Conduct a Systematic Literature Review (SLR) with the purpose of inves-
tigating how widespread are the use of ontologies for managing software
testing, and the characteristics of such ontologies.

3. Develop a reference ontology on software testing to establish a common
conceptualization of the software testing domain.

4. Develop a process defining a set of directions for implementing of KM in
Software Testing; and

5. Employ the proposed framework to build a KMS for managing software
testing knowledge, as a proof of concept of the feasibility of applying the
proposed framework.

1.4 Research Method

This work started with a systematic mapping with the goal of making evident some
aspects associated to the employment of KM in software testing and research efforts
that can drive future research (KITCHENHAM et al., 2011). This mapping, which is
presented in Chapter 2, achieved the following conclusions (SOUZA et al., 2013a):
(i) the major problem in software organizations related to software testing are low
knowledge reuse rate and barriers in knowledge transfer; (ii) reuse of test cases is a
perspective that has received more attention; (iii) there is a great concern with both
explicit and tacit knowledge.

KM applied to the software testing domain has shown to be a very promising ap-
proach, since KM techniques can help handling knowledge within an organization
in several respects, as shown by the systematic mapping. On the other hand, the
systematic mapping also showed that KM in software testing still seems to be a
challenge. The findings of the mapping also motivated to advance in this research
line.

The KM community recognizes ontologies as an important instrument for repre-
senting KM (BENJAMINS et al., 1998; MAEDCHE; VOLZ, 2001; AHMAD et al., 2011;
VALASKI et al., 2012). Nevertheless, few studies have actually used an ontology-
based approach for KM in the software testing domain. Thus, investing efforts in
such research area seems to be promising. Looking for a domain ontology that could

5

be used in a KM initiative in software testing, a SLR was conducted to investigate
existing ontologies in the software testing domain (SOUZA et al., 2013c). This SLR
is presented in Chapter 3. 12 ontologies addressing this domain were identified. To
analyze these ontologies, some of the characteristics pointed out by D’Aquin and
Gangemi (2011) were considered as characteristics that are presented in “beauti-
ful ontologies”, namely: (i) having a good domain coverage; (ii) implementing an
international standard; (iii) being formally rigorous; (iv) implementing also non-
taxonomic relations; (v) following an evaluation method; and (vi) reusing founda-
tional ontologies.

The main findings obtained from this SLR are: most ontologies have limited cover-
age; the studies do not discuss how the ontologies were evaluated; none of the ana-
lyzed testing ontologies is truly a reference ontology; and none of them is grounded
in a foundational ontology. In a nutshell, the software testing community should
invest more efforts to get a well-established reference software testing ontology. The
investigated ontologies were inappropriate for the purposes of this thesis. In order to
properly manage software testing knowledge, a software testing ontology is necessary.
More specifically, a reference domain ontology, i.e. a domain ontology that is cons-
tructed with the main goal of making the best possible description of the domain
as realistic as possible. A reference domain ontology is a special kind of concep-
tual model representing a model of consensus within a community. It is a solution-
independent specification with the aim of making a clear and precise description
of domain entities for the purposes of communication, learning and problem-solving
(GUIZZARDI, 2007). A reference ontology on the software testing domain can be used
for several KM-related purposes, such as for structuring knowledge repositories, for
annotating knowledge items, and for making searching easier. Thus, building an
ontology considering the aspects analyzed in the SLR became one of goals of this
thesis, and a Reference Ontology on Software Testing (ROoST) (SOUZA et al., 2013b)
was developed, which is presented in Chapter 4.

In order to develop ROoST, ontology patterns from a software process pattern lan-
guage, SP-OPL (FALBO et al., 2013), were reused. SP-OPL is a core ontology on
software processes. As a core ontology, SP-OPL provides a precise definition of the
structural knowledge in the field of software processes and spans across different ap-
plication domains, for example, in software testing (FALBO et al., 2013). In addition,
patterns from Enterprise Ontology Pattern Language (E-OPL) (FALBO et al., 2014)
were also used to address aspects such as Organization Arrangement, Definition
Team, Institutional Roles, Institutional Goals, and Human Resource Management.

6

It is worthwhile to print out that both, SP-OPL and E-OPL are grounded on the
Unified Foundational Ontology (UFO) (GUIZZARDI, 2005; GUIZZARDI et al., 2008).

ROoST has been developed in a modular way. Currently, ROoST covers aspects re-
lated to Software Testing Process and its Activities, Artifacts that are used and pro-
duced by those activities, Testing Techniques for test case design, and the Software
Testing Environment, including hardware, software and human resources. Finally,
in order to evaluate ROoST, specific V&V activities for ontologies were performed.
ROoST evaluation started with a verification activity, where the defined concepts, re-
lations and axioms are able to answer the competency questions. To validate ROoST,
its concepts and relations were instantiated with individuals extracted from an ac-
tual project, in order to check whether the ontology was able to represent concrete
situations of the real world.

The systematic mapping (SOUZA et al., 2013a) showed that one of the most important
research challenges in KM applied to software testing is how effectively one can
integrate KM with software testing so that knowledge items can be shared and
reused. Clearly, ROoST helps to address some of these issues, but it is not enough.
A process is also necessary to provide directions on how to identify KM goals that are
specific for a particular software testing organization, and how to achieve a KMS to
support the organization’s KM initiative in software testing. Thus, the next step was
to define a process for this purpose, which is presented in Chapter 4. Once defined
this process, a framework for guiding testing organizations in the accomplishment
of KM initiatives in software testing has been developed, called T-KM framework.
It is worthwhile to point out that, in this thesis, the term framework was used as
defined by Wong and Aspinwall (2004), i.e., to designate a set of basic assumptions or
fundamental principles that forms the underlying basis for action. In other words,
a framework can be interpreted as a structure that comprises relevant entities or
a set of guiding principles and ideas that support a discipline. Thus, the T-KM
framework consists of two main components: ROoST and a process to develop a
KMS to support managing software testing knowledge.

As a proof of concept, T-KM framework was applied in a general scenario, since there
was no available testing organization to serve as a case study. As the mapping results
showed, managing testing knowledge is not an easy task. So, firstly, it is necessary
to identify essential knowledge items of a sub-topic of the software testing domain
to be dealt with. Thus, in order to identify such elements, a survey was performed.
The aim of the survey was to define a scenario to apply KM in software testing.

7

Nine questions were defined, and the questionnaire was sent to testing experts.
86 experts participated in the survey. The questions in the survey are related to
the mapping, as well as to the conceptualization described by ROoST. Considering
the survey results, and based on ROoST, a Testing KMS was developed. The KMS
main functionalities are: knowledge items creation and, evaluation, as well as search,
retrieval and valuation of these items. The system was evaluated by project leaders
in two real scenarios. The application of T-KM framework is discussed in Chapter
5.

The thesis document was prepared as the work progressed, documenting the results
of the studies, the techniques that were employed and the solutions adopted. Also,
during this work, scientific papers were written and submitted/published in the
following vehicles:

1. Érica F. de Souza; Leando Evaristo; Ricardo A. Falbo; Nandamudi L. Vi-
jaykumar. “Using ontologies to build a database to obtain strategic information
in decision making”. V Seminário de Pesquisa em Ontologias do Brasil - VII In-
ternational Workshop on Metamodels, Ontologies, Semantic Technologies, ON-
TOBRAS - MOST. Recife/PE, 2012.

2. Érica F. de Souza; Ricardo A. Falbo; Nandamudi L. Vijaykumar. “Knowledge
Management Applied to Software Testing: A Systematic Mapping”. The 25th
International Conference on Software Engineering and Knowledge Engineering
(SEKE 2013). Boston/USA, 2013.

3. Érica F. de Souza; Ricardo A. Falbo; Nandamudi L. Vijaykumar. “Ontologies
in Software Testing: A Systematic Literature Review”. VI Seminário de Pesquisa
em Ontologias do Brasil - ONTOBRAS 2013. Belo Horizonte/MG, 2013.

4. Érica F. de Souza; Ricardo A. Falbo; Nandamudi L. Vijaykumar. “Using On-
tology Patterns for Building a Reference Sofware Testing Ontology”. The 8th
International Workshop on Vocabularies, Ontologies and Rules for the Enter-
prise and Beyond (VORTE 2013). Vancouver/Canada, 2013.

1.5 Organization of this Thesis

This introductory chapter presented the context, the motivation that led to the
development of this thesis, as well as the objectives of this work and the research
method followed. The remainder of this thesis is organized as follows:

8

• Chapter 2 - KNOWLEDGE MANAGEMENT IN SOFTWARE TESTING:
this chapter presents the main concepts in the research areas studied in
this thesis, namely KM and software testing. A systematic mapping on
KM in software testing is also presented.

• Chapter 3 - ONTOLOGIES FOR SOFTWARE TESTING: this chapter
briefly discuss ontologies, and related concepts, as well as presents the
systematic literature review on software testing ontologies.

• Chapter 4 - AN ONTOLOGY-BASED FRAMEWORK FOR KNOW-
LEDGE MANAGEMENT IN SOFTWARE TESTING: this chapter
presents the main contribution of this thesis: the ontology-based frame-
work for KM in software testing, called T-KM.

• Chapter 5 - APPLICATION OF THE PROPOSED FRAMEWORK: this
chapter discusses the application of the proposed framework as a proof of
concept.

• Chapter 6 - FINAL CONSIDERATIONS: this chapter presents the con-
clusions of this work, its main contributions, as well as future directions to
follow.

• ANNEX A - ONTOLOGY PATTERN LANGUAGE: SP-OPL and E-
OPL: presents the SP-OPL and E-OPL patterns used in this thesis to
develop ROoST.

• APPENDIX A - SURVEY: KM IN SOFTWARE TESTING: presents de-
tails of the survey and its results, which were used to define a scenario to
apply KM in software testing.

• APPENDIX B - LOADING EXISTING KNOWLEDGE ITEMS: presents
the procedure followed to load existing knowledge items in the scenario
studied.

9

2 KNOWLEDGE MANAGEMENT IN SOFTWARE TESTING

In this chapter, some of the most important concepts in the research areas studied
are discussed briefly. The main concepts of Software Testing are described in Section
2.1. Section 2.2 presents an overview about Knowledge Management (KM). Finally,
Section 2.3 presents aspects associated with applying KM in software testing through
a Systematic Mapping Study.

2.1 Software Testing

Software testing is a set of activities with the main objective to contribute to the
quality of the products generated. According to IEEE (1990), quality is the degree
to which a set of characteristics satisfies the requirements. In other words, it can
be said that if any product or service meets the specified requirements, the same
product or service has, in principle, the desired quality.

To achieve quality software products, it is essential to perform Verification & Va-
lidation (V&V) activities throughout the software development process. The IEEE
Standard Glossary of Software Engineering Terminology (IEEE, 1990) makes the
following definitions:

Verification: is the process of evaluating a system or component to de-
termine whether the products of a given development phase satisfy the
conditions imposed at the beginning of that phase.

Validation: is the process of evaluating a system or component during
or at the end of the development process to determine whether it satisfies
specified requirements.

Three important concepts related to V&V are: fault, error and failure. Conside-
ring the definition established by IEEE Standard Glossary of Software Engineering
Terminology (IEEE, 1990), the concepts are defined as follows:

Fault: is an incorrect step, process, or data definition in a computer pro-
gram.

Error: the difference between a computed, observed, or measured value or
condition and the true, specified, or theoretically correct value or condition.

Failure: the inability of a system or component to perform its required
functions within specified performance requirements.

11

V&V activities can be static and dynamic. Dynamic V&V activities require the
execution of a program, while static V&V activities do not. Static V&V are typically
done by means of technical reviews and inspections. Dynamic V&V are done by
means of testing (MATHUR, 2012). Thus, software testing consists of the dynamic
V&V of the behavior of a program on a finite set of test cases, against the expected
behavior (ABRAN et al., 2004). A test case is a set of inputs, execution conditions and
a expected result of a certain program or unit. The simplest definition of software
testing is “Testing is the process of executing a program with the intent of finding
errors” (MYERS, 2004). In this sense, a testing activity can be considered successful
when the program under test fails (PRESSMAN, 2006).

Until the 90s, tests were conducted by the software developers and this was conside-
red an inappropriate methodology. Information extracted from these tests did not
allow the detection of all the defects. The situation became worse when applications
started becoming more complex due to the emergence of new technologies, driving
organizations to seek new solutions to improve software quality. It was from this
decade that software test began to be treated not as an activity of the development
process, but as an independent process (BASTOS et al., 2007). The main objective of
the testing process is to minimize the risks caused by defects from the development
process and add quality to the product generated (BASTOS et al., 2007).

Testing activities are supported by a well defined and controlled testing process.
The testing process consists of several activities, namely: Test Planning, Test Case
Design, Test Execution and Test Result Analysis (ABRAN et al., 2004; BASTOS et al.,
2007; BLACK; MITCHELL, 2008). Briefly, key aspects of Test Planning include, among
others, coordination of personnel, management of available test facilities and equip-
ment, scheduling testing activities, and planning for possible undesirable outcomes.
Test Case Design aims at designing the test cases to be run. Test Cases should
be implemented as Test Scripts. During Test Execution, test cases are run, produ-
cing actual results. Finally, in the Test Result Analysis, test results are evaluated to
determine whether or not tests have been successful in identifying defects.

In addition to the key concepts and software testing activities, techniques, levels,
artifacts and software testing environment (including hardware, software and human
resources) are also integrated into the testing process and are described briefly below.

i) Testing Techniques

The only way to ensure the correctness of software would be through an exhaustive

12

test, executing the software with all combinations of input values. However, this
practice is not feasible, because the input domain can be infinite or at least very large
(MYERS, 2004). Therefore, techniques to select a subset of test data should be used.
The principle underlying such techniques is to be as systematic as possible to identify
a representative set of program behaviors, for instance, considering subclasses of the
input domain, scenarios, states, and data flows (ABRAN et al., 2004). Generally, test
technique classification is based on how test cases are generated (MATHUR, 2012).

There are a variety of ways to generate tests from different types of techniques, some
are listed in Table 2.1. Testing techniques types can be classified, among others, ac-
cording to Mathur (2012), into: Black-box Testing, which generate test cases relying
only on the input/output behavior, without the aid of the code that is under test.
When the requirements are informally specified, one could use ad hoc techniques or
heuristics such as equivalence partitioning and boundary-value analysis to generate
test; White-box Testing refers to the activity wherein code is used in the generation
of or the assessment of test cases. Control flow, Data flow and Coverage testing can
be used for direct as well as indirect code-based test generation; Defect-based Tes-
ting, which are based on devising test cases specifically aimed at revealing categories
of likely or predefined faults such as Mutation Testing; Model-based Testing occurs
when the requirements are formally specified, for example, using one or more ma-
thematical or graphical notations such as Statecharts, Finite State Machines (FSM)
and others.

Table 2.1 - Classification of techniques types (MATHUR, 2012)

Artifact Tecnique Example
Requirements (informal) Black-box Ad hoc Testing, Boundary-

value analysis, Category
partition, Classifications
trees, Cause-effect graphs,
Equivalence partitioning,
Random testing

Code White-box Coverage testing, Data-flow
testing, Structural testing,
Control-flow testing, Test
minimization

Formal model: Graphical or
mathematical specification

Model-based
specification

Statechart testing, FSM
testing

Continues

13

Table 2.1 - Conclusion

Artifact Tecnique Example
Code Defect-based

Testing
Mutation testing

ii) Test Level

Another important feature of testing is that test is often categorized based on the
phase in which it occurs, that is, test usually is performed at different levels. Three
important test levels can be distinguished, namely: Unit Testing, Integration Testing
and System Testing.

In Unit Testing, the focus is on the unit or the individual components that have been
developed. The goal is to ensure that the unit functions correctly in isolation. When
units are integrated and a large component or a subsystem formed, programmers
do Integration Testing of the system. In Integration Testing, the goal is to ensure
that a collection of components function as desired. On the other hand, when the
entire system has been built, its testing is referred to as System Testing (ABRAN et

al., 2004; MATHUR, 2012).

iii) Test Artifact

Test artifacts are produced and used throughout the testing process. Documentation
is an integral part of the formalization of the test process (ABRAN et al., 2004).
According to IEEE (1998), test artifact may include, among others, Test Plan, Test
Procedure, Test Case, Test Results.

During the planning activity the key test artifact is developed: Test Plan. The Test
Plan describes how the test should be performed and provide avenues for future
activities. In test case design activity the Test Case artifacts are generated. Test
Case artifact defines test cases, which includes the input data, expected results,
steps and general conditions for the exercise test case. During test execution
activity, test cases are run which should also be documented. The results are
recorded in Test Results artifact. Finally, during a test result analysis activity, Test
Results are analyzed and a Test Analysis Report artifact is produced (BASTOS et

al., 2007).

14

iv) Test Environment

According to Perry (2006), software testers are most effective when they work in
an environment that encourages and supports well-established testing policies and
procedures. The goal of a testing environment is to cause the software under test to
exhibit true production behavior while being observed and measured outside of its
production environment (EVERETT; RAYMOND, 2007).

The test environment is any structure where the test is performed. The elements
considered in this structure, among others, are: hardware, software and human re-
sources. The human resource or test team is responsible for setting up an isolated
test environment, organized, representative and measurable to ensure the discovery
of incidents, and most importantly, provide assurance that there was no external
influence. It is necessary for the preparation of the environment is performed as
soon as possible, and your basic needs (hardware and software) must be identified
in the initial stage of the project (BASTOS et al., 2007).

2.2 Knowledge Management

KM is strongly related to the definition of what is knowledge. However, knowledge
can be confused with data and information, but there is a difference. According
to Davenport and Prusak (2000), data is a set of discrete, objective facts about
events. In an organizational context, data is usually described as structured records
of transactions. Modern organizations usually store data in some sort of technology
system. The information is a message, usually in the form of a document. Possessing
a sender and a receiver, the information is intended to change the way the recipient
sees something, exerting an impact on one´s judgement and behavior. Different from
data, information has meaning, that is, it has relevance and purpose, and is organized
for any purpose. Knowledge derives from information as information derives from
data. If information is to become knowledge, humans must do virtually this work.

Knowledge is one of the organization’s most valuable assets. According to Nonaka
and Takeuchi (1997), there are two main types of knowledge: tacit and explicit.
Nonaka and Takeuchi (1997) use the tacit-explicit distinction to differentiate unar-
ticulated and articulated stocks of knowledge. Tacit knowledge is the subjective and
experience-based knowledge, that cannot be documented, and typically remains only
in people’s mind. This type of knowledge depends on personal experience and in-
volves intangible factors such as beliefs, perspectives, values and intuition (NONAKA;

TAKEUCHI, 1997). Tacit knowledge covers knowledge that is unarticulated and tied

15

to the senses, movement skills, physical experiences, intuition, or implicit rules of
thumb. Even if we try hard, this type of knowledge cannot fully be articulated
(NONAKA; KROGH, 2009). Explicit knowledge, in turn, represents the objective and
rational knowledge that can be documented, and thus it can be accessed by mul-
tiple people (NONAKA; TAKEUCHI, 1997). Explicit knowledge can be uttered and
captured in drawings and writing, and can be easily used and shared. The concept
of “knowledge conversion” explains how tacit and explicit knowledge interact along
a continuum (NONAKA; KROGH, 2009).

Nonaka and Takeuchi (1997) considers the creation of knowledge as a continuous
and dynamic interaction between tacit and explicit knowledge, as shown in Figure
2.1, held by four different modes of knowledge conversion, namely:

Figure 2.1 - Knowledge Spiral
SOURCE: Adapted from (NONAKA;
TAKEUCHI, 1997)

• Socialization: It is the transmission of tacit knowledge from one indivi-
dual to another. Socialization occurs usually through dialogue, sharing of
experiences, brainstorming sections (formal meetings in order to generate
solutions to specific problems), among others. The tacit knowledge held by
individuals is the basis for the creation of organizational knowledge;

• Externalization: Is the transformation of tacit knowledge into explicit
knowledge through the symbolic representation of tacit knowledge. This

16

usually occurs through the use of models, concepts, hypotheses, descrip-
tions, drawings;

• Combination: It is the combination of different sets of explicit know-
ledge to generate new explicit knowledge. For example, the combination of
documents may generate new documents; and

• Internalization: The process of incorporation of explicit knowledge to
tacit knowledge. Typically, the internalization occurs through reading do-
cuments, observation of practice, conducting activities, that is, from exis-
ting explicit knowledge, new tacit knowledge are generated.

Finally, KM can be defined as a set of organizational activities that must be per-
formed in a systematic manner with the purpose of acquiring, organizing and com-
municating both tacit and explicit knowledge in the organization, so that other
members can use this knowledge to make their work more effective and produc-
tive. The main goal of KM is to make organizational knowledge accessible, reusable,
promote knowledge storage and sharing, as well as the emergence of new know-
ledge (O’LEARY; STUDER, 2001). Davenport and Prusak (2000) has defined KM as
a method that simplifies the process of sharing, distributing, creating, capturing
and understanding of a company’s knowledge. Bukowitz and Williams (1999) con-
cludes that KM is the process by which the organization generates wealth from
its knowledge or intellectual capital. In a simple form, KM is the process through
which organizations generate value from their intellectual and knowledge-based as-
sets. Most often, generating value from such assets involves sharing them among
employees, departments and even with other companies in an effort to devise best
practices.

According to Zack and Serino (2000), KM can be viewed as the development and
leveraging of organizational knowledge to increase organization’s value. Organiza-
tional knowledge creation aims at making available and amplifying knowledge cre-
ated by individuals as well as crystallizing and connecting it to an organization’s
knowledge system (NONAKA; KROGH, 2009). KM entails formally managing know-
ledge resources in order to facilitate access and reuse of knowledge, typically by using
advanced information technology. A wide range of technologies have been used in the
development of KM systems, such as databases, data mining, intranets and inter-
net, intelligent information retrieval, intelligent agents, case-based reasoning, yellow
pages, ontologies, visualization models, groupware and so on (O’LEARY, 1998a; LIAO,
2003).

17

Ontologies, in special, are important for KM (BENJAMINS et al., 1998; MAEDCHE et

al., 2003; AHMAD et al., 2011; VALASKI et al., 2012). They constitute the glue that
binds KM activities together, allowing a content-oriented view of KM (STAAB et

al., 2001). Ontologies define the shared vocabulary used in the KM system to faci-
litate communication, integration, search, storage and representation of knowledge
(O’LEARY, 1998a).

Independently of the technology adopted, it is important that a set of basic activi-
ties should be considered to manage knowledge systematically. These activities are
part of the KM process. KM processes are the sequential steps of conducting KM
in an organization. According to Staab et al. (2001), once a KM system is fully
implemented in an organization, knowledge processes are essentially used. It is pos-
sible to find several published literature that proposes processes to be used for the
systematic KM within organizations (HENDRIKS; VRIENS, 1999; PROBST et al., 2000;
DAVENPORT; PRUSAK, 2000). Some of the main activities are:

i) Knowledge Item Creation

Knowledge needs to be created or converted such that they it the conventions of
the company, e.g. to the knowledge management infrastructure of the organization
(STAAB et al., 2001). However, a great challenge for software organizations is to know
what information is really useful among all the information generated within the
organization. The information must be digested and organized to become meaningful
and useful so that it can help in future decision-making knowledge. Thus, it is first
necessary to define what types of knowledge items are relevant to the needs of the
organization itself (NUNAMAKER et al., 2001; COELHO, 2010).

It is possible to find in the literature several types of knowledge items that are ty-
pically considered by software organizations (MONTONI, 2003; NATALI, 2003). Some
are: process descriptions, new technologies, lessons learned, best practices, ideas
and knowledge about the application domain. According to O’Leary (1998a) types
of knowledge items usually include manuals, charts, news, client information, com-
petitor information and knowledge gleaned from work processes.

ii) Knowledge Item Evaluation

Not every knowledge item created by a member must be available to the organiza-
tion. Some knowledge items may have some inconsistencies, such as: organization

18

members can generate knowledge items in unsuitable or even not understandable
or poorly explained formats; items of little use to the organization, and redundant
items. Thus, it is important to evaluate an item of knowledge before it is available
to the entire organization, particularly its relevance and verifying its correctness.
According to Winch (1999), perceptions and interpretations of knowledge vary from
person to person and, therefore, the knowledge must be filtered and evaluated before
being made available.

According to Coelho (2010), allowing knowledge items to be evaluated by experts,
without any criteria, can generate problems. The ideal way is to structure the eva-
luation of knowledge items, to prevent these problems from occurring. Each organi-
zation can define, according to their needs, the criteria to be used for evaluation of
knowledge items. Montoni (2003) suggests the use of some criteria such as Correc-
tion, Completeness, Consistency, Utility and Applicability.

iii) Knowledge Item Dissemination

Mechanisms which allow search and retrieval of knowledge items can be developed
to assist in the knowledge dissemination and to ensure that relevant information is
made available to interested parties at the appropriate time to perform their tasks
(COELHO, 2010). It is important to ensure that interested people can actually use
the knowledge items available.

Knowledge repositories may become considerably large. Thus, the search for infor-
mation in these repositories is an extremely critical task and must be done efficiently
(O’LEARY, 1998a). Moreover, the dissemination of knowledge items is strongly re-
lated to indexing knowledge items in the repository. When entering knowledge items
in the repository it is important to define appropriate classification schemes to facili-
tate the retrieval of knowledge items when necessary. Besides indexing/classification
scheme, it is also important to define how and when knowledge items can be retrieved
and presented to organization members (COELHO, 2010).

iv) Knowledge Item Valuation

The valuation has focused on enabling mechanisms to evaluate available knowledge
items, aiming to capture feedback from your users. Ruggles (1998) highlights the
importance of measuring the value of knowledge assets available in the organization,
indicating that it is important to establish a mechanism for evaluating the utility

19

of knowledge assets from the point of view of the users. Thus, it becomes possible
to collect data for measures, such as utilization rate and application of assets, and
enables the discovery of assets with greater value to the organization.

v) Knowledge Item Maintenance

The maintenance of knowledge items is essential to ensure the reliability of stored
knowledge and to enable KM goals are achieved properly (COELHO, 2010). For this,
well-defined criteria, so that relevant knowledge can evolve, should be established,
and knowledge without relevance can be deleted. Maintaining knowledge items can
be taken based on data collected during the item valuation (user feedback) (NA-

TALI, 2003). These data can provide useful information to identify knowledge items
that need to be updated or removed. According to Abecker et al. (1998), the lack
of maintenance of knowledge items is one of the main reasons why a Knowledge
Management System (KMS) does not get the desired success in organizations.

vi) Knowledge Discovery

In a KMS, at every moment data are being stored, forming large volumes of data at
a dramatic pace. The stored data can contain hidden useful information (knowledge)
of great relevance to the business. A mining on these data can be performed. Data
mining is the application of specific algorithms for extracting patterns from data.
Data mining integrates the Knowledge Discovery in Databases (Knowledge Discov-
ery in Databases (KDD)), process knowledge data structuring. The basic flow of
KDD process steps is illustrated in Figure 2.2. Most work in the literature on KDD
has focused on data mining. However, the other steps are as important (and prob-
ably more so) for the successful application of KDD in practice. Data mining is
a step in the KDD process that consists of applying data analysis and discovery
algorithms that, under acceptable computational efficiency limitations, produce a
particular enumeration of patterns (or models) over the data (FAYYAD et al., 1996b).

Data mining methods are used in the identification of relevant information in large
volumes of data, such as Classification, Regression, Clustering, Summarization, As-
sociation Rule, Dependency Modeling, among others (FAYYAD et al., 1996b).

20

Figure 2.2 - Overview of the steps that compose the KDD Process
SOURCE: (FAYYAD et al., 1996b)

2.3 Knowledge Management applied to Software Testing

In the context of software testing, KM can be used to capture knowledge and experi-
ence generated during the testing process. However, this knowledge is usually stored
on paper or in people’s minds. When a problem arises, the team members look for
experts in their own work environment, relying on people they know, or look for do-
cuments. Unfortunately, paper has limited accessibility and it is difficult to update
(O’LEARY, 1998a). On the other hand, in a large organization, it can be difficult to
locate who knows a certain matter, and knowledge in people’s minds (tacit know-
ledge) is lost when individuals leave the organization. Therefore, software testing
knowledge has to be systematically collected, stored in an organizational repository,
and shared across the organization. In other words, KM is necessary.

This section presents an investigation of aspects associated with applying KM to
software testing, which addresses the first specific goal of this thesis: Identify the
state of the art on KM applied to software testing through a mapping study. Aspects
such as purposes of employing KM in software testing, types of knowledge items
typically managed in the context of software testing, supporting technologies used,
and benefits and problems reported on implementing KM initiatives in software
testing, among others, are investigated.

A preliminary version of this mapping study can be referred to in (SOUZA et al.,
2013a). This mapping study was updated to include studies published in 2013.
Moreover, new studies selected from snowballing of primary study references were
included. Snowballing is a process that checks if those studies cite any other relevant

21

studies, retrieve those studies, and continue that process until cannot find any more
relevant studies. Furthermore, direct search to publications of important researchers
and research groups were performed.

2.3.1 Study based on a Systematic Mapping

A mapping study provides a broad overview of a research area in order to determine
whether there is research evidence on a particular topic. Results of a mapping study
may identify suitable areas for performing Systematic Literature Reviews (SLR).
Moreover, mapping studies also help identifying gaps in order to suggest areas for
future research and provide a map that allows appropriately to position new research
activities (KITCHENHAM, 2007; PETERSEN et al., 2008; KITCHENHAM et al., 2011).

In this section a secondary study is presented, i.e. a study that is based on ana-
lyzing research papers (referred to as primary studies) (KITCHENHAM et al., 2011).
This secondary study comprises both a mapping study and a Systematic Literature
Review (SLR). According to Kitchenham et al. (2011), “SLRs are secondary studies
[...] used to find, critically evaluate and aggregate all relevant research papers [...] on
a specific research question or research topic. The methodology is intended to ensure
that the literature review is unbiased, rigorous and auditable. [...] Mapping studies
use the same basic methodology as SLR but aim to identify and classify all research
related to a broad software engineering topic [...]. They are intended to provide an
overview of a topic area and identify whether there are sub-topics with sufficient
primary studies to conduct conventional SLR and also to identify sub-topics where
more primary studies are needed”.

The approach followed in this work starts by performing a mapping study. Then,
from the results achieved with the mapping, a SLR is performed, investigating how
widespread is the use of ontologies in KM initiatives. This SLR was motivated by the
fact that several works in the KM area, such as (O’LEARY, 1998a; BENJAMINS et al.,
1998; O’LEARY; STUDER, 2001; STAAB et al., 2001; FENSEL, 2003), advocate in favor
of using ontologies for establishing a common conceptualization to be used in KM
systems in order to facilitate communication, integration, search, storage and repre-
sentation of knowledge. Ontologies open the way to move from a document-oriented
view of KM to a content-oriented view, where knowledge items are interlinked, com-
bined, and used (STAAB et al., 2001).

22

2.3.2 Related Work: Secondary study addressing KM in Software Tes-
ting

Before accomplishing the secondary study, a tertiary study looking for secondary
studies investigating the state of the art in KM in Software Testing was performed.
In this, the following search string was used, which was applied in three metadata
fields (title, abstract and keywords): (“software testing” OR “software test”) AND
(“knowledge management”) AND (“systematic literature review” OR “systematic
review” OR “systematic mapping” OR “mapping study” OR “systematic literature
mapping”). The search string was applied in the following electronic databases: IEEE
Xplore, ACM Digital Library, SpringerLink, Scopus, SicenceDirect, Compendex and
ISI of Knowledge. Nevertheless, no publication was returned. As any secondary study
was found addressing KM in Software Testing, secondary studies that deal with KM
and Software Testing separately were investigated.

For the a tertiary study that looks for secondary studies in Software Testing, the
following search string was used: (“software testing” OR “software test”) AND (“sys-
tematic literature review” OR “systematic review” OR “systematic mapping” OR
“mapping study” OR “systematic literature mapping”). The same seven electronic
databases were searched, returning 149 results. After eliminating duplications and
applying the selection criteria, 28 papers presenting secondary studies on software
testing were reached. 16 are SLR, while 12 are mapping studies. Different areas re-
lated to software testing have been investigated by means of secondary studies. From
the 28 secondary studies analyzed, them were grouped in the following categories: (i)
Testing of specific software types (13 studies), highlighting Software Product Line
Testing (4 studies) and Testing of Software Oriented Architecture and Web Services
(3 studies); (ii) Testing Techniques (8 studies), highlighting Search-Based Software
Testing (3 studies); (iii) Testing and Software Process (3 studies); (iv) Test Case Pri-
oritization (3 studies); and (v) Others (3 studies), including Testing Automation,
Alignment of Software Testing with Requirements, and Test effort reduction. It is
worthwhile to point out that 2 studies were classified in more than one category,
since they focus on a specific testing technique applied to a specific software type
(unit testing approaches for web services, and mutation testing for aspect-oriented
programming).

