Fechar

1. Identificação
Tipo de ReferênciaePrint (Electronic Source)
Sitemtc-m16d.sid.inpe.br
Código do Detentorisadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S
Identificador8JMKD3MGP7W/37GKF42
Repositóriosid.inpe.br/mtc-m19@80/2010/05.18.12.09   (acesso restrito)
Última Atualização2010:05.18.12.09.52 (UTC) administrator
Repositório de Metadadossid.inpe.br/mtc-m19@80/2010/05.18.12.09.51
Última Atualização dos Metadados2021:01.03.02.01.58 (UTC) administrator
Chave de CitaçãoLoweBaStGrCoCaBa::ToEaWa
TítuloSpatio-temporal modelling of climate-sensitive disease risk: towards an early warning system for dengue in Brazil
Data da Última Atualização2010-05-19
Data de Acesso31 out. 2024
Tipo de SuporteOn-line
Tipo SecundárioPRE PI
Número de Arquivos1
Tamanho815 KiB
2. Contextualização
Autor1 Lowe, Rachel
2 Baileya, Trevor C.
3 Stephensona, David B.
4 Grahamb, Richard J.
5 Coelhoc, Caio. A. S.
6 Carvalhod, Marilia. S´a
7 Barcellos, Christovam
Grupo1
2
3
4
5 DOP-CPT-INPE-MCT-BR
Afiliação1
2
3
4
5 Instituto Nacional de Pesquisas Espaciais (INPE)
Publicação AlternativaComputers and Geosciences
ProdutorInstituto Nacional de Pesquisas Espaciais
CidadeSão José dos Campos
Estágio da Publicação Alternativasubmitted
Histórico (UTC)2010-05-18 12:48:41 :: deicy -> administrator ::
2021-01-03 01:56:07 :: administrator -> marciana ::
2021-01-03 01:58:43 :: marciana -> administrator ::
2021-01-03 02:01:58 :: administrator -> deicy ::
3. Conteúdo e estrutura
É a matriz ou uma cópia?é a matriz
Estágio do Conteúdoem andamento
Transferível1
Palavras-Chavedengue fever
prediction
epidemic
spatio-temporal model
seasonal climate forecasts
ResumoThis paper considers the potential for using seasonal climate forecasts in developing an early warning system for dengue fever epidemics in Brazil. In the first instance, a generalised linear model (GLM) is used to select climate and other covariates which are both readily available and prove significant in prediction of confirmed monthly dengue cases based on data collected across the whole of Brazil for the period January 2001 to December 2008 at the microregion level (typically consisting of one large city and several smaller municipalities). The covariates explored include temperature and precipitation data on a 2.5◦ × 2.5◦ longitude-latitude grid with time lags relevant to dengue transmission, an El Nino Southern Oscillation index and other relevant socio-economic and environmental variables. A Negative-Binomial model formulation is adopted in this model selection to allow for extra- Poisson variation (overdispersion) in the observed dengue counts caused by unknown/unobserved confounding factors and possible correlations in these effects in both time and space. Subsequently, the selected global model is refined in the context of the South East region of Brazil where dengue predominates, by reverting to a Poisson framework and explicitly modelling the overdispersion through a combination of unstructured and spatio-temporal structured random effects. The resulting spatio-temporal hierarchical model (or GLMM - generalised linear mixed model) is implemented via a Bayesian framework using Markov Chain Monte Carlo (MCMC). Dengue predictions are found to be enhanced both spatially and temporally when using the GLMM and the Bayesian framework allows posterior predictive distributions for dengue cases to be derived which can be useful for developing a dengue alert system. Using this model, we conclude that seasonal climate forecasts could have potential value in helping to predict dengue incidence months in advance of an epidemic in South East Brazil.
ÁreaMET
Arranjourlib.net > BDMCI > Fonds > Produção anterior à 2021 > DIDOP > Spatio-temporal modelling of...
Conteúdo da Pasta docacessar
Conteúdo da Pasta sourcenão têm arquivos
Conteúdo da Pasta agreementnão têm arquivos
4. Condições de acesso e uso
Idiomaen
Arquivo Alvov1.pdf
Grupo de Usuáriosadministrator
deicy
Visibilidadeshown
Permissão de Leituradeny from all
5. Fontes relacionadas
Repositório Espelhosid.inpe.br/mtc-m19@80/2009/08.21.17.02.53
Unidades Imediatamente Superiores8JMKD3MGPCW/43SQKNE
Acervo Hospedeirosid.inpe.br/mtc-m19@80/2009/08.21.17.02
6. Notas
Campos Vaziosaccessyear archivingpolicy archivist contenttype copyholder copyright creatorhistory descriptionlevel dissemination documentstage doi e-mailaddress edition electronicmailaddress format isbn issn label lineage mark nextedition notes orcid parameterlist parentrepositories previousedition previouslowerunit progress project readergroup resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark session shorttitle sponsor subject tertiarymark tertiarytype url versiontype year
7. Controle da descrição
e-Mail (login)deicy
atualizar 


Fechar