

28th Brazilian Symposium on Computer Networks and
Distributed Systems

24-28 May 2010
Gramado, RS, Brazil

12th Brazilian Workshop on
Real-Time and Embedded Systems

(WTR)

Published by
Sociedade Brasileira de Computação (SBC)

Organizing Committee

Carlos Eduardo Pereira (UFRGS)
Leandro Buss Becker (UFSC)

Antônio Jorge Gomes Abelém (UFPA)
Luciano Paschoal Gaspary (UFRGS)

Marinho Pilla Barcellos (UFRGS)

Organization
Instituto de Informática

Universidade Federal do Rio Grande do Sul (UFRGS)

Promoted by
Sociedade Brasileira de Computação (SBC)

Laboratório Nacional de Redes de Computadores (LARC)

ii

Copyright © 2010 of Sociedade Brasileira de Computação
All rights reserved

Cover: Josué Klafke Sperb
Editorial Production: Flávio Roberto Santos, Roben Castagna Lunardi, Matheus
Lehmann, Rafael Santos Bezerra, Luciano Paschoal Gaspary, Marinho Pilla Barcellos.

Additional Symposium Record:
Sociedade Brasileira de Computação (SBC)
Av. Bento Gonçalves, 9500 - Setor 4 - Prédio 43.412 - Sala 219
Bairro Agronomia - CEP 91.509-900 - Porto Alegre - RS
Phone: +55 51 33086835
E-mail: sbc@sbc.org.br

International Data for Cataloguing in Publication (CIP)

Workshop de Tempo Real e Sistemas Embarcados (12. : 2010 :
Gramado, RS).

Anais / XII Workshop de Tempo Real e Sistemas Embarcados;
organizadores Carlos Eduardo Pereira... et al. − Porto Alegre : SBC,
c2010.

193 p.

ISSN 2177-496X

1. Redes de computadores. 2. Sistemas distribuídos. I. Pereira,
Carlos Eduardo. II. Título.

Proceedings

iii

Promotion

Sociedade Brasileira de Computação (SBC)

Board of Directors

President
José Carlos Maldonado (USP)

Vice-President
Marcelo Walter (UFRGS)

Director of Administration
Luciano Paschoal Gaspary (UFRGS)

Director of Finance
Paulo Cesar Masiero (USP)

Director of Conferences and Special Interest Groups
Lisandro Zambenedetti Granville (UFRGS)

Director of Education
Mirella Moura Moro (UFMG)

Director of Publications
Karin Breitman (PUC-Rio)

Director of Special Programs
Ana Carolina Salgado (UFPE)

Director of Regional Chapters
Thais Vasconcelos Batista (UFRN)

Director of Promotions
Altigran Soares da Silva (UFAM)

Director of Professional Activities
Ricardo de Oliveira Anido (UNICAMP)

Director of Special Events
Carlos Eduardo Ferreira (USP)

Director of Cooperation with Scientific Societies
Marcelo Walter (UFRGS)

12th Brazilian Workshop on Real-Time and Embedded Systems

iv

Promotion

Council

2009-2013
Virgílio Almeida (UFMG)
Flávio Rech Wagner (UFRGS)
Silvio Romero de Lemos Meira (UFPE)
Itana Maria de Souza Gimenes (UEM)
Jacques Wainer (UNICAMP)

2007-2011
Cláudia Maria Bauzer Medeiros (UNICAMP)
Roberto da Silva Bigonha (UFMG)
Cláudio Leonardo Lucchesi (UNICAMP)
Daltro José Nunes (UFRGS)
André Ponce de Leon F. de Carvalho (USP)

Additional Members - 2009-2011
Geraldo B. Xexeo (UFRJ)
Taisy Silva Weber (UFRGS)
Marta Lima de Queiroz Mattoso (UFRJ)
Raul Sidnei Wazlawick (UFSC)
Renata Vieira (PUCRS)

Laboratório Nacional de Redes de Computadores (LARC)

Board of Directors

Director of the Scientific Technical Council
Artur Ziviani (LNCC)

Executive Director
Célio Vinicius Neves de Albuquerque (UFF)

Vice-Director of the Scientific Technical Council
Flávia Coimbra Delicato (UFRN)

Executive Vice-Director
Luciano Paschoal Gaspary (UFRGS)

Institutional Members
CEFET-CE, CEFET-PR, IME, INPE/MCT, LNCC, PUCPR, PUC-RIO, SESU/MEC,
UECE, UERJ, UFAM, UFBA, UFC, UFCG, UFES, UFF, UFMG, UFPA, UFPB,
UFPE, UFPR, UFRGS, UFRJ, UFRN, UFSC, UFSCAR, UNICAMP, UNIFACS, USP.

Proceedings

v

Organization

Organizing Committee

General Chairs
Luciano Paschoal Gaspary (UFRGS)
Marinho Pilla Barcellos (UFRGS)

Technical Program Committee Chairs
Luci Pirmez (UFRJ)
Thaís Vasconcelos Batista (UFRN)

International Talks and Tutorials Chair
Lisandro Zambenedetti Granville (UFRGS)

Panels Chair
José Marcos Silva Nogueira (UFMG)

National Tutorials Chair
Carlos Alberto Kamienski (UFABC)

Workshops Chair
Antônio Jorge Gomes Abelém (UFPA)

Tools Session Chair
Nazareno Andrade (UFCG)

Steering Committee
Artur Ziviani (LNCC)
Carlos André Guimarães Ferraz (UFPE)
Célio Vinicius Neves de Albuquerque (UFF)
Francisco Vilar Brasileiro (UFCG)
Lisandro Zambenedetti Granville (UFRGS)
Luís Henrique Maciel Kosmalski Costa (UFRJ)
Marcelo Gonçalves Rubinstein (UERJ)
Nelson Luis Saldanha da Fonseca (UNICAMP)
Paulo André da Silva Gonçalves (UFPE)

12th Brazilian Workshop on Real-Time and Embedded Systems

vi

Organization

Local Organizing Committee
Adler Hoff Schmidt (UFRGS)
Alan Mezzomo (UFRGS)
Alessandro Huber dos Santos (UFRGS)
Bruno Lopes Dalmazo (UFRGS)
Carlos Alberto da Silveira Junior (UFRGS)
Carlos Raniery Paula dos Santos (UFRGS)
Cristiano Bonato Both (UFRGS)
Flávio Roberto Santos (UFRGS)
Jair Santanna (UFRGS)
Jéferson Campos Nobre (UFRGS)
Juliano Wickboldt (UFRGS)
Leonardo Richter Bays (UFRGS)
Lourdes Tassinari (UFRGS)
Luís Armando Bianchin (UFRGS)
Luis Otávio Luz Soares (UFRGS)
Marcos Ennes Barreto (UFRGS)
Matheus Brenner Lehmann (UFRGS)
Pedro Arthur Pinheiro Rosa Duarte (UFRGS)
Pietro Biasuz (UFRGS)
Rafael Pereira Esteves (UFRGS)
Rafael Kunst (UFRGS)
Rafael Santos Bezerra (UFRGS)
Ricardo Luis dos Santos (UFRGS)
Roben Castagna Lunardi (UFRGS)
Rodolfo Stoffel Antunes (UFRGS)
Rodrigo Mansilha (UFRGS)
Weverton Luis da Costa Cordeiro (UFRGS)

Proceedings

vii

Message from the SBRC General Chairs

 Bem-vindo(a) ao XXVIII Simpósio Brasileiro de Redes de Computadores e
Sistemas Distribuídos (SBRC 2010)! Esta edição do simpósio está sendo realizada de
24 a 28 de maio de 2010 na pitoresca cidade de Gramado, RS. Promovido pela
Sociedade Brasileira de Computação (SBC) e pelo Laboratório Nacional de Redes de
Computadores (LARC) desde 1983, o SBRC 2010 almeja não menos que honrar com
uma tradição de quase 30 anos: ser reconhecido como o mais importante evento
científico em redes de computadores e sistemas distribuídos do país, e um dos mais
concorridos em Informática. Mais do que isso, pretende estimular intercâmbio de idéias
e discussões qualificadas, aproximá-lo(a) de temas de pesquisa efervescentes e fomentar
saudável aproximação entre estudantes, pesquisadores, professores e profissionais.
 Para atingir os objetivos supracitados, reunimos um grupo muito especial de
professores atuantes em nossa comunidade que, com o nosso apoio, executou com êxito
a tarefa de construir um Programa Técnico de altíssima qualidade. O SBRC 2010
abrange as seguintes atividades: 20 sessões técnicas de artigos completos, cobrindo uma
grande gama de problemas em redes de computadores e sistemas distribuídos; 2 sessões
técnicas para apresentações de ferramentas; 5 minicursos ministrados de forma didática,
por professores da área, sobre temas atuais; 3 palestras e 3 tutoriais sobre tópicos de
pesquisa avançados, apresentados por especialistas nacionais e estrangeiros; e 3 painéis
versando sobre assuntos de relevância no momento. Completa a programação técnica a
realização de 8 workshops satélites em temas específicos: WRNP, WGRS, WTR, WSE,
WTF, WCGA, WP2P e WPEIF. Não podemos deixar de ressaltar o Programa Social,
organizado em torno da temática “vinho”, simbolizando uma comunidade de pesquisa
madura e que, com o passar dos anos, se aprimora e refina cada vez mais.
 Além da ênfase na qualidade do programa técnico e social, o SBRC 2010
ambiciona deixar, como marca registrada, seu esforço na busca por excelência
organizacional. Tal tem sido perseguido há mais de dois anos e exigido muita
determinação, dedicação e esforço de uma equipe afinada de organização local,
composta por estudantes, técnicos administrativos e professores. O efeito desse esforço
pode ser percebido em elementos simples, mas diferenciais, tais como uniformização de
datas de submissão de trabalhos, portal sempre atualizado com as últimas informações,
comunicação sistemática com potenciais participantes e pronto atendimento a qualquer
dúvida. O nosso principal objetivo com essa iniciativa foi e continua sendo oferecer
uma elevada qualidade de experiência a você, colega participante!
 Gostaríamos de agradecer aos membros do Comitê de Organização Geral e
Local que, por conta de seu trabalho voluntário e incansável, ajudaram a construir um
evento que julgamos de ótimo nível. Gostaríamos de agradecer, também, à SBC, pelo
apoio prestado ao longo das muitas etapas da organização, e aos patrocinadores, pelo
incentivo à divulgação de atividades de pesquisa conduzidas no País e pela confiança
depositada neste fórum. Por fim, nossos agradecimentos ao Instituto de Informática da
UFRGS, por viabilizar a realização, pela quarta vez, de um evento do porte do SBRC.

Sejam bem-vindos à Serra Gaúcha para o “SBRC do Vinho”! Desejamos que
desfrutem de uma semana agradável e proveitosa!

Luciano Paschoal Gaspary
Marinho Pilla Barcellos

SBRC 2010 General Chairs

12th Brazilian Workshop on Real-Time and Embedded Systems

viii

Message from the WTR Chairs

 It is our great pleasure to welcome all participants of the 12nd Brazilian
Workshop on Real-Time and Embedded System (WTR 2010). For the fifth consecutive
year, the workshop is held in the first day of the Brazilian Networks Symposium
(SBRC). WTR 2010 is very special because this year it is held in conjunction with the
First South-American Embedded and Real-Time Systems Week, which is an event of 5
days also composed by the 1st Embedded Systems Workshop (WSE) and by the 4th
ARTIST2 South-American School for Embedded Systems. The program of WTR 2010
is composed by 10 regular papers, which reflect the state-of-the art of our research, and
by 11 Work-In-Progress papers, representing new research ideas and directions. We
would like thank to all people and organizations that helped in making the WTR 2010.
This list included but it is not restrict to: our universities UFRGS and UFSC, the SBRC
organizing committee for all support, mainly in the conference logistics, all reviewers
for their great work, the authors for submitting very interesting papers that we hope will
be a basis for interesting discussion and all participants. We wish you all an excellent
workshop and a pleasant stay in Gramado.

Carlos Eduardo Pereira
WTR 2010 General Chair

Leandro Buss Becker

WTR 2010 Program Committee Chair

Proceedings

ix

WTR Program Committee

Antônio Augusto Fröhlich, Federal University of Santa Catarina, Brazil
Carlos Montez, Federal University of Santa Catarina, Brazil
Daniel Mossé, Univ. of Pittsburgh, USA
Eduardo Tovar, ISEP, Portugal
Francisco Vasques, Univ. of Porto, Portugal
George Lima, Federal University of Bahia, Brazil
Gerhard Fohler, UNI-KL, Germany
Jörg Kaiser, OvG Univ. of Magdeburg, Germany
Jean-Marie Farines, Federal University of Santa Catarina, Brazil
João Netto, Federal University of Rio Grande do Sul, Brazil
Julius Leite, Fluminense Federal University, Brazil
Keiko Fonseca, Federal Technological University of Paraná, Brazil
Luciano Porto Barreto, Federal University of Bahia, Brazil
Mamoun Filali Amine, IRIT, France
Orlando Loques, Fluminense Federal University, Brazil
Raimundo Barreto, Federal University of Amazonas, Brazil
Raimundo Macêdo, Federal University of Bahia, Brazil
Rodrigo Santos, Univ. Nacional del Sur, Argentina
Rômulo Silva de Oliveira, Federal University of Santa Catarina, Brazil
Thomas Nolte, Malardalen Univ., Sweeden

12th Brazilian Workshop on Real-Time and Embedded Systems

x

WTR Reviewers

Antônio Augusto Fröhlich, Federal University of Santa Catarina
Carlos Montez, Federal University of Santa Catarina
Carlos Pereira, Federal University of Rio Grande do Sul
Daniel Mossé, University of Pittsburgh
Filipe Pacheco, Polytechnic Institute of Porto
Francisco Vasques, University of Porto
George Lima, Federal University of Bahia
Gerhard Fohler, TU Kaiserslautern
Giovani Gracioli, Federal University of Santa Catarina
Gustavo Medeiros, Federal University of Santa Catarina
Jörg Kaiser, Otto-von-Guericke-University of Magdeburg
Jean-Marie Farines, Federal University of Santa Catarina
João Netto, Federal University of Rio Grande do Sul
Julius Leite, Fluminense Federal University
Keiko Fonseca, Federal Technological University of Paraná
Leandro Buss Becker, Federal University of Santa Catarina
Luciano Porto Barreto, Federal University of Bahia
Luis Ferreira, Polytechnic Institute of Porto
Luis Nogueira, Polytechnic Institute of Porto
Mamoun Filali Amine, Institut de Recherche en Informatique de Toulouse
Marco Wehrmeister, Federal University of Rio Grande do Sul
Orlando Loques, Fluminense Federal University
Rafael Cancian, Federal University of Santa Catarina
Raimundo Barreto, Federal University of Amazonas
Raimundo José de Araújo Macêdo, Federal University of Bahia
Rodrigo Santos, Universidad Nacional del Sur
Rômulo Silva de Oliveira, Federal University of Santa Catarina
Thomas Nolte, Malardalen University
Valter Roesler, Federal University of Rio Grande do Sul

Proceedings

xi

Index

WTR Regular Papers

Technical Session 1 –Software Development and Architectures

Model-Driven Development of Embedded Systems
Tino Brade, Michael Schulze, Sebastian Zug and
Jörg Kaiser (Universität Magdeburg) .. 3

Software Architecture for Mobile Interaction in Intelligent
Environments
Reiner F. Perozzo and Carlos E. Pereira (UFRGS) 15

Technical Session 2 – Scheduling

smartenum: A Branch-and-Bound Algorithm for Optimum Frequency
Set Establishment in Real-Time DVFS
E. B. Valentin and R. S. Barreto (UFAM) ... 27

Impact of server dynamic allocation on the response time for
energy-efficient virtualized web clusters
Carlos Oliveira, Vinicius Petrucci and Orlando Loques (UFF) 39

Technical Session 3 –Device Drivers and Operating Systems

Exploiting Template-Metaprogramming for Highly Adaptable Device
Drivers – a Case Study on CANARY an AVR CAN-Driver
Christoph Steup, Michael Schulze and
Jörg Kaiser (Universität Magdeburg) ... 51

Performance Characterization of Real-Time Operating Systems for
Systems-on-Silicon
Douglas P. B. Renaux (UTFPR, eSysTech),
Rafael E. De Góes (eSysTech) and
Robson R. Linhares (UTFPR, eSysTech) .. 63

12th Brazilian Workshop on Real-Time and Embedded Systems

xii

Technical Session 4 – Sensor Networks and Wireless Communication

Coordination Mechanism and Customizable Hardware Platform to
Provide Heterogeneous Wireless Sensor Networks Support
Edison P. de Freitas (Halmstad University, UFRGS),
Rodrigo S. Allgayer (UFRGS), Tales Heimfarth (UFLA),
Flávio R. Wagner (UFRGS), Tony Larsson (Halmstad University),
Carlos E. Pereira (UFRGS) and Armando M. Ferreira (IME) 77

A Free-Collision MAC Proposal for 802.11 Networks
Omar Alimenti (Universidad Tecnológica Nacional, Universidad Nacional
del Sur - Argentina), Guillermo Friedrich and
Guillermo Reggiani (Universidad Tecnológica Nacional - Argentina) . 89

Performance Evaluation of a Real-Time MAC Protocol for MANETS
Marcelo M. Sobral and Leandro B. Becker (UFSC) 101

MASIM: A Tool for Simulating Mobile Agent Applications on
Wireless Sensor Networks
Marcos Camada, Carlos Montez (UFSC) and Flávio Assis (UFBA) ... 111

Work in Progress Papers

Framework para Integração entre Ambientes Inteligentes e o
Middleware do Sistema Brasileiro de TV Digital
Reiner F. Perozzo and Carlos E. Pereira (UFRGS) 125

Modelo de Arquitetura para Construção de Plataformas de Software
Embarcado
Gustavo A. F. B. Melo and Sérgio V. Cavalcante (UFPE) 131

Communication Middleware For Hospital Automation: Send Alerts
and Monitoring of Vital Signs
Cicília R. M. Leite (UFRN, UERN), Bruno G. De Araújo,
Ricardo A. M. Valentim, Gláucio B. Brandão and
Ana M. G. Guerreiro (UFRN) ... 137

Projeto de Redes Interveiculares Híbridas
Rodrigo Lange, Rômulo de Oliveira and Nestor Roqueiro (UFSC) 145

Proceedings

xiii

Método para Diminuir o Tempo de Interferência de Tarefas de Tempo
Real
Ítalo Campos de M. Silva, Rômulo Silva de Oliveira (UFSC) and
Luciano Porto Barreto (UFBA) .. 151

Análise da Plataforma SunSPOT para Programação de Sistemas de
Controle Distribuído em Rede de Sensores sem Fio
André Cavalcante, Rodrigo Allgayer, Ivan Müller, Jovani Balbinot and
Carlos E. Pereira (UFRGS) .. 157

Uma Proposta para Visualização Aumentada em Tempo Real aplicada
a Indústria
Danúbia Espíndola (UFRGS, FURG), Carlos E. Pereira,
Renato V. Henriques (UFRGS) and Silvia S. Botelho (FURG) 163

Slow Down or Race to Halt: Towards Managing Complexity of Real-
Time Energy Management Decisions
Stefan M. Petters and Muhammad Ali Awan (Porto Superior Institute of
Engineering, Portugal) .. 169

The Effects of Initial Offset and Clock Drift Errors on Clock
Synchronization of Networked Control Systems
Eloy M. Oliveira Junior and Marcelo L. O. Souza (INPE) 175

Analysis, Design and Simulation of a Reconfigurable Control
Architecture for the Contingency Mode of the Multimission Platform
Jairo C. Amaral and Marcelo L. de O. e Souza (INPE) 181

Preliminary Results of Global Time Petri Net Analysis Applied to
Embedded Software Prototyping
Leticia Mara Peres, Eduardo Todt and Luis Allan Kunzle (UFPR) 187

Author Index .. 193

12th Brazilian Workshop on Real-Time and Embedded Systems

12th Brazilian Workshop on
Real-Time and Embedded Systems

♦

Technical Session 1
Software Development and

Architectures

Model-Driven Development of Embedded Systems
Tino Brade, Michael Schulze, Sebastian Zug, Jörg Kaiser

1Department for Distributed Systems
Universität Magdeburg

Universitätsplatz 2, 39106 Magdeburg, Germany

tino.brade@student.uni-magdeburg.de

{mschulze, zug, kaiser}@ivs.cs.uni-magdeburg.de

Abstract. Distributed mechatronic systems integrate sensors, processing units,
communication networks, and actuators. In order to achieve a rapid develop-
ment process and an improved maintainability it is necessary to combine and
replace such modular components in a flexible way. For seamless composabil-
ity we developed communication middleware and a programming abstraction
for distributed sensors and actuators. In this paper we describe a comprehen-
sive development toolchain based on these abstractions. Sensors and actuators
are specified by an extended electronic datasheet for smart embedded devices.
Following this approach, the user defines the capabilities of a device on a high
system level in a declarative way. From that description, the functionality is gen-
erated using domain-specific tools like Matlab/Simulink. Finally, we improved
the back-end tools that provide the code for the target system. Thus this code is
derived with minimal user-intervention.

1. Introduction
The development of distributed mechatronic applications requires an interdisciplinary ef-
fort of electrical and mechanical engineering as well as computer science. Such appli-
cations integrate heterogeneous systems like different sensor types, computers/microcon-
trollers and multiple diverse communication networks. To simplify and support the de-
velopment process [Schulze and Zug 2008] describe a modular system structure. This
allows combining components of different development stages, e.g. components in a pre-
liminary stage, simulated by Simulink blocks with already tested hardware components
(hardware-/software-in-the-loop systems). The modularity also supports testing and im-
proves maintainability of the final product.

Precondition for this functional composability is a common abstraction for the
components. We distinguish between three main aspects. Firstly, we need a generic
communication interface, which decouples the application development from underly-
ing networks and their specific characteristics. The second aspect is concerned with
the internal structure of a component to provide a high degree of freedom when com-
bining sensors, actuators and network interfaces. Thirdly, we suggest a method to inte-
grate components that are defined and configured outside the development process (e.g.
legacy components). We strive for an easy adaptation and integration of such compo-
nents. A mismatch of configurations should be avoided by respective compatibility checks
[Kaiser et al. 2008].

12th Brazilian Workshop on Real-Time and Embedded Systems 3

General communication mechanisms and interfaces are important for distributed
applications. Usually, a broad spectrum of networks and lower level protocols has to be
integrated. At a certain communication level, however, all elements of the distributed ap-
plication have to agree on a common structured communication object. This requires the
encapsulation of the underlying heterogeneous network structure. Therefore, we devel-
oped our communication middleware FAMOUSO (Family of Adaptive Middleware for
autonomOUs Sentient Objects [Herms et al. 2008, Schulze 2009]) that provides event-
based communication over different network types according to the publish/subscribe
paradigm (CAN [Robert Bosch GmbH 1991], 802.15.4 [ZigBee Alliance 2003], Ethernet
communication, etc.). FAMOUSO allows communication between components specified
in different programming languages (C/C++, Python, Java, .NET) or by domain-specific
engineering tools (LabVIEW, Matlab/Simulink). In contrast to other communication mid-
dleware, FAMOUSO supports different qualities of communication and is particularly
developed for resource constraint devices as 8-bit controllers often used in smart devices.

A additional abstraction level addresses the internal structure of a sensor/actuator
node. It describes typical internal modules required in smart devices. These include
modules for data acquisition, signal conditioning, filtering and fault detection. Such a
programming abstraction forces the developer to structure application specific code into
modular and replaceable subsystems that e.g. can be represented and specified as blocks
in Matlab/Simulink [MathWorks 2010a]. In [Zug and Kaiser 2009] we examined typical
faults in sensor applications and suggested an architecture capable to cope with such
situations. These concepts are also used in our proposed development chain.

Finally, we provide an abstract description of hardware and software configuration
sets for a network node. This substantially simplifies and accelerates the development
process. A standardized description also supports the use of code generation tools. Hence,
changing parameters in some system component or even the integration of completely
new hardware may be performed automatically or with minimal intervention only. As a
result, the descriptions of the hardware components are capable to detect compatibility
problems and may avoid faulty combinations. This is described in [Kaiser et al. 2008].

The aspects addressed above, i.e. communication, internal structures, and compo-
nent description, represent the structure and the interfaces of a sensor/actuator node but
do not reflect the component’s behavior so far. The functionality of a component, e.g.
the signal processing and the algorithms for filtering, has to be specified for each type of
sensor and actuator specifically. This is the realm of domain specific programming lan-
guages and tools. Therefore, we combined the proposed abstractions with the Mathworks
Simulink toolchain. This offers a large library of packages for control design and signal
and state processing. Additionally, it includes tools (e.g. Real-Time-Workshop) to gener-
ate code from such a set of blocks for a specific hardware target. Our work includes an
enhancement of such back-end tools for the AVR micro-controller.

The paper is structured as follows: In Section 2 we introduce the framework and
illustrate the main concepts. Subsequently we use an example scenario to present the sys-
tem descriptions of an appropriate node in Section 3 and the behavior and code generation
for this application Section 4. Section 5 illustrates the state of the art and lists a survey
of related approaches. Section 6 summarizes the paper and specifies current and future
work.

4 Proceedings

XML – Description
1

Model Generation

2

Simulink Model
3

Target Code
Generation

4

Target
5

SensorSensorSensor Platform
Communi-

cation

System Specification

Profile
Selection

STF

Model
Generator

.xml

.xml
SensorSensor

Sensor
Interface

Actuator
Interface

Network
Interface

Application

.mdl

Realtime
Workshop

.rtw

Compiler
& Linker
.c,.h

additional
Libraries

EDS
Generator

.mdl

Target
Binaries

EDS

.zip .hex

Figure 1. Framework development chain from XML descriptions to target code

2. Development Tool Chain for Distributed Applications
In this section we describe the main concepts of our development framework. Figure 1 il-
lustrates the main workflow (1 - 5) and shows the three steps – XML Description, Simulink
Model and Target – connected by two transformation/generation tools – Model Genera-
tion and Target Code Generation.

The box marked by (1) on the left site, XML Description, is the starting point of our
development chain. Three different XML files include all information of the connected
sensors. A platform specification defines the processor type, the board properties and the
communication settings. Section 3 describes the structure and contents of those files.
The clear separation of the descriptions in different files enables a flexible combination
in varying scenarios. The System Specification determines the connection between sensor
and board interfaces (an example is given in Section 3) .