Now, for in the tertiary study that looked for secondary studies in Knowledge Ma-
nagement, the following search string were used: (“knowledge management”) AND
(“systematic literature review” OR “systematic review” OR “systematic mapping”

23

OR “Mapping study” OR “systematic literature mapping”). The same seven elec-
tronic databases were searched and 239 elements were returned. Duplications were
eliminated and search criteria were applied. This resulted in 23 papers presenting
secondary studies on KM. 22 are SLR, while only one paper presents a mapping
study. From the 23 secondary studies analyzed, them were grouped into the follow-
ing categories: (i) General Aspects of KM (10 studies), including KM diffusion, KM
in organizations, and relationships between KM and other related study areas, such
as corporate culture, leadership, innovation, social media, competition and coope-
ration; (ii) Software Engineering/Software Development (7 studies); (iii) Health (3
studies), (iv) Ontologies and KM (2 studies); and (v) Emergency Management (1
study).

Based on the results from these two investigations by employing the tertiary study,
one can say that there is a great diversity of secondary studies in Software Testing
and in KM. However, as far as the investigations were concerned, no mapping study
or SLR combining these two areas was found. It is also interesting to note that the
51 secondary studies that were analyzed have been published since 2008.

2.3.2.1 Research Method for the Mapping

The research method for this mapping was defined based on the guidelines for sys-
tematic literature reviews given in Kitchenham (2007). A protocol for the entire
process of the mapping study was developed. The purpose of this review protocol
is to support researchers in avoiding bias in conducting the review. The systematic
mapping protocol involves three main essential process phases (KITCHENHAM, 2007):
(i) Planning: refers to the pre-review activities, and aims at establishing a review
protocol defining the research questions, inclusion and exclusion criteria, sources of
studies, search string, and mapping procedures; (ii) Conducting: regards searching
and selecting the studies, in order to extract and synthesize data from them; (iii)
Reporting: is the final phase and aims at writing up the results and circulating
them to potentially interested parties. In this phase the findings of the systematic
mapping study are used to answer the research questions. The main steps followed
when performing in this systematic mapping study are described in detail following.

Research Questions: This mapping aims at answering the following research ques-
tions presented in Table 2.2:

24

Table 2.2 - Research questions and their rationales

No Research question Rationale
RQ1 When and where have the stu-

dies been published?
The topic of this mapping study seems
to be broad and new. This research
question aims at giving an understan-
ding on whether there are specific pu-
blication sources for these studies, and
when they have been published.

RQ2 From the software testing per-
spective, what aspects have
been focused in the research?

Investigates which aspects of software
testing have been the subject of KM
initiatives. This information can help to
identify which aspects of software tes-
ting have gained more attention when
applying KM in software testing.

RQ3 From the KM perspective,
which topics have been fo-
cused?

Similarly to the previous, this re-
search question investigates the KM
sub-topics that have been more ex-
plored when applying KM to software
testing.

RQ4 What types of research have
been done?

As pointed out by Wieringa et al.
(2006) and Petersen et al. (2008), dif-
ferent types of research have been pre-
sented in scientific papers (e.g., solution
proposal, validation research, experi-
ence papers, opinion paper and evalua-
tion research). This research question
investigates which type of the research
is reported in each selected study. This
is an important question, since it can
be used to evaluate the current matu-
rity stage of the area.

Continues

25

Table 2.2 - Conclusion

No Research question Rationale
RQ5 What are the problems re-

ported by software organi-
zations related to knowledge
about software testing?

Provides an overview of the main pro-
blems reported by organizations related
to the lack of knowledge about software
testing. The goal of this question is to
point out the problems that have moti-
vated the research in this field.

RQ6 What are the purposes of em-
ploying KM in software tes-
ting?

This question complements the previ-
ous one, looking for the purposes de-
clared in the studies for managing soft-
ware testing knowledge. This is impor-
tant to point out why such studies have
been accomplished.

RQ7 What are the types of know-
ledge items typically managed
in the context of software tes-
ting?

Investigates the types of knowledge
items that have been managed in soft-
ware testing. This information is im-
portant, since it gives a roadmap to
define which types of knowledge have
been considered more important in
software testing.

RQ8 What are the technologies used
to provide KM in software tes-
ting?

Highlights the main technologies cur-
rently used to provide KM in software
testing. This is useful for researchers
and practitioners that intend to accom-
plish new initiatives of KM in software
testing, as well as to guide future re-
search towards new technologies in or-
der to fill the existing gaps.

Continues

26

Table 2.2 - Conclusion

No Research question Rationale
RQ9 What are the main conclu-

sions reported regarding ap-
plying KM in software testing?

Compiles the main conclusions re-
ported on the studies regarding KM
in software testing. This information is
useful for evaluating the actual benefits
of the current studies of KM in software
testing, as well as to point out problems
that remain and, thus, need to be sub-
ject of further research.

Inclusion and Exclusion Criteria: The selection criteria are organized in one
inclusion criterion (IC) and five exclusion criteria (EC). The inclusion criterion is:
(IC1) The study discusses KM applied to software testing. The exclusion criteria
are: (EC1) The study does not have an abstract; (EC2) The study is just published
as an abstract; (EC3) The study is not written in English; (EC4) The study is an
older version (less updated) of another study already considered; and (EC5) The
study is not a primary study, such as editorials, summaries of keynotes, workshops,
and tutorials.

Sources: The search was applied in seven electronic databases that were considered
the most relevant according to (DYBA et al., 2007). They are:

IEEE Xplore (http://ieeexplore.ieee.org)
ACM Digital Library (http://dl.acm.org)
SpringerLink (http://www.springerlink.com)
Scopus (http://www.scopus.com)
Science Direct (http://www.sciencedirect.com)
Compendex (http://www.engineeringvillage2.org)
ISI of Knowledge (http://www.isiknowledge.com)

Keywords and Search String: The search string considered two areas, Software
Testing and KM (Table 2.3), and it was applied in three metadata fields (title,
abstract and keywords). The search went through syntactic adaptations according
to particularities of each source.

27

Table 2.3 - Keywords of the Search String of the Mapping

Areas Keywords
Software Testing “Software Testing”, “Software Test”

KM “Knowledge Management”, “Knowledge Reuse”, “Packaging
Experience”

Search String: (“Software Testing” OR “Software Test”) AND (“Knowledge
Management” OR “Knowledge Reuse”)

Data storage: The publications returned in the searching phase were cataloged and
stored appropriately. A data extraction form was developed to gather all relevant
data from the identified studies (e.g., id and bibliographic reference). This catalog
helped in the studies classification and analysis procedures.

Assessments: Before conducting the mapping, the protocol was tested. This test
was conducted in order to verify its feasibility and adequacy, based on a pre-selected
set of studies considered relevant to investigation. In particular, in order to elabo-
rated the search string, the set of search terms were devised in an iterative fashion,
i.e. an initial set of terms were elaborate and iteratively improved this set until all
relevant pre-selected studies were found. The review process was conducted just this
author of this thesis and the other two carried out its validation. Approximately
36% of the studies were analyzed using two different samples.

2.3.2.2 Data extraction and synthesis

The search process considered studies published until November 2013. As a result of
searching the selected sources, a total of 345 publications were returned, out of which
55 from IEEE Xplore, 67 from Compendex, 72 from Scopus, 2 from Science Direct,
4 from ACM Digital Library, 139 from SpringerLink, and 6 from ISI of Knowledge.
Then a selection process comprising five stages were followed, as shown in Figure
2.3.

In the 1st stage, duplications were eliminated (publications that appear in more than
one source), achieving 261 publications (reduction of approximately 24%). In the 2nd

stage, the selection criteria (inclusion and exclusion criteria) were applied over title,
abstract and keywords, resulting in 37 papers (reduction of approximately 86%). 7
papers were eliminated by EC1 (The study does not have an abstract); 2 by EC3
(The study is not written in English); 15 by EC5 (The study is not a primary study);
and 200 for not satisfying IC1 (The study discusses KM applied to software testing).

28

Figure 2.3 - Search and selection mapping process

In the 3rd stage, the selection criteria were applied considering the full text, resulting
in a set of 10 studies (reduction of approximately 73%). 2 papers were eliminated
by EC4 (The study is an older version of another study already considered); and 25
papers were eliminated for not satisfying IC1 (The study discusses KM applied to
software testing).

Over these 10 considered relevant, in the 4th stage the snowballing was performed,
which resulted in 9 papers. After applying the selection criteria, only 1 paper re-
mained. Criterion EC3 eliminated 4 papers (The study is not written in English);
1 by EC5 (The study is not a primary study); and 3 papers for not satisfying IC1
(The study discusses KM applied to software testing). These last 3 papers were
eliminated after reading their full versions.

Finally, from the 11 papers selected until then, in the 5th stage, publications authored
by the researchers and research groups involved in these studies were analysed.
To conduct that, their personal pages were searched, their entries in The DBLP
Computer Science Bibliography, as well as other publications authored by them in
the digital libraries that we used as sources for this mapping. 3 papers were selected
from the same research group. From these 3 papers, 1 of them was eliminated by
EC4 (The study is an older version of other study already considered). Moreover, one
of the papers of the resulting set of the 3rd stage was also eliminated by EC4, since

29

one of the papers selected from the research group were newer and more complete.

As a final result, 12 studies were analyzed (9 from the sources, 1 from snowballing,
and 2 from direct search to researchers and research groups). Table 2.4 summarizes
the stages and their results. It shows the progressive reduction of the number of
studies throughout the selection process. Table 2.5 presents the bibliographic refe-
rence of the selected studies plus an identifier (#id) for each paper. Throughout the
remainder of this paper, these identifiers to refer to the corresponding publication
were used.

Table 2.4 - Results from the selection stages

Stage Applied Cri-

teria

Analyzed Content Initial Number

of Studies

Final N. of

Studies

Reduction

(%)

1st Duplicate
Removal

Title, abstract and
keywords

345 261 24.3%

2nd IC1, EC1, EC3
and EC5

Title, abstract and
keywords

261 37 85.8%

3rd IC1 and EC4 Full Text 37 10 73.0%

4th(a) Snowballing,
EC3 and EC5

Title, abstract and
keywords

9(added by snow-
balling)

4(added by
snowballing)

55.6%

4th(b) Snowballing,
IC1

Full Text 4(added by snow-
balling)

1(added by
snowballing)

75.0%

5th Research
Group, EC4

Full Text 3(added by
research groups)

2(added by re-
search groups) -
1(selected from
the sources)

33.3%

Final Result 345 + 9 (snow-
balling) + 3 (re-
search groups) =
357

9 + 1 (snow-
balling) + 2 (re-
search groups) =
12

96.6%

Table 2.5 - Selected Studies

ID Bibliographic Reference
#1 Liu, Y.; Wu, J.; Liu, X.; Gu, G. Investigation of Knowledge Management

Methods in Software Testing Process. In: International Conference on
Information Technology and Computer Science, Kiev, Ukraine, vol. 2,
90-94, 2009.

Continues

30

Table 2.5 - Conclusion

ID Bibliographic Reference
#2 Wei, O. K.; Ying, T. M. Knowledge Management Approach in Mobile

Software System Testing. In: International Conference on Industrial En-
gineering and Engineering Management, Singapore, 2120-2123, 2007.

#3 Xu-Xiang, L.; Wen-Ning, Z. The PDCA-based software testing improve-
ment framework. In: International Conference on Apperceiving Compu-
ting and Intelligence Analysis (ICACIA), Chengdu, China, 490-494, 2010.

#4 Abdullah, R.; Eri, Z. D.; Talib, A. M. A Model of Knowledge Mana-
gement System in Managing Knowledge of Software Testing Environ-
ment. 5th Malaysian Conference in Software Engineering (MySEC), Jo-
hor Bahru, Malaysia, 229-233, 2011.

#5 Li, X.; Zhang, W. Ontology-based Testing Platform for Reusing. In: In-
ternational Conference on Internet Computing for Science and Enginee-
ring, Henan, China, 86-89, 2012.

#6 Desai, A.; Shah, S. Knowledge Management and Software Testing. In: In-
ternational Conference and Workshop on Emerging Trends in Technology
(ICWET), Mumbai, India, 767-770, 2011.

#7 Andrade, J.; Ares, J.; Martínez, M.; Pazos, J.; Rodríguez, S.; Romera,
J.; Suárez, S. An architectural model for software testing lesson learned
systems. Information and Software Technology, vol. 55, Issue 1, 18-34,
2013.

#8 Nogeste, K.; Walker, D.H.T. Using knowledge management to revise
software-testing processes. Journal of Workplace Learning, vol. 18, Issue
1, 6-27, 2006.

#9 Janjic, W.; Atkinson, C. Utilizing software reuse experience for auto-
mated test recommendation. In: Proceedings of the 8th International
Workshop on Automation of Software Test (AST), San Francisco, USA,
100-106, 2013.

#10 Kerkhof, C.; Ende, J.; Bogenrieder, I. Knowledge Management in the
Professional Organization: A Model with Application to CMG Software
Testing. Knowledge and Process Management, vol. 10, Issue 2, 77-84,
2003.

Continues

31

Table 2.5 - Conclusion

ID Bibliographic Reference
#11 Vegas, S.; Basili, V.R. A Characterization Schema for Software Testing

Techniques. Empirical Software Engineering, vol. 10, Issue 4, 437-466,
2005.

#12 Vegas, S.; Juristo, N.; V.R. Basili. Packaging experiences for improving
testing technique selection. The Journal of Systems and Software, vol.
79, Issue 11, 1606-1618, 2006.

2.3.2.3 Classification scheme

For conducting a systematic mapping, a classification scheme needs to be defined
(PETERSEN et al., 2008). Different facets were considered, one for each research ques-
tion. The exception is the last question (RQ9), for which were collected unstructured
data without a predefined classification. Only the main findings found were consi-
dered, as benefits and problems related with the implementation of KM in software
testing reported by the selected studies. The categories comprising the other facets
were defined following two approaches: (i) based on categories already considered
in the literature; and (ii) taking the selected studies into account. Following, the
categories of these facets are presented.

Research focus from the software testing perspective (RQ2): Studies on
KM in software testing have focused on different aspects of software testing. Based
on the selected studies, six main categories were considered, described below. Note
that, according to classification scheme, one study can span more the one research
focus regarding the testing perspective.

• Testing Process: the focus is on managing knowledge in the context of
a given testing process.

• Test Case: the focus is on managing knowledge about test cases, for
supporting, e.g., test case reuse.

• Testing Phase: the study discusses the application of KM in a specific
level test, such as unit testing, system testing, integration testing, regres-
sion testing.

• Testing Technique: the focus is on managing knowledge about testing

32

techniques, aiming at helping testers to select better suited testing tech-
nique for designing test cases.

• Third Party Testing: the study discusses KM applied to situations in
which testing is accomplished by a third party (e.g. outsourcing).

• General: this category is used to classify those papers that discuss KM
in software testing in general, without focusing in any specific aspect of
software testing.

Research focus from the KM perspective (RQ3): Similarly to the previous,
studies on KM in software testing also focus on different aspects of KM. Based on
the selected studies, the categories described below were considered. Again, a study
can span more the one research focus regarding the KM perspective.

• Knowledge Management Model: the study discusses a model for ma-
naging knowledge, considering knowledge processes, and, eventually some
aspects of it, such as knowledge carriers.

• Knowledge Representation: the study discusses aspects related to how
to represent testing knowledge.

• Knowledge Packing: the study goes beyond aspects related to know-
ledge representation, focusing on how to pack it. Studies classified in this
category are also classified in the previous.

• Knowledge Capturing: the study addresses aspects related to how to
acquire and store testing.

• Knowledge Elicitation: the study goes beyond aspects related to know-
ledge capturing, discussing also ways to elicit knowledge from experts.
Studies classified in this category are also classified in the Knowledge Cap-
turing category.

• Knowledge Retrieval: the study addresses aspects concerning retrieval
of testing knowledge. In this case, the user is responsible for searching
knowledge items.

• Knowledge Dissemination: regards pro-actively disseminating testing
knowledge.

33

• Knowledge Evolution: the study approaches aspects related to the evo-
lution of the testing knowledge already stored, such as evaluation and
maintenance.

• Knowledge Management Systems (KMS): the study discusses as-
pects related to providing automated support for managing testing know-
ledge by means of a system. Studies classified in this category may be
describing an actual system, as well as an architectural model or general
features of a KMS.

Research type (RQ4): This facet captures the research approach used in the
studies. It is general and independent from a specific focus area, and thus an existing
classification was adopted: the one proposed by Wieringa et al. (2006), and revisited
by Petersen et al. (2008) to become more general. Based on the selected studies, some
of its categories were disregarded, since none of the selected studies were classified
in those categories. The categories used in this mapping are summarized below. As
pointed out by Wieringa et al. (2006), studies can span more than one category,
although some combinations are unlikely.

• Solution Proposal: In this research approach, the study proposes a so-
lution for a problem and argues for its relevance, without a full-blown
validation. The solution must be novel, or at least a significant improve-
ment of an existing one. A proof-of-concept may be offered by means of a
small example, a sound argument, or by some other means.

• Validation Research: In this research approach, the study investigates
the properties of a proposed solution that has not yet been implemented
in practice. It may have already been proposed elsewhere by the author
or by someone else. The investigation uses a thorough, methodologically
sound research setup. Possible research methods include, among others,
experiments, prototyping and simulation.

• Evaluation Research: In this type of research, the study discusses the
implementation of a technique in practice, and what are the consequences
of the implementation in terms of benefits and drawbacks (implementation
evaluation). The novelty of the technique is not necessarily a contribution
of the study. However, if no industry cooperation or real world project is
mentioned, then the study cannot be considered an evaluation research
(PETERSEN et al., 2008).

34

Reported Problems (RQ5): The categories for this facet are based on the main
problems related to knowledge about software testing reported in the selected stu-
dies. Five main categories of problems were identified, namely: (i) Barriers in trans-
ferring testing knowledge; (ii) Loss of testing knowledge; (iii) Low reuse rate of
testing knowledge; (iv) Testing knowledge is not properly shared; and (v) Testing
knowledge is not properly considered for planning the testing process (including
human resource allocation to testing activities). Studies can span more than one
category.

Purposes (RQ6): In this facet, interest is to learn the organizations´ purposes,
when employing KM in software testing. Five main categories of such purposes were
identified: (i) Reuse of knowledge related to software testing, (ii) Support for decision
making, (iii) Cost reduction, (iv) Competitive advantages, and (v) Organizational
learning. Studies can span more than one category.

Types of knowledge (RQ7): This facet concerns the types of knowledge that
have been dealt with in the research. In this case, the classification proposed by
Nonaka and Takeuchi (1997) were adopted, that distinguishes between tacit and ex-
plicit knowledge. Moreover, for explicit knowledge, based on the selected studies, the
types of knowledge that have been managed were identified into the following cate-
gories: Software Artifacts (essentially test cases), Classification Schemes (for testing
techniques), Lessons Learned (about software testing), and Knowledge Packages.
Since some studies did not indicate a specific type of knowledge, in such cases it is
considered that they fall in the General category. Studies can span more than one
category.

Technologies used (RQ8): This facet discusses the technologies that have been
used or proposed to support managing software testing knowledge. Based on the
selected studies, the following categories were considered: (i) Ontologies, (ii) Yel-
low Pages (or Knowledge Maps), (iii) Agents, (iv) Recommendation Systems, (v)
Data warehouse, and (vi) Conventional Technologies. This last category mentions
IT conventional technologies, such as databases, intranets, and Internet. Studies can
span more than one category, but can also fit any, if the study does not explicitly
approach this issue.

2.3.3 Limitations of this mapping

The mapping has some limitations. Due to the fact that the study selection and
data extraction steps were performed by just this author of this thesis, some subjec-

35

tivity may have been embedded. To reduce this subjectivity, the other two persons
(advisers) performed these same steps on a random sample (including about 36%
of the studies). The results of each reviewer were then compared in order to detect
possible bias. Moreover, terminological problems in the search strings may have led
to missing some primary studies. In order to minimize these problems, previous
simulations in the selected databases were performed. Any specific conference pro-
ceedings, journals, or the grey literature (technical reports and works in progress)
were searched. Thus, only studies indexed by the selected electronic databases were
worked. The exclusion of these other sources makes the review more repeatable, but
possibly some valuable studies may have been left out of our analysis.

2.3.4 Results

The mapping study was performed according to the steps described in Section
2.3.2.1. This section presents the results for each of the research questions defined. To
answer the questions, a form with the #id of the paper was used, with its bibliogra-
phic reference, and including, the facets of the classification schema aforementioned.
This form was used to extract the answers for each research question.

1) Classification by publication year and source (RQ1)

In order to offer a general view of the efforts in the area of KM in Software Testing,
a distribution of the 12 selected papers over the years is shown in Figure 2.4. As
this figure suggests, KM in software testing is recent, occurring basically in 2003.

The selected studies were published in three main vehicles: Journals, Conferences
and Workshops. Conferences have been the main forum for presenting KM in soft-
ware testing, encompassing 50% (6 studies in 12). Journals are the publication forum
of 41.7% (5 out of 12). Finally, only one was presented in a Workshop (8.3%). Table
2.6 presents the publication sources of all the selected studies, their types, and their
(#id). It is worth pointing out that 12 different publication sources were identified,
one for each study, showing that currently there is no well-established forum for
discussing the topic. Publications vehicles in areas such as IT, Software Engineering
and Knowledge Management seem to be more receptive for presenting studies in the
area.

36

Figure 2.4 - Distribution of the selected studies over the years

Table 2.6 - Publication Sources

Publication Sources Type #ID
International Workshop on Automation of Software Test
(AST)

Workshop #9

International Conference on Information Technology and
Computer Science (ITCS)

Conference #1

Industrial Engineering and Engineering Management Conference #2
Apperceiving Computing and Intelligence Analysis (ICACIA) Conference #3
Malaysian Conference in Software Engineering (MySEC) Conference #4
International Conference on Internet Computing for Science
and Engineering (ICICSE)

Conference #5

International Conference and Workshop on Emerging Trends
in Technology (ICWET)

Conference #6

Information and Software Technology Journal #7
Journal of Workplace Learning Journal #8
Knowledge and Process Management Journal #10
Empirical Software Engineering: An International Journal Journal #11
Journal of Systems and Software Journal #12

2) Research focus from the software testing perspective (RQ2)

Table 2.7 shows the distribution of the studies according to the research focus from

37

the software testing perspective. Most of the papers address a specific aspect of
software testing (8 out of 12 - 66.7%) for providing KM facilities. Test case reuse
(3), selection of testing techniques (2), and third party testing (2) are aspects that
have also received attention. In particular, test case reuse has been the main focus
of the recent research, as well as some focus on a specific testing phase. For instance,
in #8, Nogeste and Walker (2003) proposes a KM-based regression testing process,
while #9, Janjic and Atkinson (2013) discuss KM-based support for reusing class
and unit test cases. On the other hand, 4 studies (33.3%) discuss KM applied to
software testing in general, i.e. without focusing on any specific aspect of software
testing.

Table 2.7 - Research focus from the software testing perspective along the years

Research Focus 2003 2005 2006 2007 2009 2010 2011 2012 2013 Total

Testing Process #8 #3 2

Test Case #6 #5 #9 3

Test Phase #8 #2 #9 3

Testing Technique #11 #12 2

Third Party Testing #2 #3 2

General #10 #1 #4 #7 4

3) Research focus from the KM perspective (RQ3)

With respect to KM, as Table 2.8 shows, the great majority of the studies discussed
aspects related to the KM process as a whole (KM Model) or focusing on one of
its activities: knowledge representation (6), capture (6), and retrieval (5). Moreover,
most of the papers (75%) describe KM systems to provide KM-based support for
software testing. The study #7 is the one that covers the largest number of KM
activities.

Table 2.8 - Distribution over research focus regarding the KM perspective

Research Focus 2003 2005 2006 2007 2009 2010 2011 2012 2013 Total

Knowledge Manage-
ment Model

#10 #8 #4,#6 #5 #7 6

Knowledge Represen-
tation

#11 #12 #2 #1 #5 #7 6

Knowledge Packing #12 1

Continues

38

Table 2.8 - Conclusion

Research Focus 2003 2005 2006 2007 2009 2010 2011 2012 2013 Total

Knowledge Captu-
ring

#11 #8,#12 #2 #1 #7 6

Knowledge Elicita-
tion

#2 #7 2

Knowledge Retrieval #11 #2 #1 #7, #9 5

Knowledge Dissemi-
nation

#7, #9 2

Knowledge Evolution #5 1

Knowledge Manage-
ment Systems (KMS)

#8 #2 #1 #3 #4, #6 #5 #7, #9 9

4) Research Type (RQ4)

Table 2.9 presents the distribution according to the research types. Considering
the categories defined by Wieringa et al. (2006), research in KM applied to software
testing is dominated by Solution Proposals. All the 12 studies propose some solution
for KM in software testing. In addition to presenting a solution proposal, most
of them also discuss some sort of evaluation: 7 studies also report an Evaluation
Research (58.3%), while 3 studies report a Validation Research (see Figure 2.5).
The 7 studies with an Evaluation Research discuss a practical implementation, and
its consequences. There is a great interest in implementing the proposals in practice
and especially in studies of real cases.

Table 2.9 - Distribution over research type

Research Type 2003 2005 2006 2007 2009 2010 2011 2012 2013 Total

Validation Research #11 #1 #9 3

Evaluation Research #10 #8,#12 #3 #6 #5 #7 7

Solution Proposal #10 #11 #8,#12 #2 #1 #3 #4,#6 #5 #7,#9 12

39

Figure 2.5 - Distribution over research type

5) Reported problems (RQ5)

Table 2.10 shows the distribution over the years considering the problems reported by
software organizations related to knowledge about software testing. These problems
were regarded as a motivation to perform research in KM to software testing. Among
problems categories, “Low Reuse Rate Knowledge” has the largest representativeness
(9 out of 12, corresponding to 75%). Software testing, in general, can involve reusing
modules, test cases, components, and experiences. However, testing teams, generally,
do not reuse or take advantage on the knowledge acquired or the experience gained.
Therefore, the same mistakes are repeated, even though there are individuals in the
organization with the knowledge and experience required to prevent this (ANDRADE

et al., 2013). Another category with a high percentage is “Barriers in Knowledge
Transfer” with 8 out of 12, corresponding to 66.6%. It stands out because transfer
of organizational knowledge can be quite difficult to achieve. This occurs also because
most of the knowledge in organizations is tacit, that is, derived from experience, and
it becomes difficult to articulate.

Table 2.10 - Distribution of related problems (motivation)

Problems 2003 2005 2006 2007 2009 2010 2011 2012 2013 Total

Loss of testing know-
ledge

#10 #2 #1 #6 #5 5

Barriers in testing
knowledge transfer

#8 #2 #1 #3 #4,#6 #5 #7 8

Low reuse rate of tes-
ting knowledge

#10 #11 #12 #1 #4,#6 #5 #7,#9 9

Problems related to
testing knowledge
sharing

#10 #1 #4,#6 #7 5

Continues

40

Table 2.10 - Conclusion

Problems 2003 2005 2006 2007 2009 2010 2011 2012 2013 Total

Testing knowledge
not considered in test
planning

#8 #1 #6 #5 4

Figure 2.6 shows the number of studies per category considering the problems re-
ported as a motivation to conduct the research.

Figure 2.6 - Percentage of the selected studies per problems reported

6) Purposes to employ KM in software testing (RQ6)

Table 2.11 presents the distribution over the years considering the organizations´
purposes in managing software testing knowledge. The categories “Knowledge
Reuse” (8 studies - 66.6%), “Organizational Learning” (6 studies - 50%) and “Com-
petitive Advantages” (6 studies - 50%) have the largest representativeness. It is
possible to highlight that some purposes that were identified are strongly related.
For instance, lessons learned are means to promote both knowledge reuse and orga-
nizational learning. Thus, studies that reported that one of the purposes of applying
KM in software testing is registering and disseminating lessons learned (5 studies -
41.6%) were considered in both categories. Knowledge reuse, in turn, helps increasing

41

test effectiveness and thus leads to competitive advantages and cost reduction.

Table 2.11 - Distribution of purposes

Purposes 2003 2005 2006 2007 2009 2010 2011 2012 2013 Total

Knowledge Reuse #8 #2 #1 #3 #4, #6 #5 #7 8

Competitive Advantages #10 #8 #1 #3 #5 #7 6

Organizational Learning #8, #12 #3 #4 #7,#9 6

Decision Making #11 #2 #4, #6 #7 5

Cost Reduction #2 #3 #7 3

Figure 2.7 shows the number of studies per category, considering the organizations´
purposes in managing software testing knowledge.

Figure 2.7 - Percentage of the selected studies per purposes reported

7) Types of knowledge being managed (RQ7)

The classification proposed by (NONAKA; TAKEUCHI, 1997) distinguishing between
tacit and explicit knowledge was adopted. In the 12 selected studies, both are consi-
dered. Tacit knowledge is discussed in 8 studies (66,7%). They mention that it can
be acquired from discussions, experiences from project members, questionnaires, ex-
pert network, personalized training and communications. On the other hand, all the
12 studies have discussed explicit knowledge. Figure 2.8 shows the percentage of
studies per category.

42

Moreover, for explicit knowledge, based on the 12 selected studies, the types of know-
ledge that have been managed were identified. Table 2.12 presents the distribution
over the years. 50% of studies do not specify a specific type of knowledge, in such
cases, considered that they fall into the General category. Out of all the identified
types, Software Artifacts are the most commonly cited category (4 out 12 studies,
corresponding to 33.3%) (Figure 2.9). Moreover, Test Cases are the software arti-
facts managed in the 4 studies classified in this category. According to Li and Zhang
(2012), the quality of test case has a direct and significant impact on the software
testing quality, and hence in the software quality. Thus, introducing the reuse theory
into test cases seems to be effective and can promote test case design efficiency.

Table 2.12 - Distribution of explicit knowledge

Explicit knowledge 2003 2005 2006 2007 2009 2010 2011 2012 2013 Total

Knowledge Packages #12 1

Lessons Learned #1 6

Classification Schema #11 #12 2

Software Artifacts #8 #6 #5 #9 4

General #10 #1 #2 #3 #4, #6 6

Figure 2.8 - Percentage of studies per category

8) Technologies used (RQ8)

Technologies used to implement KM in software testing are shown in Table 2.13. 6
different technologies in this context were found. It is worthwhile to point out that
3 studies do not address this issue (#3, #11, #12), representing 25%. In #3, Xu-
Xiang and Wen-Ning (2010) proposes a process, but does not discuss technologies;
in #11 and #12, a classification scheme is proposed, and this scheme is used without
automated support, and without discussing aspects related to technology. The great

43

Figure 2.9 - Types of knowledge managed

majority of the studies use conventional technologies (7 in 12 studies, corresponding
to 58.3%). This category concerns IT conventional technologies, such as databases,
intranets, and Internet. Yellow Pages (or Knowledge Maps) are discussed in 25%
of the studies (3 in 12). Figure 2.10 shows the number of studies per category,
considering the technologies used to implement KM in software testing.

Table 2.13 - Distribution of technologies used

Problems 2003 2005 2006 2007 2009 2010 2011 2012 2013 Total

Agents #9 1

Data Warehouse #6 #5 2

Recommendation
Systems

#7,#9 2

Ontologies #1 #5 2

Yellow Pages (or
Knowledge Maps)

#10 #1 #5 #7 3

Conventional
Technologies

#10 #8 #2 #4,#6 #5 #7 7

Study does not ad-
dress this issue

#11 #12 #3 3

Organizations can extract testing knowledge and create the testing knowledge base
and then establish the reusable test knowledge repository. This repository may be
a data warehouse as cited in #5 and #6 (16.7% of the studies). Moreover, the
representation of the knowledge structure can be in accordance with an ontology
representation (#1, #5) (16.7%).

44

Figure 2.10 - Technologies used to implement KM

9) Benefits and Problems reported on the implementation of KM
initiatives in software testing (RQ9)

As we can see from this mapping, there are many benefits of implementing KM in
organizations for managing software testing knowledge:

• Selection and application of better suited techniques, methods
and test cases. Experience plays a key role in testing, and managing
past experience helps to effectively tailor the techniques and methods to
the ongoing project. Some of these techniques, such as White-box Testing,
Black-box Testing or Defect-based Testing, depend on the knowledge, ex-
perience and intuition of the tester.

• Cost reduction. In the testing context, cost is strongly related with time.
Tester´s experience is crucial for designing test cases and regression test
selection. A good selection of test cases minimizes not only costs but also
time.

• Test effectiveness increase. Knowledge and experience about the do-
main and the system under test are essential for increasing test effective-
ness. This helps testers to decide on which techniques to use, and to select
test cases, among others.

• Competitive advantages. In organizations, KM is now seen as a strate-
gic factor and knowledge is also recognized as one of the main sources of

45

cost savings and competitive advantage. The ability to transfer best prac-
tices in the organization is a means to build competitive advantage through
the appropriation from scarce knowledge.