Based on this abstract system specification we derive an appropriate Simulink
model during the first generation step, marked by (2) in the workflow illustration. The
Profile Selection module provides a flexible definition of the run-time environment of the
Simulink model. This can be a simulation in the Simulink environment or an implemen-
tation for an embedded target. The Profile Selection algorithms check the availability on
a Simulink System Target File (STF) necessary for the target code generation process and
part of the Simulink model file. In a second step the users have to decide about the sensor
inputs which can be implemented as simulation module or by an interface block to a real
transducer. The sensor data sheets contain all information required for a basic sensor sig-
nal simulation. Hence, it is possible to coordinate simulated and real sensors on the target.
The Profile Selection provides a graphical user interface and calls the Model Generator,
that transforms the collected information into a Simulink file (.mdl).

12th Brazilian Workshop on Real-Time and Embedded Systems 5

We obtain the basic structure of a Simulink model ready for an integration of
the Application methods as depicted in the right box labeled with (3). The Application
processes input signals from simulated or real sensors as from the networks and calcu-
lates output values transmitted to Actuator Interfaces. At this stage the benefit of the
framework is obvious. The developer does not need to cope with network or hardware
interfaces. This is done automatically. It should be noted, that the user is able to control
the Profile Selection from the Model Generation out of Simulink. The special block calls
the generation process that derives a new Simulink model. Hence, simulated sensors can
be replaced by real ones without any error-prone copy and paste actions between different
model variants.

Simulink offers a comprehensive code generation tool chain, called Realtime
Workshop [MathWorks 2010b], which was enhanced by a target configuration for a small
8-bit controller during a previous work [Brade 2009]. The necessary information for the
target code generation process is stored in the Simulink model during the model gener-
ation process. Suitable compiler, linker and flash tools etc. are defined as well as addi-
tional libraries, run-time specification etc. so that it needs only a mouse click to bring the
Simulink model down to the embedded target platform. Additionally, the Simulink model
is used for the derivation of an Electronic Datasheet (EDS) of node’s output done by our
EDS Generator. It contains all information that is helpful for a correct interpretation,
validation, and processing of the results transmitted by this node. A compressed version
is stored on the target. This allows the use of service discovery methods for a dynamic
integration and interaction.

In the following subsection we illustrate two parts of our framework more in detail,
the XML description files for sensors and platforms and the profile switch mechanisms
controlled out of the Simulink environment. For a comprehensible presentation we intro-
duce an example scenario and assume, that we want to develop a smart temperature sensor.
Our sensor node is equipped with an Atmel AT90CAN128 processor combines two types
of temperature transducers, a AD592 and a CON-THEMOD with a higher precision but a
smaller range. The AD592 offers only a voltage output while the CON-THEMOD mod-
ule provides an additional digital I2C interface. The temperature signals should be jointed
and the result published via FAMOUSO.

3. XML Description Files
The electronic data sheets were stored in an XML structure. XML offers a sim-
ple, standard way to exchange structured textual data. The advantage of this tech-
nique lies in the availability of machine processing using the Document Object Model
(DOM) [Apparao et al. 1998] and the human readability in contrast to the binary repre-
sentation of IEEE-1451. As depicted in Figure 1 we divide the entire sensor description
into three types for sensor, platform and communication.

3.1. Sensor/Actuator Description
In a sensor data sheet we store general information of the transducer, interface description
and context information. Due to the similarity, we handle both component types, sensors
and actuators, with the same file type and structure. We are talking about sensors and
sensor description in the following for the sake of simplicity and readability. However,
similar statements are also applicable to actuators.

6 Proceedings

The first part of a sensor description file contains general information like sen-
sor type, the vendor, layout pins and its supply properties similar to IEEE 1451.2. The
interface description informs about all available interfaces and their configuration param-
eters that deliver sensor data or receive actuator commands. The third section is used to
store context sensor properties. These properties describe signal behavior and parameters
that are necessary for fusion and weighting mechanisms, simulation purposes and fault
detection techniques concerning a reference output [Dietrich et al. 2010].

Considering our example scenario we have to write two sensor description files
using an appropriate editor. This tool allows a convenient handling of the XML Files by
a GUI that provides form structure with input boxes, buttons and drop down frames. The
interface description list contains one entry for the AD592 sensor and two specifications
for the CON-THEMOD, for each sensor statistical signal parameters and a linearization
function are integrated.

3.2. Platform Description
The platform description combines basic information and the available interfaces of the
platform. The first part has a similar background as the general information section from
sensor description. Here we store general information like board type, board revision and
processor type similar to CODES described in [Kaiser and Piontek 2006]. The second
part encounters the interfaces and corresponding device drivers of the platform.

Our sensor board used in the example scenario provides the periphery of the Atmel
processor and supplies interfaces to the analog digital conversion, I2C, and CAN buses,
as well as two UART.

3.3. Communication Description
The communication description is tailored for the integration of FAMOUSO. It contains
necessary information like subjects of the events for publishing and subscription as well
as parameters like periodicity, omission degrees, etc.

In the example scenario the temperature values and their validity are published
periodically.

3.4. System Specification
The three XML files mentioned above are composed in a system specification file. The
specification file selects the interfaces between sensor components and the used target
platform. Storing the connection data in a separate file results in a high degree of flexi-
bility because it opens the ability to compose and replace different sensors, actuators and
platforms. Consequently, it is possible to develop the application on different boards and
select yet another one for series production. The system specification file is also gener-
ated by a graphical tool that helps to hide the error-prone task of manual XML editing and
checks the compatibility of the interfaces. E.g. if a developer tries to combine a sensor
with a LIN bus with our scenario board, this results in an error message.

Listing 1 summarizes parts of a system specification file. Line 4 and 5 define
references to the connected sensors and their descriptions. As noted above, the first sensor
(AD592) is assigned in line 10 to the third channel of the analog digital converter of our
platform. The second transducer (CON-TEMOD-I2C) is connected to the I2C bus and
uses the fifth address.

12th Brazilian Workshop on Real-Time and Embedded Systems 7

Listing 1. Example of a System Specification XML file

1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>
2 <c o n t a i n e r>
3 <c o n t e x t>
4 <Senso r1>AD592−BN< / Senso r1>
5 <Senso r2>CON TEMOD I2C< / Senso r2>
6 < / c o n t e x t>
7 <c o n n e c t i o n s>
8 <AVR−P r o c e s s o r>
9 <Senso r1>

10 <p l a t t f o r m>a n a l o g . c h a n n e l 3< / p l a t t f o r m>
11 <s e n s o r>a n a l o g< / s e n s o r>
12 < / Senso r1>
13 <Senso r2>
14 <p l a t t f o r m> i 2 c . a d d r e s s 5< / p l a t t f o r m>
15 <s e n s o r> i 2 c< / s e n s o r>
16 < / Senso r2>
17 < /AVR−P r o c e s s o r>
18 < / c o n n e c t i o n s>
19 < / c o n t a i n e r>

4. Simulink Model Generation
The model generator transforms the information of the specification file into a Simulink
model. Beside the visible model structure of a node, the process generates the context
information, device drivers for sensor components and the scripts necessary for profile
switches. For this purpose a configuration set for target code generation is selected and
the user can customize the sensor interfaces with the respective graphical tool. The con-
figuration set, called profile, contains device drivers and the Simulink parameterization
for the associated platform. In our example project we use two general profiles: the simu-
lation in the Simulink environment and the execution of node behavior on an Atmel AVR
processor. Within real target profiles the developer can replace physical sensors interfaces
by simulation blocks.

A Simulink model combines different blocks connected by arrows that represents
the data flow as shown in Figure 2. A block is presented by a rectangle and hides its
functionality behind the respective graphical representation. The developer may describe
each block by an individual S-Function, by a model reference or including a common
library block.

Figure 2 shows the output of the generation process. We obtain a basic structure
that offers suitable interfaces to the sensors, actuators and to FAMOUSO. The developer
implements the behavior of the Processing block only and integrate the desired applica-
tion here.

The Simulink models in Figure 2 of our example scenario look similar on the high-
est level, but for the different profiles two various sub-models implement the interfaces
of the AD592 and CON-TEMOD-I2C sensor (visible in the sub window in each figure).
In Figure 2(a) we depicted the simulation profile. The actual state of profile switch is

8 Proceedings

(a) Simulation Environment (b) Code Generation Configuration

Figure 2. Profile switch between a simulation environment (a), and a code gener-
ation toolchain (b)

documented in the headline of the ProfileSwitch block. For simulation practice, there is
only an emulation driver with the output unit “Degrees Celsius”. On the right side, we
use the profile AVR BOARD connected to the real sensors. Hence, the first block named
S-Function represents the analog device driver for the Atmel processor. The device driver
delivers a signal with a voltage, which have to be transformed in “Degrees Celsius” and
linearized by a “Lookup Table” block.

After the implementation of the behavior and validation by simulation, the tar-
get code generation process translates a Simulink model into the target languages. The
process of code generation is controlled by a System Target File (STF). One STF rep-
resents a range of processors, typically a processor family. The Embedded Real-time
Workshop [MathWorks 2010c] provides a number of these STFs. However, in most case,
especially for 8-bit devices, there are basic structures only. Hence, we created our own
STF for the AVR that is now available for future projects [Brade 2009].

5. Related Work

Our approach covers a broad spectrum of methods used in system development and a
number of ongoing research topics. Hence, it is difficult to compare our work to other
projects under a single perspective. Therefore, we evaluated several tools, standards etc.
that include ideas related to our approach. In Tab. 1 we summarize the results according
to the three abstraction categories of our approach. An empty field in the table means that
this feature is not supported, a “+” marks some basic support while a “++” denotes the
comprehensive integration of an aspect. The “X” symbol validates the existence of the
main feature categories.

In the first group of categories we determine the integration of a communication
abstraction that offers a common interface and helps to hide specific properties of the

12th Brazilian Workshop on Real-Time and Embedded Systems 9

C
O

D
E

S

Se
ns

or
M

L

O
M

G
ST

IS

IE
E

E
-1

45
1.

2

L
ab

V
ie

w

Si
m

ul
in

k

C
A

N
op

en

Communication Abstraction X X X

Middleware Integration ++ ++ +

Modular Concept X X X X X

M
od

ul
e sensor interface + ++ ++

communication ++ + + +
functionality + + ++

Electronic Data Sheets X X X X X X

E
D

S sensor ++ ++ ++ +
platform ++ +
communication ++ + +

Description Languarge XML XML XML binary binary text

Functionality X X X

Programming Interfaces C Math
ML,
Java

C, g,
m,
etc.

m,
mex,
etc.

Code Generation X X X

Code Generation Tool XSLT RTW
Target Languarge C C C
Error prevention + +

Table 1. Comparison of different development environments for distributed ap-
plications considering high level sensor descriptions

underlying network. Some of the referenced approaches provide or integrate an existing
communication middleware for this purpose. The second group categorizes the existence
of a modular structure, which combines predefined functions like sensor and communi-
cation interfaces, error detection modules, as well as application specific modules. The
next category examines the usage of an abstract component description in electronic data
sheets for different categories of sensor node components. Category four divides the ref-
erences considering the implementation interfaces for behavior related functionality. The
utilization of this information is depicted in category five. Here we mark the capabilities
of a code generation and combination in the development process. The following tools
and approaches were classified according to the four categories:

CODES (COsmic embedded DEvice Specifications) described
in [Kaiser and Piontek 2006] represents a predecessor of some parts of our framework.
The approach focuses on a XML based description language for the specification of
sensor features and communication parameters for smart autonomous components. The
communication abstractions of the underlying middleware COSMIC [Kaiser et al. 2005]
are mapped to the electronic data sheet and allow a dynamic setup of the communi-

10 Proceedings

cation. The sensor descriptions follow some ideas of the Transducer Electronic Data
Sheets (TEDs) according to unit coding, data types, and boundaries. The CODES data
sheet is compressed available on each node. CODES supports an underlying middleware
extensively, but it does not consider realistic sensors and whose parameters in the data
sheet design.

Sensor Model Language (SensorML) provides a framework for describing sensor
systems, as well as the associated data processing. In contrast to the following stan-
dards the user can define filter or fusion functions in the Mathematical Markup Language
(MathML). The comprehensive concept is used to describe sensor, platform, and function-
ality. The description of process properties is based on Sensor Web Enablement Common
namespace and provides the entire Sensor Web Enablement functionality. The communi-
cation interface would be described by an extension of OSI. The concatenation of separate
processes enables processing, analysis, and visual fusion of multiple sensors. SensorML
does not include appropriate tools for behavior development beside the MathML interface.
For complex fusion applications an abstract description of algorithms is not possible in
this way.

The OMG Smart Transducer Interface Specification (STIS)
[Object Managment Group (OMG) 2003] provides an access via the CORBA real-
time service (RS) interface, the diagnostic and management (DM) interface, and the
configuration and planning (CP) interface of small, smart transducers in a distributed
control system. The standardization of the different interfaces is mapped on an interface
file system (IFS) typically in the memory of each Smart Transducer. For an interpretation
of the data in the IFS additional meta data about the particular IFS are stored on a central
node with higher performance. The authors of [Elmenreich et al. 2004] enhance the
Standard Transducer Interface (STI) concept and developed a XML description of the
functionality for simple fusion tasks. As mentioned one section before, OMG STIS
divides interface programming and application development. The descriptions are used
for message identification but not in the development process.

IEEE 1451 Smart Transducer is a family of standards for connecting smart de-
vices [IEEE Standards Association 1997]. IEEE 1451.2 defines an electronic data sheet
and a digital sensor interface to access sensor measurements, set actuators, control main-
tenance functions, or to obtain the data sheet of the sensor/actuator system. Hence, the
standard establishes the communication between a Network Capable Application Pro-
cessor (NCAP) and an actual sensor node called Smart Transducer Interface Modules
(STIM). Those structure represents a mechanism that enables a flexible network inter-
face via special NCAPs. The standards 1451.3 to 1451.5 enhance the interaction between
STIMs and NCAPs to various protocols and interfaces. The description of the sensors,
stored at each node contains a detailed specification of the sensor’s vendor, firmware, and
physics in a compressed TEDs [Char 1997]. Tools for an additional use of the electronic
data sheets beside message identification and interpretation are not known yet.

Mathworks Simulink [MathWorks 2010a] and National Instruments LabVIEW
[National Instruments 2009] are widely used toolchains for simulation, Hardware-in-the-
Loop (HiL) scenarios and code generation. Therefore a broad variety of tool-boxes (e.g.
control engineering, data acquisition, image processing, etc.) are available and helpful
for rapid developments. Both tools offer interfaces for different programming languages

12th Brazilian Workshop on Real-Time and Embedded Systems 11

beside the standard graphical oriented development systems. Simulink does not support
the utilization of meta information about data sources like sensors. The code generation
process checks only data types of the used variables. LabVIEW integrates the concept of
TEDs from IEEE 1451 and identifies connected sensor based on this information. The
user has the possibility to scan the network during the development process and to call
calibration functions. Data sheets can be located on the node or in an extended version
as a virtual TED on a server application. Simulink and LabVIEW offer a large amount
of development tools in particular for code generation. However, they do not allow an
external description of the used sensors, processors etc. All parameter have to be defined
directly in the model.

CANopen [CAN in Automation 2005] is a high-level protocol for CAN-
bus [Robert Bosch GmbH 1991]. Every CANopen device is delivered with a vendor elec-
tronic data sheet. This electronic data sheet specifies communication, error and applica-
tion profiles. The developer can define profiles to customize a CANopen device. These
modifications are deposited by a device configuration file. The exchange of information
occurs by a process data object and a service data object. Process data objects carry the
real-time data with a look-up mechanism to encode units. In contrast, service data objects
were used to configure the CANopen device. All configurations of a device were placed in
the device object dictionary. Thus, the device object dictionary is the abstraction between
application and communication.

From Tab. 1 we can conclude that none of the related approaches meets all re-
quirements completely. Each of the presented tools, standards etc., covers an individual
focus only and shows excellence in just this point. While engineering tools like Simulink
and LabVIEW do not consider (or in very limited extent only) external knowledge about
sensors and communication specification, they are very suitable for developing the re-
spective control and filter algorithms. Additionally, incoming data structures have to be
correctly interpreted by the developer. The standards for smart transducer interfaces de-
fine the communication, services, data types, etc., but they do not care about the relation
between input and output values. Hence, we have to combine several approaches to meet
our requirements addressed in Section 1.

6. Conclusions and Outlook

The intention of our framework is to enable a flexible combination of different software
and hardware components during a development process. Furthermore we aim at the in-
tegration of domain specific tools in distributed control applications composed from net-
works of smart sensors and actuators. Therefore, we introduce abstractions of processors,
sensors and actuators defined in XML descriptions and connect them with widely used
development tools. This enables the developer to configure sensor and network interfaces
on a high, declarative level. As a result applications can be developed independently. The
developer may also choose the favourite domain specific language.

In the future we will test and refine the framework in a distributed robotic scenario.
Additionally, we want to develop an appropriate way to derive the System Target File
automatically for code generation using a XML definition file too.

12 Proceedings

Acknowledgement
This work has partly been supported by the Ministry of Education and Science (BMBF)
within the project “Virtual and Augmented Reality for Highly Safety and Reliable Em-
bedded Systems” (VierForES).

References
Apparao, V., Byrne, S., Champion, M., and Isaacs, S. (1998). Document object model

(DOM) technical reports : Level 1. Candidate recommendation, W3C.

Brade, T. (2009). Codegeneration aus Simulink / Embedded Real Time Workshop Mod-
ellen am Beispiel eines AVR Targets, Student Research Project, Otto-von-Guericke
Universität Magdeburg.

CAN in Automation, editor (2005). CiA 306 DS V1.3: Electronic Data Sheet Specification
for CANopen. CiA, CANopen.

Char (1997). IEEE Std 1451.2-1997, IEEE Standard for a Smart Transducer Interface for
Sensors and Actuators.

Dietrich, A., Zug, S., and Kaiser, J. (2010). Detecting external measurement disturbances
based on statistical analysis for smart sensors. In Procedings of the IEEE International
Symposium on Industrial Electronics (ISIE).

Elmenreich, W., Pitzek, S., and Schlager, M. (2004). Modeling distributed embedded ap-
plications on an interface file system. In Proceedings of the Seventh IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing, pages 175–182.

Herms, A., Schulze, M., Kaiser, J., and Nett, E. (2008). Exploiting publish/subscribe
communication in wireless mesh networks for industrial scenarios. In Proceedings of
Emerging Technologies in Factory Automation (ETFA ’08), pages 648–655, Hamburg,
Germany.

IEEE Standards Association (1997). IEEE Standard for a Smart Transducer Interface for
Sensors and Actuators (IEEE 1451.2).

Kaiser, J., Brudna, C., and Mitidieri, C. (2005). COSMIC: A real-time event-based mid-
dleware for the CAN-bus. Journal of Systems and Software, 77(1):27–36. Special
issue: Parallel and distributed real-time systems.

Kaiser, J. and Piontek, H. (2006). CODES: Supporting the development process in a pub-
lish/subscribe system. In Proceedings of the fourth Workshop on Intelligent Solutions
in Embedded Systems WISES 06, pages 1–12, Vienna. ISBN: 3-902463-06-6.

Kaiser, J., Zug, S., Schulze, M., and Piontek, H. (2008). Exploiting self-descriptions for
checking interoperations between embedded components. In International Workshop
on Dependable Network Computing and Mobile Systems (DNCMS 08), pages 41–45,
Napoli, Italy.

MathWorks, T. (2010a). Matlab/Simulink - Website.

MathWorks, T. (2010b). Real Time Workshop - User’s Guide.

MathWorks, T. (2010c). Real Time Workshop Embedded - User’s Guide.

National Instruments (2009). LabVIEW 2009 - Herstellerseite.

12th Brazilian Workshop on Real-Time and Embedded Systems 13

Object Managment Group (OMG) (2003). Smart Transducer INterface Specification.

Robert Bosch GmbH (1991). CAN Specification Version 2.0. Robert Bosch GmbH.

Schulze, M. (2009). FAMOUSO – Eine adaptierbare Publish/ Subscribe Middleware
für ressourcenbeschränkte Systeme. Electronic Communications of the EASST (ISSN:
1863-2122), 17.

Schulze, M. and Zug, S. (2008). Exploiting the FAMOUSO Middleware in Multi-Robot
Application Development with Matlab/Simulink. In Proceedings of the 9th Internati-
nal Middleware Conference (Middleware2008) ACM/IFIP/USENIX, Leuven, Belgium.

ZigBee Alliance (2003). ZigBee Specification - IEEE 802.15.4.

Zug, S. and Kaiser, J. (2009). An approach towards smart fault-tolerant sensors. In Pro-
cedings of the International Workshop on Robotics and Sensors Environments (ROSE
2009), Lecco, Italy.

14 Proceedings

Software Architecture for Mobile Interaction in
Intelligent Environments

Reiner F. Perozzo1, Carlos E. Pereira1

1Departament of Electrical Engeneering – Federal University of Rio Grande do Sul
(UFRGS)

Av. Osvaldo Aranha, 103 – 90035-190 – Porto Alegre – RS – Brazil
reiner.perozzo@ufrgs.br, cpereira@ece.ufrgs.br

Abstract. Since the latest years, Intelligent Environments (IE) has been
becoming a very discussed and recurrent subject. Part of such success is given
by the meaningful diffusion and offer of portable electronic devices, with great
power of computation, low energy consumption and, mainly, high level of
connectivity. This paper proposes a software architecture for mobile
interaction in IE. The proposed architecture has three main characteristics: (i)
discovery and remote composition of available services in the IE; (ii)
adaptation of services and functionalities according to the user’s profile; (iii)
flexibility in the insertion of new home automation devices, adding,
dynamically, services to the IE.

1. Introduction
With the advance in home automation and the technologies that are more present in the
Intelligent Environments (IE), the ubiquitous computation starts becoming reality,
defined by Mark Weiser [Weiser 1991] and that includes a technological level where
computational systems provide information and services to people, anywhere and
anytime. Ubiquitous and pervasive computation can be seen as a group of
characteristics and functionalities that composes an IE [Anastasopoulos 2005].
 In the IE there is the vision of a world surrounded by a big amount of devices
that offer intelligent assistance on users daily activities. The IE consists of a
technological information paradigm in which the computerized objects are introduced in
a specific physical environment that adapts itself to the users’ different necessities and
situations [Kirste 2005], [Arts 2002] having autonomy to act [Lindwer 2003] and with
possibilities to be programmed to recognize and learn the user’s behavior who lives
inside that environment [Yang 2004], [Hagras 2004].
 The home automation is inserted in the context of IE, with projects that need
automated physical spaces, including sensors, actuators and, mainly, intelligent systems
for tasks management and optimization [Nazari 2007], [Edwards 2006]. A large variety
of services in fields like security (access control, users’ identification), comfort
(temperature and humidity control, illumination) and entertainment are emerging daily,
indicating problems to be solved, as the electric energy consumption in these
environments, that can be minimized through the utilization of intelligent computational
systems that concern energy optimization and management. Other problems are related

12th Brazilian Workshop on Real-Time and Embedded Systems 15

to mobility, adaptability and heterogeneity aspects in these environments, due to the
large number of solutions, both in hardware and in software.
 A great variety of intelligent devices networks may be found inside an IE, that
admit the integration of electronic devices and people, providing information,
communication, services and entertainment [Arts 2004]. The utilization of
communication networks in these environments is one of the primordial points for
projects execution, because they can be related to both the information exchange among
electrical appliances – through power line communication (PLC) – and with wireless
access to this same information, through mobile computation devices – such as Personal
Digital Assistants (PDAs) and smartphones. This way, there is a necessity of creating
strategies that consider the most different points, like: the users’ mobility, the discovery
and dynamic composition of new services and the flexibility with the automation
devices that are inserted in the IE.

2. Related Works

2.1. Architectures and Middlewares
The µJini architecture [Lee 2006] was proposed with the objective of offering a
discovery of services that is aware of the context for mobile devices with limited
resources. The main point of this architecture is defined by a proxy in charge of
controlling discovery processes and services delivery. Inside the µJini proxy system are
the service discovery components that supply the aware discovery to the context for
µJini proxy, which utilizes three approaches: (i) having a service code executed
completely in the client computational platform, with MIDLets Java 2 Micro Edition
(J2ME) or with Java 2 Standard Edition (J2SE) services, through a network that sends
up-to-date screens to the client. The decision about which way to utilize is clearly made
to the users. µJini proxy is able to select the best adaptation, according to the service
context.
 Basically, the µJini architecture was projected to overcome limitations related to
mobile devices, communication networks and services. The proposal offers a solution
that comprehends the request of mobile services and their distribution to the clients’
devices. Although, some challenges still proceed, such as the dynamic composition of
new services and the limitation about the applications requiring a Java virtual machine
(JVM) available in the client mobile device.
 The Mobile Context Explorer proposal – or, simply, MoCE [Kang 2006] – as it
is known the architecture of a middleware that is aware about the context, was projected
to find, gather and provide context to services in a mobile environment. Besides, a
context discovery protocol was developed in order to discover contexts efficiently in
unknown contexts providers, both for mobile devices and for embedded devices based
on Wi-Fi networks. The MoCE architecture was specifically defined in order to offer
support to services based on context, and this one is shared by the data communication
network. Making reference to context sharing, there is the necessity of a mediating
architecture to interface and control the context request and offer among different
devices. Thus, some components in the architecture were defined in order to identify
and support context consumers.

16 Proceedings

 In respect to data access in the IE, an architecture designated by Ubiquitous Data
Access (UbiData) [Helal 2004] was specified with the purpose of concerning some
challenges originated by the proliferation of devices and mobile applications, as well as
additional requirements of clear access to ubiquitous data. Among the challenges
discussed by UbiData architecture, are in relief: (i) access to data anywhere and
anytime; (ii) access to data independently on the device, which is possible for the user to
alternate among different mobile devices with different access capabilities; (iii) data
access and update independently on the application, enabling the users to modify
documents and files.
 Another important project is Gator Tech [Helal 2005] that considers the
existence of execution environments and software libraries for the development of
programmable IE. Services discovery and gateways protocols automatically integrate
systems components, using a generic middleware that supports a service definition to
each sensor and actuator in the environment. There are mechanisms in the Gator Tech
which consist from intelligent e-mails treatment – with perception and notification to
users – up to points like the use of Radio-Frequency Identification (RFID) to access and
identify users inside the environment, intelligent bathrooms, residential security and
monitoring.