Although KM in software testing brings many benefits, there are also problems:

• Employees are normally reluctant to share their knowledge: Ex-
periences are grasped by few people only and do not turn into public
knowledge. This fact disables knowledge transfer in testing.

• Increased workload: Shortage of time is a potential risk to incorporate
the principles of KM in software testing, because knowledge sharing can
imply in increasing the employee workload and costs.

• KM systems are not appropriate yet: There are many difficulties in
implementing knowledge acquisition, coding, storage and searching func-
tionalities effectively in KM systems, because it involves all the problems
mentioned above, as time and interest of the employees.

2.3.4.1 Discussion of reviewed studies

In this section, some important findings in the mapping study are discussed. From
the results achieved with the mapping, reports on ontology-based approaches for
KM in software testing are analyzed, by means of a Systematic Literature Review
(SLR).

Software has become more and more widespread and indispensable in critical and
complex application domains, making testing processes increasingly important and
complex, and calling for greater quality. Furthermore, testing process is a knowledge-
intensive activity. In this context, knowledge and experience can be very useful, and
testing team members can make use of this experience. However, studies have re-
ported that the greatest problem is knowledge reuse within organizations. The main
issue is that knowledge is retained with a single individual and therefore becomes
more difficult to raise this knowledge to the organizational level. Even when some
KM strategy is applied, it is not always feasible to achieve organizational learning
because the employees are reluctant to share their knowledge as they feel that re-
taining this knowledge is an advantage over their colleagues (ANDRADE et al., 2013).
All these problems are pointed out as purposes to applying KM in software testing,
in particular knowledge reuse.

46

Out of the 12 studies analyzed in this mapping, KM in software testing has focused
on different aspects. Reuse of test cases is a perspective that has received more
attention. Software testing in general involves reusing of modules and test cases,
because most of the software can be reused from time to time. Reusing knowledge
already present in existing test cases has a potential to significantly reduce software
development costs and time consumption (DESAI, 2011; JANJIC; ATKINSON, 2013).

With respect to the KM perspective, the great majority of the studies discuss aspects
related to implementing a KM process as a whole or focusing on one of its activi-
ties. Most of the studies discuss aspects related to providing automated support for
managing testing knowledge by means of a system. These studies present a KMS as
an actual system, as a prototype or as well as an architectural model. On the other
hand, considering the research type performed by the 12 papers presented, Solution
Proposal is most prominent; all 12 studies present a proposal. Moreover, 7 studies
discuss the implementation of an approach in practice. There is a significant interest
in implementing the proposals in practice and especially in real world scenarios.

With respect to the types of knowledge, both tacit and explicit have been considered
important. Most of the studies identify that tacit knowledge is more difficult to
acquire, as part of personal experiences by the members of the test team. According
to Nonaka and Takeuchi (1997), as expected, tacit knowledge really is hard to be
acquired, and it requires good strategies to acquire and process this knowledge;
however, it is more valuable. In papers #4, #7, #10, for instance, although dealing
with the two types of knowledge (tacit and explicit), the authors also emphasize the
importance to capture the tacit knowledge and treat it.

During the mapping it was possible to infer that much of the explicit knowledge
was related to reuse of test cases. According to Liu et al. (2009), more detailed
information on test cases can provide a greater learning. As test cases evolve in
applications, they may be changed for a variety of reasons. Thus an efficient and
effective KM process can help in evaluating the impact and in conducting changes
of the test cases.

With respect to the technologies used to implement KM, Knowledge Maps or Yellow
Pages seem to have good results where test engineers want to find the right experts
for helping them. A Knowledge Map contains information about experiences that
an employee possesses. It is a stock catalogue about knowledge (LIU et al., 2009). In
#1, for instance, a KM model is created and one of the components of this model
is a Knowledge Map repository, considered the kernel of the system. The system

47

identifies, by means of statistics, the staff with knowledge, and that will improve the
culture of knowledge-sharing in the enterprise. In #5, Li and Zhang (2012) present
a Knowledge Management Model and one of the elements of this model is also a
knowledge map.

On the other hand, Data Warehouse, Recommendation System and Ontologies are
also discussed. In special, ontologies minimize ambiguity and imprecision in inter-
preting shared information (KIM, 2000). Ontologies are considered a key enabling
technology for KM (KIM, 2000). They provide a shared and common understanding
of a domain that can be communicated between people and application systems.
Their use offers an opportunity for improving KM capabilities in large organizations
(DAVIES et al., 2003). In ontology-based KM systems, ontologies are mainly used
(ABECKER; ELST, 2004): (i) to support knowledge search, retrieval, and personali-
zation; (ii) to serve as basis for knowledge gathering, integration, and organization;
and (iii) to support knowledge visualization. More specifically, domain ontologies are
used to structure the content area of documents and providing background know-
ledge for inferences.

Three studies (#1, #5, and #7) discuss ontologies in some aspect. However, only
two (#1 and #5) indeed, use ontology. This seems to be a problem, since, as pointed
out by Staab et al. (2001), ontologies are capable of binding KM activities together,
allowing a content-oriented view of KM. One possible explanation for this low num-
ber of studies addressing ontology-based KM initiatives in software testing is the
fact that developing ontology is a hard task, especially in complex domains, as is
the case of software testing.

2.3.4.2 SLR in ontology-based KM initiatives

From these 12 studies, two studies used ontology, and only one used ontology on
software testing domain. Thus, looking into Ontology-based KM in software testing,
a SLR was performed. The following research questions about the two ontologies
found (Table 2.14) and after is presented an outline of the two studies (#1 and #5).

48

Table 2.14 - Research questions and their rationales

No Research question Rationale
RQ1 What kinds of ontologies have

been used?
There are different classifications of on-
tologies. In this research question is
necessary to know what kind of onto-
logy have been used.

RQ2 What are the purposes of using
ontologies in those initiatives?

This question investigates the main
purposes of using ontologies. This in-
formation is useful for evaluating the
actual benefits of the use of ontologies
in KM applied to software testing.

RQ3 What are the languages or for-
malisms used to create those
ontologies?

To represent a shared conceptualiza-
tion, a language of representation is
required. This question investigates
which languages or formalisms have
been used to create those ontologies.

RQ4 When are the ontologies used
(at development time and/or
at run time)?

This question investigates when ontolo-
gies are employed (at development time
and/or at run time).

Liu et al. (2009) (#1), from experiences acquired from many software testing projects
in the Beijing University of Aeronautics and Astronautics (BUAA), concluded that
it is very important to carry out KM in software testing, and they propose a KM
model for software testing. In this model, ontology is used for structuring a know-
ledge base and for searching and sorting. From this model, a prototype of a KM
system was designed and integrated into a test platform called QESuite2.0, which
has been developed in BUAA. In #1, although Liu et al. (2009) say that ontology
“classifies concepts of software testing, describes relation restriction between con-
cepts, and constructs detailed knowledge database”, there is no mention to the use
of an ontology of software testing. In fact the model presented as the “Knowledge
Ontology” contains the following concepts: Knowledge Carriers, Document, Refe-
rence, Staff, Content, Project and Knowledge Level. I.e. the ontology used seems to
be about the KM domain, rather than addressing the software testing domain.

In order to support test case reuse, (LI; ZHANG, 2012) (#5) propose a reusable test
case KM model, which is based on ontology of reusable test cases. This is a simple

49

ontology, indicating that a Reusable Test Case is a subtype of Test Case, and that
Reusable Test Case has Test Objective, Domain Area, Testing Type, Testing Method,
Testing Step and Test Data. Test Data, in turn, has Attribute, Value, and Expected
Result. According to them, by using the ontology to represent the explicit speci-
fication of reusable test cases, “test engineers can find the right knowledge at the
right moment for a given testing project”. (LI; ZHANG, 2012) have applied the onto-
logy representation and the KM model for software test case reuse in a third-party
testing center. This testing center developed a KM system, with an organizational
exchange library established on the intranet. Tacit knowledge and explicit know-
ledge were captured and stored in the testing knowledge warehouse, based on the
analysis conducted by the knowledge analysts in the center. The reusable test case
repository has more than 12,000 test cases. As a conclusion, they say that, “with
the ontology and the knowledge management model, test engineers can retrieve and
reuse test case flexibly and the design efficiency of test case has been improved”.

Each study was analyzed in order to answer the four research questions. Following,
the classification schema and data synthesis regarding each one of these questions
are presented.

RQ1. What kinds of ontologies (considering their generality level) have
been used in those initiatives?

For analyzing this question, the classification proposed by Guarino (1998)
was adopted, who classifies ontologies according to their generality level
into: (i) foundational (or top-level) ontologies, which describe very general
concepts independently of a particular problem or domain, such as ob-
ject, space, event, time, action; (ii) domain ontologies, which describe the
conceptualization related to a generic domain, for example, medicine and
law; (iii) task ontologies, which describe the conceptualization related to a
generic task, such as diagnosis or planning; and (iv) application ontologies,
which is the most specific kind of ontology, describing concepts that are de-
pendent on a particular domain and a task. Both the ontologies presented
in #1 and #5 are domain ontologies. The one presented in #1 is about the
“knowledge” domain, whereas the one in #5 is about the software testing
domain, more specifically, the test case domain.

RQ2. What are the purposes of using ontologies in those initiatives?

In #1, the “knowledge ontology” is used mainly for organizing the know-
ledge database. It classifies concepts of software testing, and describes re-

50

lation constraints between them. An ontology-based search and sorting
mechanism is employed. When retrieving knowledge, the correlative con-
cepts or attributes are found according to the users´ requests.

In #5, the ontology of reusable test case is designed to establish a common
understanding and reduce terminological ambiguity among test engineers
when reusing test cases. Moreover, it is used for representing the explicit
specification of reusable test cases.

In summary, in both cases, ontologies are used for structuring the organi-
zational memory, and for searching knowledge items.

RQ3. What are the languages or formalisms used to create those ontolo-
gies?

Both in #1 and #5, graphical notations are used. They do not mention
that these ontologies were implemented in some coding language, such as
Ontology Web Language (OWL). In #1, a specific graphical notation is
used. In #5, Unified Modeling Language (UML) is used to represent the
test case ontology as a class diagram, and first-order logic is used for writing
a set of axioms.

RQ4. Do the studies use the ontologies at development time, at run time
or both?

In an ontology-driven Information System (IS) in general, as well as in
ontology-based KM, considering a temporal dimension, ontology can be
used at development time or at run time (GUARINO, 1998). When using
ontologies at development time (reference ontologies), it is important to
focus on their representation adequacy, since these ontologies are used in
an off-line manner to assist in tasks of meaning negotiation and consensus
establishment. However, once users have already agreed on a common con-
ceptualization, versions of a reference ontology can be created for run-time
use, called operational ontologies. Operational ontologies are not focused
on representation adequacy, but are designed with the focus on guarantee-
ing desirable computational properties (GUIZZARDI, 2007). In this context,
in both cases (#1 and #5), the ontologies are used at development time,
mainly for structuring the knowledge repositories.

Ontologies have been applied in a variety of areas in Computer Science (D’AQUIN;

GANGEMI, 2011) and have also been widely recognized as an important technology

51

for implementing enterprise KM (STAAB; MAEDCHE, 2000; BENJAMINS et al., 1998;
DAVIES et al., 2003; ABECKER; ELST, 2004; KIM, 2000). However, for KM in software
testing, as the SLR shows, only two studies (#1 and #5) have adopted an ontology-
based approach for KM in software testing. Moreover, only in #5 a software testing
ontology was used. This study is quite recent (published in 2012) and seems to be
a very innovative and promising research for the field of software testing. However,
its focus is too narrow (test case reuse), and as a consequence the coverage of the
corresponding ontology is very limited.

In both the studies (#1 and #5), ontologies are used at development time, mainly
for structuring the knowledge repositories. As pointed out by Guarino (1998), an
important benefit of using ontologies at development time is that ontologies enable
developers to share domain knowledge using a common vocabulary. Moreover, on-
tologies enable developers to concentrate on the structure of the domain and the
task at hand and protect them from being bothered too much by implementation
details (GUARINO, 1998). In the KM context, ontologies can be used at development
time for structuring knowledge repositories, as well as for establishing categories for
metadata to be used for annotating knowledge items, among others. On the other
hand, using ontologies at run time also presents some benefits, such as enabling
the communication between software agents (GUARINO, 1998), allowing integrating
structured and unstructured data, enabling inferences, and supporting semantic,
metadata-based searching. Thus, it is expected that a powerful KM solution for
software testing should use a software testing ontology both at development time
and at run time. As a consequence, this ontology should be engineered following
sound principles of Ontology Engineering.

Ontologies have been frequently employed in KM to support knowledge sharing
and reuse, efficient integration of information across different applications, and to
support knowledge visualization, among others (ABECKER; ELST, 2004). Ontologies
are a powerful mechanism for representing knowledge and encoding its meaning
(ANTUNES et al., 2007). Different research areas have benefited from the use of on-
tologies in KM initiatives, and software testing domain is not different. However,
surprisingly, the use of ontologies in KM initiatives is not happening. And it is be-
lieved that this is a ground-breaking research that must be done. For allowing this
research to happen, a well-established ontologies of the software testing domain is
necessary.

52

2.4 Final remarks about this chapter

In this chapter, some of the most important concepts in the research areas studied
were discussed. The main concepts of Software Testing and KM were described.
Moreover, a study on the aspects associated with applying KM in software testing
through a Systematic Mapping Study was presented.

As emphasized by Mapping Study, ontologies are an important mechanism for repre-
senting knowledge. Ontologies in KM initiatives can be a ground-breaking research.
Considering this context, next chapter presents the main concepts of ontologies, as
well as presents the systematic literature review on software testing ontologies.

53

3 ONTOLOGIES FOR SOFTWARE TESTING

This chapter describes the main concepts related to ontologies and an investiga-
tion on existing ontologies for the software testing domain. Section 3.1 presents an
overview about ontologies and ontology pattern languages. Section 3.3 discusses the
main ontology proposals for software testing in the literature through a Systematic
Literature Review (SLR). The theoretical pillars presented in this chapter are the
foundations for building a Reference Ontology on Software Testing (described in
section 4.2).

3.1 Ontologies

Gruber (1993) defines ontology as an explicit specification of a conceptualization.
Guarino (1998) adds that an ontology refers to an engineering artifact, constituted
by a specific vocabulary used to describe a certain reality, plus a set of explicit
assumptions regarding the intended meaning of the vocabulary words. This set of
assumptions has usually the form of a first-order logical theory, where vocabulary
words appear as unary or binary predicate names, respectively called concepts and
relations. In the simplest case, an ontology describes a hierarchy of concepts related
by relationships; in more sophisticated cases, suitable axioms are added in order
to express other relationships between concepts and to constrain their intended
interpretation.

Ontologies involve the description of concepts in a particular domain of knowledge
with its properties and constraints. An ontology provides an accurate description
of knowledge in a formal language to facilitate communication, integration, storage,
search, sharing, and reusing knowledge representation (O’LEARY, 1998b). One of the
main interests in ontologies is in the need for increasingly, greater interoperability
and reuse of information between systems and people within an organization (RIOS,
2005). In Software Engineering, for example, ontologies have been typically used to
reduce conceptual ambiguities, make transparent the knowledge structures, support
knowledge sharing and interoperability between systems (USCHOLD; JASPER, 1999).

Ontology Types

There are several classifications for ontologies. In (USCHOLD et al., 1996a) and
Uschold (1996b), ontologies are classified according to the degree of formality (in-
formal, semi-informal, formal or rigorously formal). Ding and Fensel (2001) classify
ontologies according to purpose. Heijst et al. (1997) classify ontologies according to

55

the nature and concepts structure involved. However, the classification most cited
in the literature and adopted in this work is proposed by Guarino (1998) classifies
ontologies according to their level of generality, as shown in Figure 3.1.

Figure 3.1 - Kinds of ontologies, according to their level of dependence on a particular
task or point of view.
SOURCE: Adapted from (GUARINO, 1998)

• Top-level Ontology: also called Foundational Ontology, is an abstract
conceptualization of generic elements, like space, time, matter, object,
event, action, etc., which are independent of a particular problem or do-
main. The Foundational Ontology defines general concepts that underlie
all other concepts. For Guizzardi (2005), Foundational Ontology are used
successfully to improve the quality of modeling languages of conceptual mo-
dels. Some examples are: General Formal Suggested Upper Merged Onto-
logy (SUMO) (PEASE et al., 2002), Basic Formal Ontology (BFO)(GRENON

et al., 2004), General Formal Ontology (GFO) (??) and Unified Founda-
tional Ontology (UFO) (GUIZZARDI, 2005).

• Domain Ontology: describes the vocabulary related to a generic domain.
This class represents a set of ontologies describing concepts in a domain
of discourse, properties and constraints. Currently, there is a large amount
of domain ontologies in many areas, such as Medicine, Law, Software En-
gineering, Organizational Modeling and Chemistry.

• Task Ontology: similar to a domain ontology, however, instead of map-
ping the concepts of a particular domain, maps concepts of a task, such as
diagnosis, sale and registration. In other words, comprises a set of primitive
task structure representation, independently of a given domain.

56

• Application Ontology: describes concepts depending both on a parti-
cular domain and task, which are often specializations of both the related
ontologies. These concepts often correspond to roles played by domain
entities while performing a certain activity, like replaceable unit or spare
component.

Currently, there is a growing interest in the use of foundational ontology as concep-
tual modeling tools (BELLATRECHE et al., 2006). A foundational ontology describes
the general categories that are used for building conceptual models.

Ontology Engineering Methods

Ontology Engineering methods have been developed in order to systematize the
development of ontologies. Several methods for building ontologies have been pro-
posed, for example, a methodology that emerged in the TOronto Virtual Enter-
prise (TOVE) Project (GRUNINGER; FOX, 1995), Sensus (SWARTOUT et al., 1996),
METHONTOLOGY (GÓMEZ-PÉREZ et al., 1996) and On-to-knoweledge (FENSEL et

al., 2000). In order to gather in a unique method some of the best features of the
existing methods, Falbo and Menezes (1998b) proposed a methodology for build-
ing ontologies, called Systematic Approach for Building Ontologies (SABiO), whose
main activities are show in Figure 3.2.

Figure 3.2 - Systematic Approach for Building Ontologies (SABiO)
SOURCE: Adapted from (FALBO; MENEZES, 1998b)

• Purpose identification and requirement specification: identifies the
ontology purpose and its intended uses, that is, the competence of the
ontology. To do that, competency questions are used.

57

• Ontology capture: captures the domain conceptualization based on the
ontology competence. Relevant concepts and relations should be identified
and organized. A conceptual model represented in a graphical language,
and a dictionary of terms should be produced, in order to aid communica-
tion with domain experts.

• Ontology axiomatization: aims to explicitly represent constraints that
are not captured by the conceptual model developed in the ontology cap-
ture. The axioms should be written in a formal language, such as first-order
logics or Object Constraint Language (OCL).

• Ontology Reuse: during the mainstream phases of ontology development,
it could be necessary to integrate the current ontology with existing ones,
in order to reuse previously established conceptualizations.

• Ontology evaluation: the ontology must be evaluated to check whether
it satisfies the requirements specification.

• Documentation: all the ontology development must be documented.

Languages for Ontology Modeling

To represent a shared conceptualisation, a language of representation is required.
According to Guarino (1999), the modeling languages for ontologies have three main
distinct levels (Table 3.1): logical, epistemological and ontological.

Table 3.1 - Main features of the languages for ontology modeling. Adapted from (GUAR-

INO, 1999).

Level Primitive constructs Main feature Interpretation Examples

Logical Predicates Formalisation Arbitrary FOL

Epistemological Structuring relations (con-
cepts and roles)

Structure Arbitrary OWL, UML

Ontological Structuring relations satisfy-
ing meaning postulates

Meaning Constrained OntoUML

Modeling languages in the logical level provides the constructs needed to formal-
ize knowledge and allow formal reasoning, but lack cognitive foundation required
to facilitate the knowledge representation in a structured way. The epistemological
level languages allow not only to formalize the knowledge, but also to structure it,

58

favoring formal reasoning and derivation of new knowledge. However, in both levels
(logical and epistemological), interpretation of the real world is completely arbi-
trary. In particular, at the epistemological level, despite to add a structural meaning
for knowledge, it is not focused on its formal representation. On the other hand,
the ontological level languages have primitives that satisfy formal meaning postu-
lates, restricting the interpretation of a logical theory based on formal ontological
distinctions.

Currently, there are several languages in the epistemological level and each has dif-
ferent expressivity. The most famous is the Ontology Web Language (OWL) (OWL,
2003). OWL is based on the syntax of eXtensible Markup Language (XML) (W3C,
2013) and it is developed as a vocabulary extension of Resource Description Frame-
work (RDF) (RDF, 2004) and offers some mechanisms for semantic formalism. On
the other hand, examples of ontological level languages are few. A concrete proposal
in this direction is given by Guizzardi (2005), where the metamodel of class dia-
grams of UML is extended to incorporate the ontological distinctions defined in the
Unified Foundational Ontology (UFO).

Recently, many ontologies have been developed using UML as modeling language.
Although UML has deficiencies, such as inconsistency, ambiguity and lack of formal
semantics to capture the basic concepts of the universe of discourse of an ontology,
some works have proposed extensions and new formalisms for the UML suited to
modeling ontologies (GUIZZARDI et al., 2004; EVERMANN, 2005; LI; PARSONS,). An
example is OntoUML, which is designed so that it is possible to capture the semantic
agreements of a universe of discourse and view them in the form of class diagrams
of UML. OntoUML is a UML profile that enables modelers to make finer-grained
modeling distinctions between different types of classes and relations according to
some ontological distinctions put forth by UFO (GUIZZARDI, 2005).

Ontology Patterns

Although there is a wide range of ontology engineering methods, tools and lan-
guages, building ontologies is still a difficult task. In this context, reuse is pointed
out as a promising approach for ontology engineering. Ontology reuse allows speed-
ing up the ontology development process. Ontology Patterns (OP) are an emerging
approach that favors the reuse of experiences and good practices. According to
Falbo et al. (2013), an OP describes a particular recurring modeling problem that
arises in specific ontology development context and presents a well-proven solution
for this problem. The next section presents a brief description of Ontology Pattern

59

Languages.

In summary, ontology patterns are considered a promising approach that favors reuse
of encoded experiences and good practices in Ontology Engineering (PRESUTTI et

al., 2009). Moreover, core ontologies organized as Ontology Pattern Language (OPL)
have potential to amplify the benefits of ontology patterns (FALBO et al., 2013).

3.2 Ontology Pattern Languages

An OPL aims to provide holistic support for using Domain-related Ontology Pat-
terns (DROPs) in ontology development for a specific application domain. It provides
explicit guidance on what problems can arise in that domain, informs the order to
address these problems, and suggests one or more patterns to solve each specific
problem. An OPL gives concrete and thoughtful guidance for developing ontologies
in a given domain (FALBO et al., 2013).

Falbo et al. (2013) presented an OPL on Software Process. Its patterns were ex-
tracted from the Software Process Ontology (SPO) presented in (BRINGUENTE et

al., 2011). SPO was restructured in a Software Process Ontology Pattern Language
(SP-OPL). As an ontology pattern language, SP-OPL contains a set of interrelated
ontology patterns related to the software process domain. SP-OPL provides a precise
definition of the structural knowledge in the field of software processes that spans
across different application domains in this field (FALBO et al., 2013). Moreover,
SP-OPL is grounded on the UFO.

Figure 3.3 shows the SP-OPL patterns and Table 3.2 shows the patterns that com-
pose the SP-OPL. Details of some of the patterns are shown in more detail in Chapter
4 and Annex A.

Table 3.2 - Domain-Related Ontology Patterns (DROPs) in the SP-OLP (FALBO et al.,
2013)

Id Name Intent

Standard Process Definition

SPS Standard Process Structure Represents how a standard software process is defined in terms
of standard sub-processes and activities

HRD Standard Activity Human Role Defini-
tion

Defines the human roles responsible for performing a standard
activity in the projects that instantiate it

RTD Standard Activity Resource Type Def-
inition

Defines the types of resources (hardware and software) re-
quired for performing a standard activity

Continues

60

Table 3.2 - Conclusion

Id Name Intent

WPD Standard Activity Work Product Def-
inition

Defines the types of work products required (input) and pro-
duced (output) when performing a standard activity

PD Standard Activity Procedure Defini-
tion

Defines the procedures (methods, techniques, guidelines etc.)
to be applied when performing a standard activity

Project Process Definition

PP Process Planning Represents how a process is planned in terms of sub-processes
and activities

HRP Human Role Planning Defines the human roles responsible for performing a project
activity

RP Resource Planning Defines the types of resources (hardware and software) re-
quired for performing a project activity

WPP Work Product Planning Defines the types of work products required (input) and pro-
duced (output) when performing a project activity

PRP Procedure Planning Defines the procedures (methods, techniques, guidelines etc.)
to be applied when performing a project activity

Resource Allocation

PTD Project Team Definition Defines the human resources that are member of a project
team

TDHRA Team-dependent Human Resource Al-
location

Allocates human resources to project activities, considering
team allocation constraints

TIHRA Team-independent Human Resource
Allocation

Allocates human resources to project activities, when there is
not a project team formally defined

RAL Resource Allocation Allocates resources (hardware equipments and software tools)
to project activities

Process Scheduling

PSCH Process Scheduling Defines the time boundary for project processes and activities

Software Process Execution

PAE Process and Activity Execution Register the occurrences of processes and activities

PAET Process and Activity Execution and
Tracking

Register the occurrences of processes and activities, taking
previous scheduled processes and activities into account

HRP Human Resource Participation Registers the participation of a Human Resource in an activity
occurrence

RPA Resource Participation Registers the participation of a Resource (hardware equipment
or software tool) in an activity occurrence

Now, in order to address aspects such as Organization Arrangement, Definition
Team, Institutional Roles, Institutional Goals, and Human Resource Management,
the Enterprise-Ontology Pattern Language (E-OPL) was developed (FALBO et al.,
2014). Its first version addresses five aspects common to several enterprises, as shown

61

Figure 3.3 - Software Process Ontology Pattern Language (SP-OPL)
SOURCE: (FALBO et al., 2013)

in Figure 3.4.

1. Organization Arrangement: includes patterns related to how an organization
is structured in terms of organizational units, as well as how complex organiza-
tions are organized in terms of other organizations.

2. Team Definition: deals with defining teams for projects, organizations or or-
ganizational units.

3. Institutional Roles: focuses on roles and positions to be played by enterprise
employees.

4. Institutional Goals: deals with institutional agents´ goals.

5. Human Resource Management: treats several human resource relations in
an enterprise, such as employment, allotment to an organizational unit, team
allocation, and position occupation.

62

Figure 3.4 - Enterprise Ontology Pattern Language (E-OPL)
SOURCE: (FALBO et al., 2014)

The patterns defined in SP-OPL and E-OPL are the essential elements in building
the Reference Ontology on Software Testing, presented in Chapter 4.

3.3 Software Testing Ontology: Systematic Literature Review

Ontologies are recognized as an important instrument by the KM. Since studies
have actually used an ontology-based approach for KM, efforts in such research
area showed to be promising. Thus, looking for a domain ontology that can be
used in a KM initiative in software testing, this section presents an investigation of
ontologies in the software testing domain which addresses the second goal of this
thesis: conduct a SLR with purpose of investigating how widespread are ontologies
for software testing, and the characteristics of such ontologies.

3.3.1 Review Protocol

A protocol (SOUZA et al., 2013c) for the entire process of the SLR was developed and
is presented below (Table 3.3):

Research Questions: This SLR aims at answering the following research ques-

63

tions:

Table 3.3 - Research questions and their rationales

No Research question Rationale
RQ1 What is the coverage of the

software testing domain in the
existing ontologies?

In this research question is necessary
to know the coverage of the software
testing domain, that is, which activities
of the testing process are covered.

RQ2 How were they developed? This question investigates the main
way that the ontologies were engi-
neered, such as references and interna-
tional standards considered, engineered
method, languages used and founda-
tional ontologies.

Inclusion and Exclusion Criteria: The selection criteria are organized in one
inclusion criterion (IC) and five exclusion criteria (EC). The inclusion criterion is:
(IC1) The study presents an ontology about the software testing domain. The ex-
clusion criteria are: (EC1) The study does not have an abstract; (EC2) The study
is just published as an abstract; (EC3) The study is not written in English; (EC4)
The study is an older version (outdated) of another study already considered; and
(EC5) The study is not a primary study, such as editorials, summaries of keynotes,
workshops, and tutorials.

Sources: Search was done in eight electronic databases that were considered the
most relevant according to (DYBA et al., 2007). They are:

IEEE Xplore (http://ieeexplore.ieee.org)
ACM Digital Library (http://dl.acm.org)
SpringerLink (http://www.springerlink.com)
Scopus (http://www.scopus.com)
Science Direct (http://www.sciencedirect.com)
Compendex (http://www.engineeringvillage2.org)
ISI of Knowledge (http://www.isiknowledge.com)
DBLP Computer Science Bibliography (http://dblp.uni-trier.de/)

Keywords and Search String: The search string considers two areas: Software

64

Testing and Ontology (Table 3.4), and it was applied in three metadata fields (title,
abstract and keywords). The search went through syntactic adaptations according
to particularities of each source.

Table 3.4 - Keywords of the Search String of the SLR.

Areas Keywords
Software Testing “Software Testing”, “Software Test”

Ontology “ontology”, “ontologies”
Search String: (“Software Testing” OR “Software Test”) AND (“Ontology”
OR “Ontologies”)

Assessment: Before conducting the SLR the review protocol was tested. This
test was conducted in order to verify its feasibility and adequacy, based on a pre-
selected set of studies considered relevant to investigation. The review process was
conducted just this author of this thesis and the other two carried out its validation.
Approximately 35% of the studies were analyzed using two different samples.

3.3.2 Conducting the Review

Using the search string, 396 records were retrieved. The selection process applied
on the returned publications was performed in three stages. In the first stage, du-
plicates were eliminated by examining title and abstract, since several publications
are available in more than one source. In the second stage, inclusion and exclusion
criteria were applied considering also title and abstract. Finally, in the third stage,
the exclusion criteria were applied considering the entire text. After applying the
selection criteria, 18 studies remained. Table 3.5 shows the progressive reduction of
the number of studies throughout the selection process for the review.

A selection process comprising three stages were followed, as shown in Figure 3.5.
From the 18 studies, 12 different ontologies were identified. This difference comes
from the fact that some papers present different parts or evolutions of the same
ontology. As the result of this SLR, the following testing ontologies were found:
Software Testing Ontology for Web Service (STOWS) (HUO et al., 2003; ZHU; HUO,
2005; HONG, 2006; YUFENG; HONG, 2008; ZHU; ZHANG, 2012), OntoTest (BARBOSA

et al., 2006; NAKAGAWA et al., 2009), TaaS Ontology (YU et al., 2008; YU et al., 2009),
and the ontologies proposed in (LI; ZHANG, 2012),(ARNICANS et al., 2013), (GUO et al.,
2011), (NASSER et al., 2009), (BAI et al., 2008), (RYU et al., 2011), (SAPNA; MOHANTY,

65

Table 3.5 - Result of the Selection Process Stages of the SLR.

Stage Criteria Analyzed
Content

Inicial
Studies

Final
Studies

Reduction
(%)

1 Eliminating
duplication

Title and ab-
stract

396 295 25,5%

2 IC1, EC1,
EC2, EC3,
EC4, EC5

Title and ab-
stract

295 30 89,8%

3 IC1, EC4,
EC5, EC6

Entire Text 30 18 40%

2011), (CAI et al., 2009) and (ANANDARAJ et al., 2011).

Figure 3.5 - Search and selection SLR process

From the 12 identified ontologies, extensions, evolutions and/or other publications
that present the ontologies more completely were analyzed. It was the case of On-
toTest. OntoTest has a testing resource sub-ontology presented in (BARBOSA et al.,
2008). However, this study did not return in the SLR, probably because the searched
sources do not contain this paper or because they failed to identify it by the search
string.

3.3.3 Review Results

After selecting the primary studies, each one was analyzed in order to answer the
research questions presented in section 3.3.1. Next, the data synthesis regarding
these questions is presented.

66

RQ1. What is the coverage of the software testing domain in the existing ontolo-
gies about this domain?

Regarding domain coverage, it was noticed that most ontologies have very limited
coverage. The ontology presented in Guo et al. (2011) specifies only the concept of
test case. The ontology presented in Li and Zhang (2012) focuses also on test case,
but considering some concepts related to test process. The ontology presented in Bai
et al. (2008), called Test Ontology Model (TOM)), models only testing artifacts and
the relationships between them. The ontologies presented in Arnicans et al. (2013),
Cai et al. (2009) and Anandaraj et al. (2011) are, in fact, taxonomies. These ontolo-
gies only present a simple structure of the domain concepts of software testing, and
thus they do not qualify as ontologies, or, at most, they are lightweight ontologies.