2.2. Services Discovery and Composition
The Open Services Gateway initiative/Business Process Execution Language
(OSGi/BPEL) is the proposal of a framework [Redondo 2007] that suggests to increase
the services OSGi composition support present in IE. Due to the fact that, usually, there
are lots of services in these environments, such as energy control and optimization,
security, illumination control, alarm system for fire and others, composed services are
the ones that activate a group of OSGi services, where each one is led to a specific
activity.
 In the OSGI/BPEL, the idea is to encapsulate logical information of services
composition inside an OSGi application, registering it in the framework. When the
composed service is required, an execution engine interprets the composition
description to require and manage the processes under execution. The proposal tries to
be clear both for required composition services and for OSGi registration service. That
is why virtual bundles are defined, in charge of specifying composed services, which
use the BPEL for composition in the OSGi framework.

2.3. Mobile Interaction
The possibility of controlling a smart home using the TV appears from a proposal
[Cabrer 2006] which integrates IE, digital TV and domestic networks. The adopted
technologies in the proposal are the Multimedia Home Platform (MHP), for Digital TV
and the OSGi as a platform for residential gateways settings. According to the proposal,
the main point is to permit the user to control the whole IE assisted by the TV. This
way, MHP and OSGi are utilized – the later is oriented to services and the former is
oriented to functions. As both technologies have quite different architectures, there is
integration between them, and the problem is solved by creating an Xbundlet – an
application that permits the natural interaction between MHP and OSGi. A Xbundlet not
only defines a communication link between these platforms, but also constitutes a
hybrid software element that can be executed in both architectures.

12th Brazilian Workshop on Real-Time and Embedded Systems 17

 As regards to the use of mobile devices in IE, there is a proposal [Helal and
Mann 2002] intending to increase life quality and reduce old people dependence or
limitation, somehow, at home. One of these research activities concerns, precisely, the
utilization of smartphones as a tool to offer support to elderly in the IE. Smartphones
become something like a “magic wand” that provides, among other things,
functionalities of a universal remote control for all kinds of automation devices present
in the intelligent environment.
 The idea of using smartphones appears as an offer to several services for elderly,
by not moving in the ambient, or asking favors to another person in the same place.
According to researchers, the proposal greatest challenge is to have an open integration
of the different involved technologies, neither endangering nor limiting an architecture.

2.4. Users Profile
From the attractions offered by ubiquitous computation – in which are available the
information mobility and the networked devices, some efforts come to sight with the
objective of concerning security mechanisms and techniques in IE. One of the choices
for this kind of security is the profile management, proposed by a middleware [Loeser
2005] which is able to integrate data bases of several profiles, with generic mechanisms
of authentication that permit the management in the OSGi framework. Users’ profiles
are utilized to have information about their basic preferences and abilities, whereas
devices profiles provide the main characteristics and describe the present situations of
each device. There are, also, the definitions of the safe access kinds in each
environment, having confidential information of identification that must be preserved.
Because of this reason, there are several levels of security for different services and
users, defining a distributed architecture, in which the communication component may
utilize TCP/IP on technologies with Wireless Local Area Network (WLAN) and
Bluetooth. On the other hand, the security guarantee in distributed systems is given by a
communication based on Secure Sockets Layer (SSL) / Transport Layer Security (TLS)
with certificates X.509.
 Likewise, another proposal concerns a framework [Groppe and Mueller 2005]
for profile management in IE, customizing this environment according to each situation,
with the users’ preferences and the devices capability. Profiles customization methods
are used based on evaluation and processing methods to expand, automatically, the
users’ preferences.
 Profiles management applied to IE is motivated because these ones integrate a
great variety of embedded computation devices, mobile, and the capability of
communication, which offers agility and comfort to the users. That is why there is the
proposal of a profile processing method that intends to adapt, automatically, the
environment according to users’ necessities and preferences. Possible conflicts and
decision strategies in profile processing are investigated, as well as mechanisms for
profile evaluation that assimilate modification in an environment. It is also analyzed a
methodology by identifying the project, main points and involved requirements.

3. Proposed Architecture
In this paper, it is proposed an architecture that offers mobility in the remote interaction
between the user and the IE, as well as the services remote management.

18 Proceedings

The architecture has three main characteristics: (i) discovery and remote composition of
services available in the IE; (ii) functionalities and services adaptation according to the
user’s profile, utilizing security policies with different levels of accessing the system;
(iii) flexibility in the insertion of home automation new devices, in which services are
dynamically added to the IE.

3.1. Conceptual Model
The proposed architecture is presented in Figure 1 and is divided among five layers: (i)
physical devices, (ii) logic devices, (iii) services layer, (iv) services composition layer
and (v) management layer.

Figure 1. Proposed Architecture

 The layers in the architecture are defined with the purpose of offering
modularity to the system, in which new components may be inserted in the lower layers
and available to the upper ones. This way, they are specified below:
 Physical Devices Layer: It is composed by electro-electronic devices in home
sceneries. Inserted in this layer are devices found in the real world, such as: lamps,
televisions, set-top-boxes (STP), refrigerators, air-conditioners, thermostats, sensors,
actuators and controllers, in general terms.
 Logic Devices Layer: It is composed by the computational representation of the
devices that are inserted in the physical layer, which are mapped by the logical layer

12th Brazilian Workshop on Real-Time and Embedded Systems 19

through devices classes that implement a known communication interface. An
advantage of this layer is the possibility of defining services in the upper layer, even if
the physical layer is not aware of that.
 Services Layer: It is composed by a group of services available in the IE, which
may be requested and executed by the users. In this layer, there are the functionalities
that an IE might offer to its users, like: conditioning the ambient, turning off the lights,
verifying the state of any sensor, shutting the door, and so forth. Each service is
associated to a logic device and, once implemented, it might be reused or adapted in the
interaction with other devices.
 Services Composition Layer: In this layer, it is possible to create composed
systems, which integrate other services with the objective of executing a specific task.
An example of composition could be applied to a situation in which the user wants to
set the illumination level of the living room, according to a source of natural light got at
the moment. In that case, the composed service would be the association of a sensor
reading service with an illumination adjustment service. One of the composition
advantages is the possibility of reusing services dynamically, offering flexibility in the
execution of services that depend on others.
 Management Layer: This layer is in charge of managing the IE,
comprehending components that concern form the discovery and availability of services
to users, up to the definition of what kinds of services a user may access. The five
components present in this layer are specified as follows below:
 Access Interface: Permits users to interact with the IE utilizing their mobile
devices. The main point is that, facing an IE, the user is able to get information about
what kinds of services that environment offers and which of them are available to him.
 Data Base: It is responsible for storing the users’ data, registering details
reports, levels of safe access and profiles that do not really need to be stored at the
moment.
 Profile Manager: It is responsible for receiving the users’ requests and deciding
which will be the access level of each user according to his/her profile and a detail
report that, occasionally, has been registered. A profile may be given by inserting a
private or common password, under the domain of the desirable service.
 Services Discovery: This component, in system execution time, searches for all
services that are available at that moment in the services layer and, hence, to the IE.
 Services Manager: Perceiving all the available services through the received
information in the Services Discovery, this component provides users, by means of the
Profile Manager, all the services that are available for execution. The Services Manager
is in charge of executing single or composed services, according to each request and the
user’s profile. After passing through the Profile Manager, the list of available services in
the IE is provided in the Access Interface to that particular user.

3.2. Architecture Implementation
With the definition of a conceptual model, the architecture is implemented and validated
inside an IE scenery, which consists of a seminaries room that has a home automation
system developed built by a company [Homesystems 2009] which develops researches

20 Proceedings

projects applied in cooperation with the Control, Automation and Robotics Group of the
Federal University of Rio Grande do Sul. In this automation system, there is a central
controller unit called Systembox, that is, basically, a computer with Linux operational
system, responsible for controlling Homesystems Network (HSNET – proprietor
protocol that works in the physical layer RS-485) and executing commands for a group
of devices that can be utilized in illumination systems, air conditioners and security
systems.
 This way, in the physical layer of the proposed architecture, are inserted a group
of lamps, the air conditioner, a luminosity sensor and the central controller
(Systembox). In the logic layer, the classes are implemented, in Java language, that
know the Systembox communication interface. The exchange of command messages
between the logic devices (classes) and the physical devices (Systembox, lamps and air
conditioner) is carried out through HyperText Transfer Protocol (HTTP), implemented
on an Ethernet network and known both for the classes and for the Systembox.
 On the services layer, the OSGi framework and the Knopflerfish implementation
[Knopflerfish 2009] are used. OSGi has an architecture oriented to services and based
on Java, providing the standardization of primitives that permit building applications
with small components that are reusable. In this layer, execution components (bundles)
are created, and these ones utilize and register services in the OSGi Service Registry.
Thus, it is implemented three bundles that interact with the logic devices classes: the
first bundle implements two services – turning the environment lights on and off; the
second one verifies the light intensity level in this same environment; and the third one
sets the air conditioner temperature.
 On the management layer, it is used the MySQL as data base for storing the
user’s profiles and the system utilization detailed report. The components profile
manager, services manager, services discovery and access interface are implemented
into Java language, and the later is developed in Java Server Page (JSP). Java
technology was chosen because of the platform portability that it offers. This layer still
counts on Tomcat, which is a Java applications server for the web that provides the
access interface between the mobile devices and the services offered by the IE.
 In the considered scenery to the case study, by entering the seminaries room
with his/her mobile device, the user solicits the manager layer what services are offered
by this environment and which of them are available to him/her. Thus, the profile
manager verifies, in the data base, the access level that will be allowed. After that, the
Services Discovery component researches inside the OSGi framework and finds the
registered services (turning the lights on/off, verifying the illumination intensity and
setting the air conditioner temperature). At this moment, the Services Manager creates a
list of available services and sends it to the Profile Manager, in order to provide it to the
user. In Figure 2, it is shown the communication scenery utilized in the case study.

12th Brazilian Workshop on Real-Time and Embedded Systems 21

Figure 2. IE Scenery

4. Conclusion
In this paper, it has been proposed a software architecture for mobile interaction in IE.
In the architecture, it is presented components which concern form the discovery and
composition of services up to the user’s profiles management in his/her interaction with
the IE. One of the main advantages presented is the possibility offered to the user to
create different sceneries in environments with residential automation devices, without
the necessity of being acquainted with them previously.
 Another advantage is that, even being indispensable an JVM for performing
most of the components in the architecture, it is not necessary to have it in the mobile
devices, because the interface with the user happens according to JSP pages which are
interpreted in the server. This way, the user’s mobile device must have a web navigator
to access the available services in the IE, making the architecture flexible according to
the several computational resources found in mobile devices. At last, it is opportune to
mention that all the architecture components were implemented and are perfectly
working in the automated seminaries room. However, new strategies and technologies
for services discovery and composition continue being investigated.

22 Proceedings

References

Anastasopoulos, M., et al. (2005) “Towards a Reference Middleware Architecture for
Ambient Intelligent Systems”, In: Proceedings of the Workshop for Building
Software for Pervasive Computing..

Arts, E. (2004) “Ambient intelligence: a multimedia perspective”. In: IEEE. Vol. 11.
Issue 1, Jan-Mar, pp. 12–19.

Arts, E., et al. (2002) “Ambient intelligence”. In: McGraw-Hill, Inc., New York, NY,
USA, pp. 235–250.

Cabrer, M. R., et al. (2006) “Controlling the Smart Home form TV” In: Proceedings of
the International Conference on Consumer Electronics, IEEE, Las Vegas p. 421-429.

Edwards, W. K. (2006) “Discovery systems in ubiquitous computing”. In: Proceedings
of the Pervasive Computing, IEEE. Vol. 5, Issue 2, April-June, pp. 70-77.

Groppe, J. and Mueller, W. (2005) “Profile Management Technology for Smart
Customizations in Private Home Applications”. In: Proceedings of the International
Workshop on Database and Expert Systems Applications, IEEE, Copenhagen, p.
226-230.

Hagras H., et al. (2004) “Creating an ambient-intelligence environment using embedded
agents”. In: Proceedings of the Intelligent Systems, IEEE. Vol. 19, Issue 6, Nov-Dec,
pp. 12-20.

Helal, A. and Hammer, J. (2004) “UbiData: Requirements and Architecture for
Ubiquitous Data Access”. In: SIGMOD Rec Journal… New York: ACM, p. 71–76.

Helal, S. et al. (2005) “The Gator Tech Smart House: A Programmable Pervasive
Space”. In: IEEE Pervasive Computing, p 64-74.

Helal, S., Mann, W. (2002) “Smart Phones for the Elders: Boosting the Intelligence of
Smart Homes”. In: Proceedings of the Workshop Automation as Caregiver: The Role
of Intelligent Technology in Elder Care, Edmonton, AAAI Press, p. 74-79.

Homesystems (2009) Intelligent Environments. <http://www.homesystems.com.br>.

Kang, B. S., et al. (2006) “Context-aware Middleware Architecture for Intelligent
Service in Mobile Environment”, Proceedings of the International conference on
Computer and Information Technology, IEEE, p. 240–244.

Kirste, T. (2005) “Smart environments and self-organizing appliance ensembles”. In:
Aarts E, Encarnação J. L. (eds): True Visions, Springer.

Knopflerfish (2009) “Open Source OSGi”. <http://www.knopflerfish.org>.

Lee, C., et al. (2006) “The µJini Proxy Architecture for Impromptu Mobile Services”.
In: Proceedings of the International Symposium on Applications and The Internet
Workshops, IEEE, 2006, Phoenix, p. 23–27.

12th Brazilian Workshop on Real-Time and Embedded Systems 23

Lindwer, M. et al. (2003) “Ambient intelligence visions and achievements: linking
abstract ideas to real-world concepts”. In: Design, Automation and Test in Europe
Conf and Exhib., pp. 10–15.

Loeser, C., et al. (2005) “Secure Profile Management in Smart Home Networks”. In:
Proceedings of the International Workshop on Database and Expert Systems
Applications, IEEE, Copenhagen, p. 209-213.

Nazari, A. S., et al. (2007) ”3DSim: Rapid Prototyping Ambient Intelligence”.
<http://www.igd.fhg.de/igd-a1/projects/amilab/index.html>.

Redondo, R. P. D. et al (2007) “Enhancing Residential Gateways: OSGi Services
Composition”. In: Proceedings of the International Conference on Consumer
Electronics, IEEE, Las Vegas, p. 1-2.

Weiser, M. (1991) “The Computer for the 21st Century”. In: Scientific American 265
n.3, p. 94-104.

Yang, H., et al. (2004) “An evolutionary system development approach in a pervasive
computing environment”. In: Proceedings of the International conference on
Cyberworlds, pp. 194-199, 2004.

24 Proceedings

12th Brazilian Workshop on
Real-Time and Embedded Systems

♦

Technical Session 2
Scheduling

smartenum: A Branch-and-Bound Algorithm for Optimum
Frequency Set Establishment in Real-Time DVFS

E. B. Valentin1, R. S. Barreto1

1Department of Computer Science
Federal University of Amazonas

Manaus-AM, Brazil

{ebv,rbarreto}@dcc.ufam.edu.br

Abstract. This paper describes an offline branch-and-bound algorithm to es-
tablish the optimum frequency set to execute real-time tasks taking into ac-
count worst-case scenarios on the DVFS technique. The real-time tasks are
scheduled by a dynamic fixed priority scheduler, such as Rate-Monotonic.
The task model also considers mutual exclusion relations adopting the Pri-
ority Ceiling Protocol. The schedulability analysis is carried out by response
time technique, which had to be adjusted to consider several frequencies.
Two case studies are detailed. Results have shown a reduction of 91% and
78% in the number of evaluated configurations. In addition, experimental
results pointed out energy reductions of 38.79%, and 30.46%.

1. Introduction
Modern processors design provides the possibility to change operating frequency dy-
namically at runtime. Therefore, clock speed and corresponding voltage may be dy-
namically controlled to the lowest available level while meeting task’s timing con-
straints. This is the key idea behind a technique known as Dynamic Voltage and Fre-
quency Scaling - DVFS. When considering processor circuitry, there is a quadratic
relationship between energy consumption and voltage. This relation is described on
Equation (1):

E = Cl ×Ncycle × V 2
dd (1)

where E is energy, Cl is circuitry capacitance, Ncycle is number of cycles and Vdd is
the voltage [Gutnik 1996].

In some situations, you can lower the supply voltage in such a way to take ad-
vantage from this quadratic relation between voltage and energy consumption. How-
ever, lowering the supply voltage also reduces linearly the clock speed. For instance,
consider a task with 25ms deadline executing in a 50MHz processor under 5V. If this
task requires 5×105 execution cycles, the processor finishes its execution within 10ms
and stays idle for the remaining 15ms. However, if user scales processor speed and
voltage down to 20MHz and 2V, the processor finishes this task exactly at its deadline,
25ms, resulting in a 84% energy consumption reduction [Shin et al. 2001].

12th Brazilian Workshop on Real-Time and Embedded Systems 27

Although this technique can yield meaningful energy consumption reduction,
its usage requires care, especially when timing constraints are considered. This prob-
lem may be trivial if each task is taken into account isolated without any concern of
other tasks interference. Once it is known the task’s deadline and the required worst-
case execution cycles, the best execution frequency can be selected in order to achieve
lowest energy consumption and still reach the deadline. On the other hand, when a sys-
tem with more than one task is considered, this problem becomes more complicated.

An interesting problem arises when executing such systems in DVFS-enabled
processors: “In which frequency each task must be executed, so that the whole sys-
tem reaches minimum energy consumption from processor circuitry and all tasks meet
their deadlines?” In this case, for each frequency combination, a new schedulability
analysis is required, because a single change into one task execution time will reflect
the whole system, because interference between every tasks will suffer modification.
If the system has N real-time tasks and the processor has Γ possible frequencies, then
there are ΓN possible frequency combinations.

The proposed method is an offline branch-and-bound algorithm to establish
the optimum frequency set to execute real-time tasks taking into account worst-case
scenarios on the DVFS technique. This is the main contribution of this paper. So
far, the algorithm only considers pruning unschedulable nodes. Real-time tasks are
scheduled by a dynamic fixed priority scheduler, such as Rate-Monotonic or Deadline-
Monotonic. The task model also considers mutual exclusion relations adopting the
priority ceiling protocol (PCP). Thus, each task can be interfered by factors like high
priority tasks and shared resources being held by low priority tasks. A schedulability
analysis is performed in order to check if these interferences can lead the system to an
undesirable state in which a real-time task would miss its deadline.

This work is part of a larger project that aims to propose a framework to help
designers to develop embedded multimedia applications with low energy consumption
for wireless portable devices. Although this work considers worst-case execution sce-
narios, it is worth mentioning that this is only the starting point since there is ongoing
projects that takes into account the actual execution scenarios that exploits slack time.

This text is structured as follows: related works are reviewed in Section 2, the
problem is modeled in Section 3, the proposed algorithm is presented in Section 4,
experimental results are then analyzed in Section 6 and conclusions and future works
are discussed in Section 7.

2. Related Works

Problems related to energy consumption have been solved by using several known
techniques. Havinga [Havinga 1997] has produced a survey about most of them. Dy-
namic voltage and frequency scaling, idle and sleep operating modes, dynamic power
management (DPM), clock regions, co-processors for specific application type, and
operating system tuning are some of discussed techniques. It is worth mentioning that

28 Proceedings

while implementing those techniques, usually, application’s timing constraints are not
taken into account.

Zhao and Aydin [Zhao and Aydin 2009] proposed a combined approach be-
tween DVFS and DPM techniques to reduce energy consumption on real-time sys-
tems. Although a worthy work, they propose deal with only one task leading to
a non-preemptive solution. An important contribution in the power-aware schedul-
ing of real-time tasks was done by [Mejia-alvarez et al. 2004]. They propose a so-
lution based on knapsack problem considering system utilization factor. Nevine in
[AbouGhazaleh et al. 2003] proposes a colaborative solution which involves sched-
uler and compiler utilizing intra-task DVFS. However, both works do not take shared
resource into account. Choi in [Choi and Pedram 2005] presents an intra-process ap-
proach to making use of runtime information about the external memory access statis-
tics in order to perform CPU voltage and frequency scaling with the goal of minimizing
the energy consumption. But in this case, it does not consider real-time tasks. An inter-
task DVFS approach is done by Yao in [Yao et al. 1995]. This work is based on time
slices. It is proposed a mechanism to determine the optimum execution frequency for
N tasks in each time slice. It is also proposed a modification on the Earliest Dead-
line First (EDF) algorithm in order to cover the proposed method. Another strategy
to explore DVFS usage is to insert frequency scaling instructions in specific points
of tasks code. Azevedo in [Azevedo et al. 2002] proposes an intra-task DVFS based
to determine these points and which frequencies are required. The points are chosen
based on code profiling and simulations. Its simulation results have shown an energy
reduction of about 60%. However, the code profiling is hard to produce and usually
application dependent. Shin in [Shin et al. 2001] presents an intra-task DVFS solution
based on static analysis. Task code is evaluated and analyzed in order to produce a
control flow graph. Each node represents a basic block and contains information about
the number of work case execution cycles. This graph is then utilized to determine
which points in the code are eligible to change frequency, based on the number of not
executed cycles. That solution does not consider preemption in the system. Pillai and
Shin [Pillai and Shin 2001] present a class of novel algorithms called real-time DVS
(RT-DVS) that modify the OS’s real-time scheduler and task management service to
provide significant energy savings while maintaining real-time deadline guarantees.
Shared resources are not considered in that work.

3. Problem Definition and Modeling
Consider a processor P with DVFS feature available for Γ frequencies. The set of all
possible frequencies in P is F = {fi | fi is an available frequency in Hz for P and
1 ≤ i ≤ Γ}. Consider also a modelM with N tasks. InM, the system is executed
under a dynamic fixed priority scheduling.

Consider now the set β consisting of N -tuples. Let K ∈ β, K =
〈k1, k2, . . . , kN〉, where ki ∈ F . K represents a possible configuration of frequen-
cies assignment to Ti tasks inM, where Ti is executed with frequency ki. Each ele-

12th Brazilian Workshop on Real-Time and Embedded Systems 29

ment K ∈ β must be interpreted as an arrangement of the possible assignments that
can be created using all available frequencies in P . Thus, elements in β are possible
configurations for execution ofM. There are ΓN possible configurations K’s in β.

Due to shared resource there is the need to consider mutual exclusion relations
in tasks ofM . Ti ∈M has the following properties: Di is its deadline; Pi is its period
of execution; WCECi is its worst-case execution cycles; Ci(f) is Ti’s execution time
which is function of frequency f . Ci(f) = WCECi

f
; pi is Ti’s priority; Ji is the release

jitter for task Ti, which indicates the worst release case for Ti; Ii(K) is the interference
suffered by Ti, which is function of frequency setK. Ii(K) corresponds a time window
in which there is continuous execution of tasks with greater or equal priorities to Ti’s;
Ri(K) is Ti’s response time as function of frequency set K. Ri(K) = Ii(K) + Ji.
Ii(K) is result of a schedulability test. The schedulability test is based on response
time. It can be calculated using Equation (2).

In+1
i (K) = Ci(ki) +Bi +

∑
j∈hp(i)

{⌈
In
i (K) + Jj

Pj

⌉
× [Cj(kj) + σ]

}
(2)

In Eq.(2), hp(i) is the set of tasks which has higher priorities than Ti.
In
i (K)+Jj

Pj

represents the number of occurences of Tj over Ii. σ is the overhead caused by the
frequency and voltage switch process. Bi represents the time spent in shared resources
locks. In order to deal with priority inversion problem, Bi is calculated considering
the Priority Ceiling Protocol (PCP) [Sha et al. 1990]. Sha et al. [Sha et al. 1990] does
not treat with different available frequencies. It is worth noting that Eq.(2) has been
rewritten considering the selected frequency for execution of each task Ti. From this
definition, it is noticeable the relevance of properly selecting a frequency to a task.
Because selecting an ordinary frequency f to a specific task Ti, it will distinguish Ti’s
execution time Ci(ki) and consequently its response time Ri(K). In this sense, a task
is always completelly defined as function of its selected frequency. Another property
derived from the frequency choice is the task idle time. Ti’s idle time is Di − Ci(K).
When the target is to maximize processor utilization time, the selected frequency is
considered optimum when Ti’s idle time is the minimum. However, there is an intrinsic
condition on this problem, because all tasks must meet their timing constraints, in this
case Di. Hence,

∀ i < N, Ri(K) ≤ Di (3)

Elements in β must be evaluated by means of response time schedulability test.
In this case, K ∈ β is considered a feasible configuration if, and only if, it does not
violate the condition (3). The problem consists in finding the element K in β which
leads the system to a configuration where constraints (3) are satisfied and the lowest
possible consumption in P is achieved.

30 Proceedings

The objective is then to determine M ∈ β so that:

Minimize{idle(M) =
N∑

i=1

(Di − Ci(ki))} (4)

in such a way that, usingM ,Ri(M) respects condition (3). idle(M) is referred
in this paper as idle time of frequency configuration M . Thus, idle(M) represents the
maximum utilization of idle times in each task.

4. Branch-and-Bound Algorithm to Establish Optimum Frequency Set

Figure 1. smartenum Al-
gorithm Diagram

The proposed algorithm, here called smartenum,
generates a search tree for all possible arrange-
ments of tasks inM and frequencies in F . The
idea behind constructing the search tree is to put
each task in a specific level of the search tree
and, associated with this task, to determine its
best frequency. This way, the search tree will
be limited up to N levels. In the proposed algo-
rithm the search tree is traversed using a depth
first search method. The stop condition is the
impossibility of satisfying condition (3). The al-
gorithm performs two initial prunings, throwing
away frequencies that alone produces computa-
tion time which violates (3) and establishing a
starting point for the search. These prunings cor-
respond to a upper local limit and a lower limit
for the combinatorial space. Figure 1 shows its
diagram.

The proposed algorithm in Figure 1 has
two operation types: enumeration and pruning.
Enumeration operation consists of listing and
evaluating elements K ∈ β. The evaluation
is the schedulability test in order to check con-
straint (3) for that configuration K. Pruning op-
eration consists of eliminating elements in order to reduce the number of elements to
verify during the enumeration operation.