The ontology presented in Nasser et al. (2009) is devoted to state machine based tes-
ting. The ontology presented in Sapna and Mohanty (2011), focus on scenario-based
testing, though it captures general testing concepts too. The ontology presented in
Ryu et al. (2011) is not properly a testing ontology, but it is an OWL implementa-
tion of a specific testing maturity model developed by the authors (the Ministry of
National Defense-Testing Maturity Model (MND-TMM)).

The ontologies that have higher coverage are: STOWS (HUO et al., 2003; ZHU; HUO,
2005; HONG, 2006; YUFENG; HONG, 2008; ZHU; ZHANG, 2012), OntoTest (BARBOSA

et al., 2006; BARBOSA et al., 2008; NAKAGAWA et al., 2009), TaaS Ontology (YU et al.,
2008; YU et al., 2009).

STOWS classifies its concepts into three categories: (i) elementary concepts, which
are general concepts about computer software and hardware; (ii) basic testing con-
cepts, which include the concepts of Tester, Artifact, Activity, Context, Method,
and Environment; and (iii) compound testing concepts, which combine basic testing
concepts, giving rise to the concepts of Task and Capability. STOWS presents a set
of taxonomies of each basic testing concept, including also some properties and few
relations.

The TaaS Ontology has two core concepts (Test Task and Test Capability), which
are composite concepts aggregating other concepts. Test Task consists of Test Ac-
tivity, Test Type, Target Under Test, Test Environment, and Test Schedule. Test
Capability, in turn, consists of Test Type, Test Activity, Test Environment, Target
Under Test and Quality of Service.

67

Finally, OntoTest is a modular ontology, built in layers. OntoTest is composed by
a “Main Software Testing Ontology”, and six sub-ontologies (BARBOSA et al., 2006):
Testing Process, Testing Phase, Testing Artifact, Testing Step, Testing Resource,
and Testing Procedure sub-ontologies. The Main Software Testing Ontology is pre-
sented in (BARBOSA et al., 2006). It is a simple model that includes six concepts.
According to this model, a Testing Process is composed by Testing Steps, and it
has Testing Phases. A Testing Step requires Testing Resources, adopts Testing Pro-
cedures, consumes and generates Testing Artifacts, and depends on other Testing
Steps. Testing Artifacts can depend on other Testing Artifacts, and can be com-
posed by other Testing Artifacts. Finally, a Testing Procedure can be supported by
Testing Resources, and is adequate to Testing Process.

OntoTest Testing Step sub-ontology introduces the concept of Testing Activity, in-
dicating that a Testing Step is composed by Testing Activities, while Testing Ac-
tivities are not further decomposed. The remainder of this sub-ontology consists of
two large taxonomies: a Testing Step taxonomy, and a Testing Activity taxonomy.
The Testing Resource sub-ontology (BARBOSA et al., 2008) has a taxonomy of types
of resources. This taxonomy is organized in two branches: Human Resources (which
can be members of Test Teams), and Testing Environment, which is further ex-
tended in Software and Hardware Resource. Software Resource is further extended
into Testing Tool and Supporting System. Testing Tool can be composed by several
types of Testing Modules. No papers were found that presenting the Testing Pro-
cess, Testing Phase, Testing Artifact, and Testing Procedure sub-ontologies. So, it
is believed that OntoTest is a work in progress.

RQ2. How were the testing ontologies developed?

Concerning this research question, some aspects related to the way the ontologies
were engineered was considered, namely:

(i) Do the ontologies try to capture a common (shared) conceptualization of
the testing domain, taking into account different references and especially
international standards?

(ii) Are the ontologies developed following an ontology engineering method
(including some sort of evaluation)?

(iii) In which abstraction level (conceptual and implementation levels) are the
ontologies developed? Which are the languages used?

68

(iv) Do the ontologies take foundational aspects (foundational ontologies) into
account?

The first aspect investigated is if the ontologies try to capture a common concep-
tualization of the testing domain. Some ontologies take international standards into
account: OntoTest is based on 1st edition of ISO/IEC 12207 (ISO/IEC, 2008); the
ontology presented in Arnicans et al. (2013) was created based on the glossary
“Standard glossary of terms used in Software Testing” of the International Software
Testing Qualifications Board-ISTQB; the ontology presented in Bai et al. (2008) is
based on the Unified Modeling Language 2.0 Test Profile (U2TP); and the ontolo-
gies presented in Cai et al. (2009) and Sapna and Mohanty (2011) are based on the
SWEBOK (ABRAN et al., 2004). The other studies neither mention the use of inter-
national standards as basis for their ontologies, nor which references were used as
basis for developing the ontologies. The exception is the ontology presented in (RYU

et al., 2011), which, as said before, is an OWL implementation of the MND-TMM. It
is worthwhile to point out that, despite some ontologies are based on international
standards, generally they take only one standard into account, and thus they do not
consider a broad set of testing references to really establish a common (consensual)
conceptualization.

Regarding the methods adopted for building the ontologies, Arnicans et al. (2013)
propose a method for semi-automatic obtaining lightweight ontologies, which uses
the ONTO6 method. In Sapna and Mohanty (2011) ideas from two methods for
building ontologies: METHONTOLOGY (JURISTO et al., 1997) and Ontology De-
velopment 101 (NOY; MCGUINNESS, 2001). Cai et al. (2009) used the skeletal method
(USCHOLD; KING, 1995) for building their testing ontology. OntoTest was built using
a method that combines guidelines given by SABiO and METHONTOLOGY, with
focus on ontology capture and formalization. Finally, in Anandaraj et al. (2011)
a very simple method was followed, comprising four steps, namely: (i) determine
domain and scope of the ontology; (ii) define concepts in the ontology; (iii) create
a class hierarchy; and (iv) define properties and constraints. The other studies do
not mention if a method (or which method) was used for building the proposed
ontologies.

Although the aforementioned ontologies have been developed following methods that
include activities devoted to ontology evaluation, such as Skeletal method, SABiO
and METHONTOLOGY, none of the studies discussed how the ontologies were
evaluated, except Arnicans et al. (2013), which says that a software testing expert

69

has analyzed the ontology fragment related to testing techniques.

Regarding the abstraction level, 7 of the 12 studies (58.3%) present their ontologies
as conceptual models, namely: STOWS, OntoTest, TaaS Ontology and the ontolo-
gies presented in Li and Zhang (2012), Arnicans et al. (2013), Bai et al. (2008) and
Sapna and Mohanty (2011). 5 of the 12 studies (41.7%) present the ontologies only
as a code artifact (implemented in OWL), namely: the ontologies presented in Guo
et al. (2011), Nasser et al. (2009), Ryu et al. (2011), Cai et al. (2009) and Anandaraj
et al. (2011). The following ontologies are represented in both conceptual and imple-
mentation levels: STOWS, OntoTest, and the ontologies presented in Arnicans et al.
(2013), Bai et al. (2008) and Sapna and Mohanty (2011). It is important to clarify
the approach followed in Arnicans et al. (2013). In this study, first the ontology is
semi-automatically generated in OWL. The obtained ontology is then transformed
to UML class diagram using a tool called OWLGrEd in order to be evaluated by
experts.

Concerning the languages used for representing the ontologies, all the studies that
present the ontologies in the implementation level used OWL. In the conceptual level,
all the ontologies are presented as UML class diagrams. Moreover, two ontologies
use first order logic to capture some axioms, namely OntoTest and the ontology
presented in Li and Zhang (2012).

Summarizing, from the 12 ontologies investigated, 2 are represented only as con-
ceptual models presented as UML class diagrams (TaaS Ontology, and the ontology
presented in Li and Zhang (2012)), 5 are represented only as OWL implementa-
tions (the ontologies presented in Guo et al. (2011), Nasser et al. (2009), Ryu et al.
(2011), Cai et al. (2009) and Anandaraj et al. (2011)), and 5 are represented both
in the conceptual level (as UML class diagrams) and in the implementation level (as
OWL artifacts) (STOWS, OntoTest, and the ontologies presented in Arnicans et al.
(2013), Bai et al. (2008), and Sapna and Mohanty (2011)).

Finally, although foundational ontologies have been recognized as an important in-
strument for improving the quality of conceptual models in general, and more spe-
cifically of domain ontologies (GUIZZARDI, 2007), none of ontologies analyzed in our
SLR reuses foundational ontologies.

70

3.3.4 Discussion

Currently, software testing is considered a complex process comprising activities,
techniques, artifacts, and different types of resources (hardware, software and human
resources). Thus, building a complete testing ontology is not a trivial task (if even
possible).

Although there are a relatively large number of ontologies on software testing pub-
lished in the literature (12 ontologies), there are still problems related to the estab-
lishment of an explicit common conceptualization regarding this domain. For being
applied to KM, a software testing ontology must take some characteristics of good
quality ontologies into account.

In an experiment trying mainly to identify good practices in ontology design,
D’Aquin and Gangemi (2011) have identified some characteristics that are presented
in what they call “beautiful ontologies”. These characteristics were grouped in three
dimensions: (i) formal structure, (ii) conceptual coverage and task, and (iii) prag-
matic or social sustainability. In order to evaluate the testing ontologies selected by
means of the SLR, only the first dimension and in part of the second were focused,
namely conceptual coverage. The characteristics included in these dimensions are
(D’AQUIN; GANGEMI, 2011):

Structure: the ontology reuses foundational ontologies; the ontology is
designed in a principled way; it is formally rigorous; it also implements non-
taxonomic relations; the ontology strictly follows an evaluation method; it
is modular, or embedded in a modular framework.

Conceptual coverage: the ontology provides important reusable dis-
tinctions; it has a good domain coverage; it implements an international
standard; the ontology provides an organization to unstructured or poorly
structured domains.

Unfortunately, some of these characteristics are difficult to evaluate, since there isn’t
much information about them in the papers presenting the corresponding ontolo-
gies. Thus, in this analysis, the most easily discernible features was focused, namely:
having a good domain coverage; implementing an international standard; being for-
mally rigorous; implementing also non-taxonomic relations; following an evaluation
method; and reusing foundational ontologies. Table 3.6 below shows the comparison
of the 12 ontologies found according to the characteristics analyzed.

71

Regarding the first characteristic (having a good domain coverage), as shown in
Table 3.6, most ontologies have very limited coverage. The ontologies that have
higher coverage are: STOWS, OntoTest, and TaaS.

Some of the ontologies take international standards into account, namely: OntoTest,
and the ontologies presented in Arnicans et al. (2013), Bai et al. (2008), Sapna and
Mohanty (2011), and Cai et al. (2009). Others, on the other hand, do not consider
international standards (or at least do not mention them). This is the case of STOWS
and TaaS Ontology.

The next two characteristics (being formally rigorous and also implementing non-
taxonomic relations) are very important for a reference ontology. As discussed pre-
viously, a reference ontology must be a heavyweight ontology, and thus it must com-
prise conceptual models that include concepts, and relations (of several natures),
and also axioms describing constraints and allowing to derive information from the
domain models. Taking this perspective into account, most of the existing ontologies
present problems.

There are five ontologies (the ontologies presented in Guo et al. (2011), Nasser et
al. (2009), Ryu et al. (2011), Cai et al. (2009) and Anandaraj et al. (2011)) that are
just OWL artifacts (i.e., operational ontologies), and thus are not enough for the
purposes of applying ontologies for KM.

72

Ta
bl
e
3.
6
-C

om
pa

ris
on

of
th
e
on

to
lo
gi
es

fo
r
so
ftw

ar
e
te
st
in
g

O
nt
ol
og

y
C
ov
er
ag
e

R
ef
er
en

ce
s

E
ng

in
ee
ri
ng

M
et
ho

d
E
va
lu
at
io
n
M
et
ho

d
A
bs
tr
ac
ti
on

L
ev
el

L
an

gu
ag
es

Fo
un

da
ti
on

al
O
nt
ol
og

ie
s

ST
O
W

S
Te

st
er
,A

rt
ifa

ct
,A

ct
iv
ity

,C
on

-
te
xt
,

M
et
ho

d,
E
nv

ir
on

m
en
t,

Ta
sk

an
d
C
ap

ab
ili
ty
.I
s
m
ai
nl
y

a
se
t
of

ta
xo

no
m
ie
s
of

ba
si
c

co
nc
ep
ts
,
in
cl
ud

in
g
so
m
e
pr
o-

pe
rt
ie
s
an

d
fe
w

re
la
ti
on

s

-
-

-
co
nc
ep
tu
al

m
od

el
s,

im
pl
e-

m
en
ta
ti
on

U
M
L,

O
W

L
-

O
nt
oT

es
t

In
6

su
bo

nt
ol
og
ie
s:

Te
st
in
g

P
ro
ce
ss
,
Te

st
in
g

P
ha

se
,
Te

s-
ti
ng

A
rt
ifa

ct
,

Te
st
in
g

St
ep
,

Te
st
in
g
R
es
ou

rc
e,

an
d
Te

st
in
g

P
ro
ce
du

re
su
b-
on

to
lo
gi
es
.
D
e-

se
nv

ol
vi
da

s
ap

en
as

2

IS
O
/I
E
C
12
20
7

SA
B
iO

,
M
E
T
H
O
N
-

T
O
LO

G
Y

-
co
nc
ep
tu
al

m
od

el
s,

im
pl
e-

m
en
ta
ti
on

U
M
L,

O
W

L,
ax

io
m
s

-

Ta
as

Te
st

Ta
sk

(T
es
t
A
ct
iv
ity

,
Te

st
T
yp

e,
Ta

rg
et

U
nd

er
Te

st
,

Te
st

E
nv

ir
on

m
en
t,

an
d

Te
st

Sc
he
du

le
)

an
d

Te
st

C
ap

ab
i-

lit
y
(T

es
t
T
yp

e,
Te

st
A
ct
iv
ity

,
Te

st
E
nv

ir
on

m
en
t,

Ta
rg
et

U
n-

de
r
Te

st
an

d
Q
ua

lit
y

of
Se
r-

vi
ce
)

-
-

-
co
nc
ep
tu
al

m
o-

de
ls

U
M
L

-

Li
an

d
Zh

an
g

(2
01
2)

Te
st

C
as
e

-
-

-
co
nc
ep
tu
al

m
o-

de
ls

U
M
L,

ax
io
m
s

-

A
rn
ic
an

s
et

al
.

(2
01
3)

Si
m
pl
e
ta
xo

no
m
ie
s

IS
T
Q
B

O
N
T
O
6

m
et
ho

d
So

ft
w
ar
e
te
st
in
g
ex
pe

rt
ha

s
an

-
al
yz
ed

th
e
on

to
lo
gy

co
nc
ep
tu
al

m
od

el
s,

im
pl
e-

m
en
ta
ti
on

U
M
L,

O
W

L
-

G
uo

et
al
.(

20
11
)

Te
st

C
as
e

-
-

-
Im

pl
em

en
ta
ti
on

O
W

L
- C
on

tin
ue
s

73

Ta
bl
e
3.
6
-C

on
cl
us
io
n

O
nt
ol
og

y
C
ov
er
ag
e

R
ef
er
en

ce
s

E
ng

in
ee
ri
ng

M
et
ho

d
E
va
lu
at
io
n
M
et
ho

d
A
bs
tr
ac
ti
on

L
ev
el

L
an

gu
ag
es

Fo
un

da
ti
on

al
O
nt
ol
og

ie
s

B
ai

et
al
.(

20
08
)

Te
st
in
g
A
rt
ifa

ct
U
2T

P
-

-
co
nc
ep
tu
al

m
od

el
s,

im
pl
e-

m
en
ta
ti
on

U
M
L,

O
W

L
-

R
yu

et
al
.(
20
11
)

T
M
M

-
-

-
Im

pl
em

en
ta
ti
on

O
W

L
-

Sa
pn

a
an

d
M
oh

an
ty

(2
01
1)

G
en
er
al

te
st
in
g
co
nc
ep
ts

SW
E
B
O
K

M
E
T
H
O
N
T
O
-

LO
G
Y
,

D
ev
el
op

m
en
t

10
1

-
co
nc
ep
tu
al

m
od

el
s,

Im
pl
e-

m
en
ta
ti
on

U
M
L,

O
W

L
-

C
ai

et
al
.(

20
09
)

Si
m
pl
e
ta
xo

no
m
ie
s

SW
E
B
O
K

-
-

im
pl
em

en
ta
ti
on

O
W

L
-

A
na

nd
ar
aj

et
al
.

(2
01
1)

Si
m
pl
e
ta
xo

no
m
ie
s

-
V
er
y

si
m
pl
e

m
et
ho

d
w
as

fo
llo

w
ed

-
im

pl
em

en
ta
ti
on

O
W

L
-

N
as
se
r
et

al
.(
20
09
)

D
ev
ot
ed

to
st
at
e

m
ac
hi
ne

ba
se
d
te
st
in
g

-
-

-
im

pl
em

en
ta
ti
on

O
W

L
-

74

The ontologies presented in Arnicans et al. (2013) and Cai et al. (2009) are, in
fact, taxonomies, and thus, they do not qualify as ontologies (or at most, they are
lightweight ontologies). STOWS is mainly a set of taxonomies of basic concepts, in-
cluding some properties and few relations. There are taxonomies of Tester, Context,
Testing Activities, Testing Methods, and Testing Artifacts, but there are important
relations missing. For instance, which are the artifacts produced and required by
a testing activity? Without relations between the concepts, questions such as this
one cannot be answered. Moreover, there are two “compound concepts” in STOWS
that are defined on the bases of the basic concepts: capability and task. Capability,
for instance, is modeled as a composite entity, which parts are Activity, Method, an
optionally Environment, Context, and Data (a subtype of Artifact). This model is
questionable, since it puts together objects and events as part of Capability. Objects
(or endurants) exist in time; while events (or perdurants) happen in time (GUIZ-

ZARDI et al., 2008). So what is a Capability? An object or an event? This shows that
this ontology presents problems.

TaaS Ontology presents very simple models. The UML class diagrams presented
in Yu et al. (2008) and Yu et al. (2009) do not specify multiplicities of the rela-
tionships. Moreover, like STOWS, most relationships are modeled as aggregations
(whole-part relations in UML). This approach is very questionable from an ontolo-
gical point of view. For instance, there is a core concept called Test Task, which is
modeled as composed by TestActivity, TestType, TargetUnderTest, TestEnvironment
and TestSchedule. Analogously to the analysis on STOWS, the composite object Test
Task aggregates endurants and perdurants.

Although probably the most complete ontology among the ones achieved through
the SLR, OntoTest also presents problems. First, there are sub-ontologies that were
not published yet, namely the Testing Process, Testing Phase, Testing Artifact, and
Testing Procedure sub-ontologies. Second, OntoTest does not properly link the con-
cepts in the sub-ontologies. For instance, albeit in the Main Software Testing On-
tology there is a relationship between Testing Step and Test Resource, there aren’t
relationships between their subtypes. This is an important part of the software tes-
ting conceptualization that needs to be made explicit.

Regarding ontology evaluation, none of the works in the SLR discusses how the
ontologies they propose were evaluated. Except Arnicans et al. (2013), which says
that a software testing expert has analyzed the ontology fragment related to testing
techniques.

75

Finally, concerning the reuse of foundational ontologies, none of the ontologies an-
alyzed have used one. This can be considered a problem, because important dis-
tinctions made in Formal Ontologies may be disregarded as clearly noticed in the
brief analysis done (as in the aforementioned cases of STOWS and TaaS Ontology).
The lack of truly ontological foundations puts in check the truthfulness of those
ontologies.

Thus, as the main finding of SLR, concludes that the software testing community
has still a lot work to do, in order to advance towards a reference software testing
ontology. Once developed a good quality reference testing ontology, an operational
version of it should be designed and implemented. Based on the results of the SLR,
an ontology of software testing has been developed as part of the objectives of this
research work and is presented in section 4.2.

3.4 Final remarks about this chapter

In this chapter the ontology theme and related concepts were introduced. The main
proposals of ontologies for software testing were also discussed through a SLR. As a
result, 12 ontologies were found. However, analyzing them, it was observed that they
were inappropriate for purposes of this thesis. None of the ontologies is considered a
de facto standard for the area, neither covers aspects of the entire software testing
process. Moreover, the proposed ontologies for software testing in the literature have
several limitations, especially with respect to coverage and validation.

The theoretical pillars presented in this chapter were the foundation for building
a Reference Ontology on Software Testing (ROoST). ROoST is a reference domain
ontology, that is, a domain ontology that was constructed with the main goal of
making the best possible description of the testing domain. In (SOUZA et al., 2013b)
there is a first version of ROoST.

Considering the results and analysis performed by systematic mapping of KM in
software testing (Section 2.3.1) and SLR on ontologies for software testing (Section
3.3), the next chapter presents an ontology-based framework for guiding KM ini-
tiatives in the software testing domain that consists of a reference ontology for the
software testing domain and a process with a set of directions for implementing a
KMS in software testing organizations.

76

4 AN ONTOLOGY-BASED FRAMEWORK FOR KNOWLEDGE MA-
NAGEMENT IN SOFTWARE TESTING

Although the importance of Knowledge Management (KM) has been widely pro-
moted and recognized in several areas, few organizations are truly capable of per-
forming and managing knowledge in their organizations. This is because implemen-
ting KM is not an easy task that organizations can undertake (WONG; ASPINWALL,
2004). According to Storey and Barnett (2000), a large number of organizations are
taking great interest in the idea of KM and many are launching KM initiatives, but a
large part of such initiatives fails. This is because, the organizations do not know how
and where to start and lack the guidance of a proper and cohesive implementation
framework.

According to the Wong and Aspinwall (2004), a framework is a basic structure under-
lying a system. A framework is a set of basic assumptions or fundamental principles
of intellectual origin that forms the underlying basis for action. Thus, it can be
interpreted as a structure that comprises relevant entities or a set of guiding princi-
ples and ideas that support a discipline. If KM is to be accomplished, a structure,
a set of principles or a framework is needed to underpin and provide a theoretical
basis for performing the relevant actions and activities (WONG; ASPINWALL, 2004).
Rubenstein-Montano et al. (2000) claim that KM frameworks provide guidance and
direction on how KM should be carried out.

This chapter presents Testing-Knowledge Management (T-KM), an ontology-based
framework for guiding KM initiatives in the software testing domain, supported by
Knowledge Management System (KMS). T-KM consists of a reference ontology for
the software testing domain and a process with a set of guidelines for implementing
a KMS in software testing organizations. Section 4.1 presents an overview of T-KM.
Section 4.2 presents ROoST, a Reference Ontology on Software Testing. Section 4.3
presents the process for applying KM in software testing.

4.1 Framework Overview

Figure 4.1 presents the main components of T-KM framework, and their relation-
ships with the resulting KMS for supporting KM in software testing.

ROoST component is a reference domain ontology, i.e. a domain ontology that was
constructed with the main goal of making the best possible description of the testing
domain. ROoST was developed for establishing a common conceptualization about

77

Figure 4.1 - T-KM Framework components

the software testing domain, and can be used to serve several KM-related purposes,
such as defining a common vocabulary for knowledge workers regarding the testing
domain, structuring knowledge repositories, annotating knowledge items, and for
making searching easier. In particular, ROoST can be used as a sketch of the con-
ceptual model for defining the structure of the Testing Knowledge Repository, as
shown by the dashed line linking ROoST to the Testing Knowledge Repository.

The T-KM Process component provides a series of steps that are guidelines to be
followed in the implementation of KM initiatives in software testing supported by a
KMS. The proposed steps are: (i) Diagnose the Current State of the Organization’s
Testing Process; (ii) Establish the Scope of the Testing KM Initiative; (iii) Develop
a Testing KMS; (iv) Load Existing Knowledge Items; and (v) Evaluate the Testing
KMS.

The following sections describe in detail each T-KM component Framework.

4.2 Reference Ontology on Software Testing (ROoST)

This section presents the Reference Ontology on Software Testing (ROoST), the first
component of framework for conducting KM initiatives in software testing and which

78

addresses the third goal of this thesis. Section 4.2.1 presents the approach adopted for
building ROoST. Section 4.2 presents ROoST itself. Section 4.2.6 discusses ROoST
evaluation.

4.2.1 Ontology Engineering Approach

In order to develop ROoST, method Systematic Approach for Building Ontologies
(SABiO) (FALBO, 2004a) was adopted. SABiO prescribes an iterative process com-
prising the following activities: purpose identification and requirement specification,
ontology capture, ontology formalization, reuse of existing ontologies, ontology eva-
luation, and ontology documentation (see Section 3.1).

The purpose of ROoST is to define a shared vocabulary regarding the testing domain
to be used in KM initiatives to facilitate communication, integration, search, and
representation of testing knowledge. In order to achieve this purpose, ROoST should
be able to answer the following competency questions:

CQ01. What is the project in which a given testing process occurred?

CQ02. How is a testing process structured in terms of testing activities and sub-
activities?

CQ03. When did a testing process start and when did it end?

CQ04. When did a testing activity start and when did it end?

CQ05. On which activities does a testing activity depend on to be performed?

CQ06. What are the test levels typically considered in testing?

CQ07. What are the artifacts produced in a testing activity?

CQ08. What are the artifacts used by a testing activity?

CQ09. How do testing artifacts relate to each other?

CQ10. Which are the testing techniques adopted in a testing activity devoted to
designing test cases?

CQ11. To which test levels a testing technique can be applied?

CQ12. Which are the testing techniques applied to derive a given test case?

CQ13. Which human resources participate in a testing activity?

79

CQ14. When did a human resource participation start and when did it end?

CQ15. Which hardware resources are used in a testing activity?

CQ16. When did a hardware resource participation start and when did end?

CQ17. Which software resources are used in a testing activity?

CQ18. When did a software resource participation start and when did it end?

CQ19. Which are the hardware, software, and human resources that comprise the
testing environment of a project?

During ontology capture, the use of a graphical language is essential in order to
facilitate the communication between ontology engineers and experts. The concep-
tual models of ROoST are encoded in OntoUML (GUIZZARDI, 2005) (presented in
section 3.1).

For developing ROoST, several references were used, including international stan-
dards. The main literature references used for building ROoST were: (IEEE, 1990;
IEEE, 1998; MYERS, 2004; ABRAN et al., 2004; PRESSMAN, 2006; BLACK; MITCHELL,
2008; MATHUR, 2012).

With respect to ontology reuse, patterns from Software Process Ontology Pattern
Language (SP-OPL) (FALBO et al., 2013) were reused. As presented in section 3.2,
SP-OPL is a core ontology on software processes it and is grounded on the UFO
(GUIZZARDI et al., 2008). Although the main concepts in ROoST have a counterpart
in SP-OPL, when extending SP-OPL conceptualization for the testing domain, new
concepts that were not described in SP-OPL were also introduced. In those cases,
in order to maintain the alignment with Unified Foundational Ontology (UFO),
concepts introduced in ROoST were also analyzed in the light of UFO. Moreover,
patterns from Enterprise Ontology Pattern Language (E-OPL) (FALBO et al., 2014)
also were used.

For developing ROoST, the third entry point (EP3) of SP-OPL was chosen, since
the interest is to represent knowledge involved in the execution of testing processes.
Figure 4.2 shows the SP-OPL patterns accessible from this entry point. Patterns
Human Resource Participation (HRPA), Resource Participation (RPA), Work Pro-
duct Participation (WPPA) and Procedure Participation (PRPA) were reused. The
pattern used in the development of ROoST are presented in details in Annex A.

80

Figure 4.2 - SP-OPL patterns accessible from the entry point EP3.
SOURCE: Falbo et al. (2013)

It is important to emphasize that SP-OPL drove the rewriting of the competency
questions originally defined for ROoST. Once reused patterns of SP-OPL, compe-
tency questions were reused and adapted to the software testing domain. However,
very specific questions about the software testing domain that do not have a coun-
terpart in SP-OPL were also considered. This is the case of CQ06, CQ09, CQ12 and
CQ19.

ROoST is developed in a modular way. Currently, ROoST has four modules (sub-
ontologies). In Figure 4.3 sub-ontologies that comprise ROoST and the relationships
between them are presented. Relations with the reused patterns are also presented.

Figure 4.3 - ROoST: sub-ontologies

In the following subsections the ROoST sub-ontologies are presented as well as how

81

we applied the reused patterns in their development. Concepts reused from SP-OPL
are shown in grey, and they are preceded by the pattern acronym (e.g., PAE::).

4.2.2 Testing Process and Activities sub-ontology

This sub-ontology addresses the competency questions CQ1 to CQ6. To answer
them, the PAE pattern was reused. PAE concepts were extended to the testing do-
main, as shown in Figure 4.4. Testing Process Occurrence is a subtype of Specific
Process Occurrence, since a testing process occurs in the context of the entire soft-
ware process (General Process Occurrence) of a Project. A testing process, in turn,
is composed by testing activities, and thus Testing Activity Occurrence is considered
a subtype of Activity Occurrence. As well as Activity Occurrence, Testing Activity
Occurrence can be further divided into Composite and Simple Testing Activity Oc-
currences.

Figure 4.4 - ROoST´s Testing Process and Activities sub-ontology.

82

Besides specializing concepts, relationships were also specialized from PAE. For ins-
tance, in PAE, there is a whole-part relationship between Specific Process Occurrence
and Activity Occurrence. The whole-part relationship between Testing Process Oc-
currence and Testing Activity Occurrence is a subtype of the former. Whenever a
ROoST relationship is a subtype of another relationship defined in SP-OPL, the
same name is used for both.

Looking at the literature (ABRAN et al., 2004; BLACK; MITCHELL, 2008; MATHUR,
2012), it is possible to say that the testing process consists of, at least, the following
activities: Test Planning, Test Case Design, Test Coding, Test Execution, and Test
Result Analysis. Thus, these activities were considered subtypes of Testing Activity
Occurrence. Moreover, Test Planning was considered a Composite Testing Activity
Occurrence. Although not shown in Figure 4.4, test planning involves several sub-
activities, such as defining the testing process, allocating people and resources for
performing its activities, analyzing risks, and so on. On the other hand, Test Case
Design, Test Coding, Test Execution and Test Result Analysis were considered as
Simple Testing Activity Occurrences. Test Planning activity not was decomposed
into sub-activities in ROoST, since, by inspecting the literature, we could not reach
a consensus regarding which sub-activities comprise Test Planning.

Software testing is usually carried out at different test levels (MATHUR, 2012). Simple
Testing Activity Occurrences are grouped according to the Test Level to which they
are related, forming Level-based Testing activity occurrence (CQ6). Thus, Level-
based Testing is a subtype of Composite Testing Activity Occurrence. In Figure
4.4, the three most cited testing levels in the literature are made explicit: Unit
Testing, Integration Testing and System Testing. However, there may be other, such
as Regression Testing.

To answer CQ1, two axioms were defined in PAE that says that the relationship
occurs in between General Process Occurrence and Project can be extended to the
sub-processes and activity occurrences that compose the former.

(A1) ∀gpo : GeneralProcessOccurrence; p : Project, spo :
SpecificProcessOccurrence occursIn(gpo, p) ∧ partOf(spo, gpo)→

occursIn(spo, p))

(A2) ∀spo : SpecificProcessOccurrence; p : Project, ao :
ActivityOccurrence occursIn(spo, p) ∧ partOf(ao, spo)→ occursIn(ao, p))

83

4.2.3 Testing Artifacts sub-ontology

The Testing Artifacts sub-ontology addresses the competency questions CQ7 to
CQ9. To answer CQ7 and CQ8, the WPPA pattern was reused. On the other hand,
since in ROoST there is no interest in modeling the events representing the artifact
participations, but only which artifacts were used and produced by a testing activity
occurrence, only the derived relationships /uses and /produces were modeled, instead
of modeling the artifact participations.

An important issue for ROoST is to describe the types of artifacts that are produced
and used during the testing process. Thus, the Work Product Taxonomy (WPT)
pattern was reused too. In WPT, an incomplete taxonomy of software artifacts is
defined including, among others, the following kinds of artifacts: Document, which
refers to artifacts consisting of textual statements usually associated with organi-
zational patterns that define how they should be produced; Code, which concerns
to portions of code written in a programming language; and Data, referring to data
used or produced during the software process.

During the software testing process, several artifacts are used and produced. An
important issue for ROoST is to precisely define the relationships between testing
activities and artifacts (CQ7 and CQ8), as well as the relationship between the
artifacts (CQ9). In order to make this part of the testing domain conceptualization
explicit, the relationships uses and produces from WPPA were specialized to link
testing artifacts to the corresponding testing activities in which they were produced
or used. Moreover, relationships between the testing artifacts were defined, as shown
in Figure 4.5.

During Test Planning, a Test Plan is produced. In Test Case Design, different arti-
facts are used for deriving test cases, such as requirements specifications, use cases,
diagrams, programs, and so on. Artifacts used for deriving test cases play the role of
Test Case Design Input. The main outputs of a Test Case Design activity are Test
Cases. A Test Case aims to test a Code To Be Tested, and specifies the Test Case
Input and the Expected Result.

Test Case Input and Expected Result are roles played by Data in a test case, and
are part of it. Whatever code fragments (such as programs, modules, and the whole
system code) that have a Test Case designed for them play the role of Code To Be
Tested. It is worth highlighting that “role” in this work is used in the context of
UFO, i.e. a role is an anti-rigid specialization of a sortal such that the specialization

84

Figure 4.5 - The ROoST’s Testing Artifacts sub-ontology.