All available frequencies are evaluated for each task in a decreasing order, so
that the greater computation times are considered only as a last resource. This premise
allows to throw away lower frequencies, in case an ordinary frequency has been found
as useless to one specific task. This evaluation method compounds the search tree
illustrated in Figure 2. Thus, all frequencies related to task Ti are at level i of search
tree. And every path starting from level 1 and ending at level N represents an element

12th Brazilian Workshop on Real-Time and Embedded Systems 31

K ∈ β. It is worth emphasizing that, even though this algorithm uses the idea of search
tree, it is not required to instantiate all elements in memory. It is possible to generate
every element K in an iterative fashion considering all frequencies in each level.

Figure 2. Search tree used by
smartenum

In Figure 2, f1 > f2 > . . . > fΓ

and Ci(f1) < Ci(f2) < . . . < Ci(fΓ).
While evaluating frequencies in a decreas-
ing order, it is possible to perform steps (I)
and (II) of initial pruning, from Figure 1.
The pruning step (I) comprises evaluation
of all frequencies in F for each task, in-
dividually. While evaluating a single task,
it is possible to take into account the local
constraint (5).

Ci(ki) ≤ Di (5)

If an ordinary K has a ki which violates the local condition (5), hence K also
violates the restriction (3). The pruning in step (I) corresponds to perform this local
analysis and to eliminate K’s which do not respect the condition (5). This means to
establish an upper local limit for each task. This limit determines what is the maximum
computation time each task can assume and also the lowest frequency that can be
applied on it, taking into account only properties from that task. It is worth mentioning
that this pruning does not throw away all K’s in β which violate (3). There are K’s
that meet local restriction (5) for all tasks but fail to satisfy (3) due to the existence
of interference between them. This pruning step does not perform any kind of direct
evaluation of the whole configuration.

The pruning step (II) corresponds to finding a starting point for the enumeration
operation. It aims to determine a lower limit I . This pruning procedure considers the
set β′ ⊆ β, where β′ = {Ki | Ki = 〈ki, ki, . . . , ki〉}. β′ is a set of configurations
where all tasks executes at same frequency. Elements in β′ hold the property (6).

idle(K) ≤ idle(K ′)⇔ ki ≤ k′i, Ki = 〈ki, ki, . . . , ki〉, K ′
i = 〈k′i, k′i, . . . , k′i〉 (6)

As the frequency ki of configuration K is lower than k′i of configuration K ′, then com-
putation times Ci(ki) of all tasks Ti in configuration K will be greater than equivalents
computation times Ci(k

′
i). As consequence, idle times in configuration K are lower

than in configuration K ′, thus idle(K) ≤ idle(K ′). Taking into account the property
from Equation (6), this pruning step performs a binary search in β′. Thus, the aim of
this pruning is to find I ∈ β′ which does not violate the condition (3) and produces the
lowest idle time of all configurations in β′. This pruning step evaluates configurations
in order to perform the search. The following algorithm’s steps consist of enumeration
itself. In the worst case, even if all pruning steps are applied, all elements K ∈ β are
evaluated. The stop condition (III) of this enumeration is while there exist elements

32 Proceedings

K ∈ β not evaluated. Step (IV) selects an element P for evaluation. It traverses the
tree present in Figure 2 from left to right and from bottom to up. Frequencies are as-
signed and fixed for each higher levels, while frequencies are decreasingly variated in
lower levels. At beginning of the search, the highest available frequency in each level
is fixed as starting point. Next P ’s elements are determined by decreasingly variating
only the frequency on last level of the tree, in this case level N . Once all frequen-
cies on level N are already evaluated, the algorithm returns it to the highest frequency
available and on levelN−1 it selects the next available frequency, in decreasing order.
This process is repeated for all N levels of the search tree. When all frequencies on
level 1 are evaluated, or all elements K ∈ β have been evaluated, this means that the
whole search tree has been transversed. This situation represents the stop condition of
this enumerative search.

In the enumeration process, each selected configuration P carries out the re-
sponse time test. This test is represented by (3), which corresponds to step (V).
If a selected configuration P is feasible, then the algorithm checks if it produces
the lowest configuration idle time so far. This is performed at step (VI), that is, if
idle(P) < idle(M). If yes, P becomes the new configuration M with lowest idle
time. This part is in the step (VII).

There is the possibility to apply some prunings when a selected configuration
P violates condition (3). This pruning is performed on step (VIII) of the algorithm.
This pruning relies on the fact that on all levels the computation time is evaluated in an
increasing manner. So, having fixed frequencies at levels 1 to N − 1, if a frequency fi

on level N is considered to produce a not feasible configuration P , then, a frequency
fi+1 < fi will produce another configuration P ′, also not feasible. Thus, there is no
need to evaluate P ′. This pruning is performed in a similar way for all levels. This
pruning operation adopts the result from evaluation done by the enumeration operation
in order to execute prunings. The step (VIII) is the bound process on this algorithm.
Step (IX) is the end point in this algorithm. If it exists one, this step reports a feasible
configuration M that produces the lowest possible idle time.

5. Exemplification

This section details how to apply the proposed algorithm in a small case study. Let a
modelM with two tasks executed in a processor with four frequencies available and
sharing three resources. The available frequencies and voltages are listed in Table 1(a).
The part of the task model with percentage of resource usage are shown in Table 1(b).

Table 1. Case study for exemplification.
(a) Freq. and Voltages

i Frequency Voltage
1 600MHz 1.19V
2 466MHz 1.05V
3 333MHz 0.91V
4 80MHz 0.72V

(b) Task model
Resource usage

Task pi Cycles Di i ii iii
1 0 1500 30 0% 40% 40%
2 1 900 10 20% 20% 0%

12th Brazilian Workshop on Real-Time and Embedded Systems 33

Table 2. Complete enumeration
Can be pruned by

f1 f2 K# C1(s) C2(s) R1 R2 Schedulable? idle(K) (I) (II) (VIII)

600

600 01 2.50 1.50 3.80 5.00 YES 31.20 Y
466 02 2.50 1.93 3.89 5.43 YES 30.68 Y
333 03 2.50 2.70 4.04 6.20 YES 29.76 Y
80 04 2.50 11.25 5.75 ∅ NO ∅ Y Y

466

600 05 3.22 1.50 4.52 5.72 YES 29.76 Y
466 06 3.22 1.93 4.61 6.15 YES 29.24
333 07 3.22 2.70 4.76 6.92 YES 28.32 Y
80 08 3.22 11.25 6.47 ∅ NO ∅ Y Y

333

600 09 4.50 1.50 5.80 7.00 YES 27.19 Y
466 10 4.50 1.93 5.89 7.44 YES 26.67 Y
333 11 4.50 2.70 6.05 8.21 YES 25.75
80 12 4.50 11.25 7.75 ∅ NO ∅ Y

80

600 13 18.75 1.50 20.05 ∅ NO ∅
466 14 18.75 1.93 20.14 ∅ NO ∅ Y
333 15 18.75 2.70 20.29 ∅ NO ∅ Y
80 16 18.75 11.25 22.00 ∅ NO ∅ Y Y

Initially, consider the complete enumeration of all possible configurations
K ∈ β for this example. In this case, there are 42 possible configurations for this
model. All these 16 configurations are listed in Table 2. If pruning step (I) is ap-
plied, frequency 80MHz is discarded for task T2, as its computational time would
be C2(80) = 11.25 and D2 = 10, then C2(80) > D2. Hence, K’s 04, 08, 12 and
16 are not evaluated if pruning step (I) is used. If pruning step (II) is executed, first
β′ = {01, 06, 11, 16} is taken into consideration. Configuration 11 is the one in β′

which is schedulable and provides the minimum idle time. So, 11 would be taken as
the start point to evaluate remaining configurations in β. If pruning step (VIII) is con-
sidered during the enumeration of this task model, configurations 14, 15 and 16 would
be not evaluated. At the point the enumeration reaches configuration 12, it will dis-
cover that 12 is not schedulable, and then, it will prune configurations 14, 15 and 16,
because lowering frequency for task T2 in this case will not give any other schedulable
model. The resulting enumeration of β, if all pruning steps are used, contains only
configurations 06, 11 and 13. For this task model, configuration 11 is the one which is
schedulable and provides the minimum idle time. Configuration 01, which is the con-
figuration with maximum frequency and voltage, would consume about 3398.64×Cl,
accordingly with Equation 1, considering Cl (circuitry capacitance) as a constant over
time. Configuration 11, on the other hand, would consume about 1987.44×Cl. There-
fore, the optimum frequency set determined by the algorithm reduces about 41.52% of
energy consumption, if compared to configuration 01.

6. Experimental Results

Table 3. Execution
types

Type Execution of
- No type of prunings.
A Step (I).
B Step (II).
C Step (VIII).

A+B Steps (I) and (II).
A+C Steps (I) and (VIII).
B+C Steps (II) and (VIII).

A+B+C Steps (I), (II) and (VIII).

This is a branch-and-bound algorithm. Therefore, in
the worst-case, even though all pruning steps are ap-
plied, all possible configurations K ∈ β will be enu-
merated. The proposed algorithm performance eval-
uation is based on the number of enumerated config-
urations and on the time spent.

All possible combination of pruning opera-
tions has been evaluated. In this case, there are eight

34 Proceedings

types of execution that are listed on Table 3.

For simplification purposes, the frequency and voltage switching overhead, σ
from Equation 2, is considered to be zero in these experiments.

6.1. Case Study I

In this case study, there are six tasks in this model, they are executed in a system with
four frequencies available and they share two resources. The set of available frequen-
cies and voltages is listed in Table 4(a). The part of the task model with percentage of
resource usage are shown in Table 4(b). The computational time spent during execu-
tion for each pruning combination is illustrated in Figure 3(a). The maximum time was
18 ms (no pruning) and the minimum time was 2 ms (pruning A+B+C). The number of
evaluated configurations done during the enumeration for each pruning combination is
illustrated in Figure 3(b).

Table 4. Case study I.
(a) Freq. and Volt-
ages.

i Frequency Voltage
1 440MHz 1.6V
2 120MHz 1.2V
3 60MHz 1.0V
4 30MHz 0.9V

(b) Task model.
Resource usage

Task Cycles Di i ii
1 2400 200 25% 0%
2 1200 50 13% 0%
3 1200 150 0% 30%
4 900 100 50% 0%
5 600 100 20% 0%
6 600 100 20% 10%

Results show that type A did not produce any pruning. Whilst types B and C
have produced a considerable amount of prunings. This can be seen in the computation

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

- A B C A+B
A+C

B+C
A+B+C

Ti
m

e
(s

)

Applied prunings

Computation time

(a) Computation time

0
500

1000
1500
2000
2500
3000
3500
4000
4500

- A B C A+B
A+C

B+C
A+B+C

C
on

fig
ur

at
io

ns

Applied prunings

Evaluation by number of configurations

Total of configurations
Evaluated configurations

Feasible configurations

(b) Number of evaluated configurations

Figure 3. Results for case study I.

time of Figure 3(a) and in the number of evaluated configurations of Figure 3(b), where
type C has produced the lowest amount of time for execution and the lowest number
of evaluated configurations. As presented in Figure 3(b), in order to determine the
optimum frequency set, it was required to evaluate 361 of 4096 configurations, which

12th Brazilian Workshop on Real-Time and Embedded Systems 35

represents a reduction of 91.2% in the number of evaluated configurations. Consid-
ering the system executing under highest operating frequency, 440MHz under 1.6V ,
from Equation (1), this model would consume 17664.00× Cl. For this case study, the
optimum frequency set is β = {60MHz, 440MHz, 30MHz, 120MHz, 440MHz,
440MHz}. Therefore, if the model uses the optimum configuration, it would consume
10812.00× Cl, which represents a 38.79% of energy consumption reduction.

6.2. Case Study II

In this case study, there are twelve tasks in this model, they are executed in a system
with four frequencies available and they share two resources. The set of available fre-
quencies and voltages is listed in Table 5(a). The part of the task model with percentage
of resource usage are shown in Table 5(b).

Table 5. Case study II.
(a) Freq. and Voltages.

i Frequency Voltage
1 300MHz 1.5V
2 250MHz 1.38V
3 220MHz 1.32V
4 150MHz 0.90V

(b) Task model.
Resource usage

Task Cycles Di i ii
1 180 10 13.4% 0%
2 180 20 44% 10%
3 180 30 0% 70%
4 180 30 0% 12%
5 180 30 12% 15%
6 180 30 0% 0%
7 180 30 13% 45%
8 120 10 3% 14%
9 120 20 4% 1%

10 120 30 0% 0%
11 120 30 0% 0%
12 100 10 0% 0%

The computational time spent during execution for each pruning combination
of the proposed algorithm is illustrated in Figure 4(a). The maximum time was 210
s (no pruning) and the minimum time was 46 s (pruning A+B+C). The number of
evaluated configurations done during the enumeration for each pruning combination is
illustrated in Figure 4(b).

0.00

50.00

100.00

150.00

200.00

- A B C A+B
A+C

B+C
A+B+C

Ti
m

e
(s

)

Applied prunings

Computation time

(a) Computation time

0
2000000
4000000
6000000
8000000

10000000
12000000
14000000
16000000

- A B C A+B
A+C

B+C
A+B+C

C
on

fig
ur

at
io

ns

Applied prunings

Evaluation by number of configurations

Total of configurations
Evaluated configurations

Feasible configurations

(b) Number of evaluated configurations

Figure 4. Results for case study II.

36 Proceedings

Results show that type B has produced best enumeration reduction. Type
A has not produced any pruning. Reduction produced by type B has also ap-
peared combined with other type of pruning. As presented in Figure 4(b), in or-
der to determine the optimum frequency set, it was required to evaluate 3,662,613
of 16,777,216 configurations, which represents a reduction of 78, 16% in the num-
ber of evaluated configurations. Considering the system executing under high-
est operating frequency, 300MHz under 1.5V , from Equation (1), this model
would consume 4140.00 × Cl. In this case study, the optimum frequency set is
β = {150MHz, 150MHz, 150MHz, 150MHz, 220MHz, 250MHz, 250MHz,
300MHz, 300MHz, 300MHz, 300MHz, 300MHz}. Therefore, if the model uses
the optimum configuration, it would consume 2887.42 × Cl, which represent 30.26%
in energy consumption reduction. This reduction is considerable and it would require
only about tens of seconds during system design time in order to determine the opti-
mum frequency set, as presented in Figure 4(a).

7. Conclusions and Future Works
This paper has shown a branch-and-bound algorithm to establish a set of optimum
frequencies to be assigned to a real-time task model executed into a system with DVFS-
enabled processor. The set of optimum frequencies is the one which produces lowest
energy consumption and meets timing constraints from task model in such a way that
provides the maximum utilization of idle times in each task. This work showed the
response time schedulability analysis considering the specific frequency set.

The algorithm considers each frequency assignment combination as a config-
uration of a new model. A schedulability test is adopted in order to check each con-
figuration feasibility. The algorithm itself consists of an enumerative search. Thus, in
worst case it may reach unacceptable computation time. However, as presented in Sec-
tion 6, the proposed pruning steps of this algorithm reduces considerably the amount
of evaluated configurations and, therefore, the time spent for executing the algorithm.
In the experiments, the number of evaluated configurations has been reduced to only
9% and 22% of total possible configurations, which is very a good result. Another im-
portant result is the amount of energy reduction when compared with executing tasks
at high processor frequency. Our experimental results show that the proposed method
may obtain energy reductions of 38.79%, and 30.46%.

For further research we intend: (i) to consider the energy needed to run a frac-
tion of the tasks. If such amount of energy is already exceeding that needed to run a
complete solution on a different branch, then the partial solution and its descendants
can generally be pruned; (ii) to change the dynamic processor energy model to also in-
clude leakage current, memory access cost, I/O cost, and other energy overheads; and
(iii) to develop a heuristic to produce a feasible configuration, maybe not optimum,
but in a polynomial (non-exponential) computational time. (iv) to combine dynamic
power management technique in our scheduling approach in order to reduce energy
consumption by putting devices into sleep modes to optimize remaining idle time.

12th Brazilian Workshop on Real-Time and Embedded Systems 37

Acknowledgements
The authors would like to thank the partial financial support received from the Brazil-
ian Council for Scientific and Technological Development (CNPq) through projects
554071/2006-1 and 575696/2008-7. And also for the partial financial support from the
Nokia Corporation.

References
AbouGhazaleh, N., Mossé, D., Childers, B., Melhem, R., and Craven, M. (2003).

Collaborative operating system and compiler power management for real-time ap-
plications. In IEEE Real-Time Embedded Technology Applications Symposium.

Azevedo, A., Issenin, I., Cornea, R., Gupta, R., Dutt, N., Veidenbaum, A., and Nicolau,
A. (2002). Profile-based dynamic voltage scheduling using program checkpoints in
the COPPER framework. In Design, Automation and Test in Europe Conference.

Choi, R. and Pedram, M. (2005). Fine-grained dynamic voltage and frequency scaling
for precise energy and performance trade-off based on the ratio of off-chip access
to onchip computation times. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems.

Gutnik, V. (1996). Variable supply voltage for low power dsp. Master’s thesis, Mas-
sachusetts Institute of Technology.

Havinga, S. (1997). A survey of energy saving techniques for mobile computers.
Internal Report, University of Twente.

Mejia-alvarez, P., Levner, E., and Mossé, D. (2004). Adaptive scheduling server for
power-aware real-time tasks. ACM Transactions on Embedded Computing Systems,
3(2):284–306.

Pillai, P. and Shin, K. G. (2001). Real-time dynamic voltage scaling for low-power
embedded operating systems. pages 89–102.

Sha, L., Rajkumar, R., and Lehoczky, J. P. (1990). Priority inheritance protocols: An
approach to real-time synchronization. IEEE Trans. on Computers, 39:1175–1185.

Shin, D., Lee, S., and Kim, J. (2001). Intra-task voltage scheduling for low-energy
hard real-time applications. In IEEE Design & Test of Computers.

Yao, F., Demers, A., and Shenker, S. (1995). A scheduling model for reduced cpu
energy. In IEEE Symposium on Foundations of Computer Science (FOCS’95).

Zhao, B. and Aydin, H. (2009). Minimizing expected energy consumption through
optimal integration of dvs and dpm. In International Conference on Computer-
Aided Design (ICCAD’09), pages 449–456, New York, NY, USA. ACM.

38 Proceedings

Impact of server dynamic allocation on the response time for
energy-efficient virtualized web clusters

Carlos Oliveira, Vinicius Petrucci, Orlando Loques

Universidade Federal Fluminense (UFF), Niteroi, RJ, Brazil

{cjunior,vpetrucci,loques}@ic.uff.br

Abstract. Virtualization has been widely adopted in data centers around the
world for improving resource usage efficiency; particularly helping to make
these computing environments more energy-efficient. Server virtualization al-
lows for on-demand allocation (using either migration or replication) of vir-
tual machines (VMs), which run the web applications and services, to physical
servers. In this paper, we measure and analyze the disruptive impact on the
QoS (quality-of-service) provided by the applications, in terms of server-side
response time and throughput, during dynamic allocation of virtual machines
in a server cluster. The response time of the web applications in the cluster is
adopted as our main QoS metric since it is crucial for qualifying the end-user
experience. In our experiments, we use Xen as the virtual machine manager
and Apache servers for running the web applications. Our results show that VM
replication with workload balancing may lead to reduced disruption impact on
the QoS measures when compared to VM migration.

1. Introduction

Virtualization has been widely adopted in data centers around the world for improv-
ing resource usage efficiency; particularly helping to make these computing environ-
ments more energy-efficient. Several virtual machine monitors or hypervisors have
been developed to support virtualization, e.g., VMware [Sugerman et al. 2001] and Xen
[Barham et al. 2003]. The key idea is that server virtualization allows for on-demand
configuration (either by migration or replication) of virtual machines (VMs), which run
the web applications and services, to physical servers. Concentrating applications and
services in a smaller number of servers, using this capability, helps to increase resource
utilization, allowing to reduce the use of computer resources and the associated power
demands.

In previous works [Petrucci et al. 2009, Petrucci et al. 2010], we have proposed
an optimization solution for power and performance management in virtualized server
clusters. The optimization deals with the problem of selecting at runtime a power-efficient
configuration and a corresponding mapping of the multiple applications running on top
of virtual machines to physical servers. The optimization decision also includes selecting
the best voltage/frequency combination for each physical server, which can be imposed
using DVFS (Dynamic Voltage and Frequency Scaling) support available in current pro-
cessors. We have experimented our optimization approach through simulations driven by
real workload traces. However, in practice, a problem that arises in this context is that
migration and replication activities in a virtualized environment may lead to disruption

12th Brazilian Workshop on Real-Time and Embedded Systems 39

on the quality of service provided by the applications. For example, live migration mech-
anisms allow to make workload movements with a relatively short service downtime.
However, the quality-of-service of the running applications are likely to be negatively
affected during the migration activities [Voorsluys et al. 2009].

In this work, we consider a real virtualized cluster platform aimed at supporting
the deployment of web applications. We carry out a set of experiments with different test
scenarios to evaluate the application behavior during the course of migration and repli-
cation actions. We measure and analyze the disruptive impact on the QoS (quality-of-
service) provided by the applications, by means of server-side response time and through-
put, during dynamic allocation operations of virtual machines in a server cluster. The
response time of the web applications in the cluster is adopted as our main QoS metric
since it is crucial for qualifying the end-user experience. In our experiments, we use Xen
as the virtual machine manager and Apache servers for running the web applications. Our
results show that VM replication with workload balancing may lead to reduced disruption
impact on the QoS compared to VM migration.

The paper is organized as follows. The description of our virtualized cluster and
testbed is presented in Section 2. In Section 3, we present some experiments for evaluating
the response time impact during virtual machine migration and replication. Section 4
summarizes related works and Section 5 concludes the paper.

2. Virtualized cluster description
2.1. Architecture
Our target architecture (shown in Figure 1) consists of a cluster of replicated web servers.
The cluster presents a single view to the clients through a front-end machine, which dis-
tributes incoming requests among the actual servers that process the requests (also known
as workers). These servers run CentOS Linux 5.4 with Xen hypervisor enabled to support
the execution of virtual machines.

Figure 1. Server cluster architecture

The front-end machine is a key component in the architecture including three enti-
ties: (a) VM manager, (b) Load balancer, and (c) Optimizer. The VM Manager is imple-

40 Proceedings

mented using the OpenNebula toolkit [OpenNebula 2010] which enables the management
of the VMs in the cluster, such as deployment and monitoring. The Load Balancer
implements a weighted round-robin scheduler strategy provided by the Apache’s
mod proxy balancer module [The Apache Software Foundation 2010]. Finally, the
Optimizer is designed to monitor and configure the virtualized cluster. It consists
of an external module implemented in Python that relies on the primitives provided by
the VM Manager and Load Balancer modules. The goal of the Optimizer is to
dynamically configure the processors (using DVFS) and allocate the applications over
the processor’s cluster, in order to reduce power consumption, while meeting the ap-
plication’s performance requirements (see details of the overall optimization scheme in
[Petrucci et al. 2010]).

2.2. Testbed

The testbed platform used to implement the proposed architecture is described in Figure
2. The web requests from the clients are redirected to the corresponding VMs that run the
web servers on physical machines called workers. Each VM has a copy of a simple CPU-
bound PHP script to characterize a web application. We define two different applications
in the cluster, named App1 and App2. To generate the workload for each application,
we use two machines with the httperf tool. The load generator machines camburi and
cumulus (two Intel Pentium 4 2.80GHz, 1GB RAM, Ubuntu Linux 9.04) are physically
connected via a gigabit switch. The worker machines maxwell (Intel Core i5 2.67GHz,
8GB RAM, CentOS 5.4) and edison (Intel Core i7 CPU 2.67GHz, 8GB RAM, CentOS
5.4) are connected via another gigabit switch. The front-end machine henry (AMD
Athlon 64 3500+, 3GB RAM, CentOS 5.4) has two gigabit network interfaces, each one
connected to one of the switches. All machines share an NFS (Network File System)
storage mounted in the front-end to store the VM images.

Figure 2. Cluster testbed setup

2.3. Response time measurement

The response time considered in this work is related to the server side. Thus, the response
time is defined by the difference between the time a response is generated and the moment
the server has accepted the associated request. To obtain the response time for the web ap-
plications we have implemented a new Apache module that collects the time information
between these two moments using pre-defined hooks provided by the Apache Module API
[Kew 2007]. The hooks used to measure the response time are: post read request
and log transaction. The post read request phase allows our module to store

12th Brazilian Workshop on Real-Time and Embedded Systems 41

the moment a request was accepted by Apache and the log transaction phase al-
lows it to store the moment a response was sent back to the client. The difference between
these values gives the response time.

To smooth out high short-term fluctuations in measurements readings, we have
integrated a filter procedure in our Apache module based on a single exponential mov-
ing average [Engineeting Statistics Handbook 2010]. Specifically, the filter computes the
next value, St, by summing the product of the smoothing constant α (0 < α < 1)
with the new value (Xt), and the product of (1 − α) times the previous average, as fol-
lows: St = α ∗ Xt + (1 − α) ∗ St−1. Values of α close to 1.0 have less smoothing
effect and give greater weight to recent changes in the data, while values of α close to
0.0 have a greater smoothing effect and are less responsive to recent changes. Some
techniques may be used to optimize the value of α, such as using the Marquardt pro-
cedure to find the value of α that minimizes the mean of the squared errors (MSE)
[Engineeting Statistics Handbook 2010]. In the filter module, we have used α = 0.5
as the default smoothing factor; based on our experiments this value was found suitable.

2.4. Xen hypervisor

In a Xen system, the virtual machines are termed domains. The Domain0 or Dom0 is the
first domain launched when the system is booted. It can be used to create and configure
all other regular guest domains. A regular guest domain is called a DomU or unprivileged
domain. Dom0 is scheduled like DomUs. If a domain has only one VCPU, it can be
executed in one processor or core at a time. Each domain may have one or more virtual
CPUs (VCPUs) which run on physical CPUs. In our experiments, each VM has four
VCPUs since we use a quad-core architecture. Xen has another feature called “cap” that
can be used to control the maximum percentage of CPU a domain can use, even if there
are free CPU cycles. This may be useful if one wants to control how the Xen schedules
the domains to the physical CPUs.

The Xen hypervisor offers two kinds of migration: cold and live migration. The
difference between them is that on cold migration the VM stops running during migra-
tion. Otherwise, on live migration the VM keeps running most of the time; actually, it
stops only for a few milliseconds at Stage 3. The live migration stages are listed below
[Clark et al. 2005]:

• Stage 0 (Pre-Migration): Alternate physical host may be preselected for migra-
tion. Block devices mirrored and free resources maintained;
• Stage 1 (Reservation): Initialize a container on the target host;
• Stage 2 (Iterative Pre-copy): Enable shadow paging. Copy dirty pages in succes-

sive rounds;
• Stage 3 (Stop and copy): Suspend VM on source host. Generate ARP to redirect

traffic to target host. Synchronize all remaining VM state to target host;
• Stage 4 (Commitment): VM state on target host is released;
• Stage 5 (Activation): VM starts on target host. Connects to local devices. Resumes

normal operation.

Notice that cold migration does not have the Stage 2 as in live migration. No-
tice also that caches in hardware are not migrated [Verma et al. 2008], which can lead to

42 Proceedings

cache misses in the target machine and impact application’s performance when perform-
ing migrations. As pointed out by [Voorsluys et al. 2009], both migration activities need
extra CPU cycles for the pre-copying process which are consumed on both source and
destination servers. Moreover, an additional amount of network bandwidth is consumed
as well, which may affect the quality-of-service in the cluster. A third available option
is VM replication, which means creating a new VM (application instance) from a stored
image, instead of migrating an already running one (see Section 3). It is worth mention-
ing that our optimization model includes the possibility of running replicated servers for
fulfilling the resources required by an application at a given operational stage.

3. Experiments
We performed a set of experiments in our testbed (described in Section 2.2). In the first
step, we used the Apache Benchmark (ab) [The Apache Software Foundation 2010] to
measure the maximum number of requests per second that our physical machines can
handle. We found that our worker machines (maxwell and edison) achieved a maxi-
mum of 1145 requests/sec for a typical PHP script web request with an average processing
time of 6 milliseconds.

As shown in Figure 3, when the CPU utilization of an application is low, the
average response time is also low. This is expected since no time is spent queuing due
to the presence of other requests. On the other hand, when the utilization is high, the
response time goes up abruptly as the CPU utilization gets close to 400% (the maximum
value for utilization is 400% because we are using quad-core machines and each core
represents 100%). In order to meet fair response time requirements, we shall perform
VM migration or replication before the machine saturates, dimensioned for playing safe
as 300% of CPU utilization. This leaves an amount of 100% CPU capacity available to be
used by the VM management domain (Dom0) on the physical servers during the migration
or replication activities.

 0

 200
 400

 600

 800
 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

re
q/

s)

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
T

im
e

(m
s)

 0

 100

 200

 300

 400

 0 10 20 30 40 50 60 70 80 90 100

C
P

U
 U

til
iz

at
io

n
(%

)

Time (s)

Figure 3. Relationship among throughput, response time, and CPU utilization

In the next step, we allocate two virtual machines (VMs) to run on the maxwell
machine. Each VM has 256 MB of RAM, running an Apache 2.2 over Debian 4.0. Since
our applications are CPU-bound, this memory capacity was found suitable for our exper-
iments. Notice that the quantity of memory a VM is using may impact on how much time

12th Brazilian Workshop on Real-Time and Embedded Systems 43

is needed to complete a migration [Hermenier et al. 2009]. We plan to evaluate this issue
in future experiments.

The first VM runs the application App1 and it uses 120% of the total CPU re-
sources (considering a quad-core machine). The second VM, which runs the application
App2, starts using 40% of the CPU resources. Then, we consider increasing the App2
workload demand until both VMs for App1 and App2 (along with Dom0) are using 300%
of the physical CPU resources. After such a condition occurs we perform the actions de-
scribed in the following experimental scenarios in order to maintain quality-of-service
requirements. We ran experiments with three different scenarios: (a) cold migration, (b)
live migration, and (c) replication. Each of the experiments showed similar results for
repeated executions.

3.1. Scenario 1: Cold migration
In this scenario, the cold migration mechanism is applied to move the App2 VM to a
physical machine with spare capacity (that is, from maxwell machine to edison ma-
chine). As expected, we observe that in the cold migration, the VM stops during the
migration. Figure 4 shows the throughput, response time and CPU utilization for both
VMs during the course of the experiment. The experiments have approximately 10 min-
utes in duration.

We show that this kind of migration cannot be used in a soft real-time system
because the VM being migrated stops during the course of migration. This is explicitly
shown at the throughput curve of the application App2, which was migrated and then
stopped for approximately 10 seconds. During the course of this kind of migration, the
slowdown in the service was 100% because the execution of App2 had been completely
suspended and both response time and throughput measurements dropped to zero. In all
scenarios, the drop in the throughput shows the instant in which the VM movement was
performed. After the migration phase, the response time varied considerably reaching up
to 8 seconds.

 50
 100
 150
 200
 250
 300
 350
 400

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

re
q/

s)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 100 200 300 400 500 600

R
es

po
ns

e
T

im
e

(m
s)

 100
 120
 140
 160
 180
 200
 220
 240

 0 100 200 300 400 500 600

C
P

U
 U

til
iz

at
io

n
(%

)

Time (s)

App1 on maxwell

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

re
q/

s)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 100 200 300 400 500 600

R
es

po
ns

e
T

im
e

(m
s)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 100 200 300 400 500 600

C
P

U
 U

til
iz

at
io

n
(%

)

Time (s)

App2 on maxwell
App2 on edison

Figure 4. Execution of the cold migration scenario: App1 (left) and App2 (right)

3.2. Scenario 2: Live migration
In this scenario, we use live migration to move a VM to a new server machine without
service interruption [Clark et al. 2005]. Besides not stopping the service during migra-
tion, we still need to maintain an acceptable quality-of-service in terms of application’s

44 Proceedings

response time. The goal of the experiment (shown in Figure 5) was to evaluate the impact
of applying the live migration mechanism.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

re
q/

s)

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 100 200 300 400 500 600

R
es

po
ns

e
T

im
e

(m
s)

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600

C
P

U
 U

til
iz

at
io

n
(%

)

Time (s)

App1 on maxwell

 0
 100
 200
 300
 400
 500
 600
 700

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

re
q/

s)

 0
 50

 100
 150
 200
 250
 300
 350

 0 100 200 300 400 500 600

R
es

po
ns

e
T

im
e

(m
s)

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600

C
P

U
 U

til
iz

at
io

n
(%

)

Time (s)

App2 on maxwell
App2 on edison

Figure 5. Execution of the live migration scenario: App1 (left) and App2 (right)

As would be expected, unlike cold migration, we observe that in live migration the
VM is not paused during the migration. In Figure 5, the application App2 was migrated
with no interruption to the service. However, we noticed that the response time for App2
increased substantially during the course of migration. For instance, the response time
measured for App2 raised from 11 milliseconds to 300 milliseconds on average for a
period of 3 seconds. The throughput measurement was also affected by the migration.
We also notice that even App1 was slightly affected when migration was performed. The
slowdown in the throughput was 61.5% (from 414.1 req/s to 159.5 req/s). We can note
that the disruptions observed when performing dynamic changes through live migration
last a short time and are basically unavoidable.

3.3. Scenario 3: Replication

We also have investigated an alternative approach using replication to help minimize these
disruptive impacts in the QoS of the applications. In this scenario, we consider creating
and deploying a new VM replica for the application App2 on the destination server. At the
moment the new replica is ready for processing the client requests, we start redirecting
the requests to this new replica. We may then either shutdown or keep running in the
origin physical server the old VM replica. The first option was adopted in the experiment.
The last option may be adopted to provide a high capacity server, summing the replicas
resources, to support an application with high resource demands.

The goal of the experiment for this scenario (see Figure 6) is to evaluate the re-
sponse time impact compared to the live migration scenario presented in Section 3.2.
Specifically, we have measured the response time (and throughput) during the replication
process to identify potential practical issues such as the time delay to boot a new VM and
the stabilization time of the load balancer when transferring requests to the new replica.

The use of replication shows improvements compared to the live migration, for
example, by analyzing the decrease observed in the throughput in Figure 6, contrasting it
to Figure 5. Specifically, the execution behavior of both applications App1 and App2was
found more stable when using replication in comparison to live migration. For example,
the response time observed for App2, which was replicated in another server machine,

12th Brazilian Workshop on Real-Time and Embedded Systems 45

 50
 100
 150
 200
 250
 300
 350
 400

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

re
q/

s)

 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17

 0 100 200 300 400 500 600

R
es

po
ns

e
T

im
e

(m
s)

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 100 200 300 400 500 600

C
P

U
 U

til
iz

at
io

n
(%

)

Time (s)

App1 on maxwell

 0
 100
 200
 300
 400
 500
 600
 700

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

re
q/

s)

 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 0 100 200 300 400 500 600

R
es

po
ns

e
T

im
e

(m
s)

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600

C
P

U
 U

til
iz

at
io

n
(%

)

Time (s)

App2 on maxwell
App2 on edison

Figure 6. Execution of the replication scenario: App1 (left) and App2 (right)

increased from 10 milliseconds to 22 milliseconds. In addition, the throughput observed
had a very slightly drop from 473 req/s to 467 req/s. We can also emphasize that App1
was less affected when replication was performed instead of migration.

The basic steps for replication consists of (1) booting a new VM replica and (2)
redirecting the requests to the new replica. The time needed to boot a VM is in between
25 and 40 seconds, which may be a bit longer than 10 seconds, on average, observed
in the live migration in Scenario 2 (see Section 3.2). We argue that if the replication
scheme is able to take advantage of prediction techniques to anticipate the booting process
considering typical load patterns, such as proposed in [Dinda and O’Hallaron 2000], the
time delay for booting a new VM may be minimized. We may also boot the new replica
on the target machine a few seconds earlier to have it running and ready at the moment
necessary for using the replicated VM.

The phase of redirecting requests for the new replica raised an implementation
issue that needs to be addressed. We have observed that if all the current requests were
abruptly redirected to the new VM replica it would take a long time to get both throughput
and response time stable. The sticking point is that Apache has a single control process re-
sponsible for launching child processes (daemons) which listen for connections and serve
their requests when they arrive. To tackle this redirecting bottleneck, we used a config-
urable mechanism termed “spare servers” [The Apache Software Foundation 2010]; set-
ting the Apache configuration to maintain a suitable set of idle server daemons, which
standby ready to serve incoming requests. In this way, clients do not need to wait a long
time for a new child processes to be forked before their requests can be served. Moreover,
redirecting the requests at a slower rate we achieved further reduction of the server set-
tling time. In this experiment, we redirected 10% of the requests each time, until 100%
of the requests were redirected to the VM replica.

4. Related Work

A heuristic algorithm for server consolidation is available [Khanna et al. 2006], but it
does not take into account the cost of migrating virtual machines from one physical
machine to another. Another approach [Wang et al. 2008] presents a two-layer control
architecture aimed at providing power-efficient real-time guarantees for virtualized com-
puting environments. The work relies on a control theory based framework, but does

46 Proceedings

not addresses live migration in a multiple server context. In [Kusic et al. 2009], a dy-
namic resource provisioning framework is developed based on lookahead control. A
power-aware migration framework for virtualized HPC (High-performance computing)
applications, which accounts for migration costs during virtual machine reconfigurations,
is presented in [Verma et al. 2008]. As in our approach, it relies on virtualization tech-
niques used for dynamic consolidation, although the application domains are different.
In [Voorsluys et al. 2009], the authors quantify the effect of VM live migrations in the
performance of social networking websites. The overall objective of their experiments is
to quantify slowdown and downtime experienced by the application when VM migrations
are performed in the middle of a run.

5. Conclusion and future work
We have presented a virtualized server environment targeted for dynamic deployment
and allocation of VMs to physical machines. Our goal was to carry out experiments to
evaluate the performance impact in terms of response time and throughput of applications
during the course of VM migration and replication.

The replication steps involved starting a VM replica in the target host and redi-
recting requests to the new VM replica. Our results showed that by using replication
we can minimize some performance disruption incurred during migration. Finally, the
evaluation described in this work will help us to implement our dynamic optimization
model and strategy for power and performance management of virtualized web clusters
[Petrucci et al. 2010].

As for future work, we plan to develop additional experiments with state-aware
applications considering another layer as database. To address this, we intend to use
Rubis [RUBiS 2010] multi-tier benchmark. In the replication process, the VM in the
source server was turned off. We would like to investigate if it would be valuable while
maintaining this application on the source server too for load balancing proposes. And,
if so, we would like to identify what part of the application workload would be allocated
both in the source and target physical machines.

References
Barham, P. et al. (2003). Xen and the art of virtualization. In SOSP’03, pages 164–177.

ACM.

Clark, C. et al. (2005). Live migration of virtual machines. In Proceedings of the 2nd
conference on Symposium on Networked Systems Design and Implementation, pages
273–286.

Dinda, P. A. and O’Hallaron, D. R. (2000). Host load prediction using linear models.
Cluster Computing, 3(4):265–280.

Engineeting Statistics Handbook (2010). Single exponential smoothing.
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm.

Hermenier, F. et al. (2009). Cluster-wide context switch of virtualized jobs. Technical
Report 6929, INRIA.

Kew, N. (2007). The Apache Modules Book: Application Development with Apache.
Prentice Hall.

12th Brazilian Workshop on Real-Time and Embedded Systems 47

Khanna, G. et al. (2006). Application performance management in virtualized server en-
vironments. 10th IEEE/IFIP Network Operations and Management Symposium, pages
373–381.

Kusic, D. et al. (2009). Power and performance management of virtualized computing
environments via lookahead control. Cluster Computing, 12(1):1–15.

OpenNebula (2010). The open source toolkit for cloud computing. http://opennebula.org/.

Petrucci, V., Loques, O., and Mossé, D. (2009). A dynamic configuration model for
power-efficient virtualized server clusters. In 11th Brazillian Workshop on Real-Time
and Embedded Systems (WTR).

Petrucci, V., Loques, O., and Mossé, D. (2010). A dynamic optimization model for power
and performance management of virtualized clusters. In 1st Int’l Conf. on Energy-
Efficient Computing and Networking. In cooperation with SIGCOMM. ACM (to ap-
pear).

RUBiS (2010). Rubis: Rice university bidding system. http://rubis.ow2.org/.

Sugerman, J. et al. (2001). Virtualizing I/O devices on VMware workstation’s hosted
virtual machine monitor. USENIX Annual Technical Conference.

The Apache Software Foundation (2010). Apache HTTP server version 2.2.
http://httpd.apache.org/docs/2.2/.

Verma, A. et al. (2008). pMapper: power and migration cost aware application placement
in virtualized systems. In Middleware’08, pages 243–264.

Voorsluys, W., Broberg, J., Venugopal, S., and Buyya, R. (2009). Cost of virtual machine
live migration in clouds: A performance evaluation. In CloudCom ’09: Proceedings
of the 1st International Conference on Cloud Computing, pages 254–265, Berlin, Hei-
delberg. Springer-Verlag.

Wang, Y. et al. (2008). Power-efficient response time guarantees for virtualized enterprise
servers. In RTSS’08, pages 303–312.

48 Proceedings

12th Brazilian Workshop on
Real-Time and Embedded Systems

♦

Technical Session 3
Device Drivers and
Operating Systems

Exploiting Template-Metaprogramming for Highly Adaptable
Device Drivers – a Case Study on CANARY an AVR

CAN-Driver
Christoph Steup, Michael Schulze, Jörg Kaiser

1Department for Distributed Systems
Universität Magdeburg

Universitätsplatz 2, 39106 Magdeburg, Germany

Christoph.Steup@st.ovgu.de, {mschulze, kaiser}@ivs.cs.uni-magdeburg.de

Abstract. Providing applications with a perfectly tailored device driver is es-
sential to avoid the waste of resources. This is even necessary for the broad
field of embedded systems development. However, the development of device
drivers is in general a difficult task, and supporting a portable, configurable
as well as adaptable device driver is even harder. To achieve such a device
driver architecture, we propose declarative configuration specifications, exploit
template-metaprogramming, and introduce the new concept of RegisterMaps.
We evaluate the device driver architecture, showing that the device driver’s re-
source usage scales with different configurations. We compare our device driver
architecture against a device driver implementation of a hardware vendor, prov-
ing the competitiveness of our solution.

1. Introduction
The development of device drivers is a difficult task. Allowing the use of a driver in dif-
ferent products, on different platforms, and with different application demands, requests
development mechanisms that handle the challenge of these variability. In the embed-
ded systems field, an important requirement – resource consumption – has to be treated
additionally. Thus, a minimal RAM/ROM footprint device driver is desirable that gives
applications only the functionality they need but not more. Providing a device driver that
is portable, configurable as well as adaptable and uses resources very efficiently makes
the development even harder, and in development for embedded devices, all these aspects
are of major interest.

Portability, configurability and adaptability are properties device drivers should
have, however to understand the differences between them, it needs further explanation.
In general, a portable device driver allows for using on different platforms. From the
application point of view, a need is a stable driver interface. Against such an interface
applications can be implemented. If the interface stays unchanged even in case of different
hardware platforms, application migration without code changes in the best case will
be possible, leading to decreasing costs when new platforms have to be used. Hence,
the development of such application is simplified, since no platform dependencies are
propagated from the driver level up to the application level.

The configuration of a device driver is the process of setting parameters for tailor-
ing the functionality to application demands, thus the device driver behaves as intended.

12th Brazilian Workshop on Real-Time and Embedded Systems 51

For example, if a device driver supports a polling and an interrupt feature, and an appli-
cation decides to use polling only, the interrupt functionality will be switched off. This
transition or change in the functionality is part of the adaptation process of the device
driver. Thus, an adaptable device driver has the ability to serve different demands on the
one hand arising from applications as configuration requests and on the other hand due to
features given by the used hardware platform. The latter adaptation is done automatically
without an explicit trigger by an application or user.

Developing a device driver having all preferred characteristics is as mentioned a
difficult task. However, we are not the first one that try to realize adaptable software at
all. Different development techniques like conditional compilation, object-orientation,
feature-orientation, aspect-orientation, or component-orientation approaches try to tackle
the problem, but all have their own strength and weaknesses. Because device drivers
are usually written in C or C++ we focus on techniques that are only available for these
languages.

From the developer’s point of view, conditional compilation with the help of
a preprocessor tool, mainly the C-preprocessor cpp, is easy to learn. Statements like
#define, #ifdef, #else, etc. are used for framing areas that should be included or ex-
cluded in dependence of the given condition. However, due to the annotation of driver
code with preprocessor directives the whole code is cluttered and obfuscated, leading
to hard maintainability. Furthermore, the annotations are not type safe, because it is
usual text processing only, allowing for every transformation, even those creating in-
correct sources. This is error-prone, because the developer has a different view on the
sources as the compiler. In the literature, the use of the preprocessor is often criti-
cized. For example, [Spencer and Collyer 1992] demand “#ifdef considered harmful”
and [Lohmann et al. 2006] speak from the “#ifdef -hell”.

An alternative development technique is object-orientation, which is also sup-
ported by C++, due to its nature as multi-paradigm language. Implementing the prefer-
able features with the object-oriented approach can be done in two directions. Firstly,
one can implement the device driver as a class library, that defers all possible configu-
ration steps to the runtime, having a dynamic, parameterizable driver, but leading to an
immense overhead concerning resource usage. Secondly, the opposite is programming all
the functionality by fine-modular, structured sub-classing. While this achieves minimal
code overhead, it is a maintenance nightmare due to the exponential class explosion with
every new upcoming feature [Gamma et al. 1995].

Device driver development with the component-oriented approach like with
UML [Object Management Group 2001] generates a resource overhead, which is at least
in the same magnitude as the dynamic, parameterizable device driver of the object-
oriented approach. A disadvantage in this context is the loose coupling of components
that lead to always have function calls. Furthermore, the compiler is not able to optimize
code above component boundaries. Thus, reasoned by the black-box concept of compo-
nents fine-granular adaptations are not designated, and applications are encumbered with
unneeded functionality.

Components as well as object-orientation try to go the way of “separation of con-
cern”. Techniques like aspect-orientation (AOP) and feature-orientation (FOP) aim in

52 Proceedings

the same direction, but consider other mechanisms. Usually a programming language is
extended. On the one side, AOP [Kiczales et al. 1997, Tarr et al. 1999] tackles the prob-
lem of cross-cutting concerns with aspects as modularisation concept, encapsulating the
cross-cutting issue. Aspects are often related with (global) system policies like synchro-
nisations, tracing, and so on. However, in the context of developing a device driver, cross-
cutting issues arise seldomly. To allow aspects getting involved in C++ developments,
a language extension like AspectC++ [Spinczyk et al. 2002] is needed, which works as
source-to-source preprocessor having type-safety in place.

Feature-oriented programming is a technique that tackles the class explosion prob-
lem of the object-oriented approach by adding new keywords to the programming lan-
guage, allowing for describing the relation of base classes and their extensions without
directly inheriting. This enables defining multiple extensions to a given base. The config-
uration is done with the help of an additional grammar and a FOP compiler that transforms
the sources according to the configuration. FOP, first introduced by [Prehofer 1997], aims
at supporting a way to have variability in the design, and allowing the system tailoring to
applications needs in a separate configuration step [Batory et al. 2004].

All the mentioned mechanisms have either drawbacks like error-proneness, heavy
resource-consumption or need additional tools that are often in an early development state
due to their research character. Another way to reach variability and adaptability is using
techniques like generic programming [Czarnecki and Eisenecker 2000], and one form is
template-metaprogramming. Template-metaprogramming is a turing-complete functional
language that is processed by the compiler during the template instantiation phase. It al-
lows for code generation, constants calculation, type selection, etc. and enables producing
only the needed functionality having optimal fitting code at the end. However, if some-
thing goes wrong during the compilation, the compiler is highly verbose and generates a
lot of messages that can be difficult to interpret. This is a drawback for the development
in general, but there are mechanisms to address this problem: on one side by using spe-
cial programming constructs that enables customized error message generation and on the
other side by better compiler support.

For our goal, obtaining a highly adaptable device driver, we exploit the template-
metaprogramming concept. We enhance this concept, by providing declarative config-
uration descriptions that hold the application requirements on the driver, and using the
descriptions as input to the metaprograms to tailor the driver’s functionality. For driver
adaptation on the hardware side, we propose a new concept – RegisterMaps.

The rest of the paper is structured as follows. We start with the explanation of the
concept in Section 2, where we describe our basic device driver architecture first. Next,
we consider the declarative configuration in Section 2.2, the new RegisterMaps concept
in Section 2.3 and the used mechanisms of the template-metalanguage in Section 2.4.
Section 3 discusses the resulting device driver and compares it with a device driver im-
plementation of a hardware vendor. In Section 4 we conclude the paper and give a short
outlook on future research questions.

12th Brazilian Workshop on Real-Time and Embedded Systems 53

2. Concept

2.1. Basic Architecture

The architecture of our highly adaptable device driver is depicted in Figure 1. There are
three main aspects, which will be addressed in the fallowing. The definition of configura-
tion parameters are the first aspect. This definition is declaratively done by the application
developer, and in Section 2.2 we describe how the declarative specification is realized.
The Configuration component visible in the Figure 1 uses this application-dependent pa-
rameter specification for adapting the driver.

Secondly being portable, we use our RegisterMaps (short RegMap) concept,
which abstracts the access to the hardware. RegisterMaps acts as mediator between the
hardware and the hardware abstraction layer, hiding the underlying bit structure and pro-
viding an access by name. In Section 2.3 we discuss the RegisterMaps concept in detail.

To adapt the driver to an application-dependent declarative configuration, we use
template-metaprogramming. During the compilation of the driver, the compile-time in-
terface of the driver is invoked by the template instantiation process, leading to a tailored
device driver. In Section 2.4 we show which concepts of the template-metaprogramming
approach we use and how we combine it with the RegisterMaps concept. The driver’s
resulting API is highly specific to the driver and in our case specific to a CAN driver.
However to understand our proposed approach of an adaptable device driver, discussing
the API is not needed.

In the middle of the Figure 1, the interrupt handler component is depicted. It
is drawn dashed, because interrupts can be completely configured out of the driver, thus
neither RAM nor code memory is needed, letting the application the option of having a
polling- or an interrupt-driven device driver.

template free APIConfiguration

Interrupt handlers

Hardware abstraction

RegMap

API

template based configura-
tion

Interrupt handler based
interface

Hardware independent in-
terface

Hardware
compile time interface run time interface

Figure 1. Components of an adaptive driver and their interfaces.

54 Proceedings

2.2. Declaration of configuration parameters

An adaptive device driver needs input, on which parameters it should adapt. The param-
eters are given by the user through a configuration structure. This configuration structure
is the invocation parameter for the template-metaprogram at the compile-time interface,
and it is used to adapt the functionality towards the user’s requirements. However, there
must also be certain default values in the case, that the user did not specify anything.

To have a flexible, yet resource efficient configuration, we use a C++-structure,
which contains enumerations and typedefs. Both are compile-time constants, which will
have no additional costs if not used.

1 s t r u c t CANConfig : defau l tCANConf ig {
2 t y p e d e f BaudRateConf ig<
3 F CPU ,
4 SPEED 1M ,
5 SUBBITS 16
6 > baudRate ;
7
8 enum P a r a m e t e r s {
9 v e r s i o n = CAN 20B ,

10 u s e R e c e i v e I n t = f a l s e
11 } ;
12 } ;
13
14 Canary<CANConfig > : : t y p e c a n d r i v e r ;

Listing 1. Declarative specification of configuration parameters for the CAN
device driver

Getting a perfect user requirements fitting device driver, the user has to create
such a C++-structure. The structure should be inherited from a default configuration to
ensure that all configurable parameters are set at least to a default value. An example
configuration is depicted in Listing 1.

After inheriting, the user can override the default values and adjust the param-
eters according to the desired behavior. To do so, he just creates an enumeration that
contains the configuration parameters and the values he wants. In the case of the exam-
ple the enumeration is called parameters. The example overrides the used CAN version
to be CAN 2.0B and disables the receive interrupt. Also the baud rate is set to be 1
Mbit through the typedef of an additional helper structure BaudRateConfig. To apply
this declarative parameter specification to the driver, the structure is given to the compile-
time interface Canary as template parameter, resulting in an adapted device driver type
Canary<CANConfig>::type in Line 14. Next the tailored device driver can be used
through the created can driver object.

The realisation of functionality inside the driver that correspond to the passed con-
figuration parameters, depends on the used mechanism of the template-metalanguage, and
we describe the used mechanisms in Section 2.4. With the help of the metaprogramming,
additional features are possible like compile-time checks of configuration parameters.
This enables us to notify the user of misconfiguration, e. g. if he tries to use functionality
on the can driver object, which is disabled in the current configuration.