85

condition is a relational one (GUIZZARDI, 2005). Take as an example the role Code
To Be Tested. It is an anti-rigid specialization of Code (a kind in UFO), such that
the specialization condition is to be the target code of a Test Case (tests relation).
The relational property of being the code to be tested by a Test Case is part of
the very definition of the role Code To Be Tested. Whenever a concept in ROoST is
stereotyped with the <<role>>, this view applies.

During a Test Coding activity occurrence, Test Cases are used to derive Test Code
that implements them. Test Code is a portion of code that is to be run for executing
a given set of test cases. There are three main subtypes (subkind) of Test Code: Test
Script, Driver and Stub. A Test Script corresponds to a sequence of actions for the
execution of a Test Case. A software module used to invoke a module under test and,
often, provide test inputs, control and monitor execution, and report test results is
called test Driver. And the Stub is a computer program statement substituting for
the body of a software module that is or will be defined elsewhere.

Test Execution requires as input the Test Code to be run and the Code To Be Tested.
If a Test Execution executes a Test Case, then the Test Case should use a Test Code
that implements Test Case, and Test Execution should also use a Code to be Test
that is tested by Test Case (see Axiom A3). As an output of this activity, Test Results
are produced. A Test Result is relative to a Test Case. Following this relationship,
it is possible to know the Test Case Input and Expected Result to which an Actual
Result must be compared during Test Result Analysis (see axiom A4). Actual Result
is the role played by Data when it is part of a Test Result.

(A3) ∀te : TestExecution, tc : TestCase executes(te, tc)→ (∃tco :
TestCode, ctbt : CodeToBeTested) uses(te, tco) ∧ implements(tco, tc) ∧

uses(te, ctbt) ∧ tests(tc, ctbt)

(A4) ∀ar : ActualResult, er : ExpectedResult comparedWith(ar, er)→
(∃tc : TestCase, tr : TestResult) partOfTestResult(ar, tr) ∧ relativeTo(tr, tc) ∧

partOfTestCase(er, tc)

A test execution can run and achieve a result (Actual Result), but it can also fail,
generating an Issue. An Issue may report an incident. Incidents may be defects or
bugs, but may also be perceived problems, anomalies that are not necessarily defects.
In an incident, what is initially recorded is the information about the failure (not the
defect) that was generated during test execution. The information about the defect
that caused that failure would come to light when someone (e.g. a developer) begins

86

to look into the failure, but this is out of the scope of software testing. According
to IEEE (1990), Issue is used to represent any event found during the execution of
a software test that requires investigation. Thus, a Test Result contains either an
Actual Result, or an Issue, or both. Moreover, a Test Result must include one of
them, as defined by the following axiom:

(A5) ∀tr : TestResult→ ∃ art :
Artifact (ActualResult(art)) ∨ Issue(art)) ∧ partOf(art, tr)

Finally, during a Test Result Analysis, Test Results are analyzed and a Test Analysis
Report is produced.

WPPA pattern also defines an important axiom for ROoST to answer CQ5. This
axiom says that if an artifact art is an output of an activity occurrence a1, and art
is also an input to another activity occurrence a2, then a2 depends on a1.

(A6) ∀a1, a2 : ActivityOccurrence, art :
Artifact (produces(a1, art) ∧ uses(a2, art)→ dependsOn(a2, a1))

From this axiom, it is possible to infer important dependencies between testing ac-
tivities, namely: Test Coding depends on Test Case Design; Test Execution depends
on Test Coding; Test Result Analysis depends on Test Execution. Moreover, the
depends on relationship is transitive (A7). Thus, can say, for instance, that Test
Execution also depends on Test Case Design.

(A7) ∀a1, a2, a3 :
ActivityOccurrence (dependsOn(a3, a2) and dependsOn(a2, a1)→

dependsOn(a3, a1))

4.2.4 Testing Techniques sub-ontology

This sub-ontology addresses the competency questions CQ10 to CQ12. In order to
answer them, the PRPA and Procedure Taxonomy (PRT) patterns were reused.
According to the PRT pattern, Procedures are classified into: Guideline, Method
and Technique. According to the PRPA pattern, Procedures can be adopted to sup-
port the accomplishment of Activity Occurrences. Analogously to WPPA, PRPA
includes a concept for the events representing procedure participations in activity
occurrences. However, since in ROoST there is no interest in representing those
events, but only procedures were adopted by a testing activity occurrence, only the
relationship /adopts was worked, as shown in Figure 4.6.

87

Figure 4.6 - ROoST’s Testing Techniques sub-ontology.

To answer CQ10, only one kind of procedure (Technique) was needed, and thus this
concept was specialized as Testing Technique. There are several subtypes of Testing
Technique, among them: Black-box, White-box, Defect-based, and Model-based Tes-
ting Techniques. These testing techniques can be adopted by activity occurrences of
the type Test Case Design.

Some testing techniques are more appropriate to certain test levels. To answer CQ11,
a relationship between Testing Technique and Test Level was introduced. Black-box
Testing Techniques, for example, apply to all test levels. White-box Testing Tech-
niques, on the other hand, are suitable only for Unit Testing and Integration Testing.
They are not suitable for System Testing, because it is difficult in practice to derive

88

test cases based on the source code when the entire system is considered (MATHUR,
2012). To represent this behavior in which a Level-Based Testing can only adopt
Testing Techniques applicable to Level Test, the axiom A8 was defined. Further-
more, Unit Testing, Integration Testing, and System Testing are typical instances of
Test Level, which is the criterion for the generalization set of Level-based Testing.

(A8) ∀TestCaseDesign, lbt : Level − baseTesting, tt :
TestingTechnique, tl : TestLevel adopts(tcd, tt) ∧

partOfLevelBasedTesting(tcd, lbt) ∧ relativeTo(lbt, tl)→ appliesTo(tt, tl)

Finally, for designing a specific test case, a testing technique may be applied. Thus,
for answering CQ12, a relationship between Testing Technique and Test Case was
introduced, in order to link a test case to the testing technique applied in its design.
If a testing technique was used in a certain test case design, then the test case design
activity that produced this test case should have adopted this testing technique, as
defined by the following axiom:

(A9) ∀tc : TestCase, tt : TestingTechnique, tcd :
TestCaseDesign designedAccordingTo(tc, tt) and produces(tcd, tc)→

adopts(tcd, tt))

4.2.5 Testing Environment sub-ontology

The Testing Environment sub-ontology addresses the competency questions CQ13
to CQ19. It was developed using the patterns RPA and HRPA, as shown in Figure
4.7. According to the RPA pattern, during an Activity Occurrence, Resources concept
is used. In this pattern, two important types of resources are considered, since they
are very relevant in the context of software processes: Hardware Resource refers to
the use of a Hardware Equipment in an activity occurrence and Software Resource
refers to the use of a Software Product in an activity occurrence.

Test Environment is defined for a Project and, in turn, is composed by Test Hardware
Resource, Test Software Resource and Human Resource. Test Hardware Resource,
Test Software Resource are the roles played by a Resource and are used by Testing
Activity Occurence. Testing Activity Occurence also uses Test Environment. With
respect to the test software resources, for answering CQ17, the concept Software
Product was specialized as Test Software Product. There are several subtypes of
Test Software Product Type, among them: Test Management Tool, Test Execution
Tool, and Incident Management Tools.

89

Testing Activity Occurence is performed by Human Resource. In Human Resource
different testing roles are contemplated (CQ13), such as Test Leader, Test Case De-
signer and Tester. Aspects related to human resource were built using the E-OPL
patterns. The enterprise aspects addressed by E-OPL and used in Testing Environ-
ment sub-ontology are: Organization Arrangement, Team Definition, Institutional
Roles and Human Resource Management. These aspects address problems related to
how an organization is structured (FALBO et al., 2014). Patterns Multi-Organization
Arrangement (MOAR), Organizational Teams (OTD), Team Roles (TEAR) and
Team Allocation (TEAA) were reused. Concepts reused from E-OPL are shown in
yellow, and they are preceded by the pattern acronym (e.g., MOAR::). The patterns
used are presented in details in Annex A.

An Organization might have Organizational Teams (e.g., Test Team). An organiza-
tional team is composed by human resources that are its members at a given point in
time. A Team Allocation associates the Team Member (the role a Human Resource
plays when he/she is allocated to a Team) to the Team, in a given period of time
(CQ14). When a Human Resource is allocated to a Team (becoming an Organiza-
tional Team Member), it also defines the Human Role (e.g. Test Leader, Test Case
Designer, Tester) that he/she must play in that Team Allocation.

90

Figure 4.7 - ROoST’s Testing Environment sub-ontology.

91

4.2.6 ROoST Evaluation

In order to evaluate ROoST, verification & validation activities for ontologies
were performed. ROoST evaluation started with a verification activity, where it is
checked if the concepts, relations and axioms defined in ROoST are able to answer
the competency questions. Table 4.1 illustrates this verification process, showing
which elements of the ontology (concepts, relations, properties and axioms) answer
each Competency Questions (CQ).

Table 4.1 - ROoST Verification

CQ Concepts, Relations and Properties Axioms

CQ1

Testing Activity Occurrence part of Testing Process
Occurrence

A1, A2
Testing Activity Occurrence subtype of Activity Occurrence

Testing Process Occurrence subtype of Specific Process
Occurrence

Activity Occurrence part of Specific Process Occurrence
Specific Process Occurrence part of General Process

Occurrence
General Process Occurrence occurs in Project

CQ2

Test Planning subtype of Composite Testing Activity
Occurrence

-Test Case Design subtype of Composite Testing Activity
Occurrence

Test Coding subtype of Composite Testing Activity
Occurrence

Test Execution subtype of Composite Testing Activity
Occurrence

Test Result Analysis subtype of Composite Testing Activity
Occurrence

CQ3 Testing Process Ocurrence subtype of Process Occurence,
which contains the properties startDate and endDate

-

CQ4 Testing Activity Occurrence subtype of Activity Occurrence,
which contains the properties startDate and endDate

-

CQ5
Test Coding depends on Test Case Design

A6, A7Test Execution depends on Test Coding
Continues

92

Table 4.1 - Conclusion

CQ Concepts, Relations and Properties Axioms
Test Result Analysis depends on Test Execution

CQ6
Unit Testing subtype of Level-based Testing

-Integration Testing subtype of Level-based Testing
System Testing subtype of Level-based Testing

CQ7

Test Planning produces Test Plan

A3, A4
Test Case Design produces Test Case

Test Coding produces Test Code
Test Execution produces Test Result

Test Analysis produces Test Analysis Report

CQ8

Test Case Design uses Test Case Design Input

-
Test Coding uses Test Case

Test Execution uses Test Code
Test Execution uses Code To Be Tested
Test Result Analysis uses Test Result

CQ9

Test Case Input and Expected are Result part of Test Case

A5
Test Code implements Test Case

Test Result is relative to Test Case
Actual Result and Issue are part of Test Result

Test Analysis Report analyzes Test Result

CQ10

Test Case Design adopts Testing Technique

-
Black-box Testing Technique subtype of Testing Technique
White-box Testing Technique Technique subtype of Testing

Technique
Defect-based Testing Technique subtype of Testing

Technique
Model-based Technique subtype of Testing Technique

CQ11 Testing Technique applies to Test Level A8
CQ12 Test Case designed according to Testing Technique A9
CQ13 Activity Occurrence performed by Human Resource -
CQ14 Test Team Allocation subtype of Team Allocation, which

contains the properties startDate and endDate
-

CQ15 Testing Activity Occurrence uses Test Hardware Resource -

CQ16
Test Hardware Resource subtype of Hardware Resource and

it participation of Hardware
-

Continues

93

Table 4.1 - Conclusion

CQ Concepts, Relations and Properties Axioms
Resource Participation which contains the properties

startDate and endDate
CQ17 Testing Activity Occurrence uses Test Software Resource -
CQ18 Test Software Resource subtype of Software Resource and it

participation of Software Resource Participation which
contains the properties startDate and endDate

-

CQ19
Test Environment composed of Test Hardware Resource

-Test Environment composed of Test Software Resource
Test Environment composed of Human Resource

To validate ROoST, its concepts and relations were instantiated from an actual
project, in order to check if the ontology was able to represent concrete situations
of the real world. They were extracted from the Project Amazon Integration and
Cooperation for Modernization of Hydrological Monitoring (ICAMMH) (BRAGA et

al., 2009). Table 4.2 shows part of the instantiation.

Table 4.2 - ROoST Instantiation

Concept Instance
Project ICAMMH Project
Black-box Testing
Technique

Equivalence partitioning, Boundary-value analysis
(black-box techniques applied to derive test cases in the
ICAMMH Project)

Test Case Test Case P01-256 [Collect by electronic media- Invalid
date] (a test case produced in the ICAMMH Project)

Test Case Design In-
put

Use Case Specification “SAD_MCU_001-Customize
Data Collection” (artifact that was used to derive the
test case P01-256)

Test Case Input 2009-15-11 [Year-month-day/file .txt with month invalid
for data collection in header] (input data to the test case
P01-256)

Code To Be Tested CollectFormUtil.java (Java class that is to be tested by
the test case P01-256)

Continues

94

Table 4.2 - Conclusion

Concept Instance
Test Code (Test
Script)

P01-256 Script (a test script that implements the test
case P01-256)

Actual Result “Invalid file”

Besides creating the instances to the concepts and relationships as shown in Table
4.2, an implementation of ROoST in OWL was made available to become opera-
tional so that a proper evaluation may be conducted through consultations. It is
important to get this kind of ontology structure due to the possibility of performing
inferences. A transformation procedure for conversion requires the definition of a
systematic mapping from ontoUML to a computational ontology language, such as
OWL. For this a set of guidelines for mapping presented in (ZAMBORLINI, 2011)
and (BARCELOS et al., 2013) were used. These guidelines allowed the mapping of
static concepts represented in OntoUML for classes and properties directly encoded
in OWL. The ontology in OWL can be manipulated by means of various tools. One
of the most used is the Protégé1 tool.

Figure 4.8 illustrates an example of how to transform ontoUML into OWL (BARCE-

LOS et al., 2013).

Figure 4.8 - Transformation of Generalization Sets
SOURCE: (BARCELOS et al., 2013)

Considering ROoST, presented below is a small fragment of the transcript of the
ROoST conceptual model, modeled on language ontological level (ontoUML) for an
epistemological level language (OWL). The concept Artifact exemplifies the classes

1http://protege.stanford.edu/

95

of type <<Category>>. This is the kind that groups rigid instances of classes with
different principles of identity, in this case, instances of classes Document, Data and
Code the <<kind>> type. Artifact is represented as a superclass, and as a gener-
alization of class Document, Data and Code. The concepts of type <<kind>> are
mapped as disjoint subclasses. The concepts of type <<subkind>> are also mapped
as subclasses of their respective superclasses. For example, Document is <<kind>>

and has <<subkind>> types with the following documents: Test Plan, Test Result,
Test Case and Issue. These concepts are mapped to disjoint and equivalent in OWL
subclasses, as shown in the fragment of Figure 4.9.

Figure 4.9 - Fragment on the mapping classes with stereotype <<category>>,
<<kind>> and <<subkind>>

A second point is to represent the classes of type <<Role>> as OWL elements.
In this case the classes Actual Result, Test Case Input and Expected Result are
represented as a subclass of Data class, represented as a sortal type <<Kind>>.
The fragment of Figure 4.10 presents this transcript.

Considering the relationship between classes (association between two or more
classes), the fragment of Figure 4.11 presents some examples of the mapped re-
lations. Among them:

• association between Test Case and Test Result

• aggregation of Test Result and Issue

96

Figure 4.10 - Fragment on the mapping classes with stereotype <<Role>>

• composition between Test Result and Actual Result

Moreover, it is possible to check not only the relationship conversion but also the
establishment of the properties and minimum cardinalities. According to Zamborlini
(2011), it is necessary create mappings between classes and properties/attributes of
the ontology. Some properties were included in the TestCase class in order to perform
queries through query language Protocol and RDF Query Language (SPARQL).
SPARQL can be used to query an RDF Schema or OWL model to filter out indi-
viduals with specific characteristics. Overall, SPARQL queries are composed of a
series of triples where each format has triple <Subject, Property, Object>. For illus-
tration purposes, presented below is an example of a query expression that returns
all test cases, its own code and creation date. Figure 4.12 presents the query being
performed by Protégé tool.

SELECT ?Tc ?Code ?Created
WHERE { ?Tc :hasCode ?Code

:hasDataCreated ?Created
}

97

Figure 4.11 - Fragment on the mapping relations

Figure 4.12 - SPARQL query on test cases

Finally, to evaluate ROoST, a comparison with the ontologies found in the SLR
(Section 3.3) was performed considering the characteristics for “beautiful ontologies”
proposed by D’Aquin and Gangemi (2011), namely: having a good domain coverage;

98

implementing an international standard; being formally rigorous; implementing also
non-taxonomic relations; following an evaluation method; and reusing foundational
ontologies. Table 3.6 presented in section 3.3.4 showed the comparison of the 12
ontologies found in 3.3. The following, in Table 4.3 is a summary of the ROoST is
presented with the same characteristics.

Table 4.3 - Characteristics for “beautiful ontologies” in ROoST

Ontology Coverage References Engineering
Method

ROoST In 4 subontologies: Testing Pro-
cess and Activity, Artifact, Tes-
ting Technique, Test Environment
(Hardware, software, team)

Several references, includ-
ing international standards

SABiO

Evaluation
Method

Abstraction Level Languages Foundational
Ontologies

Verification
& Validation
activities

Conceptual models, implementa-
tion

OntoUML, OWL, axioms UFO

The main distinguishing feature of ROoST when contrasted to other testing ontolo-
gies is that ROoST was developed taking characteristics of “beautiful ontologies”
(D’AQUIN; GANGEMI, 2011) into account, as shown in Table 4.3. ROoST was de-
veloped following the SABiO method, which is a well-established method, used in
several ontology development efforts (FALBO, 2004a). Moreover, ROoST was built by
reusing and extending patterns of SP-OPL and E-OPL. Since SP-OPL and E-OPL
are grounded in the UFO, ROoST inherits this foundational ground from these pat-
terns. Further, concepts introduced in ROoST were also analyzed in the light of
UFO. ROoST is a heavyweight modular ontology that was built considering several
references, including international standards. It was evaluated from both verification
and validation perspectives. Finally, concerning its coverage, ROoST covers aspects
related to software testing process and its activities, artifacts that are used and pro-
duced by those activities, testing techniques for test case design, and, the software
testing environment, including hardware, software and human resources.

4.3 Process for applying Knowledge Management in Software Testing

This section presents the T-KM Process, which provides directions for implementing
KM initiatives in software testing supported by a KMS and which addresses the
fourth goal of this thesis. The process, which is represented by the UML activity

99

diagram presented in Figure 4.13, is the second component of T-KM. As the figure
shows, ROoST is used to support two steps of the process.

Figure 4.13 - T-KM Process

Following, each proposed step of process is presented in detail.

a) Diagnose the Current State of the Organization’s Testing Pro-
cess

The first step of the T-KM process is to make a diagnosis of the current state of the
organization’s testing process. This stage refers to investigating the existing know-
ledge within the testing process, in order to identify knowledge assets and understand
how and where testing knowledge is developed and used in the organization. Once
the knowledge items have been identified, organizations can then proceed to manage

100

them.

This step may be accomplished by performing surveys using questionnaires and/or
interviews, to identify issues related to KM as an instrument for supporting the
organization’s testing process. It is suggested that this stage is accomplished raising
the entire current state of software testing in the organization with respect to the
following aspects: the testing process adopted, the activities of the testing process
that are candidate to be the target of the KM initiative, the artifacts produced
during this process, the testing techniques applied, the test levels contemplated by
the process, the test environments adopted by the organization’s software projects,
among others. Aspects related to KM should also be investigated, such as the current
KM practices applied in the testing process, organization’s purpose of applying KM
to software testing, problems related to testing knowledge in the organization, among
others. Moreover, ROoST can be used in this step as the common vocabulary for
supporting the analysis of the current situation, as well as to formulate the survey
questions.

b) Establish the Scope of the Testing KM Initiative

Once the diagnosis of the current status of the testing process has been carried out,
the next step is to establish the KM scope. This task requires knowing the organiza-
tion needs. From the identified needs, the organization must define which activities
of the testing process is to be supported, as well as which types of knowledge items
are to be managed.

In this step it is suggested that organizations start with small KM initiatives. Thus,
a major challenge for software organizations is to know which knowledge is really
useful, and thus identify potential knowledge items among the several knowledge
assets generated in the organization. The results of the survey are to be used in this
step to help defining the scope of the testing KM initiative.

c) Develop a Testing KMS

This stage is concerned with the method for structuring the generated knowledge,
that is, involves the KMS specification, which highlights the importance of a con-
ducive and suitable organizational culture for facilitating knowledge sharing, cre-
ation and development in the organization. This step contains two main activities:
the definition of the main requirements of a KMS which will manipulate the know-
ledge items identified and structuring of a knowledge repository.

101

As well as the activities of the testing process, the activities of the KM process that
will be supported by the Testing KMS must be defined. We recommend to consider
providing support to the following typical activities of a KM process, as discussed
in Chapter 2 (Section 2.2): create knowledge items, assess knowledge items, search
knowledge items, evaluate usefulness of available knowledge items, and maintain the
knowledge repository.

With respect to requirements, they must be elicited and specified in this step. From
the point of view of functional requirements, potential models to be created are use
cases models, class diagrams, and state diagrams to model the behavior of know-
ledge items throughout its existence in the KMS. Other models can also be created
according to the need. Non-functional requirements should also be addressed, such
as security, usability, accessibility, etc.

ROoST is very useful in this step. ROoST can serve as the initial conceptual model
of KMS, to be refined to include specific details of the testing KM initiative in hands.
Specific information (attributes) should be identified, taking the characteristics of
the organization’s test environment into account, such as information provided by
the tools used for managing software testing.

Furthermore, interoperability issues should also be analyzed in this step. Software
tools that are part of the test environment can be integrated with the Testing KMS,
in order to act together, interacting and exchanging data to obtain the expected
results. In this context, possible knowledge items identified in these tools can be
automatically converted/imported to the testing KMS.

During the design of the Testing KMS, developers should consider the platform
in which the system is to be built, and non-functional requirements should be
addressed. Once designed, the KMS should be coded and tested.

d) Load Existing Knowledge Items

For initially populating the knowledge repository of the Testing KMS, the organi-
zation should look for existing knowledge items. For instance, if the system has to
manage test cases, existing test cases can be imported to the Testing KMS. The
existing knowledge items should be mapped to conform with the structure of the
knowledge repository. Finally, mechanisms for loading these items can be built to
automate the loading process.

102

e) Evaluate the Testing KMS

Evaluation can be done by the organization to determine if the Testing KMS is
feasible and meets its expectations. Improvements can be carried out continuously,
implying a return to the previous steps. These improvements can be made continu-
ously until the organization is satisfied with the Testing KMS achieved.

4.4 Final remarks about this chapter

In this chapter a T-KM framework was presented. T-KM is an ontology-based frame-
work for guiding KM initiatives in the software testing domain, supported by KMS.
This framework consists of a Reference Ontology on Software Testing (ROoST) for
the software testing domain and a process with a set of directions for implementing
a KMS in software testing organizations.

In the next chapter, as a proof of concept, a prototype of a Testing KMS has been
developed under the T-KM framework. This is to show that applying the proposed
framework major benefits such as to guide team members test the reuse of knowledge
items, give support learning through the sharing of knowledge acquired when there
is available knowledge, addition to supporting the management of skills and abilities
of the organization members.

103

5 APPLICATION OF THE PROPOSED FRAMEWORK

In this chapter the Testing-Knowledge Management (T-KM) framework is employed
to build a Knowledge Management System (KMS) for managing software testing
knowledge, as a proof of concept of the feasibility of applying the proposed frame-
work, which addresses the fifth goal of this thesis. Since there was no available tes-
ting organization to serve as a case study, T-KM was applied in a general scenario.
Moreover, instead of building a KMS from scratch, the Knowledge Management
(KM) Portal proposed in (COELHO, 2010) was extended to deal with software tes-
ting knowledge items. This portal (COELHO, 2010) was developed in the context of
the Ontology-based software Development Environment (ODE) Project (FALBO et

al., 2003) for supporting KM in Software Engineering.

As there was no available organization to run the entire process, in the diagnostic
step, a general survey was conducted with questions that addressed aspects con-
sidered in the conceptualization of ROoST as well as aspects related to the map-
ping study presented in Section 2.3.1. Considering the survey results, and based on
ROoST, the ODE´s KM Portal was extended, producing the Testing KM Portal.
The survey and its use to define the scope of the testing KM initiative are discussed
in Section 5.1. Data from an actual project were used as the basis for specifying the
Testing KM Portal. Some details of its specification are presented in Section 5.3. The
Testing KM Portal is presented in Section 5.4. The system was evaluated by project
leaders from two actual scenarios. Section 5.5 discusses the system evaluation.

5.1 Diagnosis by means of a Survey

The mapping study presented in Section 2.3.1 showed that one of the major
challenges in managing testing knowledge is to effectively integrate KM with
software testing so that knowledge items can be shared and reused in testing
organizations. Furthermore, managing testing knowledge is not an easy task, and
thus it is better to start with a small-scale initiative. Firstly, it is necessary to
identify essential knowledge items of a sub-topic of software testing to be dealt
with the KMS. So, based on ROoST and the mapping study, in the diagnosis step,
a survey was accomplished. The survey aim was to define a scenario to apply KM
in software testing. Nine questions were defined, and the questionnaire was sent
to testing experts. The questions are related to the mapping, as well as to the
conceptualization described by ROoST, as Table 5.1 illustrates.

105

Table 5.1 - Survey Questions and their Relations with the Mapping Study and ROoST

Survey Questions Based on
SQ1. In which activities of a Testing Process, is
KM more useful?
SQ2.In which activities of Testing Planning, is
KM more useful?

ROoST: Testing Process and
Activities sub-ontology

SQ3. A test environment consists of, among
others, human resources, hardware and soft-
ware. About which of these resources are more
important to have available knowledge at the
moment of defining the test environment?

ROoST: Testing Environment
sub-ontology

SQ4. In which testing level is KM more useful? ROoST: Testing Techniques
sub-ontology

SQ5. What is the type of knowledge you con-
sider to be more important during the software
testing process?

Mapping Study: RQ7.
(What are the types of know-
ledge items typically managed
in the context of software
testing?)

SQ6. Tacit knowledge can be made explicit,
originating explicit knowledge. Regarding the
types of knowledge items listed below, indicate
the degree of importance of generating explicit
knowledge from tacit knowledge.

Mapping Study: RQ7

SQ7. Regarding testing artifacts, which are the
ones you judge to be more appropriate for
reuse?

Mapping Study: RQ7,
ROoST: Testing Artifacts
sub-ontology

SQ8. What is the purpose of applying KM in
Software Testing?

Mapping Study: RQ6.
(What are the purposes of
employing KM in software
testing?)

SQ9. What benefits KM can bring to software
testing?

Mapping Study: RQ9.
(What are the main conclu-
sions (benefits and problems)
reported regarding applying
KM in software testing?)

106

In total, 86 experts participated in the survey. Of these, 37 work directly with soft-
ware testing (tester, test analyst, test designer, among others). 16 perform roles
related to software development. 18 perform various underlying functions as a pro-
fessor, researcher, consultant, among others. And 15 did not answer this question,
because this question was considered optional.

Experts who answered the survey has an experience of at least 5 years. To establish
the survey sample, groups interested in the area of software testing registered in the
LinkedIn1 network were invited to answer the survey.

The survey results were used to define the scope of the Testing KM Portal. Next
the survey results to each question are briefly presented, as well as how these results
were used to establish the scope of the testing KM initiative. Full survey and results
are found in Appendix A.

SQ1. Importance of KM to Software Testing Process Activities

In this question, the following testing activities (defined in ROoST) were conside-
red: (i) Planning Test; (ii) Design Test Case; (iii) Coding Test; (iv) Test Execution;
and (v) Test Results Analysis. Figure 5.1 shows the percentage of answers per ac-
tivity. “Test Case Design” (98.8%) and “Planning Test” (96.5%) have the largest
representativeness.

SQ2. Usefulness of KM in sub-activities of Testing Planning

Figure 5.2 shows the percentage of answers per sub-activity of testing planning. The
usefulness of KM for selecting the best testing techniques was recognized by 41% of
the participants, since different types of test techniques determine different forms for
selecting the test cases that will be used as input to the system under examination.

SQ3. Test Environment Resources

In the opinion of the experts, among the types of resource that comprise the
test environment (human, software and hardware resources), “Human resource”
is considered the most important at the time of setting the test environment,
with 44% of the responses. Figure 5.3 shows the percentage of answers per test
environment resources.

1http://www.linkedin.com/

107

Figure 5.1 - Importance of KM to Software Testing Process Activities.

Figure 5.2 - Useful of KM in activities of Testing Planning

SQ4. Importance of KM to Test Levels

In this question, the three main levels of testing in the process of testing were consi-
dered: Unit Testing, Integration Testing and System Testing. The experts consider
that in the software testing process, KM can be more useful in the System Testing
level (49%). Figure 5.4 shows the percentage of answers per test level.

SQ5. Type of knowledge

In this question Tacit and Explicit Knowledge were considered. As a result of the
survey, explicit knowledge was considered more important by most experts (69.8%).

108

Figure 5.3 - Test environment resources

Figure 5.4 - Importance of KM to Test Level

Figure 5.5 shows the percentage of answers per type of knowledge.

Figure 5.5 - Type of knowledge

SQ6. Making Tacit Knowledge Explicit

In the opinion of participants, “Individual Experiences” (95.3%) and “Communica-

109

tions between the members of the test team” (91.9%) are the types of tacit knowledge
with more significant importance to generate explicit knowledge items. Figure 5.6
shows the percentage of answers.

Figure 5.6 - Making Tacit Knowledge Explicit

SQ7. Artifacts more appropriate for reuse

Figure 5.7 shows the percentage of answers regarding the importance of reusing
the test artifacts. In the opinion of the participants, “Test Plan” and “Test Case”
artifacts are considered the most important artifacts for reuse in the software testing
process, with percentages of 91.9% and 90.7%, respectively.

SQ8. Purpose of applying KM in Software Testing

Figure 5.8 shows the percentage of answers in relation to the purposes of applying
KM in software testing. Considering the opinion of experts, “Improving the results
quality” (28%) and “Reducing costs, time and effort” (26%) have the largest repre-
sentativeness.

SQ9. Expected Benefits of applying KM in Software Testing

Finally, the benefits that KM can bring to software testing were analyzed. As Figure
5.9 shows, “increasing the process testing efficiency” (41%) and the “selecting and
applying better techniques” (33%) were the most representative expected benefits.

110

Figure 5.7 - Artifacts more appropriate for reuse

Figure 5.8 - Purpose of applying KM in Software Testing

By analyzing the survey results, some conclusions were found: (i) the experts iden-
tified test planning and test case design as being the activities in which KM would
be most useful; (ii) Explicit knowledge was considered more important in software
testing process. This proves what we raised in the systematic mapping: there is a
difficulty in working with tacit knowledge. Moreover, it explains the increased inte-
rest in explicit knowledge; (iii) among the most targeted artifacts to reuse, test cases
stood out with 90.7%; and (iv) the purposes for which experts are more interested
in applying KM in software testing are related to improving the quality of results in
software testing (28%), and reducing cost, time and effort spent in software testing
(26%).

111

Figure 5.9 - Expected Benefits of applying KM in Software Testing

5.2 Definition of the Scope Testing KM Initiative

The results of the survey were then used to define the scope of the Testing KM Initia-
tive. Considering the main findings of the survey, test case design was considered the
software testing activity to be supported, and test cases the main knowledge item to
be managed. All relevant information for designing test cases have to be considered
in the scope of Testing KM Portal development. Concepts related to Test Case in
ROoST were considered in the scope of initiative, namely: Test Case Input, Expected
Result, Test Result, Test Code and Testing Technique. In addition, meetings with
the project leaders from two actual projects also helped to understand the scope to
be worked, as well as the experience of the author of this thesis as a member in one
of the projects.

Moreover, the knowledge items listed below also were included. The first two
(Lessons Learned and Knowledge regarding discussions) were already available as
general items in ODE´s KM Portal. The last one was introduced from a previously
conducted study related to knowledge discovery in data repositories for software
testing (SOUZA; SANTOS, 2010).

• Lessons Learned: A Lesson Learned (LL) can be understood as know-
ledge acquired through experience in a particular situation. LL can be
classified as best practices, errors/critiques and success factors. LLs are in-
formal knowledge items that can be understood as ideas, facts, questions,
point of view, decisions, among others. In addition, LL can also be classi-
fied as informative lessons, success or failure. Informative LLs explain how

112

to proceed in a given situation; lessons of success provide examples of pro-
blems that were solved in a positive way; and the failure lessons provide
examples of negative responses to attempt to solve a problem and potential
ways to cope up with the situation (O’LEARY, 1998a; NATALI, 2003).