12th Brazilian Workshop on Real-Time and Embedded Systems 55

As stated in the beginning of this paragraph the configuration is only one set of
parameters, to which the driver has to adapt. The other set consists of the specification
of the current hardware. Since these can be very tedious to handle, we propose a new
concept to abstract the lowest level of hardware access in the next paragraph.

2.3. RegisterMaps – RegMaps

The goal of a RegMap is to provide an hardware independent, bit-wise access to memory
mapped I/O-registers. This allows to reference single bits within a register by name. It
also provides an abstraction mechanism that grants you hardware independence on I/O-
register level. Thus means, that the position of registers in RAM and the order of bits
inside a register are abstracted through the RegMap.

A RegMap first used in the avr-halib [Schulze et al. 2008] is realized as C++-
structure with bit-field definitions, describing the abstracted registers and the contained
bits. Bit fields are provided in the current C and C++ standards since years. Bit fields
provide a way to access single bits of a register transparently without the need for bit
mask and bit shift operations. Since the compiler does the burden of accessing the bits
correctly, the usage of a RegMap reduces the amount of possible programming errors.

As an example of a RegMap we show Listing 2. This RegMap is used to abstract
the access to the different interrupt enable flags of the used CAN hardware. An unused
bit in a register cannot be left out of the RegMap, because it is still important for the
order and position of the other bits in the considered underlying register. Declaring an
unused bit, is done by creating an unnamed bit. Accessing such unnamed bit through the
RegMap is impossible, which prevents programming errors. In Line four an example of
an unnamed bit is shown. Unnamed bits are usually padding bits or bits that are reserved
for future use e. g. in later processor revisions.

1 s t r u c t CanIntRegMap {
2 u i n t 8 t t i m e r O v e r r u n I n t : 1 ;
3 u i n t 8 t g e n e r a l E r r o r s I n t : 1 ;
4 u i n t 8 t : 1 ;
5 u i n t 8 t t i m e r O v e r r u n I n t : 1 ;
6 u i n t 8 t t r a n s m i t I n t : 1 ;
7 u i n t 8 t r e c e i v e I n t : 1 ;
8 } ;

Listing 2. An example RegMap, abstracting the interrupts of the CAN hardware.

Because a RegMap is designed to be an overlay for memory mapped I/O-registers,
and therefore, it must be placed exactly at the position where the register resides inside the
RAM. However, the compiler does not know about the special meaning of a RegMap’s
content, and if we would use the general construction process of C++ objects, it will be
constructed somewhere in RAM. To tackle this problem, we use a special mechanism the
placement new operator to overlay the RegMap exactly at the position of the respective
I/O-registers. In our case, we use a macro UseRegMap to hide the syntactical burden of
this mechanism.

Listing 3 shows the use of the defined RegMap. The example shows how the user
specified configuration parameter useReceiveInt is used to set the receive interrupt flag

56 Proceedings

1 template<typename u s e r s p e c >
2 c l a s s Canary : . . . {
3 p u b l i c :
4 Canary () {
5 . . .
6 UseRegMap (rm , u s e r s p e c : : CanIntRegMap) ;
7 rm . r e c e i v e I n t = u s e r s p e c : : u s e R e c e i v e I n t ;
8 SyncRegMap (rm) ;
9 . . .

10 }
11 . . .
12 } ;

Listing 3. Using the RegMap from Listing 2 to access the interrupt enable flag of
the CAN hardware.

supported by the RegMap. At this point, no direct hardware access is needed. However in
general, programming I/O-devices without much care leads to undefined behavior of de-
vices. Since there is difference between the access to I/O-registers and memory. Because
in case of I/O registers toggling bits multiple times in a sequence of commands is a valid
programming sequence of a device. In contrast doing so on usual memory, only the last
bit operation is important. Unfortunately, the compiler does not know about the difference
between I/O-registers and memory. If we do not support the compiler with the right in-
formation, it will optimize aggressively by merging bit operations to create optimal code,
but destroying the programming sequence of devices. This is in general a problem, and
needs to be treated. We tackle the problem using a SyncRegMap that inserts an optimiza-
tion boundary. Every operation concerning memory read or write must be finished up to
this boundary until the next operation can be done by the compiler. This ensures correct
behavior even with heavy optimization enabled. The SyncRegMap command is an alter-
native to make the whole RegMap volatile, which would have great negative influence on
code memory size and performance.

To achieve hardware independence, for every used hardware a RegMap is needed.
This is especially easy within similar families of micro-controllers, where many con-
trollers have similar registers.

Having the abstract low-level access to the hardware available, the question how
we select a specific RegMap arises. This problem is strongly coupled with the possibil-
ity to provide additional configuration parameters to the RegMap, which we provide by
template parameters. The selection problem is solved using template-metaprogramming
features of the C++-language, which we will look into in the next paragraph.

2.4. Template-metaprogramming

The concept of templates was already documented in 1990 in the “Annotated C++ Ref-
erence Manual” [Ellis and Stroustrup 1990]. Originally it was a technique to create pa-
rameterizable data structures. The parameterization is done by specifying types that are
arguments for the data structure template instantiation. This allows the creation of generic
data structures, because there is no need to write a data structure for every possible type.
One popular example of this mechanism is the C++ Standard Template Library (STL)

12th Brazilian Workshop on Real-Time and Embedded Systems 57

vector class. Since object orientation is a way to reuse code, templates extended this
concept to provide even more code reuse.

With the growth of the C++-language and the capabilities of templates, new ways
to use templates were developed. Erwin Unruh showed the possibility to let the com-
piler calculate prime numbers as first [Unruh 1994]. However, Todd Veldhuizen was the
one who recognized the potential behind this idea. He established a new programming ap-
proach known as template-metaprogramming [Veldhuizen 1995]. As said in Section 1 the
template-metalanguage is a functional, turing-complete, side-effect-free language, that is
processed during the compilation of an application. We mainly use certain aspects of the
template-metalanguage, which are partial evaluation, template specialization and meta
control structures. These aspects will be further described in the following.

The first used mechanism is partial evaluation. This gives us the ability to compile
and include only the functions in the driver, which will be needed. For code, that is written
in C or that is not using template-metaprogramming, the compiler will translate all defined
function and put them in the resulting object file. In source code, that is parameterized
by template-metaprogramming, however this is different. For this code, the compiler
will only consider those functions that are at least called once. This saves code memory,
because unused functions will not be included in the final driver.

The second used technique is template specialization. It is used to create special
implementations of a class template for certain types like the CAN-ID class template in
Listing 4. During the template instantiation process the compiler selects a specialized im-
plementation that fits the given class template argument. We exploit this for obtaining the
right CAN-ID class template specialization in Listing 4 in Line 34. The selection behavior
is controlled by the version parameter of the CANConfig user configuration of Listing 1.
The version parameter in the example configuration CAN 20B means the usage of CAN
messages with extended IDs having 29 bits instead of 11 bits. A change of this param-
eter has an effect on the whole driver, because it leads to different used data structures.
These structures differ in size, since the CAN-IDs need either 2 bytes for CAN 2.0A or
4 bytes in case of CAN 2.0B. Through the user-configured version parameter, the needed
data structure will be automatically selected during compilation. The parameter is passed
internally to all components of the driver to ensure consistent configuration. At this point
only the driver is tailored to use the same CAN-ID in all components. However, the regis-
ter content of the hardware also differs with the used CAN version. To cope with that we
declared the RegMap to be a class template. This enables us to use the template special-
ization mechanism again to adapt to different I/O-register content dependent on the CAN
version parameter. By using both times the same mechanism, the compiler ensures that
transferring data between the driver data structures and the CAN hardware is correct by
design.

Template specialization can also be exploited to create meta control structures like
if-then-else for types. This opens the possibility to change whole block of functionality
dependent on configuration parameters. For example, if a driver is configured only for
sending messages, the receive functionality is not needed at all and is not existent in the
final driver. In Listing 5 we show the selection of functionality for the receive inter-
rupt behavior. The Canary template-metaprogam, here implemented as a class, inherits
from the if then else class template. That meta control structure selects the second or the

58 Proceedings

1 / / S u p p o r t e d CAN v e r s i o n s
2 enum V e r s i o n s {
3 CAN 20A ,
4 CAN 20B
5 } ;
6
7 template<V e r s i o n s v e r s i o n >
8 c l a s s CAN ID ;
9

10 / / S p e c i a l i z a t i o n f o r t h e CAN 2 . 0 A CAN−ID s p e c i f i c a t i o n
11 template<>
12 c l a s s CAN ID<CAN 20A> {
13 p u b l i c :
14 t y p e d e f u i n t 1 6 t IdType ;
15
16 enum C o n s t a n t s {
17 i d L e n g t h =11
18 } ;
19 . . .
20 } ;
21
22 / / S p e c i a l i z a t i o n f o r t h e CAN 2 . 0 B CAN−ID s p e c i f i c a t i o n
23 template<>
24 c l a s s CAN ID<CAN 20B> {
25 p u b l i c :
26 t y p e d e f u i n t 3 2 t IdType ;
27
28 enum C o n s t a n t s {
29 i d L e n g t h =29
30 } ;
31 . . .
32 } ;
33
34 t y p e d e f typename CAN ID<CANConfig : : v e r s i o n > : : IdType IdType ;

Listing 4. Template specialisations of the CAN ID type depending on the version

1 template<typename u s e r s p e c >
2 c l a s s Canary : p u b l i c i f t h e n e l s e <
3 u s e r s p e c : : u s e R e c e i v e I n t ,
4 R e c e i v e I n t e r r u p t ,
5 N o R e c e i v e I n t e r r u p t
6 > {
7 . . .
8 } ;

Listing 5. Using a template meta control structure to (de)activate the use of the
receive interrupt

third parameter dependent on the value of the first one. Thus, the Canary inherits from
ReceiveInterrupt only if useReceiveInt is true in the configuration user spec. This mecha-
nism has the advantage, that features that are not present in the driver due to configuration
does not cost anything (no code memory and no RAM).

12th Brazilian Workshop on Real-Time and Embedded Systems 59

The template-metaprogramming can be further used, to adapt a driver to hardware,
where certain hardware features are not present. In such a case, a feature must be emulated
by software. To only include the software emulation layer when it is needed, template
specialization can be used to decide the usage. The compiler chooses the optimal fitting
specialization for the platform. Since partial evaluation creates only the functions that are
needed, and unused specializations are not considered and therefore not present in the final
driver. An example for this would be a CAN hardware, which has no support for hardware
ID filters. On such hardware, a device driver has to emulate the ID filter functionality in
software if the application demands this. If the emulation is once implemented, it can
be used on all hardware platforms that do not provide the feature. However platforms
providing the feature do not need the emulation and the driver is created without it. With
this mechanism used, creating a flexible, reusable and resource-optimal driver architecture
is possible.

3. Evaluation

This paragraph deals with the results of the implementation. To show the advantages of
our approach we compare the size of a set of example applications. On one side we use our
highly adaptable device driver and on the other side an implementation from Atmel [at9],
which is written in plain C.

We consider three different examples, describing usual use cases. All applications
use CAN 2.0B, because the Atmel driver has no means to adapt itself to use CAN 2.0A
only. The evaluated examples are: sending one message, receiving one message using
polling and receiving one message using interrupts.

Canary Atmel
example application text ram text ram
Sending 1248 17 4214 21
Receiving polling mode 1650 21 4168 21
Receiving interrupt mode 1950 29 n.a. n.a.

Table 1. Program sizes and used RAM for different example applications

The compilation of all applications was done with gcc in version 4.3.4 and opti-
mization switched on with -Os, leading to size optimized executables. For our driver we
provided additional compilation flags concerning C++ code generation, which are: -fno-
exceptions and -fno-rtti. These disable exception handling and runtime type informations,
which are not used in our driver.

The result are contained in Table 1. It is clearly visible that our driver implemen-
tation is much more efficient in terms of code size. The RAM usage of our device driver
is mostly better, but the interrupt driven version has an 8 byte overhead due to a delegate
style interrupt handler. This delegate allows us to switch the interrupt callback at runtime,
which is special feature that we offer. The RAM usage of the Atmel driver is constant,
because it is not configurable and therefore uses the same data structures and functions
for all examples. The interrupt example could not be measured, because, the driver from
Atmel has no means to support interrupts natively.

60 Proceedings

To show the potential of our approach, we give additional measurements. As
discussed, our driver can be configured in many ways. One of this is the minimal configu-
ration of the third example supporting CAN 2.0A only. Doing so, saves additional 16.4%
of code size and 19% RAM usage.

4. Conclusions and Outlook
In this paper we presented how template-metaprogamming is exploited for creating highly
adaptable device driver. We applied our concepts for the development of a CAN device
driver for an embedded platform, being adaptable, configurable and portable. The user has
the possibility to configure the driver by using declarative descriptions. This descriptions
are interpreted by template-metaprograms during the template instantiation phase. To
abstract from low-level hardware issues, we introduced a new concept – RegisterMaps –
allowing the development of portable driver architectures.

We evaluated the resulting driver architecture against a plain C implementation of
a vendor’s hardware driver. Our driver shows always better results in terms of code size
and RAM usage. This is caused by its high configurability, because it contains only the
needed functionality, but not more.

In the future we will apply our concepts on other types of devices to prove its
generality. Furthermore, we will do measurements covering a broader range of configu-
rations.

Acknowledgement
This work has partly been supported by the Ministry of Education and Science (BMBF)
within the project “Virtual and Augmented Reality for Highly Safety and Reliable Em-
bedded Systems” (VierForES).

References
AT90CAN32/64/128 software library. online, http://www.atmel.com/dyn/
resources/prod_documents/at90CANLIB_3_2.zip. [(online), as at:
31.03.2010].

Batory, D., Sarvela, J. N., and Rauschmayer, A. (2004). Scaling Step-Wise refinement.
IEEE Transactions on Software Engineering, 30:355–371.

Czarnecki, K. and Eisenecker, U. (2000). Generative Programming: Methods, Tools, and
Applications. Addison-Wesley Professional. Published: Paperback.

Ellis, M. and Stroustrup, B. (1990). The annotated C++ reference manual. Addison-
Wesley, Reading Mass.

Gamma, E., Helm, R., Johnson, R. E., and Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., and Ir-
win, J. (1997). Aspect-Oriented programming. In Aksit, M. and Matsuoka, S., edi-
tors, Proceedings of the 11th European Conference on Object-Oriented Programming
(ECOOP ’97), volume 1241 of Lecture Notes in Computer Science, page 220–242.
Springer-Verlag.

12th Brazilian Workshop on Real-Time and Embedded Systems 61

Lohmann, D., Scheler, F., Tartler, R., Spinczyk, O., and Schröder-Preikschat, W. (2006).
A quantitative analysis of aspects in the eCos kernel. In Proceedings of the 2006
EuroSys conference on - EuroSys ’06, pages 191–204, Leuven, Belgium.

Object Management Group (2001). Complete uml 1.4 specification.

Prehofer, C. (1997). Feature-Oriented programming: A fresh look at objects. In Prehofer,
C., editor, ECOOP’97 — Object-Oriented Programming, volume 1241, pages 419–
433, Berlin/Heidelberg. Springer-Verlag.

Schulze, M., Fessel, K., Werner, P., and Steup, C. (2008). AVR-halib project website.
online, http://avr-halib.sourceforge.net. [(online), as at: 25.02.2010].

Spencer, H. and Collyer, G. (1992). #Ifdef considered harmful, or portability experience
with c news. In the USENIX Summer 1992 Technical Conference, page 185–197.
USENIX Association Berkley.

Spinczyk, O., Gal, A., and Schröder-Preikschat, W. (2002). AspectC++: an aspect-
oriented extension to the c++ programming language. In Proceedings of the Fortieth
International Conference on Tools Pacific: Objects for internet, mobile and embedded
applications, pages 53–60, Sydney, Australia. Australian Computer Society, Inc.

Tarr, P., Ossher, H., Harrison, W., and Sutton, S. (1999). N degrees of separation: multi-
dimensional separation of concerns. In Proceedings of the 1999 International Con-
ference on Software Engineering (IEEE Cat. No.99CB37002), pages 107–119, Los
Angeles, CA, USA.

Unruh, E. (1994). Prime number computation. ANSI. ANSI X3J16-94-0075/ISO WG21-
462.

Veldhuizen, T. L. (1995). Using c++ template metaprograms. C++ Report, 7(4):36–43.
Reprinted in C++ Gems, ed. Stanley Lippman.

62 Proceedings

Performance Characterization of
Real-Time Operating Systems for Systems-on-Silicon

Douglas P. B. Renaux1,3, Rafael E. De Góes3, Robson R. Linhares2,3

1 Departamento Acadêmico de Eletrônica (DAELN)
Universidade Tecnológica Federal do Paraná (UTFPR)

Av. Sete de Setembro 3165 – Curitiba – PR – Brasil

2 Departamento Acadêmico de Informática (DAINF)
Universidade Tecnológica Federal do Paraná (UTFPR)

Av. Sete de Setembro 3165 – Curitiba – PR – Brasil

3 eSysTech – Embedded Systems Technologies
Travessa da Lapa 96, cj 73 – Curitiba – PR - Brasil

douglasrenaux@utfpr.edu.br;
rafael@esystech.com.br;

robson@dainf.ct.utfpr.edu.br
Abstract. An RTOS is a software component that is used in the majority of the
real-time embedded systems. It has a significant effect on the system’s
performance and reliability. This paper addresses the issue of publishing
parameterized performance characteristics of an RTOS in a platform
independent manner.
Concepts of parametric timing analysis were extended to consider the
performance of the processor, memory and peripherals in a parameterized
way. The proposed method was applied to a commercial RTOS. Validation of
the method shows results with a precision better than 10%.
Key-words: timing analysis, WCET (Worst Case Execution Time), RTOS
(Real-Time Operating System) performance characterization, COTS
(Commercial Off The Shelf) software component performance.

1. Introduction
As embedded systems complexity and diversity are constantly increasing, developers
face a number of opposing needs in the design cycle. The development time and effort
can be reduced with the use of both hardware and software COTS components,
however, these components must be appropriately integrated and characterized in
advance. High-volume production costs can be reduced with the use of the high-
integration Systems-On-Silicon (SOS), however, this poses stringent demands on the
design process and tools, demanding the use of hardware-software co-design and heavy
use of modeling, simulation and estimation, since the actual hardware is available only
near the end of the design cycle.

Current fabrication technologies allow for dies with less than 30 mm2 to implement over
50 million transistors using below-40 nm processes. Complete systems can be
implemented in a single die, including multiple processor cores, RAM, Flash, dynamic

12th Brazilian Workshop on Real-Time and Embedded Systems 63

RAM, and several types of generic and special purpose peripheral units that implement
communication channels, audio and video processing, interfaces to data storage devices,
among many others.
An essential COTS component used in most of current embedded systems designs is the
RTOS. It provides an abstraction of the hardware and manages its resources allowing
the software development team to focus on the application specific software. Although
the RTOS contributes heavily to the performance and robustness of the final system, its
performance is usually described very coarsely, mainly citing the context switch times
and latencies. In most embedded system’s designs, and particularly in those using SOS,
a much more detailed performance characterization is required, so that the final
system´s performance can be accurately predicted in early phases of the design. Design
cycles are too lengthy and costly to allow for a second attempt to achieve the desired
performance.

The aim of this paper is to propose a means of describing the performance of an RTOS.
The rationale for such a description is fourfold:

1. RTOS execution times and blocking times are essential information to be used in
the schedulability analysis of real-time systems;

2. when comparing different RTOSes as alternatives for a design, specific RTOS
configurations can be compared from a performance point of view;

3. the application programmer can identify which RTOS services are time
consuming or have execution times that are not compatible with given response
time requirements;

4. when combined with the performance data of the other components of the
system, the performance of the whole system can be accurately predicted and
checked against the performance requirements.

It is important to notice that the performance characterization of an RTOS is severely
dependant on the HW platform where it runs. The embedded world is characterized by a
very large variety of hardware platforms, as opposed to the standardized hardware
platforms of general computing (such as PCs and Macs). To encompass such a large
variety of hardware platforms we use parameterized generic hardware models, as no
RTOS provider would be able to provide performance data for every possible embedded
hardware platform and their various configurations.

2. Problem Statement
A typical embedded systems development process is illustrated at a high level in Figure
1. Such a process may be used both when silicon is designed for a specific application
as well as when COTS HW components are used. It is important to realize that in this
process, HW and SW are designed and implemented concurrently (HW/SW co-design).
Actual measurements of performance can only be done on the final HW platform in the
Integration phase, however, particularly when specific SOS is designed for this
application, a good estimate of system performance must be already available during the
System Design phase.

64 Proceedings

Figure 1 - Typical SOS development process

In Figure 1, the activities preceding Sys Specs and those after System Tests are not
shown. In the System Design phase, the identification and characterization of COTS
HW components (from libraries and catalogs of HW components), COTS SW
components (including RTOS), custom HW component definition (including glue logic
and application specific HW), and custom SW component definition (SW wrappers and
application specific SW) is done. In this phase, the performance of the final system must
be estimated based on the documented performance of its COTS components and
estimated performance of the HW and SW components to be developed.

During the design and development phases, models, simulators and evaluation boards
may be used to support prototyping and performance evaluations. The level of precision
of the simulators and the similarities of the evaluation boards when compared to the
actual hardware will define how accurate these performance estimates are.

The problem we are addressing in this research is to identify a way that an RTOS
provider (or any other SW component provider) can document the performance
characteristics of his product. Since RTOS are used in a wide range of HW platforms,
and since the performance of the HW platform strongly affects the RTOS performance,
a means is required to parameterize the performance characteristics of the RTOS. In this
paper we propose such a means, and we evaluate the proposed means on a commercial
RTOS.

3. Literature Review
The determination of the Worst Case Execution Time of real-time software is a subject
of study for over a decade. Many conferences deal with this subject. Since 2001 a
WCET Workshop is held along to the Euromicro conference. Among the vast literature
available, the papers most closely related to our research are described in this section.

Colin, A., and Puaut, I. (2001) analyzed the RTEMS RTOS and identified several
problems that made the analysis difficult and imprecise: unstructured code in the RTOS,
use of dynamic function calls, and unknown bounds in loops. They reported an 86%
overestimation on the WCET.

Sandell, D., Ermedahl, A., Gustafsson, J., and Lisper, B. (2004) reported other types of
problems when analyzing the WCET of RTOS services: high dependency of execution
times on the RTOS configuration; high dependency of loop bounds on the RTOS state;
and high variation of execution times depending on the current mode of the RTOS.

Puschner, P. and Schoeberl, M. (2008) proposed a means of avoiding unpredictability
of execution times by rethinking HW and SW implementations: (1) use of single path
programming; (2) simplifying HW design; and (3) perform static scheduling of accesses

12th Brazilian Workshop on Real-Time and Embedded Systems 65

to shared memory. The achieved gain in predictability came at a high cost of always
executing both the “then” and the “else” part of a decision, and discarding the results of
one of the parts, as well as significantly reducing the performance of the HW.
Lv, M., Guan, N., Zhang, Y., Deng, Q., Yu, G., Zhay, J. (2009) present a survey on the
five most prominent techniques for WCET analysis of RTOS. They also identified three
challenges still to be resolved: (1) Parametrization of WCET; (2) Combining the WCET
of the application with the WCET of the RTOS; and (3) Combining WCET analysis and
schedulability analysis.

A significant step forward was achieved by Altmeyer, S., Hümbert, C., Lisper, B., and
Wilhelm, R. (2008) who developed a parametric timing analysis. Instead of the
tradicional way of representing the WCET of a service by a single value, they represent
it by a formula that includes the service call parameters that affect the execution time.
The dependency of the RTOS state was not modeled.

4. Proposed RTOS Performance Modeling
The aim is to characterize the performance of the kernel. To do that in a broad and
precise manner the following information is required:

1. Execution characteristics of each service on a generic hardware platform. This is
processor’s architecture specific since a change to the architecture implies in
changes the machine code.

2. A model of how the service calls arguments and the RTOS state affect the
service’s execution time.

3. A characterization of the memory regions that are used and their latencies, for
single read, single write, burst read and burst write.

4. A model of blocking during the execution of each service. Blocking, if it occurs
at all during calls to a given service, can be in forms such as: masking all
interrupts, masking specific interrupts, and preventing context-switches, i.e.
preventing preemption.

The RTOS performance characterization proposed here is based on a parameterized
generic hardware model (Figure 2). Hence, all performance data that is provided is
dependent of the parameters of the hardware, such as clock frequency, memory
latencies, and peripheral latencies.

4.1. Performance Parameters Definition Process
The process to be used to determine the performance parameters of an RTOS is depicted
in Figure 3. Starting with the source code of the RTOS under analysis, a static analysis
is performed to determine the path that determines the worst-case execution time of
each service. Then, a test case is build that exercises this path. This test case is executed
and its execution is logged, at instruction level. The log, or execution trace, is then
analyzed to extract information about the number of accesses to each peripheral or
memory section (PRi and MRj in Figure 2). The sections of source code that cause
blocking or that are dependent on arguments or state are identified during the static
analysis and their execution parameters are identified as well.

66 Proceedings

Processor

PR1

PRn

MR1

MRm

.

.

.

.

.

.

Parameters:

- bus width
- bus clock
- …

- bus width
- bus clock
- …

- bus width
- bus clock
- wait states
- burst characteristics
- …

- bus width
- bus clock
- wait states
- burst characteristics
- ...

Parameters:

- core clock
-...

Linker Information:

.aic

.timer2

.uart

.text

.x_thread_stack

.bss

.data

PRi = Peripheral addressing region i
MRj = Memory addressing region j

Figure 2 - Parameterized Generic Hardware Model

The process described in Figure 3 is executed by the RTOS provider (or any other SW
component provider) to obtain the performance characterization of the RTOS. The use
of this information is described in Section 4.2.

Figure 3 - Performance parameters definition process

This process combines static and dynamic techniques, aiming at obtaining the best
possible results from each one. In our validation (Section 5), we used LDRA Testbed
[LDRA Testbed (2010)] and PERF [Renaux, D. P. B. ; Góes, J. A. ; Linhares, R. R.
(2002)] for the static analysis; here, the possible execution paths are extracted and the
WCET path is identified. Then, a SW developer elaborates a test case that exercises the

12th Brazilian Workshop on Real-Time and Embedded Systems 67

WCET path. This test case is executed on real hardware, or on a instruction level
simulator. The execution is monitored by a trace tool that records the execution trace. A
Segger´s J-Trace unit [Segger(2010)] was used as well as the trace recording
functionality of the IAR´s EWARM IDE [IAR(2010)].

At this stage of our research, we are evaluating the proposed method; hence, there are
no tools yet to support the analysis of the trace. As such, the two final steps were
performed manually. The execution traces of the service calls range from less than ten
instructions execution to around 600 instructions. This is the case of a call to
CreateThread, which is analyzed in Section 5.

4.2. System Performance Estimation
The performance of the final system can be estimated by combining information from
three different sources:

1. The RTOS provider. Using the process depicted in Section 0, the RTOS
provider publishes the performance parameters of all the RTOS services as well
as RTOS internal activities.

2. The Hardware designer. During the design phase the hardware designer
identifies the performance characteristics of the processor as well as the access
characteristics to each memory/peripheral region.

3. The Software integrator. He provides the mapping between the linker sections
(listed in the RTOS performance characterization) and the corresponding
physical memory/peripheral regions.

Once these three sets of information are available, it is possible to estimate the WCET
of each service of the RTOS on the final system, as well as the WCET of the internal
activities of the kernel, such as the timer interrupt handler.
Furthermore, it should be noted that the RTOS traces change for every processor
architecture, and for different configurations of the RTOS (if this is the case). Hence,
the RTOS provider must perform this analysis, and publish their results, many times.
For the case described here, the traces are for the X Real-Time Kernel
[eSysTech(2008)] configured for ARM7TDMI processors. Hence, these traces represent
the execution of this RTOS on any HW platform based on this processor core.

5. Validation
The RTOS used as testbed in this research is the X Real-Time Kernel, developed by
eSysTech Embedded Systems Technologies. A technical cooperation agreement
between UTFPR and eSysTech resulted in a long term collaboration between the LIT
(Laboratory for Innovation and Technology in Embedded Systems) at UTFPR and
eSysTech. The X Real-Time Kernel, or simply X, is representative of microkernels used
in deeply embedded systems. It is basically composed of the following modules:
microkernel, hardware abstraction layer (X-HAL), shell, event tracing, TCP/IP stack,
USB stack, FAT 16/32 and graphics library. The structure of this kernel is depicted in
Figure 4 – see eSysTech (2008).

68 Proceedings

Figure 4 - X Real-Time Kernel Structure

X is being used extensively in embedded systems designed by eSysTech and by its
customers. Concerning the first case (systems designed by eSysTech), the company
reports [eSysTech(2010)] that, in given applications, over 95% of the embedded code is
part of the kernel, hence less than 5% of the code needs to be developed to produce a
new system. In such a case, where the application logic is relatively simple compared to
the RTOS functionalities (scheduling, USB stack, etc) the latter plays an even more
significant role in determining the performance of the system.

12th Brazilian Workshop on Real-Time and Embedded Systems 69

5.1. Performance Characterization of the CreateThread Service Call
As a result of this research, the characterization of all calls to the X’s microkernel
(called the microkernel´s methods in the X literature) is being performed. One of such
methods was selected to be presented here: CreateThread. It concerns access to the
internal data structures of the microkernel, as well as to the thread’s stack. It is one of
the most complex and lengthy of the microkernel’s methods. It was selected as
representative of the effectiveness of the proposed performance characterization.

Definition of the CreateThread Service Call:
TId X::CreateThread(
 void (* t_main) (uint32_t, uint32_t),
 uint32_t arg1,
 uint32_t arg2,
 const char * name,
 uint32_t stack_size,
 uint32_t put_queue_size,
 uint32_t config,
 uint32_t priority)

Following the process described in Section 4.1, the first activity is the static analysis.
The flowgraph of CreateThread was extracted by the LDRA Testbed tool (Figure 5).
The analysis of this flowgraph indicates no timing dependency to any of the parameters
of the call. The only timing dependecy is to the state of the kernel’s internal heap: to the
current number of segments present in a linker section named x_heap. A test case is
elaborated aiming at creating a given number of segments in the heap before the call to
CreateThread is performed. The test case is then executed and its trace is recorded.

The kernel accesses the following linker sections, i.e. logical addressing spaces that are
mapped to physical addressing spaces at link time are:

.iram_text: a code section with functions that require fast execution times;

.text: code section with most of the functions of the kernel;

.const: read only data section;

.stack: section for the stack;

.x_heap: a heap section used only for the internal data structures of the kernel.
The trace is then analyzed to identify its sections and the characterize the accesses done
in each section. A trace section is a part of the trace that has the same repetition and
blocking characteristics. The table below presents the result of the analysis of the trace
of the execution of the test case of CreateThread. It is divided in three sections: the first
is executed once without blocking; the second is executed once with blocking
(interrupts are disabled), and the third is executed N times and also with blocking (again
interrupts are disabled). The number of executions of the third section (N) is given by
the number of segments in the x_heap.

70 Proceedings

Figure 5 - LDRA Testbed Static Analysis - Flowgraph of CreateThread

The process in Section 4.1 finishes by publishing the following performance parameters
for CreateThread. The values in columns “i” to “w8” are the number of accesses to each
of these linker sections in each of the trace sections.
Performance characterization for the sections of CreateThread:

Sec Rep Block i t c s b r32 w32 r8 w8
1 1 3 13 1 17 4 1 0 0 0

2 1 Y 49 268 7 32 54 12 36 19 25

3 N Y 0 18 0 0 2 2 0 0 0

Where:
Sec = code section of CreateThread; each section has different repetition and blocking
charateristics.
Rep = number of times the execution of this section is repeated (N = represents the
current number os segments in kernel’s internal heap).
Block = indicates if this section of code blocks preemption by disabling interrupts.

12th Brazilian Workshop on Real-Time and Embedded Systems 71

Logical sections (also known as linker sections):
i = iram_text – frequently used kernel code, usually allocated to fast memory;
t = text – code area;
c = const – constants in code area;
s = stack;
b = number of branches (jumps);
r32 = 32-bit wide read accesses to the x_heap area;
w32 = 32-bit wide write accesses to the x_heap area;
r8 = 8-bit or 16-bit wide read accesses to the x_heap area;
w8 = 8-bit or 16-bit wide write accesses to the x_heap_area.

5.2. Performance Validation
Given the performance parameters from Section 5.1, the values of WCET of a call to
CreateThread were estimated for three different hardware platforms using the section
mapping information provided by the software integrators of each test program (one test
program per hardware platform) and the hardware access times provided by each
hardware designer. The execution times were also measured on real hardware, since the
three hardware platforms are available. The comparison of the estimated and measured
results are shown below.
In these experiments, the call to CreateThread was performed when the kernel’s heap
was fragmented into 13 segments. Hence, N = 13 for the third section.
Hardware platforms description:

1. ARM7TDMI@72MHz with 16 MBytes of external 32-bit wide SDRAM and
32KBytes of internal SRAM;

2. ARM7TDMI@72MHz with 64KBytes of internal SRAM;
3. ARM7TDMI@72MHz with 1 MByte of external 16-bit wide SRAM and

32KBytes of internal SRAM.

Test on hardware platform 1:

 i t c s b r32 w32 r8 w8

Accesses 52 515 8 49 84 39 36 19 25

Access
time 14 14 70 70 250 200 200 200 200

ns

Total time 728 7210 560 3430 21000 7800 7200 3800 5000 ns

Total estimated execution time: 56,728 ns (addition of values in last row).
Measured execution time: 51,111 ns

72 Proceedings

Test on hardware platform 2:

 i t c s b r32 w32 r8 w8

Accesses 52 515 8 49 84 39 36 19 25

Access
time 14 14 14 14 45 14 14 14 14

ns

Total time 728 7210 112 686 3780 546 504 266 350 ns

Total estimated execution time: 14,182 ns (addition of values in last row).
Measured execution time: 14,137 ns

Test on hardware platform 3:

 i t c s b r32 w32 r8 w8

Accesses 52 515 8 49 84 39 36 19 25

Access
time 14 160 160 180 450 160 200 80 120

ns

Total time 728 82400 1280 8820 37800 6240 7200 1520 3000 ns

Total estimated execution time: 148,988 ns (addition of values in last row).

Measured execution time: 146,400 ns
An analysis of these results show that the estimated performance is both safe (estimated
execution times are never lower than actual execution times) and have a low
overestimation (maximum of 10%). When the memory accesses are more predictable,
such as the case of internal SRAM, the overestimation was lower than 1%.
At the current stage of development, the effects of the SDRAM access buffers and
cache memories are not modeled. Once this models are developed and included in our
performance characterization data, we expect to achieve even better results.

6. Conclusion
This paper presents a significant contribution of considering the performance of
hardware components in the characterization of the performance of an RTOS. This was
achieved in a three step process: (1) the RTOS provider publishes the parameterized
performance characteristics of his RTOS; (2) the HW designer provides the access
time characterization of a specific hardware platform; and (3) the SW integrator
provides the mapping of the logical sections listed by in the RTOS characteristics to the
physical devices of the actual system’s hardware. From the combination of the
information provided by these three sources precise performance estimations can be
obtained.

This research extends previous parametric timing analysis by considering the effects of
the internal RTOS state and data structures and the characteristics of hardware
components to obtain more accurate performance estimations.

To illustrate the method, a representative kernel service was selected: CreateThread.
The same method applies to the other services of the kernel.

12th Brazilian Workshop on Real-Time and Embedded Systems 73

The process presented here was experimented on microcontrollers using an
ARM7TDMI core. These cores do not use cache memories, hence, these were not
considered in the model so far. Future versions of the proposed model will consider
other architectures, such as the Cortex-M4 and the Cortex-A8 and will include the
effects of the cache in the performance characterization. Also, we are evaluating the
development of tools that would automate some of the activities (mainly Performance
Parameters Identification and Extraction) that are currently performed by hand.

References
Altmeyer, S., Hümbert, C., Lisper, B., and Wilhelm, R. (2008) “Parametric timing

analysis for complex architectures” In: The 14th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA).

Colin, A., and Puaut, I. (2001) “Worst-case execution time analysis of the RTEMS real-
time operating system” 13th Euromicro.

eSysTech (2008) X Real-Time Kernel, Programmer´s Manual, 2008.
eSysTech (2010) “Code functionality assessment and performance measurements for

the ISPI project”, Internal Report, Feb 2010.
IAR (2010) “IAR Embedded Workbench for ARM”

http://www.iar.com/website1/1.0.1.0/68/1/
LDRA (2010) “Software Development and Testing with LDRA Testbed”

http://www.ldra.com/testbed.asp.
Lv, M., Guan, N., Zhang, Y., Deng, Q., Yu, G., Zhay, J. (2009) “A Survey of WCET

Analysis of Real-Time Operating Systems”, In: 2009 International Conference on
Embedded Software and Systems. IEEE.

Puschner, P. and Schoeberl, M. (2008) “On composable system timing, task timing,
and WCET analysis” In: WCET 2008.

Renaux, D. P. B. ; Góes, J. A. ; Linhares, R. R. (2002) “WCET Estimation from Object
Code implemented in the PERF Environment” In: Second International Workshop on
Worst-Case Execution Time Analysis, 2002, Viena. WCET'2002 - 2nd International
Workshop on Worst-Case Execution Time Analysis, 2002. v. 1. p. 28-35.

Sandell, D., Ermedahl, A., Gustafsson, J., and Lisper, B. (2004) “Static timing analysis
of real-time operating system code” In: 1st International Symposium on Leveraging
Applications of Formal Methods.

Segger (2010) “J-Trace ARM”. http://www.segger.com/cms/j-trace-arm.html

74 Proceedings

12th Brazilian Workshop on
Real-Time and Embedded Systems

♦

Technical Session 4
Sensor Networks and

Wireless Communication

Coordination Mechanism and Customizable Hardware
Platform to Provide Heterogeneous Wireless Sensor Networks

Support∗

Edison P. de Freitas1,4, Rodrigo S. Allgayer2, Tales Heimfarth3, Flávio R. Wagner4,
Tony Larsson1, Carlos E. Pereira2, Armando M. Ferreira5

1School of Information Science, Computer and Electrical Engineering
Halmstad University, Halmstad – Sweden

2Electrical Engineering Department – Federal University of Rio Grande do Sul
Porto Alegre – Brazil

3Computer Science Department – Federal University of Lavras
Lavras – Brazil

4Institute of Informatics – Federal University of Rio Grande do Sul
Porto Alegre – Brazil

5Defense Engineering Graduate Program – Military Institute of Engineering
Rio de Janeiro – Brazil

edison.pignaton@hh.se, allgayer@ece.ufrgs.br, tales@dcc.ufla.br,
flavio@inf.ufrgs.br, tony.larsson@hh.se, cpereira@ece.ufrgs.br, armando@ime.eb.br

Abstract. This paper presents an effort to support emerging Wireless Sensor
Networks applications composed by different types of sensor nodes. The work
is composed by two parts, in which the first is dedicated to provide cooperation
abilities to sensor nodes, while the second is a customizable hardware platform
intended to provide different types of sensor nodes, from those more resource
constrained up to the resource-rich ones. A description of a testbed demonstra-
tor of the proposed system is provided and comparisons with previous published
simulation results denote the feasibility of the proposal.

1. Introduction
A number of emerging applications are being developed having as basis Wireless Sensor
Networks as driving technologies. An important feature of the new systems that imple-
ment these applications is the usage of different types of sensors working in a unique net-
work, cooperating in order to accomplish with users’ expectations. An example of such
applications is area surveillance systems, which use sensor nodes with different sensing,
computing and mobility capabilities to gather data of an area of interest.

The main issues in developing heterogeneous sensor networks are: (i) support
for cooperation among heterogeneous nodes; and (ii) customization of sensor nodes
[Erman et al. 2008]. The former is related to concerns such as message exchange syn-
chronization, QoS requirements management, task (re-) allocation, network adaptation,

∗E. P. Freitas thanks the Brazilian Army for the grant to follow the PhD program in Embedded Systems
at Halmstad University in Sweden, in cooperation with UFRGS in Brazil.

12th Brazilian Workshop on Real-Time and Embedded Systems 77

among others. The later is related to the diversity of node platforms, which may be built
upon very distinct hardware components controlled by very different pieces of software.

Considering (i), the use of a middleware services represent a suitable approach to
address the mentioned concerns, since they can integrate the technologies used in differ-
ent nodes by means of common communication interfaces and cooperation mechanisms.
Regarding (ii), customizable architectures can be very useful to build platforms for differ-
ent sensor network nodes, from the very simple to the more sophisticated ones. This kind
of architecture can provide a common base capability for all nodes. However, for nodes
that need more advanced capabilities, the required resources can be incorporated. Hence,
even though all nodes have the same base capability, some of them could be equipped with
additional resources, thus making the sensor network more powerful due to this allowed
heterogeneity.

This paper presents testbed results of a flexible and adaptable platform infras-
tructure intended to support heterogeneous sensor network applications composed by
static sensor nodes on the ground and mobile sensors carried by Unmanned Aerial Ve-
hicles (UAVs). It is based on the proposal of (i) a flexible coordination mechanism
[Freitas et al. 2009], and (ii) on a customizable hardware architecture aimed for sensor
nodes, called FemtoNode [Allgayer et al. 2009]. The key idea is to use this customizable
platform to deploy different kinds of sensor nodes, from very tiny and resource con-
strained up to more sophisticated ones. Both types of nodes run a common coordination
software, which provides the desired interoperability that will allow the cooperative work
among different sensor nodes. In the demonstrator presented, nodes may be built upon
the FemtoNode architecture and alternatively upon nodes with another hardware platform,
namely SunSPOT [Microsystems 2010].

The remaining of this paper is organized as follows: In Section 2 the application
scenario is highlighted, characterizing the network heterogeneity. Section 3 presents a
pheromone-based coordination mechanism used to promote the collaborative work among
static and mobile sensors. In Section 4, the FemtoNode customizable hardware architec-
ture is described. Section 5 presents a description of a case study and highlights previous
obtained simulation results, while Section 6 presents demonstrator and the practical re-
sults achieved with it, as well as a comparison with the previous simulations. Section 7
discusses related work in the area. Finally, Section 8 draws concluding remarks and gives
directions for future work.

2. Motivation: Application Scenario and Network Heterogeneity
In the following, heterogeneity means that nodes in the network may have different sens-
ing capabilities, computation power, and communication abilities. Additionally, it means
that they may run on different hardware and operating systems. Therefore, such sensor
networks are made up of low- and high-end nodes. Moreover, sensor nodes may have
fixed positions or be able to move, being carried by UAV platforms, which can also vary
from very small, as in [Walter et al. 2005], up to huge aircraft platforms, like GlobalHawk
[Leonard and Drezner 2002].

Low-end sensor nodes are those with constrained capabilities, for instance piezo-
electric resistive tilt sensors, with limited processing support and communication resource
capabilities. High-end sensor nodes include powerful devices like radar, high definition

78 Proceedings

visible light cameras, or infrared sensors, which are supported by moderate to rich com-
puting and communication resources.

Mobility, as mentioned, is another important characteristic related to the hetero-
geneity addressed in this work and requires special attention. Sensor nodes can be stat-
ically placed on the ground or can move on the ground or fly at some altitude over the
target area in which the observed phenomenon is occurring. Figure 1 graphically repre-
sents the idea of the three heterogeneity dimensions considered in this work, in which
each axis represents one of the considered characteristics.

Figure 1. Heterogeneity Dimensions.

The reason for heterogeneity in the sensor nodes is to support a large range of ap-
plications that deal with very dynamic and challenging scenarios, which require different
types of sensor capabilities in order to gather a wide diversity of data. Moreover, these
different scenarios may require adaptations in the network, in terms of choosing suitable
sensors for the tasks at hand as well as feasible QoS parameters, among others. The
decisions related to these issues need additional data to be supported [Erman et al. 2008].

In order to illustrate the above idea, suppose that a network has the mission of
providing a certain kind of information during a given period of time over an area of
interest. The network must be able to choose a better alternative, among the set of all
available options, in order to accomplish the mission. For example, an area surveillance
system may receive the mission to observe if certain types of vehicles that are not allowed
to pass through the surveyed area make any such violation and report if that is the case.
To perform this in an efficient way ground sensors are set to alarm in the presence of
unauthorized vehicles. If these sensors are not capable to confirm the violation, the alarms
have to be delivered to more sophisticated sensors, carried by UAVs, in order to these last
ones check and confirm the possible threat. Moreover, as the UAVs may be equipped
with different types of sensor devices, they also should be able to decide which among
them is the most suitable to respond to a given alarm. For example, UAVs equipped with
visible-light cameras may provide poor results if employed in areas where the weather
conditions are bad, e.g. in foggy or cloudy areas.

3. Pheromone-based Coordination Approach
The coordination strategy used in this work to make mobile sensor nodes cooperate
with static sensor nodes is based on pheromone traces handed over by the mobile sen-
sors to the static ones. Artificial pheromones are usually applied to distributed coor-

12th Brazilian Workshop on Real-Time and Embedded Systems 79

dination by means of stigmergy, the indirect communication using environment cues
[Bonabeau et al. 1999]. A pheromone trail is deposited in the environment when the en-
tities are moving.

The pheromone provides information to other entities when they pass over it.
Artificial pheromone also looses its strength along the time, modeling the evaporation
of the real pheromones. In the UAV research field, pheromones are used to guide
the movement of UAV swarms, for instance in surveillance and patrolling applications
[P. Gaudino et al. 2003, Sauter et al. 2005].

Differently from other existing approaches, in the present work pheromones are
used to guide the selection and assignment of a suitable UAV to handle an alarm issued by
a ground sensor node. When an alarm is issued by the detection of a target, the network is
responsible for selecting an appropriate UAV to respond to the alarm. This is performed
by routing a given alarm to the UAV that has the strongest pheromone trace over the area.
Having this information, the UAVs will base their movement decisions in a way to re-
spond to the received alarms. This strategy is called here heuristic-P. The main difference
from the mentioned approaches is that they rely on global UAV-network connectivity to
spread information about the pheromone map, while the present approach explores a local
connectivity among UAVs and ground sensor nodes.

(a) (b)

Figure 2. (a)Illustrative scenario for the pheromone strategy (b)Choice of a UAV
based on the pheromone strategy.

Following the above outlined principles, the UAVs that are not engaged in the
handling of any target will leave pheromone traces over the area which they cross. This
pheromone trace is represented by a piece of information that is taken by the ground
sensor nodes that are deployed in the area through which the UAVs have passed. When a
target is detected by a ground sensor node, an alarm is issued. The decision about which
UAV that will handle the potential target indicated by the issued alarm will be taken by
the ground sensor nodes, by routing the alarm in the direction that points to the UAV
which has the strongest pheromone trace over that area of the network. This process just
considers the pheromone trace handed over by the UAVs to ground sensor nodes. This
means that the only parameter taken into account is the time interval since a UAV passed
by that specific location. Heuristic-P is inspired in [Heimfarth and Janacik 2008], which

80 Proceedings

presents a pheromone-based strategy to migrate services in a sensor network, in which
the pheromone concentration determines the places where the services are required.

In heuristic-P, instead of services, alarms are moved through the network follow-
ing the pheromone concentration. Figure 2(a) presents a scenario that illustrates the strat-
egy. A ground sensor node in the left border of the area detects a target. Then it issues an
alarm, which is received by its neighbors. However, only those which have pheromone
information about a UAV stronger than that of the alarm issuer will forward the alarm.
This way, the alarm will follow a path to the closest UAV, which is represented in the
figure by the shaded sensors, until the alarm delivery.

Figure 2(b) illustrates the choice of the strongest pheromone trace to be followed
by an issued alarm. It is possible to observe that the alarm follows the strongest trace,
which corresponds to UAV-A, until its delivery to this UAV. The arrows illustrated besides
each sensor node represent how strong the pheromone of each UAV is. As it is possible
to see, the pheromone level of UAV-A is increasing to the left, while the pheromone level
of UAV-B is increasing to the right.

When an alarm reaches the UAV indicated by the strongest pheromone trace, if this
UAV is not engaged in the handling of another alarm it sends a confirmation message to
the node that had delivered the alarm. If the suggested UAV is already engaged in another
alarm, the current alarm follows the second strongest pheromone trace to find another
UAV to engage. When an idle UAV detects a new target, it takes the responsibility for
handling it. In case that the UAV is already busy with another alarm response mission, it
relays the incoming alarm that will be routed to another UAV, according to the pheromone-
based heuristic-P strategy explained above.

In order to increase the robustness of the proposal, in case an alarm is issued by
a node that has no pheromone trace, a direction is randomly chosen and the alarm is sent
in that direction until it finds a pheromone trace. When the trace is found, it follows the
trace as explained above. This situation is more likely to occur in the initialization of the
system, especially in cases in which the number of UAVs deployed in the system is very
low with regard to the area under surveillance.

Figure 3 presents an example of how an alarm issued by a sensor node (Figure 3-
A) is routed through the network, following the pheromone traces (Figure 3 from A to D),
until it is delivered to a UAV (Figure 3-E). The pheromone traces in the nodes are repre-
sented by the numbers in the center of the circles representing the ground sensor nodes
in the figure. The smaller the number is, the stronger the pheromone. This translates the
idea of the time past since a ground sensor node received the last pheromone beacon from
a UAV. When a ground sensor node receives this pheromone beacon, it sends this infor-
mation to its neighbors with a pheromone one point weaker (a number one unit greater
than the one representing the node’s pheromone information). This is an indirect beacon
that helps the other nodes find the traces to route the alarms. The nodes that receive the
indirect beacons do not forward it. The symbol ∞ means that the node has no pheromone
trace, i.e. the last beacon (directly from a UAV or indirectly from another ground node)
was received a long time before, above a tunable threshold. The number representing
the pheromone is periodically incremented, indicating that the pheromone trace becomes
weaker when time elapses, until disappearing (become ∞).

12th Brazilian Workshop on Real-Time and Embedded Systems 81

Figure 3. Alarm Routing and Delivery.

4. FemtoNode - Wireless Sensor Architecture

The architecture of a sensor node aims at efficiently supporting specific application
needs. It requires a dedicated processing module, including a wireless communication
interface, which meets both energy and performance requirements, as well as respects
footprint constraints. The fact that application requirements as well as environment
and other operational conditions may change during system run time imposes a major
challenge [Hinkelmann et al. 2007]. In this context, the use of reconfigurable hardware
[Garcia et al. 2006] appears as an interesting alternative.

Therefore, a customizable sensor node called FemtoNode is proposed. It con-
tains a customizable ASIC and a wireless communication interface, which are configured
according to application requirements.

The nodes use the RT-FemtoJava processor [Ito et al. 2001], a stack-based micro-
controller that natively executes Java byte-codes. It implements an execution engine for
Java in hardware, through a stack machine that is compatible with the specification of Java
Virtual Machine. The customized application code is generated by the Sashimi design en-
vironment [UFRGS 2006]. The code also includes a VHDL description of the processor
core and ROM (programs) and RAM (variables) memories. The Sashimi environment
has been extended to incorporate an API that supports concurrent tasks, implementing the
RTSJ standard [Wehrmeister et al. 2006].

As RT-FemtoJava is customizable, its code can be optimized according to the
application requirements, reducing the occupied hardware area and also the energy con-
sumption. The customizable hardware architecture of the FemtoNode allows the use of
the sensor node as either a low- or high- end node. If the application requires higher per-
formance resources to handle more complex data, such as image processing, additional
resources can be included in the FemtoNode implementation. However, if the application
is aimed at processing simple data, such as those from presence sensors, a reduced set of
resources is used in the processor. This feature is important for the sensor node, because
energy consumption is a great concern in wireless sensor networks, due to the nodes’
limited energy resource. Besides, reducing the unused resources during its synthesis the
sensor node architecture allows its implementation in reconfigurable circuits with fewer
available logical units, which is a feature that provides a larger application portability
between different reconfigurable architectures with fewer available resources.

82 Proceedings

In the current implementation, the FemtoNode includes a wireless transceiver of
Texas Instruments CC2420, which utilizes the IEEE802.15.4 standard communication
protocol targeted to wireless sensor network applications with a low data rate. A module
adapter described in VHDL implements the interface with the wireless transceiver. The
module uses data and address buses to communicate with the processor, performing the
exchange of data and allowing the transceiver parameters configuration.

As the data transfer rate from the wireless transceiver is low, compared to the
processor frequency, the wireless communication module implements a buffer to store
data, preventing delays while providing the necessary data to the processor. The module
uses an interrupt system to inform the processor when a reception occurred.

To facilitate the use of the wireless communication module by the application
developers, a communication API has been developed. The Wireless-API abstracts details
of the communication media between the sensor nodes, offering a simplified form for the
configuration of the data transfer module.