• Knowledge regarding discussions: Discussion of ideas among organi-
zation members or questions answered by other sources of information may
be submitted as knowledge items. Tools to support discussion among or-
ganization members, such as discussion forums, have been fundamental in
KM environments (FISCHER; OSTWALD, 2001). Discussion forums become
important tools for knowledge management for the following reasons: (i)
Very useful knowledge can be generated and captured during argumenta-
tions (FALBO et al., 2004d), and (ii) a major challenge of KM is to convert
tacit knowledge into explicit knowledge (NONAKA; KROGH, 2009; DAVEN-

PORT; PRUSAK, 2000).

• Mined items: Useful knowledge can be identified, especially in large
projects, from their data repositories. Knowledge Discovery in Databases
(KDD) refers to the overall process of discovering useful knowledge from
data. KDD is characterized as an interactive and iterative process, con-
sisting of several interconnected steps (FAYYAD et al., 1996a). These steps
start in a field definition, selection, preparation and data processing, un-
til the step of data mining, where patterns can be found and analyzed to
become useful knowledge.

5.3 Developing the Testing KM Portal

The conceptual model of ROoST was used as the starting point for specifying the
Testing KM Portal. However, this conceptual model does not provide details re-
garding the properties of the concepts considered. Such properties can be identified
according to the characteristics of the organization´s test environment, such as infor-
mation provided by the tools used for managing software testing. Thus, information
from one of the projects studied in this work (namely the Amazon Integration and
Cooperation for Modernization of Hydrological Monitoring (ICAMMH) Project)
were used as the basis for identifying attributes and specifying the Testing KM
Portal.

Figure 5.10 shows use case diagram describing the functionality of the Testing KM
Portal. The use cases detached in yellow were already available in ODE´s KM Portal

113

(COELHO, 2010). Use cases in white are testing-specific features included in this
work. Developer is the main actor, representing all types of professionals involved
in the software development process. Knowledge Manager represents a user with
specific permissions, guaranteeing access to features inherent only to a Knowledge
Manager.

Figure 5.10 - Testing KM Portal Use Case Diagram

Next, the use cases are briefly described:

• Create Knowledge Item: This use case allows developers to create a
knowledge item.

• Create Discussion-related Knowledge: This use case allows developers
to register a Discussion-related Knowledge.

• Create Lesson Learned: This use case allows developers to register a
Lesson Learned.

• Create Mined Item: This use case allows the developer to register a
Mined Item.

114

• Create Test Case: This use case allows developers to register a Test
Case.

• Include Test Result: This use case allows the developer to include a test
result relative to a test case.

• Include Issue: This use case allows the developer to register an issue
reporting an incident.

• Include Incident: This use case allows the developer to report an incident
related to a test result.

• Change Knowledge Item: This use case allows the knowledge manager
to change a knowledge item.

• Delete Knowledge Item: This use case allows the knowledge manager
to delete a knowledge item.

• Pre-evaluate Knowledge Item: This use case allows the knowledge
manager to pre-evaluate a knowledge item, making it available, rejecting
it or selecting experts to evaluate it.

• Evaluate Knowledge Item: This use case allows a developer to make a
detailed evaluation of a knowledge item, to support the knowledge manager
in making decisions about whether the item should be approved or rejected.

• Visualize Knowledge Item: This use case allows developers to visualize
the details of a knowledge item.

• Visualize Test Case: This use case allows developers to visualize the
details of a test case.

• Search Knowledge Item: This use case allows the developer to search
for knowledge items available according to informed parameters.

• Search Test Case: This use case allows the developer to search for test
cases according to informed parameters.

• Value Knowledge Item: This use case allows the developer to value the
utility of a knowledge item consulted.

• Find Experts: This use case allows the developer to find and select ex-
perts with a desired profile, as well as viewing the profiles of experts found.
It works as a Yellow Pages system.

115

Figure 5.11 presents a package diagram showing the main packages of Testing KM
Portal. The first one, the KM Portal package, is in fact, the package containing
the classes from ODE´s KM Portal. The corresponding class diagram is presented
in Figure 5.12 (COELHO, 2010). The second package, Testing KM Portal, contains
the testing-specific classes developed in this work. The corresponding class diagram
is presented in Figure 5.13. In Figure 5.13, classes in yellow are imported from
the KM Portal package; classes in white are specifically developed to address the
requirements of Testing KM Portal; enumerated types are shown in green.

Figure 5.11 - Package Diagram of Testing KMS.

Figure 5.12 - Class diagram of KM Portal.
SOURCE: Adapted from Coelho (2010)

116

Figure 5.13 - Class diagram of Testing KM Portal.

After creating a knowledge item, an evaluation by experts should be performed (class
Evaluation). Once a knowledge item becomes available to the organization, it can

117

be used and valued by any organization member (class Valuation). In a knowledge
item creation, evaluation and valuation, it is necessary to inform who is the author
(class HumanResource).

Knowledge items (class KnowledgeItem) can be of the following types: Lessons
Learned (class LessonsLearned) and Discussion Related Knowledge (class Discus-
sionRelatedKnowledge). When creating a knowledge item, the developer can inform
the project (class Project), a topic (class Topic) to which it is related, as well as
specific information about each knowledge item.

Testing KM Portal extends KM Portal by allowing registering two new knowledge
items: Test Cases (class TestCase), and Mined Items (class MinedItem). Next, these
two types of knowledge items introduced by this work in the KM Portal are dis-
cussed.

5.3.1 Test Case

A test case contains information regarding its test levels (class TestLevel), the tes-
ting technique used to derive it (class TestingTechnique), the code it tests (class
CodeToBeTested), the test code that implements this test case (class TestCode), the
test results obtained when the test case is executed (class TestResult), and whether
a test case result involves some incident (class Incident). As previously mentioned
one issue (class Issue) may report an incident. For the test case result, it is also
necessary to inform who exercised the test case, as well as who reported an incident.

The attributes of the classes in Figure 5.13, as well as the enumerated types shown in
this figure were defined considering the ICAMMH Project. The ICAMMH Project
was developed in a collaborative work involving the Brazilian Aeronautics Insti-
tute of Technology (Instituto Tecnológico de Aeronáutica - ITA) and the Brazilian
National Water Agency (Agência Nacional de Águas - ANA), supported by the
Brazilian Financial Foundation for Projects (Financiadora de Estudos e Projetos
- FINEP). The project goal was to develop, for a water reference region, a pilot
system for modernization and integration of telemetry points collected from hy-
drological data, as a basis for the management of water resources in the Amazon
region.

The test environment for the ICAMMH Project comprised the following CASE tools:
TestLink (TESTLINK, 2013) and MantisBT (MANTIS, 2013). Both are web tools, free
for use and modification. TestLink is a web-based test management system. It offers

118

support for test cases, test suites, test plans, test projects and user management
and reports. MantisBT is a bug (or defect) tracking system. However, it is often
configured by users to serve as a more generic issue tracking system and project
management tool. In the case of the ICAMMH Project, MantisBT was customized
to deal with two categories of requests: activity-related requests and defect-related
requests.

In the context of ICAMMH Project, an integration scheme between TestLink and
MantisBT was used. TestLink has the capability to integrate with MantisBT, allow-
ing for a test case to be associated to a defect-related request. Thus, all incidents
that were registered in MantisBT, as a defect-related request, were conditioned to
the existence of a test case in TestLink.

The ICAMMH Project has already been finalized. Nevertheless, the information
managed by the tools that supported its testing process helped to identify important
information (attributes) in addition to what is defined by ROoST. An analysis of
the attributes from each tool was undertaken in order to identify relevant attributes
for KM. Tables 5.2 and 5.3 show the main attributes considered from TestLink and
MantisBT, respectively.

Table 5.2 - Attributes TestLink

Attribute Values Defined Description
Execution Status Failed, Blocked, Not run,

Passed
Defines the execution
status of each test case.

Test Case Importance Low, Medium, High Defines the importance
level for each test case
created.

Table 5.3 - Attributes MantisBT

Attribute Values Defined Description
Priority None, Low, Normal, High, Ur-

gent, Immediate, Not assessed
Defines the priority level
to correct an incident.

Continues

119

Table 5.3 - Conclusion

Attribute Values Defined Description
Severity Requesting new feature, Triv-

ial (being nitpicky), Error in
the text, grammar, wording, etc.,
Needs tweaking (graphic align-
ment, formatting, etc.), Minor
bug, Major bug, Crashes the ap-
plication or OS, Prevents further
work/progress from being made,
Not assessed

Defines the severity level
of an incident found.

Reproducibility Always, Sometimes, Random,
Have not tried, Unable to
duplicate, Not assessed

Defines if the incident
may be reproduced.

Incident Status New, Acknowledge, Confirmed,
Assigned, Resolved (but waiting
on confirmation of fix), Feed-
back (awaiting more informa-
tion), Closed, Canceled

Refers to the status of
handling an incident.

Resolution Sta-
tus

Open, Fixed, Reopened, Unable
to Duplicate, Not Fixable, Du-
plicate, Not a bug, Suspended,
Won´t fix

Defines the resolution
status for a given re-
quest (activity or inci-
dent). This thesis takes
into account only the
records related to de-
fects.

5.3.2 Mined Item

Data mining was performed on ICAMMH data. A preliminary analysis of this data
mining was performed in Souza and Santos (2010) considering the databases of
TestLink and Mantis tools. However, in this thesis, the same data in a different
structure stored in the repository of knowledge of Testing KM Portal were used.
Attributes related to knowledge items of type Test Case were considered.

For creating the mined items, the method of Rule Association was used along with
the Apriori algorithm (WITTEN et al., 2005). The Association Rule method aims

120

to identify patterns of behavior to the set of data that often occur jointly in the
database and form rules from these sets. The association rules, when applied to
a data set, allow to find rules of the type of X → Y, that is, transactions of the
database which contain X tend to contain Y (WITTEN et al., 2005). One of the al-
gorithms to the better known association rules is the Apriori algorithm. It can work
with a large number of attributes, generating various combinations among them. For
the generation of association with the Apriori algorithm, the tool Waikato Environ-
ment for Knowledge Analysis (WEKA) was used (WITTEN et al., 2005). WEKA is a
collection of machine learning algorithms for data mining tasks. A brief explanation
of how this item can be generated is given below.

Considering only those test cases that failed, 415 records were returned from a query
in the knowledge repository. Table 5.4 presents the first 20 returned and 9 attributes
considered in this data mining, corresponding to classes: Human Resource, Test
Case, Incident, Issue.

Table 5.4 - Attributes analyzed (first 20 records)

Test Case
Author

Execution
Author

Importance Severity Reproduci-
bility

Issue
Status

Priority Resolution
Status

7 7 High Minor Bug Always Closed Normal Fixed

7 7 High Major Bug Always Closed Normal Fixed

7 7 High Minor Bug Always Closed Normal Fixed

7 7 High Crashes
the appli-
cation or
OS

Always Closed High Fixed

7 7 High Major Bug Always Closed Normal Fixed

7 7 High Major Bug Always Closed High Fixed

7 7 High Major Bug Always Closed High Fixed

7 7 High Major Bug Always Closed High Fixed

7 7 High Major Bug Always Closed High Fixed

7 7 High Minor Bug Always Resolved Normal Fixed

7 7 High Major Bug Always Closed Normal Fixed

7 7 High Major Bug Always Resolved High Fixed

7 2 High Minor Bug Have not
tried

Resolved Normal Fixed

7 7 High Mijor Bug Always Closed Normal Fixed

Continues

121

Table 5.4 - Conclusion

Test Case
Author

Execution
Author

Importance Severity Reproduci-
bility

Issue
Status

Priority Resolution
Status

7 2 High Minor Bug Have not
tried

Closed Normal Fixed

7 2 High Minor Bug Have not
tried

Closed Normal Fixed

7 2 High Minor Bug Have not
tried

Resolved Normal Fixed

7 7 High Minor Bug Always Closed Normal Not a bug

7 2 High Major Bug Have not
tried

Closed Normal Fixed

7 2 High Minor Bug Have not
tried

Resolved Normal Fixed

Figure 5.14 shows a WEKA screen with the set of data already preprocessed and
imported. It is possible to see the attributes, number of instances and some statistical
information of each class.

Figure 5.14 - Page Explorer of WEKA

122

After loading the data set, the Apriori algorithm is executed. Figure 5.15 shows
the tab Associate with the selected Apriori algorithm. WEKA returns the most
important 10 associations. This number can be changed in the algorithm settings.
The listing below shows the results of the associations that were found.

Figure 5.15 - Aba associação com algumas regras geradas

1. IssueStatus=Resolved 236 ==> ResolutionStatus=Fixed 235 conf:(1)
2. importance=Medium IssueStatus=Resolved 226 ==> ResolutionStatus=Fixed 225 conf:(1)
3. IssueStatus=Resolved Priority=Normal 219 ==> ResolutionStatus=Fixed 218 conf:(1)
4. importance=Medium IssueStatus=Resolved Priority=Normal 210 ==> ResolutionStatus=Fixed 209 conf:(1)
5. IssueStatus=Resolved Priority=Normal 219 ==> importance=Medium 210 conf:(0.96)
6. IssueStatus=Resolved Priority=Normal ResolutionStatus=Fixed 218 ==> importance=Medium 209 conf:(0.96)
7. IssueStatus=Resolved 236 ==> importance=Medium 226 conf:(0.96)
8. IssueStatus=Resolved ResolutionStatus=Fixed 235 ==> importance=Medium 225 conf:(0.96)
9. IssueStatus=Resolved Priority=Normal 219 ==> importance=Medium ResolutionStatus=Fixed 209 conf:(0.95)
10. IssueStatus=Resolved 236 ==> importance=Medium ResolutionStatus=Fixed 225 conf:(0.95)

Analyzing the rules some conclusions can be inferred. The fifth rule, for example,
shows that out of 219 recorded incidents with status Resolved and resolution priority
Normal, the importance of test cases is Medium in 210 of them. This is quite rea-
sonable, because the importance of completing the test case is considered Medium,

123

an incident generated by this test case can also be a priority of correction Normal.
Just as all other rules, one realizes that there are consistencies among associations
that were presented. No irregularity was detected.

If the number of rules to be generated by the settings of the Apriori algorithm is
increased, new rules can be analyzed. For demonstration purposes, 50 new rules were
generated and some are shown below.
...
13. ExecutionAuthor=7 207 ==> TestCaseAuthor=7 201 conf:(0.97)
...
16. Severety=MinorBug IssueStatus=Resolved ResolutionStatus=Fixed 193 ==> importance=Medium 187
conf:(0.97)
...
29. TestCaseAuthor=7 ExecutionAuthor=7 201 ==> ResolutionStatus=Fixed 190 conf:(0.95)
...
36. Severety=MinorBug 298 ==> Priority=Normal 277 conf:(0.93)
...
48. Reproducibility=Always Priority=Normal 209 ==> importance=Medium 191 conf:(0.91) ...

For the registration of a knowledge item of the mined item type in Testing KM
Portal, generic information about that item were considered given the diversity of
methods and algorithms that exist in data mining. In Figure 5.13, the MinedItem
table shows the attributes that are available for the registration of a mined item.
The attributes are: Description, Algorithm, Configuration, Result and Analysis.

5.3.3 Loading Existing Knowledge Items

From the conceptual model of Testing KM Portal shown in Figures 5.12 and 5.13, the
knowledge repository for the system was created. Knowledge items already existing
in the organization must be loaded to the repository.

In the context of the ICAMMH Project, there were several test cases available stored
in MantisBT and TestLink. However, each one of these tools has its own data reposi-
tory, implemented in different ways, demanding a thorough analysis of the structure
of each one in order to load the data. Moreover, each tool has its own terminology to
represent the manipulated data, i.e., different terms are used to represent the same
concept. Thus, to load existing test cases, a functionality was developed to connect
and get data from the repositories of MantisBT and TestLink, and then convert
them into objects (instances) of the data schema of Testing KM Portal. This proce-
dure is illustrated in Figure 5.16. From the ICAMMH Project, 1568 test cases were
loaded. Details of this step can be viewed in Appendix B.

124

Figure 5.16 - Loading existing knowledge items

5.4 Testing Knowledge Management Portal (TKMP)

The Testing KM Portal produced by the specification presented above is presented
in this section. The KMS prototype of software testing, called TKMP, is part of
an extension to the one proposed in Coelho (2010) and an ongoing project that
implements in (SPECIMILLE et al., 2014). Thus, details on the development of TKMP
can be found at (SPECIMILLE et al., 2014).

Figure 5.17 presents the main page of TKMP. Testing KM Portal recognizes the
authenticated user profile in the system, detecting whether the user is a knowledge
manager or a developer. The features of Testing KM Portal are set according to the
user profile. As shown in the top of the central panel of Figure 5.17, the current
authenticated user is Erica F. Souza and her profile is Knowledge Manager.

As seen in Figure 5.17, TKMP is divided into several panels:

• Functionalities: contains the main portal functionalities, which are cre-
ation and search for knowledge items.

• Tools to Support Collaboration: incorporates tools for supporting col-
laboration, namely Yellow Pages and Discussion Forums.

• Your Participation in Portal: contains information about current au-
thenticated user´s participation in the portal. From this panel, the user can

125

Figure 5.17 - Main page of TKMP

view the knowledge items created, evaluated, rated and to be evaluated by
it.

• Number of Members: reports the number of active members in the
organization. From this panel, the user can view a list of all the organization
members.

• Central Panel: it is the panel located in the central region of the page.
It displays information related to the portal functions being performed.

• Number of Knowledge Items: informs the amount of existing know-
ledge items per type.

• Most Recent Items: presents the knowledge items that were more re-
cently created.

• Most Accessed Items: presents the most accessed knowledge items in
the portal.

The following subsections illustrate the use of TKMP in supporting activities of
knowledge items creation, evaluation, search, valuation and maintenance.

126

5.4.1 Knowledge Item Creation

In functionalities panel, there is an option to create knowledge items. After selecting
this option, the Types of Knowledge Item are displayed in the central panel (Fi-
gure 5.18). The specialist can choose one of the following knowledge items: Lessons
Learned, Knowledge Related to a Discussion, Test Case or Mined Item.

Figure 5.18 - Types of Knowledge Items

When a type of knowledge item is selected, a registration window is displayed.
Tabs are used to group two sets of information about the knowledge item that
must be filled: General Information and Specific Information. The fields contained
in the General Information tab are the same for any type of knowledge item. General
Information considered are: Author, Creation Date, Title, Summary, Related Project
and Applicability. On the other hand, the tab Specific Information contains specific
information about the knowledge item to be created.

Figure 5.19, presents creating a knowledge item of type of Test Case. The tabs
General Information and Specific Information are highlighted.

When selecting Specific Information about the test case, it is divided into two groups
(subTab), presented in Figure 5.20. Test Case Data presents the information neces-
sary to create a test case to be registered; Test Case Result presents all pertinent
results information of executing test case.

• Test Case Data: Created by, Test Level, Testing Technique, Importance,
Input Data, Expected Result, Steps, Test Code, Code to be Tested.

127

Figure 5.19 - Creating Knowledge Item - Test Case

• Test Case Result: Tester, Execution Status, Tested Product Version,
Actual Result, Description, Execution Status. If execution status equals
“Failed”, then the following information must be filled: Summary, Descrip-
tion, Original Version of the Product, Generated Version of the Product,
Severity, Reproducibility, Resolution Status, Issue (Submission Date, Pri-
ority, Issue Status).

Figure 5.20 - Create Test Case - Specific Information

With respect to other types of knowledge items, the specific information presented
are:

• Lessons Learned: Type (Success, Failure, Informative), Problem Descrip-

128

tion, Solution Adopted or Recommended, Expected Result.

• Knowledge Related to a Discussion: Knowledge Acquired, Strengths,
Weaknesses, Link to the discussion.

• Mined Item: Create by, Algorithm, Configuration, Description, Result,
Analysis.

5.4.2 Knowledge Items Evaluation

The knowledge item must be evaluated by the knowledge manager before being
made available to organization members. Through option Evaluation Pending Items
Available, the knowledge manager can view the knowledge items created that need
to be evaluated. After selecting this option, the Evaluation Pending Items appears
in the central panel, as shown in Figure 5.21.

Figure 5.21 - Items Pending from Evaluation

The knowledge manager can select a knowledge item pending to evaluation, visualize
their information, change them, evaluate and approve it or reject it. Moreover, the
knowledge manager can request that the item be evaluated by an expert, selected
with the support of the Yellow Pages system. Thus, any organization member can
be selected to evaluate a knowledge item.

When an expert is selected, the knowledge item becomes available to be evaluated by
him/her. When authenticated to the portal, the expert can select the Items Pending
from Evaluation option to check the items that must be evaluated. However, the

129

Pending Items Evaluation window is dynamic and is displayed according to the
authenticated user profile. When the user is a common organization member, it is
only possible to view the information of the knowledge item and evaluate it (see
Figure 5.22). Only the knowledge manager is allowed to select an expert to review,
approve or reject knowledge items.

Figure 5.22 - Items Pending from Evaluation (Common User)

When knowledge item is selected by the expert to carry out the evaluation, the
Evaluate Knowledge Item window appears, as shown in Figure 5.23. The expert shall
inform the score of each evaluation criterion defined, Feedback and Final Results
of evaluation (Approved, Approved with modifications, Not approved or Indefinite)
and, if necessary, can describe an opinion on evaluation. In this thesis, as well as in
ODE´s KM Portal (COELHO, 2010), the criteria suggested in Montoni (2003) are
indicated for the evaluation of knowledge items, namely: Correction, Completeness,
Consistency, Usefulness and Applicability.

After an expert finalizes the evaluation of knowledge item, the knowledge manager
can preview it from Pending Items Evaluation window. So, after selecting an item
and select to view their information, the Knowledge Item View window appears in
the central panel, containing all the information of the knowledge item, including its
evaluations. In Evaluation tab, the knowledge manager can view all the evaluations
made by expert, as shown in Figure 5.24.

After viewing the evaluation performed by the experts, the knowledge manager can
decide whether to approve or reject the knowledge item. This decision may be taken
independently of the evaluations made by expert. That is, the knowledge manager
has the autonomy to decide whether the item should be approved or rejected. After

130

Figure 5.23 - Evaluating Knowledge Item

Figure 5.24 - Knowledge Item View - Evaluation

approval of the knowledge item, it becomes available to the organization and can
be accessed and used by members. The status of each knowledge item can take the
following values:

• Awaiting Evaluation: Indicates that the knowledge item is being evaluated.

• Approved: Indicates that the knowledge item has been approved and is
now available to be accessed by organization members.

• Rejected: It points that the knowledge item was rejected and not available
to organization members.

131

5.4.3 Knowledge Item Search

In functionalities panel, there is the option to Search Knowledge Items. With this
option, the search criteria are displayed in the central panel (Figure 5.25). The
specialist can search by the general criteria involving all types of knowledge items.
However, when selecting the knowledge item of type of Test Case, a set of specific
criteria for test case are presented. Table 5.5 presents the criteria used.

Table 5.5 - Search Criteria

General Search Criteria Search Criteria for Test Case
Search Criteria Test Level
Creation Date Testing Technique Type
Last Access Testing Technique
Number of Accesses Importance
Number of Valuations Execution Date
Percentage of Positive Valuations Execution Status
Percentage of Negative Valuations Severity
Related Projects Reproducibility
Related Themes Resolution Status
Knowledge Item Type Priority

Issue Status

Figure 5.25 - Search Knowledge Items - Search Criteria

The search criteria can also be combined. After informing the parameter settings

132

of search and to execute, a list of found knowledge items is displayed. A search
example is shown in Figure 5.26. In this search example, the following criteria were
informed: knowledge items related to the ICAMMH Project, Test Case type, with
a High importance level and execution status is ‘failed’. Test cases that are of high
importance and that failed can provide an important learning experience for the
organization and avoid the same mistakes in future projects. This search returned
27 knowledge items.

Figure 5.26 - Test Cases returned

The list of knowledge items returned through search (Figure 5.26) contains a sum-
mary of information for each item found, among them a content summary of the
knowledge item, a summary of their evaluations, author, creation date, type of know-
ledge item and number of accesses. To view all the details of a knowledge item simply
select it and all information can be viewed in View Item Knowledge window, as shown
in Figure 5.27.

In relation to a test case, entire history of this test case is returned. This will
benefit the traceability of the test case. The following specific data for the test
case “TC1341-Inserção Coleta - Falha de Intervalo de Tentativas * Falha Max de
Tentativas > Periodicidade” are presented. In Figure 5.28, the specific information
about the test case TC1341, and its results are presented. Note that this test case
was exercised three times. So, three results will be displayed separately. Figure 5.29
shows these results.

When a test result has the execution status as ‘failed’, the incident will be presented
along with its respective result (Figure 5.30).

133

Figure 5.27 - View Test Case returned

Figure 5.28 - View Test Case returned - Specific Information

All information, including evaluations and valuations made about the knowledge
item can be visualized. The valuations are useful because they allow the organization
member to consult a knowledge item and also view the opinion of other members
on the usefulness of this item. Figure 5.31 shows the View Item Knowledge window
open with all the valuations made about the knowledge item Valuations tab.

5.4.4 Knowledge Items Valuation

View Test Case window allows to perform new valuations of the item triggering the
Valuing button on the bottom right of the window (see Figure 5.31). The Valuing
Knowledge Item window appears, as shown in Figure 5.32. In this window, a degree of

134

Figure 5.29 - View Test Case returned - Test Case Result

Figure 5.30 - View Test Case returned - Incident

utility in value from -10 to 10 must be informed. Values below zero indicate that the
valuation is negative, values above zero indicate that the valuation was positive and
a value of zero states that the valuation is neutral. Besides the degree of usefulness,
a comment on the evaluation can be done. After confirming the valuation, it is
available to be viewed alongside the other valuations made about the knowledge

135

Figure 5.31 - View Test Case returned - Valuation tab

item.

Figure 5.32 - Valuing Knowledge Items

5.4.5 Knowledge Items Maintenance

In TKMP, maintenance is done only by a user with knowledge manager profile.
To find candidate items to be updated or deleted, the manager must search, by
the search engine, the knowledge items to perform maintenance. Thus, knowledge

136

items are presented to the knowledge manager that in turn selects one to view its
information, as shown in Figure 5.33. View Item Knowledge window contains the
Change and Delete buttons that allow, respectively, the change and deleting the
displayed item.

Figure 5.33 - Maintenance of Knowledge Items

5.4.6 Yellow Pages

In the Yellow Pages integrated with TKMP (see Figure 5.34) it is possible to inform
the profile of those to be found in the portal. That is, one can find people according
to their skills, projects they participated, activities they worked, a position held and
topics of interest. After entering the desired profile, people are found listed along
with contact information for each. Also in this list, one can select a person and view
all the information in Your Profile View (Figure 5.35) window.

In View on Your Profile window, it is possible to identify, besides the name and
contact, the competences of each, the projects and activities involved, the functions
performed, discussions one participated, topics of interest, besides the items created,
evaluated and valued.

The Yellow Pages system can be used to find people profiles to solve specific problems
or perform specific tasks, in particular, the evaluation of knowledge items. Thus, to
evaluate a knowledge item, the knowledge manager can select people using this
system.

137

Figure 5.34 - Yellow Pages window

Figure 5.35 - Visualize Profile

5.4.7 Discussion Forums

Testing KM Portal allows the creation of knowledge items related to discussions. The
procedure to create an item of this type is the same as presented in Section 5.4.1,
which deals with the creation of knowledge items in the portal. The only difference
in the process are the specific information to be filled, which in this case are of a
specific knowledge item concerning a discussion. Specific information on this type of

138

knowledge item, is necessary inform the acquired knowledge of the discussion, the
strengths and weaknesses found in addition to the link for the complete discussion.
Figure 5.36 shows the window Create Knowledge Relating to a Discussion.

Figure 5.36 - Maintenance of Knowledge Items

Discussion forums are an effective means of communication and share tacit know-
ledge among organization members, besides being a source for creating new know-
ledge items and a tool to support group work. Thus, it was decided to integrate
some discussion environment to Testing KM Portal forums.

An integration process is in progress from the JForum2 environment. The JForum
allows to instantiate a custom discussion forums environment for an organization
providing functionalities, such as: registration of discussion forums, membership of
topics, as well as user registration and their participation in the topics available.

5.5 Evaluation

Testing KM Portal was evaluated by leaders of two different projects. One was a
sub-project leader of ICAMMH and the other is one of the project coordinators of
On-Board Data Handling (OBDH) Software, inside Inertial Systems for Aerospace
Application (SIA) Project. It is important to note that the evaluation was quite
preliminary as ICAMMH was in the end and the testing activities of OBDH software
are in the initial phase. However, meetings, with the leaders of both the projects
by means of presentations and system demonstrations, lead to improve the Portal.

2http://jforum.net/

139

Both the leaders stressed the importance of such a system to benefit Software Testing
Processes, in particular, to critical systems such as developed at INPE and DCTA.

With respect to ICAMMH, it was observed that the Portal would be extremely
valid for the project development. As the project dealt with a significant number
of resources (both human and others), it was observed that there was a loss of
knowledge due to the turnover rate of the team members. Therefore, according to the
leader of ICAMMH, a Portal such as Testing KM, would be definitely beneficial in
tracking, for example, similar test cases, and project them to other similar situations
in different modules and also in future projects.

Due to time limitations, it would be impractical to adapt the Portal to second
case study, OBDH, especially as the testing activities of OBDH software are in
the beginning. Moreover, as SIA deals with critical systems, there is an issue of
confidentiality and other factors. Therefore, the initial idea was to use what was
already done for ICAMMH to SIA. Interestingly, most of the situations presented
by SIA were completely compatible with what was already developed for ICAMMH.
Naturally, there would be a point that more extensions or a specific adaptation may
have to be developed depending on the particular specificity of SIA.

The second project analyzed is the first version of the OBDH software for the on-
board computer of Project SIA. This project aims, among others, the development
of a computational system for OBDH an Attitude and Orbit Control (AOC) of satel-
lites that can be adapted for future space applications at INPE. The first version of
the OBDH software is in testing phase at the moment. The final version of this soft-
ware will add all the functionalities of OBDH of the satellite. Its main functionalities
are: (i) receiving and analyzing ground station telecommands; (ii) Formatting and
transmission of telemetry; (iii) Data acquisition from on-board subsystems (Real
Time and Stored); (iv) Housekeeping; and (v) Fault Detection Isolation and Recov-
ery (FDIR).

With respect to OBDH software, the leader´s evaluation about the Portal was that
such a Portal would be very important while dealing with critical systems. However,
he pointed out that the main issue is that the organizations that deal with Software
Testing must be open minded in order to change their culture and be ready not only
to accept new concepts and tools but also to implement such new ideas. Since it is
the development of critical systems, organizations generally have a more conserva-
tive approach and adopt new methodologies/tools is made more slowly than in an
environment of commercial software development.

140

5.6 Final remarks about this chapter

In this chapter the T-KM was employed to build a KMS for managing software
testing knowledge, as a proof of concept of the feasibility of applying the proposed
framework. The prototype was developed in the context of ICAMMH project. The
data used as knowledge items of Test Case type corresponding to the data stored in
the repositories of MantisBT and TestLink tools. A second project also was analyzed,
the first version of the OBDH software inside SIA Project. Finally, Testing KM
Portal created was evaluated by leaders of projets ICAMMH and OBDH software.

In the next chapter are presented: the main considerations of this research, the main
proposed solution contributions, the main limitations and difficulties encountered,
suggestions for future work, and the final considerations.

141

6 CONCLUSIONS

This chapter presents the main conclusions of this work. The following sections
present: the main considerations of this research, its main contributions, the main
limitations and difficulties encountered, suggestions for future work, and the final
considerations.

6.1 General considerations

This work defines a Knowledge Management (KM) framework, called T-KM, to
manage software testing knowledge, so that different testing knowledge items are
collected, shared, reused and improved throughout the organization. T-KM is an
ontology-based framework for guiding KM initiatives in the software testing domain,
supported by a Knowledge Management System (KMS).

KM in software testing has shown to be a very promising research area, since it KM
helps in handling knowledge within the organization in several respects, as shown by
a systematic mapping conducted (Section 2.3.1). However, the mapping also showed
that KM in software testing still seems to be a challenge, mainly on how to represent
knowledge. This can be achieved by representing the information using, for example,
ontologies. Although recognized as an important instrument by the KM community
(BENJAMINS et al., 1998; KIM, 2000; STAAB et al., 2001), ontologies are not being
widely used in KM initiatives in software testing. Thus, assuming that ontology-
based KM applied to software testing is an important and a promising research
line, a SLR was conducted in order to investigate ontologies in the software testing
domain. 12 ontologies addressing the software testing domain were identified. These
ontologies have several limitations. Therefore, a Reference Ontology on Software
Testing (ROoST) (SOUZA et al., 2013b) was developed, to contemplate the necessary
characteristics of a “beautiful ontologies” (D’AQUIN; GANGEMI, 2011) and meet the
objectives of this thesis.

Once established an ontology for software testing, a process to guide organizations in
the accomplishment of KM in software testing was also developed. Thus a framework
was generated, consisting of two main components: ROoST and a process with a
set of guidelines for implementing the KM in software testing organizations. As a
proof of concept of the framework, a prototype of a Testing KM Portal has been
developed under the T-KM framework to evaluate the framework. Moreover, data
from an existing project were used and Testing KM Portal was also evaluated by
project leaders from two actual scenario.

143

Based on the results presented, it is believed that the T-KM framework constitutes
a guide to support the implementation of KM initiatives in the software testing
domain. The support of a KMS in software testing can guide team members test
the reuse of knowledge items, such as: Test Cases, Lessons Learned, Knowledge
Regarding Discussions and Mined Items. Thus, the implementation of a KMS can
support learning through the sharing of knowledge acquired when there is available
knowledge, because this facilitates the sharing and use of organizational knowledge,
so that members of the organization are comfortable in interacting with KM in
the organization. Moreover, a KMS can also support the management of skills and
abilities of the organization members, because people best placed to make a specific
decision or solve a particular problem can be found.

6.2 Contributions

Although the knowledge in software testing is necessary, a systematic search of the
literature (Section 2.3.1) shows that solutions that exist are not enough to efficiently
perform all testing activities, when it comes to KM within the organization. Thus,
the main contribution of this thesis is a KM framework to manage software testing
knowledge. This framework (T-KM) provides guidance and direction on how KM in
software testing should be carried out in the organization.

Besides the main contribution that is the framework, each of its their components
featuring a particular contribution, since they are used and evolved in the context
of the framework as a whole, can also be used and evolved independently. So, the
following contributions are also in order:

(a) A Reference Ontology on Software Testing (ROoST). The KM commu-
nity recognizes ontologies as an important instrument for representing
KM (BENJAMINS et al., 1998; MAEDCHE; VOLZ, 2001; AHMAD et al., 2011;
VALASKI et al., 2012). ROoST helps to address issues related with the ap-
plication effectively of KM in software testing so that knowledge items
can be shared and reused. For properly managing testing knowledge, it
is necessary to have a common understanding of the testing concepts, in
order to associate semantics to a large volume of test information. ROoST
helps to minimize this problem. Further, ROoST includes many important
characteristics with regard to “beautiful ontologies” (D’AQUIN; GANGEMI,
2011).

(b) A process defines a set of fundamental principles for implementing KM in

144

Software Testing. This process provides directions on how to identify KM
goals that are specific for a particular software testing organization, and
how to achieve a Knowledge Management System (KMS) to support the
organization’s KM initiative in software testing.

Besides the contributions directly related to the framework, additional contributions
were also achieved:

(a) Making evident some aspects associated to the employment of KM in soft-
ware testing through a mapping study. This mapping study, among other
aspects investigated, provided an overview of the main problems reported
by organizations related to the lack of knowledge about software testing
as well as the actual benefits of the current studies of KM in software tes-
ting. These results show areas for future research and provides a map that
allows appropriately to position new research activities.

(b) Making evident how widespread are the use of ontologies for managing
software testing, and the characteristics of such ontologies through a Syste-
matic Literature Review (SLR). 12 different ontologies were found applied
in various aspects of the domain of software testing. Although these ontolo-
gies have several limitations and considered inappropriate for purposes of
this thesis, this SLR showed different contexts in that these ontologies are
applied and that could guide new investigations besides KM. Furthermore,
the realization of this SLR motivated the creation of ROoST.

(c) Partial implementation of ROoST in a language epistemological level
(OWL). One advantage of using ontology in OWL is that it can promote
other research possibilities on ROoST in a computational ontology lan-
guage.

(d) Survey to identify a specific scenario the software testing domain to exercise
the KM of most interest for experts in the software testing field

(e) Requirements definition and development of a Testing KM Portal. These
requirements help to specify how services of creation, evaluation, dissemi-
nation, valuation and maintenance of items of knowledge can be performed
on an KMS specific to software testing.

145

6.3 Main Limitations and Difficulties

Some of the main limitations and difficulties encountered in this work are listed
below.

(a) The framework could not be applied in software testing organizations dur-
ing the project development;

(b) Although two real projects have made their data available to be used, a
significant interpretation of not only the data but also the test processes
followed by each project was necessary. Besides, it was necessary to seek
help of the project leaders and deal with their time limitations.

(c) With regard to the development of Testing KM Portal, all procedures
related to the load of knowledge items available in ICAMMH project from
MantisBT and TestLink tool, constituted in some difficulties, since there
is no reference documentation of these tools test that show an expressive
model of their databases.

6.4 Future Work

This work has opened up new opportunities for research field to support the im-
plementation of KM in software testing. However, there are still extensions to be
made. Considering the current stage of the work presented here, some of the future
directions are highlighted below.

(a) Broaden the coverage of ROoST and evaluate it more accurately;

(b) Mapping the entire ROoST for an Ontology Web Language (OWL);

(c) Apply the framework in ongoing real scenarios to evaluate the results and
use them to improve the T-KM framework;

(d) Semantic integration of several testing tools with the Testing KM Portal
using ROoST;

(e) Similarly to Yellow Pages, systems for discussion forums, mined items and
others should be integrated into the Portal;

(f) Investigate other data mining methods and algorithms to be applied in
the knowledge repository of the Portal and to direct more searches in this
area;

146

(g) Improve the Testing KM Portal with respect to non-functional require-
ments, such as usability, performance, availability;

(h) Conduct experiments.

6.5 Final remarks about this thesis

This section presents some considerations. Several problems were identified with re-
spect to knowledge in software testing within organizations that develop software.
Only a very few solutions were found, in the literature, to deal with such issues.
These issues can be, in fact, solved at least to a certain extent by employing T-KM
framework showed in this thesis. As this is an academic work, many other possi-
bilities could be explored in order to improve the software testing processes within
commercial, industrial and academic sectors that have to deal with software develop-
ment that have to necessarily perform rigorous software testing in order to improve
the product quality.

147

REFERENCES

ABDULLAH, R.; ERI, Z. D.; TALIB, A. M. A model of knowledge management
system in managing knowledge of software testing environment. In: MALAYSIAN
CONFERENCE IN SOFTWARE ENGINEERING (MYSEC), Johor Bahru,
Malaysia. Proceedings... Johor Bahru: IEEE, 2011. p. 229–233. 3, 4

ABECKER, A.; BERNARDI, A.; HINKELMAN, K. Toward a technology for
organizational memories. IEEE Intelligent Systems, German Research Center
for Artificial Intelligence, v. 13, No. 3, p. 40–48, 1998. 20

ABECKER, A.; ELST, L. van. Ontologies for knowledge management.
International Handbooks on Information Systems, Springer-Verlag, p.
435–454, 2004. 48, 52

ABRAN, A.; BOURQUE, P.; DUPUIS JAMES, R.; MOORE, W. Guide to the
software engineering body of knowledge - SWEBOK. IEEE - 2004 Version,
2004. Available from: <http://www.computer.org/portal/web/swebok/home>.
Access in: November, 2013. 2, 12, 13, 14, 69, 80, 83

AHMAD, M. N.; ZAKARIA, N. H.; SEDERA, D. Ontology-based knowledge
management for enterprise systems. International Journal of Enterprise
Information Systems, v. 7, p. 64–90, 2011. 5, 18, 144

ANANDARAJ, A.; KALAIVANI, P.; RAMESHKUMAR, V. Development of
ontology-based intelligent system for software testing. International Journal of
Communication, Computation and Innovation, 2011. 66, 67, 69, 70, 72, 74

ANDRADE, J.; ARES, J.; MARTINEZ, M.-A.; PAZOS, J.; RODRIGUEZ, S.;
ROMERA, J.; SUAREZ, S. An architectural model for software testing lesson
learned systems. Information and Software Technology, University of A
Coruña, UDIMA-Madrid Open University, Technical University of Madrid. Spain,
v. 55, No 1, p. 18–34, 2013. 2, 3, 4, 40, 46

ANTUNES, B.; SECO, N.; GOMES, P. Using ontologies for software development
knowledge reuse. In: ARTIFICIAL INTELLIGENCE PORTUGUESE
CONFERENCE ON PROGRESS IN ARTIFICIAL INTELLIGENCE, Heidelberg,
Germany. Proceedings... Heidelberg: Springer, 2007. p. 357–368. 52

ARNICANS, G.; ROMANS, D.; STRAUJUMS, U. Semi-automatic generation of a
software testing lightweight ontology from a glossary based on the ONTO6

149

http://www.computer.org/portal/web/swebok/home

Methodology. Frontiers in Artificial Intelligence and Applications, v. 249,
p. 263–276, 2013. 65, 67, 69, 70, 72, 73, 75

BAI, X.; LEE, S.; TSAI, W.; Y., C. Ontology-based test modeling and partition
testing of web services. In: INTERNATIONAL CONFERENCE ON WEB
SERVICES, Beijing, China. Proceedings... Beijing: IEEE, 2008. p. 465–472. 65,
67, 69, 70, 72, 74

BARBOSA, E. F.; NAKAGAWA, E. Y.; MALDONADO, J. C. Towards the
establishment of an ontology of software testing. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING AND KNOWLEDGE
ENGINEERING, San Francisco, CA. Proceedings... San Francisco: DBLP, 2006.
p. 522–525. 65, 67, 68

BARBOSA, E. F.; NAKAGAWA, E. Y.; RIEKSTIN, A. C.; MALDONADO, J. C.
Ontology-based development of testing related tools. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING AND KNOWLEDGE
ENGINEERING, San Francisco, CA. Proceedings... San Francisco: CEUR
Workshop Proceedings, 2008. 66, 67, 68

BARCELOS, P. P. F.; SANTOS, V. A.; SILVA, F. B.; MONTEIRO, M. E.;
GARCIA, A. S. An automated transformation from OntoUML to OWL and
SWRL. In: Seminário de Pesquisa em Ontologias do Brasil (ONTOBRAS), 2013,
Belo Horizonte, MG. Proceedings... Belo Horizonte: CEUR Workshop
Proceedings, 2013. v. 1041, p. 130–141. 95

BASTOS, A.; RIOS, E.; CRISTALLI, R.; MOREIRA, T. Base de
conhecimento em testes de software. 2. ed. São Paulo: Martins Editora
Livraria, 2007. 12, 14, 15

BELLATRECHE, L.; DUNG, N. X.; PIERRA, G. Contribution of ontologybased
data modeling to automatic integration of electronic catalogues within engineering
databases. Computers in Industry, v. 57, p. 711–724, 2006. 57

BENJAMINS, R.; FENSEL, D.; GOMEZ-PEREZ, A. Knowledge management
through ontologies. In: THE SECOND INTERNATIONAL CONFERENCE ON
PRACTICAL ASPECTS OF KNOWLEDGE MANAGEMENT, Basel,
Switzerland. Proceedings... Basel: IEEE, 1998. p. 29–30. 2, 5, 18, 22, 52, 143, 144

BLACK, R.; MITCHELL, J. L. Advanced software testing: guide to the
ISTQB advanced certification as an advanced technical test analyst. 3. ed. USA:
Rocky Nook, 2008. 12, 80, 83

150

BRAGA, G.; ROMANO, B. L.; CAMPOS, H. F.; VIEIRA, R.; CUNHA, A. M.;
DIAS, L. A. V. Integrating amazonic heterogeneous hydrometeorological
databases. In: INFORMATION TECHNOLOGY: NEW GENERATIONS, 2009.
SIXTH INTERNATIONAL CONFERENCE ON, 2009, Las Vegas, NV.
Proceedings... Las Vegas: IEEE, 2009. p. 119–124. 94

BRINGUENTE, A. C. O.; FALBO, R. A.; GUIZZARDI, G. Using a foundational
ontology for reengineering a software process ontology. Journal of Information
and Data Management, v. 2, p. 511–526, 2011. 60, 165

BUKOWITZ, W.; WILLIAMS, R. L. The knowledge management fieldbook.
Great Britain: Financial Times Prentice Hall, 1999. ISBN 9780273638827. 17

CAI, L.; TONG, H.; LIU, Z.; ZHANG, J. Test case reuse based on ontology. In: IN
PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE
COMPUTING, Shanghai, China. Proceedings... Shanghai: IEEE, 2009. p. 103 –
108. 66, 67, 69, 70, 72, 74, 75

COELHO, A. G. N. Uma infraestrutura de gerência de conhecimento em
organizações de software aplicada à gestão de riscos. Master Thesis
(Master in Computing) — Universidade Federal do Espírito Santo (UFES),
Vitória, ES, Brazil, 2010. 18, 19, 20, 105, 114, 116, 125, 130

D’AQUIN, M.; GANGEMI, A. Is there beauty in ontologies? Applied Ontology,
v. 6, n. 3, p. 165–175, 2011. 6, 51, 71, 98, 99, 143, 144

DAVENPORT, T. H.; PRUSAK, L. Working knowledge: how organizations
manage what they know. 2. ed. Boston, USA: Harward Business School Press„
2000. 15, 17, 18, 113

DAVIES, J.; FENSEL, D.; HARLEMEN, F. V. Towards the semantic web:
ontology-driven knowledge management. New York, USA: John Wiley & Sons,
2003. 48, 52

DESAI, A. Knowledge management and software testing. In: INTERNATIONAL
CONFERENCE AND WORKSHOP ON EMERGING TRENDS IN
TECHNOLOGY - TCET, Mumbai, Maharashtra, India. Proceedings... Mumbai:
IEEE, 2011. p. 767–770. 3, 4, 47

DING, Y.; FENSEL, D. Ontology library systems: the key to successful ontology
reuse. In: THE FIRST SEMANTIC WEB WORKING SYMPOSIUM, California,
USA. Proceedings... California: DBPL, 2001. p. 93–112. 55

151

DYBA, T.; DINGSOYR, T.; HANSSEN, G. Applying systematic reviews to diverse
study types: an experience report. In: INTERNATIONAL SYMPOSIUM ON
EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT (ESEM’07),
1., Madrid, Spain. Proceedings... Madrid: IEEE, 2007. p. 225–234. 27, 64

EVERETT, G. D.; RAYMOND, M. J. Software testing across the entire
software development life cycle. 3. ed. Canada: Published by John Wiley &
Sons, Inc, 2007. 15

EVERMANN, J. Towards a cognitive foundation for knowledge representation.
Information Systems Journal, v. 15, No. 2, p. 147–178, 2005. 59

FALBO, R.; NATALI, A.; MIAN, P.; BERTOLLO, G.; RUY, F. ODE:
ontology-based software development environment. In: CONGRESO
ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN, La Plata, Argentina.
Proceedings... La Plata: DBLP, 2003. p. 1124–1135. 105

FALBO, R. A. Experiences in using a method for building domain ontologies. In:
INTERNATIONAL WORKSHOP ON ONTOLOGY IN ACTION.
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND
KNOWLEDGE ENGINEERING, Banff, Canada. Proceedings... Banff: DBLP,
2004a. p. 474–477. 79, 99

FALBO, R. A.; ARANTES, D. O.; NATALI, A. C. C. Integrating knowledge
management and groupware in a software development environment. In:
INTERNATIONAL CONFERENCE ON PRACTICAL ASPECTS OF
KNOWLEDGE MANAGEMENT, Vienna, Austria. Proceedings... Vienna:
Springer, 2004d. p. 94–105. 113

FALBO, R. A.; BARCELLOS, M.; NARDI, J.; GUIZZARDI, G. Organizing
ontology design patterns as ontology pattern languages. In: EXTENDED
SEMANTIC WEB CONFERENCE, Montpellier, France. Proceedings...
Montpellier: Springer, 2013. 6, 59, 60, 62, 80, 81, 165, 166, 167, 168, 169, 170

FALBO, R. A.; BERTOLLO, G. A software process ontology as a common
vocabulary about software processes. International Journal of Business
Process Integration and Management, v. 4, p. 239–250, 2009. 165

FALBO, R. A.; MENEZES, A. R. A systematic approach for building ontologies.
In: IBERO-AMERICAN CONFERENCE ON PROGRESS IN ARTIFICIAL
INTELLIGENCE (IBERAMIA’98), Lisbon, Portugal. Proceedings... Lisbon:
Springer, 1998b. p. 349–360. 57

152

FALBO, R. A.; RUY, F. B.; GUIZZARDI, G.; BARCELLOS, M. P.; ALMEIDA,
J. P. A. Towards an enterprise ontology pattern language. In: SYMPOSIUM ON
APPLIED COMPUTING, Gyeongju, Korea. Proceedings... Gyeongju: ACM,
2014. 6, 61, 63, 80, 90, 171, 172, 173

FAYYAD, U.; GREGORY, P.; P.SMYTH, P. Knowledge discovery and data
mining: towards a unifying framework. In: INTERNATIONAL CONFERENCE
ON KNOWLEDGE DISCOVERY AND DATA MINING, Portland, Oregon.
Proceedings... Portland: IEEE, 1996a. p. 82–88. 113

. From data mining to knowledge discovery in databases. American
Association for Artificial Intelligence, p. 37–54, 1996b. 20, 21

FENSEL, D. Ontologies: silver bullet for knowledge management and electronic
commerce. 2. ed. New York: Springer, 2003. 22

FENSEL, D.; HARMELEN, F. v.; KLEIN, M.; AKKERMANS, H.
On-To-Knowledge: ontology-based tools for knowledge management. In:
EBUSINESS AND EWORK 2000 CONFERENCE, Madrid, Spain.
Proceedings... Madrid, 2000. p. 82–88. 57

FISCHER, G.; OSTWALD, J. Knowledge management: problems, promises,
realities, and challenges. IEEE Intelligent Systems, v. 16, p. 60–72, 2001. 113

GÓMEZ-PÉREZ, A.; FERNÁNDEZ, M.; VICENTE, A. Towards a method to
conceptualize domain ontologies. In: WORKSHOP ON ONTOLOGICAL
ENGINEERING, 1996, Budapest, Hungary. Proceedings... Budapest: IEEE,
1996. 57

GODBOLE, N. S. Software quality assurance: principles and practice. Oxford,
UK: Alpha Science International, 2006. 1

GRENON, P.; SMITH, B.; GOLDENBERG, L. Biodynamic ontology: applying
BFO in the biomedical domain. Stud. Health Technol. Inform., p. 20–38, 2004.
56

GRUBER, T. R. Toward principles for the design of ontologies used for knowledge
sharing. In: FORMAL ONTOLOGY IN CONCEPTUAL ANALYSIS AND
KNOWLEDGE REPRESENTATION, Padova, Italy. Proceedings... Padova:
ACM, 1993. 2, 55

153

GRUNINGER, M.; FOX, M. Methodology for the design and evaluation of
ontologies. In: WORKSHOP ON BASIC ONTOLOGICAL ISSUES IN
KNOWLEDGE SHARING, Montreal, Canada. Proceedings... Montreal, 1995. 57

GUARINO, N. Formal ontology and information systems. In: INTERNATIONAL
CONFERENCE IN FORMAL ONTOLOGY AND INFORMATION SYSTEMS,
Trento, Italy. Proceedings... Trento: ACM, 1998. p. 3 – 15. 50, 51, 52, 55, 56

. The ontological level: revisiting 30 years of knowledge representation.
Conceptual modelling foundations and applications, p. 52–67, 1999. 58

GUIZZARDI, G. Ontological foundations for structural conceptual
models. The Netherlands: Universal Press, ISBN 90-75176-81-3, 2005. 7, 56, 59,
80, 86, 165, 167

. On ontology, ontologies, conceptualizations, modeling languages, and
(meta)models. In: FRONTIERS IN ARTIFICIAL INTELLIGENCE AND
APPLICATIONS, DATABASES AND INFORMATION SYSTEMS IV, Amsterdã,
The Netherlands. Proceedings... Amsterdã: ACM, 2007. p. 18–39. 6, 51, 70

GUIZZARDI, G.; FALBO, R.; GUIZZARDI, R. Grounding software domain
ontologies in the unified foundational ontology (UFO): the case of the ODE
software process ontology. In: IBEROAMERICAN WORKSHOP ON
REQUIREMENTS ENGINEERING AND SOFTWARE ENVIRONMENTS,
Recife, PE. Proceedings... Recife: DBLP, 2008. p. 127–140. 7, 75, 80, 165

GUIZZARDI, G.; GERD, W.; HERRE, H. On the foundations of UML as an
ontology representation language. In: INTERNATIONAL CONFERENCE ON
KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT,
Whittlebury Hall, UK. Proceedings... Whittlebury Hall: Springer, 2004. p.
47–62. 59

GUO, S.; ZHANG, J.; TONG, W.; LIU, Z. An application of ontology to test case
reuse. In: Proceedings... Jilin: IEEE, 2011. p. 19–22. 65, 67, 70, 72, 73

HEIJST, G.; SCHREIBER, A. T.; WIELINGA, B. J. Roles are not classes: a reply
to nicola guarino. International Journal of Human-Computer Studies,
v. 46, p. 311–318, 1997. 55

HENDRIKS, P. H. J.; VRIENS, D. J. Knowledge-based systems and knowledge
management: friends or foes? Information & Management, v. 35, p. 113–125,
1999. 18

154

HONG, Z. A framework for service-oriented testing of web services. In:
COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE. DESIGN
AND ASSESSMENT OF TRUSTWORTHY SOFTWARE-BASED SYSTEMS,
Chicago, USA. Proceedings... Chicago: IEEE, 2006. p. 145 – 150. 65, 67

HUO, Q.; ZHU, H.; GREENWOOD, S. A multi-agent software environment for
testing web-based applications. In: INTERNATIONAL COMPUTER
SOFTWARE AND APPLICATIONS CONFERENCE. DESIGN AND
ASSESSMENT OF TRUSTWORTHY SOFTWARE-BASED SYSTEMS, Dallas,
TX, USA. Proceedings... Dallas: IEEE, 2003. p. 210–215. 65, 67

IEEE. THE INSTITUTE OF ELECTRIC AND ELECTRONIC ENGINEERS
(IEEE): standard glossary of software engineering terminology. IEEE Standard
610.12-1990, New York, NY, USA, 1990. 1, 11, 80, 87

. THE INSTITUTE OF ELECTRIC AND ELECTRONIC ENGINEERS
(IEEE): Standard for software test documentation. IEEE Standard 829-1998,
New York, NY, USA, 1998. 14, 80

ISO/IEC. THE INSTITUTE OF ELECTRIC AND ELECTRONIC ENGINEERS
(IEEE): systems and software engineering - software life cycle processes. ISO/IEC
Std 12207-2008, 2008. 69

JANJIC, W.; ATKINSON, C. Utilizing software reuse experience for automated
test recommendation. In: INTERNATIONAL WORKSHOP ON AUTOMATION
OF SOFTWARE TEST, San Francisco, USA. Proceedings... San Francisco:
IEEE, 2013. p. 100–106. 4, 38, 47

JURISTO, N.; FERNDANDEZ, M.; GOMEZ-PEREZ, A. Methontology: from
ontological art towards ontological engineering. In: INNOVATIVE
APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE, Stanford,
USA. Proceedings... Stanford: Springer, 1997. p. 33–40. 69

KERKHOF, C.; ENDE, J.; BOGENRIEDER, I. Knowledge management in the
professional organization: a model with application to CMG software testing.
Knowledge and Process Management, v. 10, No. 2, p. 77–84, 2003. 4

KIM, H. M. Developing ontologies to enable knowledge management: integrating
business process and data driven approaches. In: WORKSHOP ON BRINGING
KNOWLEDGE TO BUSINESS PROCESSES, Stanford University.
Proceedings... Stanford: Spring, 2000. 2, 48, 52, 143

155

KITCHENHAM, B. A. Guidelines for performing systematic literature
reviews in software engineering. Keele University, 2007. Technical Report
EBSE-2007-01. Available from: <http://urlib.net/8JMKD3MGP7W/38CDFNB>.
Access in: September, 2013. 22, 24

KITCHENHAM, B. A.; BUDGEN, D.; BRERETON, O. Using mapping studies as
the basis for further research: a participant-observer case study. Journal of
Information and Software Technology, p. 638–651, 2011. 5, 22

KOSCIANSKI, A.; SANTOS, M. Qualidade de software: aprenda as
metodologias e técnicas mais modernas para o desenvolvimento de software. 2. ed.
São Paulo: Novatec Editora, 2007. 1

LAMAS, E.; SOUZA, E. F.; NASCIMENTO, M. R.; DIAS, L. A. V.; SILVEIRA,
F. F. Organizational testing management maturity model for a software product
line. In: INTERNATIONAL CONFERENCE ON INFORMATION
TECHNOLOGY, IEEE COMPUTER SOCIETY, Las Vegas, NV. Proceedings...
Las Vegas: IEEE, 2010b. 3

LAMAS, E. A. Uma estrutura de maturidade operacional para gestão de
teste de software aplicada a um projeto de monitoramento hidrológico.
Master Thesis (Master in Computer Science) — Instituto Técnologico de
Aeronáutica (ITA), São José dos Campos, SP, Brazil, 2010a. 3

LEVESON, N. G.; TURNER, C. S. An investigation of the therac-25 accidents.
Computer, v. 26, p. 18–41, 1993. 1

LI, X.; PARSONS, J. Ontological semantics for the use of UML in conceptual
modeling. In: TUTORIALS, POSTERS, PANELS AND INDUSTRIAL
CONTRIBUTIONS AT THE INTERNATIONAL CONFERENCE ON
CONCEPTUAL MODELING, 2007, Darlinghurst, Australia. Proceedings...
Darlinghurst: ACM. p. 179–184. 59

LI, X.; ZHANG, W. Ontology-based testing platform for reusing. In:
INTERNATIONAL CONFERENCE ON INTERNET PLATFORM FOR
REUSING, Henan, China. Proceedings... Henan: IEEE, 2012. p. 86–89. 3, 4, 43,
48, 49, 50, 65, 67, 70, 73

LIAO, S. Knowledge management technologies and applications-literature. Expert
Systems with Applications, v. 25, p. 155–164, 2003. 17

156

http://urlib.net/ 8JMKD3MGP7W/38CDFNB

LIU, Y.; WU, J.; LIU, X.; GU, G. Investigation of knowledge management
methods in software testing process. In: INTERNATIONAL CONFERENCE ON
INFORMATION TECHNOLOGY AND COMPUTER SCIENCE, Kiev, Ukraine.
Proceedings... Kiev: IEEE, 2009. p. 90–94. 3, 47, 49

MAEDCHE, A.; MOTIK, B.; STOJANOVIC, L.; STUDER, R.; VOLZ, R.
Ontologies for enterprise knowledge management. IEEE Intelligent Systems, p.
26–33, 2003. 18

MAEDCHE, A.; VOLZ, R. The text-to-onto ontology extraction and maintenance
environment to appear. In: WORKSHOP ON INTEGRATIN DATA MINING
AND KNOWLEDGE MANAGEMENT, San Jose, California. Proceedings... San
Jose, 2001. 5, 144

MANTIS. 2013. Available from: <http://www.mantisbt.org/>. Access in:
November, 2013. 118

MATHUR, A. P. Foundations of software testing. 5. ed. India: Dorling
Kindersley (India), Pearson Education in South Asia, 2012. 1, 12, 13, 14, 80, 83, 89

MONTONI, M. A. Aquisição de conhecimento: uma aplicação no processo de
desenvolvimento de software. Master Thesis (Master in Computer Science) —
Universidade Federal do Rio de Janeiro - COPPE/UFRJ, Rio de Janeiro, RJ,
Brazil, 2003. 18, 19, 130

MYERS, G. J. The art of software testing. 2. ed. Canada: John Wiley and
Sons, 2004. 12, 13, 80

NAKAGAWA, E. Y.; BARBOSA, E. F.; MALDONADO, J. C. Exploring
ontologies to support the establishment of reference architecture: an example on
software testing. In: WORKING IEEE/IFIP CONFERENCE ON SOFTWARE
ARCHITECTURE (WICSA)/EUROPEAN CONFERENCE ON SOFTWARE
ARCHITECTURE (ECSA), Cambridge, UK. Proceedings... Cambridge: IEEE,
2009. p. 249–252. 65, 67

NASA. NASA jet propulsion laboratory: mars climate orbiter mission. Cape
Canaveral Air Force Station, Florida, 2014. Available from:
<http://www.jpl.nasa.gov/missions/mars-climate-orbiter/>. Access in:
January, 2014. 1

NASSER, V. H.; DU, W.; MACISAAC, D. Knowledge-based software test
generation. In: INTERNATIONAL CONFERENCE ON SOFTWARE

157

http://www.mantisbt.org/
http://www.jpl.nasa.gov/missions/mars-climate-orbiter/

ENGINEERING AND KNOWLEDGE ENGINEERING, Boston, Massachusetts.
Proceedings... Boston: DBLP, 2009. p. 312–317. 65, 67, 70, 72, 74

NATALI, A.; ROCHA, A.; TRAVASSOS, G.; MIAN, P. Integrating verification
and validation techniques knowledge into software engineering environments. In:
JORNADAS IBEOAMERICANAS DE INGENIERíA DEL SOFTWARE E
INGENIERíA DEL CONOCIMIENTO, Madrid, Spain. Proceedings... Madrid,
2004. p. 419–430. 3

NATALI, A. C. C. Uma Infraestrutura para gerência de conhecimento em
um ambiente de desenvolvimento de software. Master Thesis (Master in
Computer Science) — Universidade Federal do Espirito Santo (UFES), Vitória,
ES, Brazil, 2003. 18, 20, 113

NOGESTE, K.; WALKER, D. H. T. Using knowledge management to revise
software-testing processes. Journal of Workplace Learning, v. 18, p. 6–27,
2003. 3, 38

NONAKA, I.; KROGH, G. Tacit knowledge and knowledge conversion:
controversy and advancement in organizational knowledge creation theory.
Organization Science, v. 30, p. 635–652, 2009. 16, 17, 113

NONAKA, I.; TAKEUCHI, H. The knowledge-creating company: how
japanese companies create the dynamics of innovation. 1. ed. USA: Oxford
University Press, Oxford, 1997. 15, 16, 35, 42, 47

NOY, N.; MCGUINNESS, D. Ontology development 101 a guide to
creating your first ontology. Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report
SMI, 2001. Available from: <http://citeseer.ist.psu.edu/viewdoc/download?
doi=10.1.1.136.5085&rep=rep1&type=pdf>. Access in: November, 2013. 69

NUNAMAKER, J.; ROMANO, N.; BRIGGS, R. Framework for collaboration and
knowledge management. In: ANNUAL HAWAII INTERNATIONAL
CONFERENCE ON SYSTEM SCIENCES, Washington, DC, USA.
Proceedings... Washington: IEEE, 2001. v. 1. 18

O’LEARY, D. Using ai in knowledge management: knowledge bases and
ontologies. IEEE Intelligent Systems, University of Southern California, v. 13,
n. 3, p. 34–39, 1998b. 55

158

http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.136.5085&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.136.5085&rep=rep1&type=pdf

O’LEARY, D.; STUDER, R. Knowledge management: an interdisciplinary
approach. IEEE Intelligent Systems, v. 16, No. 1, 2001. 17, 22

O’LEARY, D. E. Enterprise knowledge management. IEEE Computer
Magazine, p. 54–61, 1998a. 3, 17, 18, 19, 21, 22, 113

OWL. OWL web ontology language. Word Wide Web Consortium (W3C),
2003. Available from: <http://www.w3.org/TR/2003/WD-owl-ref-20030331/>.
Access in: Sep. 2013. 59

PEASE, A.; NILES, I.; LI, J. The suggested upper merged ontology: a large
ontology for the semantic web and its applications. In: WORKSHOP ON
ONTOLOGIES AND THE SEMANTIC WEB, Edmonton, Canada.
Proceedings... Edmonton: IEEE, 2002. 56

PECHEUR, C. Verification and validation of autonomy software at NASA. NASA
Ames Research, Moffett Field, USA, 2000. 1

PERRY, W. E. Effective methods for software testing. 3. ed. Canada: Wiley
Publishing, Inc., 2006. 15

PETERSEN, K.; FELDT, R.; MUJTABA, S.; MATTSSON, M. Systematic
mapping studies in software engineering. In: INTERNATIONAL CONFERENCE
ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, Bari,
Italy. Proceedings... Bari: IEEE, 2008. p. 68–77. 22, 25, 32, 34

PRESSMAN, R. S. Software engineering: a practitioner’s approach. 6. ed. New
York: McGraw-Hill series in computer science, 2006. 12, 80

PRESUTTI, V.; DAGA, E.; GANGEMI, A.; BLOMQVIST, E. Extreme design
with content ontology design patterns. In: WORKSHOP ON ONTOLOGY
PATTERNS, Washington, USA. Proceedings... Washington: CEUR Workshop
Proceedings, 2009. 60

PROBST, G.; RAUB, S.; ROMHARDT, K. Managing knowledge: building
blocks for success. Chichester, England: John Wiley & Sons, 2000. 18

RDF. Resource description framework (RDF). Word Wide Web Consortium
(W3C), 2004. Available from: <http://www.w3.org/RDF/>. Access in: September,
2013. 59

159

http://www.w3.org/TR/2003/WD-owl-ref-20030331/
http://www.w3.org/RDF/

RIOS, J. A. Ontologias: alternativa para a representação do conhecimento explícito
organizacional. In: ENCONTRO NACIONAL DE CIÊNCIA DE INFORMAÇÃO,
Salvador, Bahia. Proceedings... Salvador: DBPL, 2005. 55

RUBENSTEIN-MONTANO, B.; LIEBOWITZ, J.; BUCHWALTER, J.; MCCAW,
D.; NEWMAN, B.; K., R. Smartvision:a knowledge-management methodology.
Journal of Knowledge Management, v. 5, n. 2, p. 300 – 310, 2000. 77

RUGGLES, R. The state of the notion: knowledge management in practice.
California Management Review, v. 40, n. 3, p. 80–89, 1998. 19

RYU, H.; RYU, D.; BAIK, J. A strategic test process improvement approach using
an ontological description for MND-TMM. In: INTERNATIONAL
CONFERENCE ON COMPUTER AND INFORMATION SCIENCE, Portland,
OR. Proceedings... Portland: IEEE, 2011. p. 561–566. 65, 67, 69, 70, 72, 74

SANTIAGO JÚNIOR, V. A. and VIJAYKUMAR, N. L. and GUIMARÃES, D.
and AMARAL, A. S. and Souza, E. F. . An environment for automated test case
generation from statechart based and finite state machine-based behavioral
models. In: INTERNATIONAL CONFERENCE ON SOFTWARE TESTING
VERIFICATION AND VALIDATION, 2003, Lillehammer, Norway. Lillehammer:
IEEE, 2008. p. 63–72. 3

SANTIAGO JÚNIOR, V. A. and VIJAYKUMAR, N. L. and SOUZA, E. F. and
GUIMARÃES, D. and COSTA, R. C. GTSC: automated model-based test case
generation from statecharts and finite state machines. In: Tools Session of the III
Congresso Brasileiro de Software: Teoria e Prática (CBSoft), Natal, RN.
Proceedings... Natal, 2012. p. 25–30. 3

SAPNA, P. G.; MOHANTY, H. An ontology based approach for test scenario
management. Communications in Computer and Information Science,
v. 141, p. 91–100, 2011. 66, 67, 69, 70, 72, 74

SOUZA, E. F.; EVARISTO, L.; VIJAYKUMAR, N. L. Ontology in software
testing: a systematic literature review. In: Seminário de Pesquisa em Ontologias do
Brasil (ONTOBRAS), Belo Horizonte, MG. Proceedings... Belo Horizonte:
CEUR Workshop Proceedings, 2013c. v. 1041, p. 71–82. 6, 63

SOUZA, E. F.; FALBO, R. A.; VIJAYKUMAR, N. L. Knowledge management
applied to software testing: a systematic mapping. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING AND KNOWLEDGE

160

ENGINEERING (SEKE 2013), Boston, USA. Proceedings... Boston: IEEE,
2013a. p. 562–567. 4, 5, 7, 21

. Using ontology patterns for building a reference sofware testing ontology.
In: INTERNATIONAL WORKSHOP ON VOCABULARIES, ONTOLOGIES
AND RULES FOR THE ENTERPRISE AND BEYOND (VORTE 2013),
Vancouver, BC. Proceedings... Vancouver: IEEE, 2013b. p. 21–30. 6, 76, 143

SOUZA, E. F.; SANTOS, R. Uso de mineração de dados para análise do
processo de teste. Technical Report, Instituto Nacional de Pesquisas Espaciais
(INPE), São José dos Campos, SP, Brazil, 2010. Available from:
<http://urlib.net/8JMKD3MGP7W/38CDFNB>. Access in: November, 2013. 112,
120

SPECIMILLE, M. S.; FALBO, R. A.; SOUZA, E. F. TKMP: um portal para
gerencia de conhecimento em teste de software. Work to be submitted in
Computer Science for obtaining Bachelor Degree. Universidade Federal do Espírito
Santo (UFES), Vitória, ES, Brazil. 2014. 125

STAAB, S.; MAEDCHE, A. Ontology engineering beyond the modeling of
concepts and relations. In: EUROPEAN CONFERENCE ON ARTIFICIAL
INTELLIGENCE (ECAI). WORKSHOP ON APPLICATIONS OF
ONTOLOGIES AND PROBLEM-SOLVING METHODS, Berlin, Germany.
Proceedings... Berlin, 2000. 52

STAAB, S.; STUDER, R.; SCHURR, H. P.; SURE, Y. Knowledge processes and
ontologies. Intelligent Systems, v. 16, p. 26–34, 2001. 2, 3, 18, 22, 48, 143

STOREY, J.; BARNETT, E. Knowledge management initiatives: learning from
failure. Journal of Knowledge Management, v. 4, n. 2, p. 145 – 156, 2000. 77

SWARTOUT, B.; PATIL, R.; KNIGHT, K.; RUSS, T. Toward distributed use of
large-scale ontologies. In: KNOWLEDGE ACQUISITION FOR
KNOWLEDGE-BASED SYSTEMS WORKSHOP, Banff, Canada.
Proceedings... Banff: Springer, 1996. 57

TESTLINK. 2013. Available from: <http://testlink.org/>. Access in:
November, 2013. 118

THRANE, C. Quantitative models and analysis for reactive systems. PhD
Thesis (Thesis in Computer Science) — Department of Computer Science -
Aalborg University, Denmark, 2011. Available from:

161

http://urlib.net/8JMKD3MGP7W/38CDFNB
http://testlink.org/

<http://people.cs.aau.dk/~crt/Thrane-thesis.pdf>. Access in: October,
2013. 1

USCHOLD, M. Building ontologies: towards a unified methodology. In: ANNUAL
CONF. OF THE BRITISH COMPUTER SOCIETY SPECIALIST GROUP ON
EXPERT SYSTEMS, Cambridge, UK. Proceedings... Cambridge, 1996b. p.
16–18. 55

USCHOLD, M.; GRUNINGER, M.; USCHOLD, M.; GRUNINGER, M.
Ontologies: principles, methods and applications. Knowledge Engineering
Review, v. 11, p. 93–136, 1996a. 55

USCHOLD, M.; JASPER, R. A framework for understanding and classifying
ontology applications. In: WORKSHOP ON ONTOLOGIES AND PROBLEM,
Stockholm, Sweden. Proceedings... Stockholm: CEUR Workshop Proceedings,
1999. p. 1–11. 55

USCHOLD, M.; KING, M. Towards a methodology for building ontologies. In:
PRESENTED AT THE WORKSHOP ON BASIC ONTOLOGICAL ISSUES IN
KNOWLEDGE SHARING, IJCAI’95, Edinburgh, Scotland. Proceedings...
Edinburgh, 1995. 69

VALASKI, O.; MALUCELLI, A.; REINEHR, S. Ontologies application in
organizational learning: a literature review. Expert Systems with
Applications, v. 39, p. 7555–7561, 2012. 5, 18, 144

W3C. World Wide Web Consortium. 2013. Available from: <www.w3c.br>.
Access in: September, 2013. 59

WIERINGA, R.; MAIDEN, N.; MEAD, N.; ROLLAND, C. Requirements
engineering paper classification and evaluation criteria: a proposal and a
discussion. Requirements Engineering, v. 11, p. 102–107, 2006. 25, 34, 39

WINCH, G. Knowledge management. Manufacturing Engineer, v. 78, p.
178–180, 1999. 19

WITTEN, I. H.; FRANK, E.; HALL, M. A. Data mining: practical machine
learning tools and techniques. 2. ed. San Francisco: Morgan Kaufmann, 2005. 120,
121

WONG, K. Y.; ASPINWALL, E. Knowledge management implementation
frameworks: a review. Knowledge and Process Management, v. 11, n. 2, p.
93–104, 2004. 7, 77

162

http://people.cs.aau.dk/~crt/Thrane-thesis.pdf
www.w3c.br

WU, Y. L. J.; XUEMEI, L. G. G. Investigation of knowledge management
methods in software testing process. In: INTERNATIONAL CONFERENCE ON
INFORMATION TECHNOLOGY AND COMPUTER SCIENCE, Kiev, Ukraine.
Proceedings... Kiev: IEEE, 2009. p. 90–94. 3, 4

XU-XIANG, L.; WEN-NING, Z. The PDCA-based software testing improvement
framework. In: INTERNATIONAL CONFERENCE ON APPERCEIVING
COMPUTING AND INTELLIGENCE ANALYSIS, Chengdu, China.
Proceedings... Chengdu: IEEE, 2010. p. 490–494. 3, 43

YU, L.; SU, S.; ZHAO, J. Performing unit testing based on testing as a service
(taas) approach. Shing-Chi Chenug, p. 127–131, 2008. 65, 67, 75

YU, L.; XIANG, H.; SU, Y.; ZHAO, W.; ZHU, J. A framework of testing as a
service. IEEE, Wuhan, p. 1–4, 2009. 65, 67, 75

YUFENG, Z.; HONG, Z. Ontology for service oriented testing of web services. In:
INTERNATIONAL SYMPOSIUM ON SERVICE-ORIENTED SYSTEM
ENGINEERING, Jhongli, Taiwan. Proceedings... Jhongli: IEEE, 2008. p. 129 –
134. 65, 67

ZACK, M.; SERINO, M. Knowledge management and collaboration technologies.
In: KNOWLEDGE, GROUPWARE AND THE INTERNET, Butterworth,
Heinemann. Proceedings... Butterworth, 2000. p. 303–315. 17

ZAMBORLINI, V. Estudo de alternativas de mapeamento de ontologias
linguagem OntoUML para OWL: abordagens para representação de
informação temporal. Master Thesis (Master in Computer Science) —
Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil, 2011. 95, 97

ZHU, H.; HUO, Q. Developing a software testing ontology in UML for a software
growth environment of web-based applications. Software Evolution with UML
and XML, Hongji Yang, p. 263–295, 2005. 65, 67

ZHU, H.; ZHANG, Y. Collaborative testing of web services. IEEE Transactions
on Service Computing, v. 5, p. 116–130, 2012. 65, 67

163

ANNEX A - Ontology Pattern Language: SP-OPL and E-OPL

This annex describes some patterns from Software Process Ontology Pattern Lan-
guage (SP-OPL)and Enterprise Ontology Pattern Language (E-OPL) which were
used in the development of ROoST.

Software Process Ontology (SPO) was originally presented in (FALBO; BERTOLLO,
2009), and afterwards, in (BRINGUENTE et al., 2011), partially reengineered at the
light of the Unified Foundational Ontology (UFO) (GUIZZARDI, 2005; GUIZZARDI

et al., 2008). According to Bringuente et al. (2011), the use of UFO was useful in
identifying problems and for driving the ontology reengineering, mainly by describing
ontological commitments that were implicit.

In Falbo et al. (2013), SPO is presented as a core ontology on software processes,
called SP-OPL. As a core ontology, SP-OPL provides a precise definition of the
structural knowledge in the field of software processes that spans across different
application domains in this field (FALBO et al., 2013). Moreover, SP-OPL is built
grounded on the UFO.

As an ontology pattern language, SP-OPL contains a set of interrelated ontology
patterns related to the software process domain, plus a map providing explicit guid-
ance on what problems can arise in this universe of discourse, informing the order to
address these problems, and suggesting one or more patterns to solve each specific
problem (FALBO et al., 2013).

SP-OPL organizes 30 patterns and has three entry points, i.e. three different ways to
enter in the pattern language. The choice of the entry point from which to enter in
the SP-OPL depends on the focus of the ontology engineer. When the requirements
for the domain ontology being developed include problems related to definition of
standard software processes, the entry point is the Standard Process Structure (SPS)
pattern, from which other patterns related to the definition of standard software
processes can be achieved. The second entry point is the Software Process Planning
(SPP) pattern, which deals with how a software process is planned in terms of sub-
processes and activities. From this pattern, other patterns related to the definition of
a software process for a project and scheduling it can be achieved. Finally, the third
entry point in SP-OPL is the PAE pattern, which deals with representing process
and activity occurrences. From this pattern, the ontology engineer can achieve others
that address problems related to resource participation, procedures adopted, and
work product inputs and outputs (FALBO et al., 2013).

165

For developing ROoST, the third entry point (EP3) of SP-OPL was used. Figure
A.1 shows the SP-OPL patterns accessible from this entry point. The PAE pattern
represents the occurrences of processes and activities in the context of a project.
The HRPA pattern represents the participation of a human resource in an activity
occurrence. The RPA pattern represents the participations of resources (hardware
and software) in activity occurrences. The WPPA pattern represents the participa-
tions of artifacts in activity occurrences. Finally, the PRPA pattern represents the
participation (adoption) of procedures in activity occurrences.

Figure A.1 - SP-OPL patterns accessible from the entry point EP3
SOURCE: (FALBO et al., 2013)

Besides the 30 patterns described in the SP-OPL map, SP-OPL has two supplemen-
tary patterns: Work Product Taxonomy (WPT), which describes types of artifacts,
and Procedure Taxonomy (PRT), which describes types of procedures. Figures A.2
and A.3 present these patterns.

Figure A.2 - Work Product Taxonomy (WPT)
SOURCE: (FALBO et al., 2013)

166

Figure A.3 - Procedure Taxonomy (PRT)
SOURCE: (FALBO et al., 2013)

Patterns in SP-OPL are described using a form, including: name, intent, compe-
tency questions that the pattern aims to answer, conceptual model, axiomatization,
and foundations (ontological analysis taking ontological distinctions of UFO into
account). The conceptual models of the SP-OPL patterns are encoded in OntoUML
(GUIZZARDI, 2005), a UML profile that enables modelers to make finer-grained mod-
eling distinctions between different types of classes and relations according to some
ontological distinctions put forth by UFO.

Figure A.4 shows the conceptual model of PAE pattern (FALBO et al., 2013). The
intent of this pattern is to represent the occurrences of processes and activities in
the context of a project, and their mereological structure. The following competency
questions are addressed by this pattern: (PAE-CQ1) What is the project in which
context a given process/activity occurrence occurred?; (PAE-CQ2) How is a process
occurrence structured in terms of sub-processes and activities?; (PAE-CQ3) When
did a process occurrence start and when did it end?; (PAE-CQ4)When did an activity
occurrence start and when did it end?; (PAE-CQ5) From which activity occurrences
does an activity occurrence depend on?

Process Occurrences and Activity Occurrences are complex events, and the whole-
part relations between events are strict partial order. In the software process domain,
there are two main kinds of Process Occurrences: General Process Occurrence and
Specific Process Occurrence. A general process occurrence is the whole execution of
the process defined for a Project. It is composed by specific process occurrences, al-
lowing an organization to decompose a general process into sub-processes. A specific
process occurrence, in turn, is decomposed into Activity Occurrences. Activity oc-
currences can be simple or composite. A composite activity occurrence is a complex
event that is composed by other activity occurrences. A simple activity occurrence
is not composed by other activity occurrences, but it is still a complex event in

167

Figure A.4 - The Process and Activity Execution PAE ontology pattern
SOURCE: (FALBO et al., 2013)

UFO, since it is composed by other events representing the participations of human
resources, hardware and software resources, artifacts, and procedures in the activity
occurrence (FALBO et al., 2013).

Figure A.5 presents the conceptual model of the WPPA pattern (FALBO et al., 2013).
The intent of this pattern is to represent the participation of artifacts (as input or
output) in an activity occurrence. The following competency questions are addressed
by this pattern: (WPPA-CQ1)Which artifacts are produced in (are an output of) an
activity occurrence?; (WPPA-CQ2) Which artifacts are used in (are an input to) an
activity occurrence?; (WPPA-CQ3) When did an artifact participation in an activity
occurrence start and when did it end?.

An Activity Occurrence can have as its parts Artifact Participations, which are also
events. An Artifact Participation is the participation of a single Artifact in an Acti-
vity Occurrence. Artifact participations can be of three types: (i) Artifact Creation,
meaning that the artifact is created during the activity occurrence, and thus it is an
output of this activity occurrence; (ii) Artifact Usage, meaning that the artifact is
only used during the activity occurrence, and thus it is only an input for the activity
occurrence; and (iii) Artifact Change, meaning that the artifact is changed during
the activity occurrence, and thus it is both input and output for the activity occur-
rence. It is worthwhile to point out that both produces and uses relations between
Activity Occurrence and Artifact are derived from the participations of the artifacts
in the activity occurrence. Thus they are represented preceded by a bar (/).

168

Figure A.5 - The Work Product Participation (WPPA)ontology pattern.
SOURCE: (FALBO et al., 2013)

Figure A.6 presents the conceptual model of the PRPA ontology pattern. During an
activity occurrence, Procedures are adopted, giving rise to Procedure Participations.
The competency question addressed by this pattern: (PRPA-CQ1)Which are the
procedures adopted in an activity occurrence?

Figure A.6 - Procedure Participation (PRPA) ontology pattern.
SOURCE: (FALBO et al., 2013)

Figure A.7 presents the conceptual model of the PRPA ontology pattern. The in-
tent of this pattern is to represent participations of human resources in activity
occurrences. The following competency questions are addressed by this pattern:
(PRPA-CQ1)Which human resources participate in an activity occurrence?; (PRPA-
CQ2)When a human resource participation started and when it ended?.

169

Figure A.7 - Human Resource Participation (HRPA) ontology pattern.
SOURCE: (FALBO et al., 2013)

Figure A.8 presents the conceptual model of the RPA ontology pattern. The intent
of this pattern is to represent participations of resources (hardware and software)
in activity occurrences. The following competency questions are addressed by this
pattern: (RPA-CQ1)Which hardware resources are used in an activity occurrence?;
(RPA-CQ2)When a hardware resource participation started and when it ended?;
(RPA-CQ3)Which software resources are used in an activity occurrence?; (RPA-
CQ4)When a software resource participation started and when it ended?.

Figure A.8 - Resource Participation (RPA) ontology pattern.
SOURCE: (FALBO et al., 2013)

170

In order to address aspects common to several enterprises, the E-OPL presents some
aspects such as Organization Arrangement, Definition Team, Institutional Roles,
Institutional Goals, and Human Resource Management. Each one aspect provides a
set of patterns. As Figure A.9 shows, E-OPL has two entry points. EP1 can be chosen
when the requirements for the new enterprise ontology being developed include only
problems related to the definition of project teams. Otherwise, the starting point is
EP2 that address problems related to how an organization is structured. Patterns
Multi-Organization Arrangement (MOAR), Organizational Team Definition (OTD),
Team Roles (TEAR) and Team Allocation (TEAA) were reused in the development
of the ROoST.

Figure A.9 - Enterprise-Ontology Pattern Language (E-OPL)
SOURCE: (FALBO et al., 2014)

Multi-Organization Arrangement (MOAR) should be selected as the first pattern if
the ontology engineer needs to represent organizations that are composed of other
organizations. Figure A.10 presents the conceptual model of the MOAR ontology
pattern.

171

Figure A.10 - Multi-Organization Arrangement (MOAR)
SOURCE: (FALBO et al., 2014)

Concerning team definition, the Organizational Teams (OTD) ontology pattern was
reused. Figure A.11 presents the conceptual model of the OTD ontology pattern.

Figure A.11 - Organizational Teams (OTD)
SOURCE: (FALBO et al., 2014)

In order to deal with institutional roles, one of the patterns was reused is the Team
Roles TEAR that concern informal roles defined by an organizational unit or a team.
Figure A.12 presents the conceptual model of the TEAR ontology pattern.

172

Figure A.12 - Team Roles (TEAR)
SOURCE: (FALBO et al., 2014)

Regarding team allocation, Team Allocation (TEAA) was reused. This pattern con-
siders the relator Team Allocation and three mediation relations between this relator
and Human Resource, Team and the Human Resource Role that the human resource
plays in that team. Figure A.13 presents the conceptual model of the TEAA ontology
pattern.

Figure A.13 - Team Allocation (TEAA)
SOURCE: (FALBO et al., 2014)

173

APPENDIX A - Survey: KM in software testing

This survey aimed to identify a specific scenario the software testing domain to
exercise the KM. This research took into account the answers given by experts in
the Software Engineering area with experience in Software Testing. A summary
of these survey results were presented in section 5.1. This appendix presents the
questions, the tables that compiled the answers to each question as well as some
results aspects obtained by applying the survey.

General Information: Name, Role, Time Experience.

Question 01. In which activities of a Testing Process, is KM more useful?

Figure A.1 - Question 01. Importance of KM to Software Testing Process Activities

In this question, the testing activities showed in Figure A.1 were considered. Table
A.1 shows the percentage of answers per activity. “Test Case Design” (98.84%) and
“Planning Test” (96.51%) have the largest representativeness.

Table A.1 - Importance of KM to Software Testing Process Activities

Test Planning

Very Important 58
Very Important 83 96.51%

Important 25

Not very Important 2
Not very Important 3 3.49%

Not Important 1

Test Case Design

Continues

175

Table A.1 - Conclusion

Very Important 46
Very Important 85 98.84%

Important 39

Not very Important 0
Not very Important 1 1.16%

Not Important 1

Test Code

Very Important 24
Very Important 59 68.60%

Important 35

Not very Important 25
Not very Important 27 31.40%

Not Important 2

Test Execution

Very Important 29
Very Important 55 63.95%

Important 26

Not very Important 26
Not very Important 31 36.05%

Not Important 5

Test Result Analysis

Very Important 37
Very Important 75 87.21%

Important 38

Not very Important 9
Not very Important 11 12.79%

Not Important 2

Question 02. In which activities of Testing Planning, is KM more useful?

() Testing Technique Selection
() Test Environment Definition (including hardware, software and
human resources that should be part of the testing environment)
() Test Plan Elaboration
() Other

Table A.2 presents the percentage of answers per sub-activity of testing planning.
The usefulness of KM for selecting the best testing techniques was recognized by
41% of the participants, since different types of test techniques determine different
forms for selecting the test cases that will be used as input to the system under
examination.

176

Table A.2 - Usefulness of KM in sub-activities of Testing Planning

Activity Amount Percentage

Testing Technique Selection 35 41.70%

Test Environment Definition 31 36.05%

Test Plan Elaboration 18 20.93%

Other 2 2.33%

Question 03. A test environment consists of, among others, human resources, hard-
ware and software. About which of these resources are more important to have
available knowledge at the moment of defining the test environment?

() Human Resource
() Software Resource
() Hardware Resource
() Other

Table A.3 presents the percentage of answers per test environment resources. “Hu-
man resource” is considered the most important at the time of setting the test
environment, with approximately 44% of answers.

Table A.3 - Test Environment Resources

Resources Amount Percentage

Human Resource 38 44.19%

Software Resource 35 40.70%

Hardware Resource 9 10.47%

Other 4 4.65%

Question 04. In which testing level is KM more useful?

() Unit Testing
() Integration Testing
() System Testing
() Other

The experts consider that in the software testing process, KM can be more useful in

177

the System Testing level (approximately 49%). Table A.4 presents the percentage
of answers per test level.

Table A.4 - Importance of KM to Test Levels

Test Level Amount Percentage

Unit Testing 8 9.30%

Integration Testing 31 36.05%

Hardware Resource 42 48.84%

System Testing 5 5.81%

Question 05. What is the type of knowledge you consider to be more important
during the software testing process?

() Tacit Knowledge
() Explicit Knowledge

Table A.5 presents the percentage of answers per type of knowledge. In this question
explicit knowledge was considered more important by most experts with approxi-
mately 70% of answers.

Table A.5 - Type of knowledge

Type of knowledge Amount Percentage

Tacit Knowledge 26 30.23%

Explicit Knowledge 60 69.8%

Question 06. Tacit knowledge can be made explicit, originating explicit know-
ledge. Regarding the types of knowledge items listed below, indicate the degree of
importance of generating explicit knowledge from tacit knowledge.

In this question, “Individual Experiences” (95.35%) and “Communications between
the members of the test team” (approximately 92%) are the types of tacit knowledge
with more significant importance to generate explicit knowledge. Figure A.2 shows
the knowledge items considered. Table A.6 shows the percentage of answers.

178

Figure A.2 - Question 06. Making Tacit Knowledge Explicit

Table A.6 - Making Tacit Knowledge Explicit

Individual Experiences

Very Important 45
Very Important 82 95.3%

Important 37

Not very Important 3
Not very Important 8.14%

Not Important 1

Discussions (forums)

Very Important 23
Important 72 83.72%

Important 32

Not very Important 13
Not very Important 14 16.28%

Not Important 1

Communications between team members

Very Important 54
Very Important 79 91.86%

Important 25

Not very Important 6
Not very Important 7 8.14%

Not Important 1

Presential Meeting

Very Important 18
Very Important 61 70.93%

Important 43

Not very Important 24
Not very Important 25 29.07%

Not Important 1

Question 07. Regarding testing artifacts, which are the ones you judge to be more
appropriate for reuse?

179

Figure A.3 - Question 07. Testing artifacts more appropriate for reuse

In this question, the test artifacts considered are showed in Figure A.3 were
considered. Table A.7 presents the percentage of answers regarding the importance
of reusing the test artifacts. In the opinion of the participants, “Test Plan” and
“Test Case” artifacts are considered the most important artifacts for reuse in the
software testing process, with percentages of 91.86% and 90.7%, respectively.

Table A.7 - Artifacts more appropriate for reuse

Test Plan

Very Important 42
Very Important 79 91.86%

Important 37

Not very Important 6
Not very Important 7 8.14%

Not Important 1

Test Cases

Very Important 46
Very Important 78 90.70%

Important 32

Not very Important 7
Not very Important 8 1.16%

Not Important 1

Test Code

Very Important 30
Very Important 71 82.56%

Important 12
Not very Important 25

Not very Important 15 31.40%
Not Important 3

Test Results
Very Important 25

Very Important 62 72.09%
Important 37

Continues

180

Table A.7 - Conclusion

Not very Important 18
Not very Important 24 27,91%

Not Important 6

Question 08. What is the purpose of applying KM in Software Testing? (Choose
up to 2 options)

() Supporting decision-making process
() Reducing costs, time and effort
() competitive Advantages
() Improvement of intellectual capital
() Improving the quality of results
() Other

Table A.8 presents the percentage of answers in relation to the purposes of applying
KM in software testing. “Improving the results quality” (27.91%) and “Reducing
costs, time and effort” (25.6%) have the largest representativeness.

Table A.8 - Purpose of applying KM in Software Testing

Purpose Amount Percentage

Supporting decision-making process 34 19.77%

Reducing costs, time and effort 44 25.6%

Competitive Advantages 2 1.16%

Improvement of intellectual capital 35 20.35%

Improving the quality of results 48 27.91%

Other 9 5.23%

Question 09. What benefits KM can bring to software testing? (Choose up to 2
options)

() Selection and Application of better Testing Techniques
() Selecting the best test cases to perform
() Increasing the efficiency of the Testing Process
() Defining better Test Environments
() Other

181

Table A.9 presents “increasing the process testing efficiency” (40.7%) and the “se-
lecting and applying better testing techniques” (approximately 33%) were the most
representative expected benefits.

Table A.9 - Expected Benefits of applying KM in Software Testing

Expected Benefits Amount Percentage

Selection and Application of better Testing Techniques 57 33.14%

Selecting the best test cases to perform 17 9.88%

Increasing the efficiency of the Testing Process 70 40.7%

Defining better Test Environments 14 8.14%

Other 14 8.14%

182

APPENDIX B - Loading Existing Knowledge Items

This appendix presents details of the implementation of the load of data from the
MantisBT and TestLink tools. As mentioned in section 5.3.1, in the context of
ICAMMH Project, an integration scheme between TestLink and MantisBT was used.
TestLink has the capability to integrate with MantisBT, allowing for a test case to
be associated to a defect-related request. Thus, all incidents that were registered in
MantisBT, as a defect-related request, were conditioned to the existence of a test
case in TestLink. Thus, to load data into the knowledge repository of Testing KM
Portal is necessary to work with the databases of these two tools.

The prototype was developed in the context of ICAMMH project. The data used as
knowledge items of Test Case type corresponding to the data stored in the reposi-
tories of MantisBT and TestLink tools used in the project environment ICAMMH.
As the project has been finalized, a copy of the data was obtained from the Project
Coordination to make possible the development of a Testing KM Portal .

MantisBT and TestLink were created from a Structured Query Language (SQL)
script containing a backup of the database ICAMMH project. Figure B.1 present
tables of databases. The procedure to load and map data to Testing KM Portal is
illustrated in Figure B.2.

The following describes each step of the procedure:

1. After creating the repositories, to load existing test cases, a functionality in
Java was developed to connect with MantisBT and TestLink repositories.
The MantisBT and TestLink database are in Mysql.

2. In this stage is performed the loading of all test cases and all its historical
information from MantisBT and TestLink repositories. Routines were
created to return the data from Mantis and TestLink with SQL scripts
that makes the necessary relationships for each table used and their
relationships. Figure B.3 presents an example of method that implements
the burden of incident data from databases Mantis and TestLink and the
corresponding SQL script.

183

Figure B.1 - Tables of Mantis and TestLink

3. The data returned are mapped on objects that reflects the ROoST, that
is, the data are in the data schema of Testing KM Portal repository. The
following objects are structured: Human Resource, Knowledge Item, Test
Case, Test Result, Incident and Issue. Each object contains their relation-
ships and attributes, as shown in the conceptual model of Figure 5.13,
Section 5.3.

A few information that was not in the repositories of data were registered
manually trough the Testing Portal KM Portal, for example, information
about the Project.

4. A connection to the repository Testing KM Portal is established. The
portal database is in PostgreSQL.

184

Figure B.2 - Process to loading knowledge items from Mantis and TestLink

Figure B.3 - Loading the data corresponding to Incident

5. Finally the data is inserted into the Testing KM Portal repository. Fi-
gure B.4 presents an example of method that implements the insertion of

185

Incident data and the corresponding SQL script.

Figure B.4 - Insertion of data corresponding to Incident

186

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	DEDICATORY
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CONTENTS
	1 INTRODUCTION
	1.1 Motivation
	1.2 Problem Characterization
	1.3 Objectives
	1.4 Research Method
	1.5 Organization of this Thesis

	2 KNOWLEDGE MANAGEMENT IN SOFTWARE TESTING
	2.1 Software Testing
	2.2 Knowledge Management
	2.3 Knowledge Management applied to Software Testing
	2.3.1 Study based on a Systematic Mapping
	2.3.2 Related Work: Secondary study addressing KM in Software Testing
	2.3.2.1 Research Method for the Mapping
	2.3.2.2 Data extraction and synthesis
	2.3.2.3 Classification scheme

	2.3.3 Limitations of this mapping
	2.3.4 Results
	2.3.4.1 Discussion of reviewed studies
	2.3.4.2 SLR in ontology-based KM initiatives

	2.4 Final remarks about this chapter

	3 ONTOLOGIES FOR SOFTWARE TESTING
	3.1 Ontologies
	3.2 Ontology Pattern Languages
	3.3 Software Testing Ontology: Systematic Literature Review
	3.3.1 Review Protocol
	3.3.2 Conducting the Review
	3.3.3 Review Results
	3.3.4 Discussion

	3.4 Final remarks about this chapter

	4 AN ONTOLOGY-BASED FRAMEWORK FOR KNOWLEDGE MANAGEMENT IN SOFTWARE TESTING
	4.1 Framework Overview
	4.2 Reference Ontology on Software Testing (ROoST)
	4.2.1 Ontology Engineering Approach
	4.2.2 Testing Process and Activities sub-ontology
	4.2.3 Testing Artifacts sub-ontology
	4.2.4 Testing Techniques sub-ontology
	4.2.5 Testing Environment sub-ontology
	4.2.6 ROoST Evaluation

	4.3 Process for applying Knowledge Management in Software Testing
	4.4 Final remarks about this chapter

	5 APPLICATION OF THE PROPOSED FRAMEWORK
	5.1 Diagnosis by means of a Survey
	5.2 Definition of the Scope Testing KM Initiative
	5.3 Developing the Testing KM Portal
	5.3.1 Test Case
	5.3.2 Mined Item
	5.3.3 Loading Existing Knowledge Items

	5.4 Testing Knowledge Management Portal (TKMP)
	5.4.1 Knowledge Item Creation
	5.4.2 Knowledge Items Evaluation
	5.4.3 Knowledge Item Search
	5.4.4 Knowledge Items Valuation
	5.4.5 Knowledge Items Maintenance
	5.4.6 Yellow Pages
	5.4.7 Discussion Forums

	5.5 Evaluation
	5.6 Final remarks about this chapter

	6 CONCLUSIONS
	6.1 General considerations
	6.2 Contributions
	6.3 Main Limitations and Difficulties
	6.4 Future Work
	6.5 Final remarks about this thesis

	REFERENCES
	A ANNEX A - Ontology Pattern Language: SP-OPL and E-OPL
	A APPENDIX A - Survey: KM in software testing
	B APPENDIX B - Loading Existing Knowledge Items