5. Case Study Description and Simulation Results
In order to illustrate the use of the proposed platform infrastructure, including the cus-
tomizable FemtoNode and the cooperation mechanism, an area surveillance application
is studied. In this application, low-end sensors nodes are scattered on the ground along
a borderline. In case an unauthorized vehicle crosses the borderline limit, the sensors on
the ground issue an alarm which will trigger the use of UAVs, which are equipped with
more sophisticated sensors, such as radars or visible light cameras, in order to perform the
recognition of the vehicle, and confirm a possible threat. Figure 4 presents this scenario.

Figure 4. Area Surveillance Application Scenario.

The setup of this system is done in such way that a predefined threshold triggers
the activation of the mechanism that issues the alarms. This is done when a static sensor is
not able to assess the detected vehicle is or is not a possible threat. So, the usage of a more
sophisticated sensor is required and so, the cooperation mechanism has to be employed in
order to drive one of the UAV-carried sensor to the area where the alarm was issued.

According to the coordination strategy based on pheromones presented in Section
3, the sensor nodes on the ground route the alarms according to the pheromone trace left
by the UAVs, choosing the strongest trace to follow. When the alarm achieves a node
close to the UAV, the alarm is delivered. This mechanism addresses several problems
related to the communication and interoperation between nodes, such as message routing,
controlled delay, delivery assurance, and appropriate node selection to cooperate with.

12th Brazilian Workshop on Real-Time and Embedded Systems 83

For the demonstrator implementation presented in the following section, sensor
nodes with two different architectures compose the described surveillance system, one
based on the FemtoNode and another one on the SunSpot. Each of them includes all nec-
essary resources to meet the requirements of their utilization. Thus, based on the applica-
tion specifications, a customization of the FemtoNode architecture was implemented. The
UAV’s architecture is a FemtoNode with a large set of resources, capable of processing a
large amount of data. Further details will be presented in Section 6.

5.1. Simulation Results for the Presented Scenario
As already mentioned, the presented scenario was already target of simulation experi-
ments, which provided the results that will be presented in the following. These results
will then be compared with the ones achieved with the demonstrator and discussed in
Section 6.

Experiments using ShoX simulator [Lessmann et al. 2008] were performed and
reported in [Freitas et al. 2009]. The accessed metrics presented in [Freitas et al. 2009]
were: 1) the mean response time to the alarms generated in the system; 2) the number of
alarms lost, due to communication failures; and 3) the utility in employing a given UAV
to handle a given alarm.

For the purposes of this paper, the metrics 1 and 2 are taken into account, as the
issue related to the evaluation of the utility in employing a UAV to handle a given target
was not implemented so far in the demonstrator.

The simulation setup was the following: The surveillance area has dimensions
10 Km x 10 Km, in which 20,000 ground sensor nodes are randomly deployed with
independent uniform probability, 500 meters communication range. Six UAVs of three
different types, equally distributed, patrol the area, having a communication range of 1.5
Km and flying at the altitude of 250 meters and with speeds from 100 Km/h up to 120
Km/h. Three different runs were simulated, with one, three, and five targets respectively.
The targets can further be of five different types, randomly chosen, with speeds from 50
Km/h up to 80 Km/h.

Figure 5 presents the simulation results in terms of the mean time required to
respond to the alarms. Both raw data from each run (total of 20 runs for each number
of targets) and the average value (lines with squared dots) are plotted in the figure. It
is possible to observe that, in the worst case, the mean time to find a UAV that is idle to
engage in the handling of an alarm is around 4 seconds, in the scenario with the maximum
number of targets. On the other hand, in the best case, when there is just one target, the
time needed to find a UAV is in average less than 1 second. An explanation for this
behavior is that it is more probable to find an idle UAV when the number of targets is
smaller. This may happen because, when there are more targets, an alarm message may
follow a pheromone trace of a UAV that has just engaged in handling a target announced
by another alarm, so the alarm must be retransmitted to the network and follow another
trace. However, the solution does scale, as the increase in the mean time to find an idle
UAV is linear with the increase in the number of targets, as can be concluded by taking
the average values for all runs for each number of targets.

The second considered metric evaluates the system efficiency in terms of detecting
a target and correctly routing the alarm message to an idle UAV. For all simulation runs,

84 Proceedings

Figure 5. Alarm Response Time Achieve by the Simulation.

no alarm was lost, which means that the system had 100% efficiency for the simulated
scenario and correctly found an idle UAV at all occasions when an alarm was issued.

6. Demonstrator Presentation and Results
The simulations reported in [Freitas et al. 2009] showed that the proposed approach
works well in the described scenario. However, wireless communications are very sensi-
ble to interferences and unpredictable variations. This means that simulation data, such
as communication reachability and delays, are not always confirmed in real deployments.
This fact motivated the deployment of a demonstrator to assess if the properties of the
proposed approach are also observable in a physical implementation.

Figure 6. Demonstrator Setup.

The deployed demonstrator is composed as a network consisting of sixteen static
ground sensor nodes (nine SunSpots and the others FemtoNodes) and one mobile node
(FemtoNode). The ground sensor nodes are equally distributed in a grid in an area of
225 square meters. The mobile FemtoNode, moved manually, represents a UAV that
“flies” over this area leaving pheromones over the ground sensor nodes via a periodic
beacon message sent to the network. Upon the occurrence of an alarm, the nodes route
it in the direction of the nodes with stronger pheromone traces, until it arrives at a node
which has communication with the UAV, as explained in Section 3. Figure 6 presents
the demonstrator setup. The radio in the nodes was adjusted to provide a communication
range of 5 meters, such that the nodes are capable of communicating only with their
immediate vertical and horizontal neighbors, which are 5 meters apart, but not with their

12th Brazilian Workshop on Real-Time and Embedded Systems 85

diagonal neighbors or any other node in the grid. The mobile node, representing the UAV,
has the same communication range configuration as the static nodes.

Twenty runs were performed. In each of them, an alarm was generated by one of
the static nodes, randomly chosen, which had to be routed to the UAV according to the
pheromone mechanism described in Section 3 and implemented as described above.

In order to stress the network and test these mechanisms, random messages were
generated by the static nodes, which competed with the beacon and alarm messages for
the utilization of the communication resources.

The evaluated metric with the described testbed was the time to respond to the
alarms generated in the system. By obtaining this metric, the delay of one hop com-
munication was calculated and compared with the one achieved in the simulation results
described before. Figure 7 presents the time taken by the system to deliver the alarm to
the UAV.

Figure 7. Alarm Response Time Achieved by the Demonstrator.

The average number of hops to deliver the alarm was 5 hops for the 20 runs of the
testbed. Taking the average of the time to deliver an alarm, 538.85 ms, and the average
number of hops, the average delay calculated is of 107.77 ms in each hop.

Considering the simulation results, taking the worst case scenario, the one with 5
targets, in average the number of hops for an alarm to be delivered was 13.78. Taking the
average of worst case scenario, 1,821.65 ms to deliver an alarm, 132.14 ms is the delay
for an alarm to be forwarded among the static nodes in each hop.

Comparing the delays obtained from the simulation runs and from the demonstra-
tor, it is possible to observe that they are very close to each other. The delays obtained
with the demonstrator are even better than the ones achieved by simulation, which is an
evidence of the applicability of the proposed approach.

7. Related Work
AWARE [Erman et al. 2008] is a middleware whose goal is to provide integration of the
information gathered by different types of sensors, including low-end sensor nodes in
a wireless sensor network and mobile robots equipped with more sophisticated sensors.
Our proposal not only addresses heterogeneous sensors and their coordination, but also
concerns like QoS, e.g. message delay, which is missing in [Erman et al. 2008].

86 Proceedings

In [Walter et al. 2005], an approach using digital pheromones to control a swarm
of UAVs is presented. The method proposed by the authors uses digital pheromones to
bias the movements of individual units within a swarm toward particular areas of interest
that are attractive, from the point of view of the mission that the swarm is performing, and
away from areas that are dangerous or just unattractive. In the large sense, the pheromone-
based strategy used in our work has a similar goal, driving the UAVs to areas of interest.
However, differently from their approach, we use the pheromone traces to localize the
UAVs when an alarm is issued by a ground sensor node informing an event of interest and
then drive the UAVs to the location where the event happened.

In [Caldas et al. 2005] a sensor node was presented incorporating re-configurable
hardware resources to improve and to expand the set of features executed by conventional
sensor nodes. These features allow the processing of complex events that requires high
computing efficiency and accuracy. Our proposal enhances type of flexibility by optimiz-
ing the microcontroller architecture by synthesize only the resources that the applications
need.

8. Conclusions and Future Work
This paper presented a system solution to provide interoperability and coordination sup-
port for heterogeneous sensor networks composed by ground static sensor nodes and mo-
bile sensors carried by UAVs, and a customizable hardware to implement the different
types of sensors needed in such networks. The first part of the work is represented by
a bio-inspired pheromone- based approach, while the second part is represented by the
FemtoNode platform, which provides a support to the development of different types of
nodes, customized according to specific requirements.

The assessment of the viability in using of the proposed approach in real networks
was done by means of a comparison between results obtained by simulation experiments,
representing a large scale scenario, with a small scale testbed demonstrator, which uses
the pheromone mechanism and the FemtoNode. The evaluation provided evidences that
the proposed solution indeed sounds.

As future works, a large demonstrator is being planned, in which we aim also
to evaluate the selection of the utility in employing a given UAV to handle a given
target, and like this, be able to compare the additional simulation results reported in
[Freitas et al. 2009] with results from a demonstrator.

References
Allgayer, R. S., Götz, M., and Pereira, C. E. (2009). Femtonode: Reconfigurable and customizable

architecture for wireless sensor networks. In Proc. of 10th International Embedded Systems
Symposium, pages 302–309, Langenargen, Germany.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm intelligence: From natural to artificial
systems. New York. Oxford University Press.

Caldas, R. B., Jr., F. L. C., Nacif, J. A., Roque, T. R., Ruiz, L. B., Fernandas, A. O., da Mata, J. M.,
and Jr., C. C. (2005). Low power/high performance self-adapting sensor node architecture. In
Proc. of 10th IEEE Conf. on Emerging Technologies and Factory Automation, volume 2, page
976, Catania, Italy.

12th Brazilian Workshop on Real-Time and Embedded Systems 87

Erman, A. T., Hoesel, L., and Havinga, P. (2008). Enabling mobility in heterogeneous wireless
sensor networks cooperating with uavs for mission-critical management. In IEEE Wireless
Communications, pages 38–46.

Freitas, E. P., Heimfarth, T., Wagner, F. R., Ferreira, A. M., Pereira, C. E., and Larsson, T. (2009).
Evaluation of coordination strategies for heterogeneous sensor networks aiming at surveillance
applications. In Proc. of 8th IEEE Sensors, pages 591–596, Christchurch, New Zealand.

Garcia, P., Compton, K., Schulte, M., Blem, E., and Fu, W. (2006). An overview of reconfigurable
hardware in embedded systems. In EURASIP J. Embedded Systems, p. 13–13, New York, USA.

Heimfarth, T. and Janacik, P. (2008). Experiments with biologically-inspired methods for service
assignment in wireless sensor networks. In IFIP Intl Federation for Information Processing,
pages 71–84, Boston, USA. Springer.

Hinkelmann, H., Zipf, P., and Glesner, M. (2007). A domain-specific dynamically reconfigurable
hardware platform for wireless sensor networks. In Int. Conf. on Field-Programmable Tech-
nology, pages 313–316.

Ito, S. A., Carro, L., and Jacobi, R. P. (2001). Making java work for microcontroller applications.
In IEEE Design and Test of Computers, pages 100–110, Los Alamitos.

Leonard, R. and Drezner, J. (2002). Global hawk and darkstar. Santa Monica, California. RAND
Corporation.

Lessmann, J., Heimfarth, T., and Janacik, P. (2008). Shox: An easy to use simulation platform
for wireless networks. In Proc. of 10th International Conference on Computer Modeling and
Simulation, pages 410–415.

Microsystems, S. (2010). SunSPOT - Sun Small Programmable Object Technology. Sun Microsys-
tems. <http://www.sunspotworld.com>.

P. Gaudino, B. S., Bonabeu, E., and Clough, B. (2003). Swarm intelligence: a new c2 paradigm
with an application to control of swarms of uavs. In Proc. of 8th International Command and
Control Research and Technology Symposium.

Sauter, J. A., Matthews, R., Parunak, H. V. D., and Brueckner, S. A. (2005). Performance of digital
pheromones for swarming vehicle control. In Proc. of 4th International Joint Conference on
Autonomous Agents and Multi-Agent Systems, pages 903–910. ACM Press.

UFRGS (2006). Sashimi Manual. UFRGS. <http://www.inf.ufrgs.br/˜lse/sashimi/>.

Walter, B., Sannier, A., Reinerss, D., and Oliver, J. (2005). Uav swarm control: Calculating digital
pheromone fields with the gpu. In Proc. of The Interservice/Industry Training, Simulation &
Education Conference.

Wehrmeister, M. A., Pereira, C. E., and Becker, L. B. (2006). Optimizing the generation of object-
oriented real-time embedded applications based on the real-time specification for java. In Proc.
of The Design, Automation, and Test in Europe Conference, pages 806–811, Belgium.

88 Proceedings

A Free-Collision MAC Proposal for 802.11 Networks

Omar Alimenti 1,2, Guillermo Friedrich 1, Guillermo Reggiani 1

1SITIC Group – Universidad Tecnológica Nacional – FRBB
Bahía Blanca –Argentina

2 IIIE - Universidad Nacional del Sur – DIEC
Bahía Blanca –Argentina

iealimen@criba.edu.ar, {gfried,ghreggiani}@frbb.utn.edu.ar

Abstract. Wireless technologies are a good choice for work in industrial
environments, where it is necessary to interconnect mobile systems or it wants
to avoid sensors and controllers wiring in plant. However, these technologies
present reliability and timing problems inherent in the radio channels,
mechanisms for medium access, etc. The standard 802.11e provides two
alternatives for medium access (EDCA and HCCA) by differentiating traffic
into four Access Categories (ACs). This paper proposes a mechanism for
controlling the medium access, so-called WRTMAC, developed from the
EDCA scheme of standard 802.11e. The handling of the arbitration inter
frame spaces (AIFS) has been modified in order to make deterministic the
medium access, even in terms of high traffic next to the saturation of the
system.

1. Introduction
Wireless technologies have become a very attractive option for industrial and factory
environments. We can appoint the reduction of time and cost of installation and the
maintenance of cabling industrial and their changes. The damage on the wirings and
connectors due to the aggressive environments of certain types of industries is another
reason. The applications of industrial control that involve some kind of mobile systems,
in which data communications must meet requirements of real time and reliability, can
benefit from the wireless interconnection [Willig A., Matheus K. and Wolisz A., 2005].
However, it is necessary to consider features of the wireless medium, such as the typical
weaknesses of a radio frequency channel (RF), the mobility of some stations, the
uncertainty in the time of physical medium access of some protocols, etc.

 Despite other types of existing wireless interconnections, we are interested on
wireless local area networks (WLAN) based on IEEE 802.11 standard. The Medium
Access Control protocol (MAC) is decisive in the performance of the network
[Vanhatupa T., 2008]. The 802.11MAC mechanism can operate in two ways: Point
Coordination Function (PCF) and Distributed Coordination Function (DCF). PCF, also
called free of contention, uses an Access Point (AP) as a network coordinator. In DCF,
without centralized control, the nodes compete for the access to the physical medium. In
spite of the differences, both modes use the Carrier Sense Multiple Access with
Collision-Avoidance (CSMA/CA) mechanism to obtain the access to the medium and
transmit. One of the weaknesses of the 802.11 MAC protocol is that it not support
differentiated quality of service (QoS) for different types of traffic. For that reason,

12th Brazilian Workshop on Real-Time and Embedded Systems 89

802.11e [IEEE Std 802.11e; Part 11, 2005] was developed to support two QoS
mechanisms: Enhanced Distributed Coordination Access (EDCA) and Hybrid
Coordination Function Controlled Channel (HCCA). The EDCA scheme extends DCF,
as it is known in the original standard [IEEE Std 802.11; Part 11, 2007], differentiating
four prioritized Access Categories (AC) [Vittorio S. and Lo Bello L., 2007]. In spite of
EDCA improves the throughput and the response time with regard to DCF, the reduced
amount of AC limits the differentiation of traffic with temporary restrictions [Ferré P.,
Doufexi A., Nix A. and Bull D., 2004]. This paper proposes changes at the MAC level,
based on the standard 802.11e, in order to adequate the EDCA mechanism for real-time
industrial applications, generating a number of ACs as devices and/or messages are
there in the network [Pereira da Silva M. and Becker Westphall C., 2005], making
deterministic the time to access the medium. This mechanism has been called
WRTMAC: Wireless Real- Time Medium Access Control.

2. DCF and EDCA
A wireless local area network (WLAN) 802.11 type is a broadcast network,
characterized by the uncertainty in the medium access time.

DCF is a distributed medium access control scheme, based on the CSMA/CA
mechanism. A station must sense the medium before starting a transmission; if the
medium remains idle during a random time, the station transmits, otherwise its
transmission must be postponed until the end of the current one. DCF distinguishes two
techniques: the simplest, the station transmits the frame when it is obtained the access to
the medium, and waits the acknowledge (ACK) from the receiver; the other uses an
exchange of RTS/CTS frames between sender and receiver, prior to the dispatch of the
data, in order to avoid collisions due to the hidden nodes [Bensaou B., Wang Yu and
Chi Chung Ko, 2000]. This work is based on the first one.

A collision is difficult to detect in a wireless medium, so a given amount of time
named inter-frame space (IFS) is used to control the access to the channel. When
sensing indicates that the medium is free, a station must wait a time named distributed
inter-frame space (DIFS) after the end of the previous transmission (Figure 1). Then
there is a waiting time, named backoff window (BW), whose duration is a random
quantity of slots time (ST), between a minimum of 0 and a maximum equal to CW–1.
CW is the value of the contention window, which begins with a minimum value CWmin,
and doubles this value after each collision up to a maximum CWmax. When the BW
timer reaches zero and if the medium remains free, the station begins its transmission. If
the medium becomes busy before BW expires, this timer is frozen until the channel
remains idle during a DIFS time. If BW expires in two or more stations at the same
time, there will be a collision. After a frame was received satisfactory, the receiver
station must wait a time short inter-frame space (SIFS) to send an ACK (Figure 1). If
the transmitter station didn’t receive the ACK after a SIFS time from the end of its
message, interprets that a collision has occurred and will be necessary retransmit. The
collisions possibility of this mechanism causes uncertainty about the time needed to
realize a transmission.

90 Proceedings

Figure 1. 802.11 DCF Timing

 The 802.11e standard introduces the EDCA mode (Figure 2), which proposed a
differentiated mechanism of QoS with four ACs: AC_BK (Background) for the lowest
priority level (1-2), AC_BE (Best Effort) for the following levels (0-3), AC_VI (Video)
for the priorities 4 and 5 and AC_VO (Voice) for the highest (6-7). According to its
priority, a frame will be located in one of those four categories. Each AC uses specific
values of arbitration IFS (AIFS), CWmín and CWmáx [Willig A., (2008)].

 The difference between DCF and EDCA is that, the first does not distinguish
types of traffic and, when the medium is free, all stations must wait for the same DIFS
before starting its BW timer to contend for the medium access, using all the same CW.
However, each type of traffic in EDCA, parameterized for its ACi, will start its BW
timer after sensing the medium idle for a while AIFSi. The AIFS value depends on the
AC of the message; therefore an AC of higher priority will have a lower value, having
more probability to access the channel. Due to frames with the same AC can coexist in
several nodes, collisions can occur and they are resolved in a similar way to DCF

 Figure 2. EDCA Timing

 The goal of WRTMAC is to develop a collision free MAC method that
guarantee the response time, defined as “the time measured from transmission request
until the ACK reception”. The basic proposal establishes one AC for each type of
message, assigning a given AIFSi to each one. The waiting time prior to a transmission
is equal to DIFS plus the AIFSi according to the type of message i.

3. WRTMAC: a Real Time variant to WLAN 802.11

3.1. Basic scheme

The objective that has been established for WRTMAC is a real time deterministic
behavior. So, the maximum latency to transmit a frame must be ensured and must be
necessary to remove those probabilistic elements own of DCF and EDCA.

 EDCA has been the starting point for defining WRTMAC, introducing variants
to achieve the target. In that sense, have been established the following patterns of
operation:

12th Brazilian Workshop on Real-Time and Embedded Systems 91

• Each type of frame has assigned a certain priority, different from any other, in a
similar way to the bus CAN [Bosch Robert GmbH, 1991].

• The priority is indicated by a numerical value from zero (maximum priority) and
a certain positive number N for the minimum. The total amount of priorities
should be established by the amount of types of messages that should be handled
in the context of a particular application.

• If two or more simultaneous requirements arise, always the frame of the highest
priority must be transmitted.

• The logic for controlling the access to the channel has been designed to avoid
the occurrence of collisions. However, collisions can occur after intervals of
prolonged inactivity, due to the drift between the local clocks of the nodes. The
resolution of these collisions should be done in a bounded and predictable time.
Also, it has been designed a simple strategy to allow a free-collision operation.

 Figure 3 presents the basics of WRTMAC. When a station has a frame to send, it
must wait until the medium becomes idle. After a while called “Real-Time Inter-Frame
Space” (RIFS), if the medium is still free, the transmission starts. If during the wait, the
channel becomes busy, the process will be stopped and should be restarted when the
medium becomes free.

 In WRTMAC each message has its exclusive RIFS value. Its duration is
inversely proportional to the priority it represents. RIFSi is called the waiting time
(backoff) for the priority i message.

Figure 3. WRTMAC: Basic scheme

 WRTMAC determinism is based on that, each message uses a RIFSi arbitration
time, fixed and different from others. This tends to avoid the occurrence of collisions,
while ensuring that, in case of contention, the winner will be the higher priority
message.

 Figure 4 shows the order of three frames, with priorities 2, 3 and 4, contending
for the medium access. The three nodes begin the wait, but as RIFS2 is the shortest,
Frame3 and Frame4 attempts must be aborted. They are restarted after the end of
Frame2 cycle.

 RIFSi duration is calculated based on the values of DIFS and ST. They are
established by the selected physical layer (PHY) of the standard, according to (1):

 STiDIFSRIFSi ∗+= (1)

 Table 1 shows the values of SIFS, DIFS and ST for different variants of physical
layer (PHY):

92 Proceedings

Figure 4. Transmission order according to priority of messages

Table 1. 802.11: PHY variants

PHY Frec.
(GHz)

Rate
(Mbps)

SIFS
(µs)

DIFS
(µs)

ST
(µs)

802.11b 2.4 11 10 50 20
802.11g 2.4 54 10 28 9
802.11a 5.8 54 9 16 34

 The transmission cycle of priority i, composed by RIFSi, the transmission time
of the frame i (tFRAMEi), SIFS and the transmission time of the ACK frame (TACK), is
called Ci (2):

ACKFRAMEiii tSIFStRIFSC +++= (2)

 The ACK instructs the MAC entity of the transmitter that the frame sent,
reached its destination. In general, if ACK is not received a retransmission is not
performed, but notifies the upper layers that the transfer has failed (or at least that there
is no certainty that has been successful). The decision regarding what actions must be
taken is left to the uppers layers; they know the logic and timing constraints of the
application. WRTMAC is only responsible for providing deterministic communication
service on the maximum latency. Only it would be performed a unique retransmission
in case of collision, without affecting the deterministic behavior, as explained in 3.4.

 One can see that WRTMAC allows implement a Real-Time scheme of Rate
Monotonics (RMS) type [Liu and Layland, 1973], assigning priorities to messages in
reverse order of their periods. Knowing tFRAMEi for all messages of a certain real-time
system, and assuming that they are periodic, one can set the minimum possible period
between transmission requirements (Ti) for a given message mi, in terms of all other
messages mj of higher priority than mi (where j<i). Adapting the classic formula used to
analyze the schedulability of a set of real-time periodic tasks on a processor [Lehoczky
J., L. Sha, and Y. Ding, 1989], the minimum period possible for a message of priority i,
is (3):

i
ij

j
j

i
i CC

T
TT +
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
≥ ∑

<∀

 (3)

 Where: Ti, Tj, Ci, Cj: Period and transmission cycle of priority messages i and j.

 Figure 4 shows messages with periods T2 ≤ T3 ≤ T4. (3) is valid when the
network is working with high traffic, i.e. when there is always at least one transfer
request pending, awaiting the end of the current transmission. However, depending on

12th Brazilian Workshop on Real-Time and Embedded Systems 93

the total amount of messages and their periods, there may be long intervals of silence.
This requires a special analysis, because the completion of a transfer is the event that
reset the counter on each node and allows maintaining synchronism.

 Exceeding the time corresponding to RIFS longer without having made any
transmission, all nodes must restart their counters. Each node must maintain the timing
of activity in the medium, even when there is no requirement, because even a moment
prior to the expiration of its RIFS is able to receive a request and transmit it in the
current cycle.

3.2. Operation on non-saturation conditions

When the network has extended moments of silence, all nodes must proceed as follows:
wait a while corresponding to the duration of the message of the lowest priority plus a
ST, and then restart their counters. In fact, as one takes into account the time ST elapsed
after RIFSN, the counters RIFSi are not restarted from zero, but with an initial value ST
(equivalent to consider that the timers are reset at the expiry of RIFSN).

Figure 5. WRTMAC: counters in non-saturation conditions

 Figure 5 shows the transmission of a frame after cycles of inactivity. In real
operating conditions could succeed longer intervals of silence, maintaining the same
concept to restart the counters after each RIFSN period of inactivity in the medium. In
case of more extended inactivity, the drift between the locals clocks of each node can
lead to a collision condition, as is discussed in 3.4. Another situation to consider is
priority inversion, discussed in 3.3. Both, the collision and the priority inversion
introduce delays, which must be added to (3) to generalize its expression.

3.3. Priority Inversion

Priority inversion is called the situation that occurs when the transmission of a frame
must wait until the completion of a lower priority. Figure 6 shows the almost
simultaneous transmission request from Frame2 and Frame3, however, as the
requirement of Frame2 released an instant after the end RIFS2, its transmission must
wait for the next cycle.

94 Proceedings

Figure 6. Priority inversion: Frame3 is transmitted before Frame2

 As the requirement Frame3 came before the expiry of RIFS3, it is transmitted
and completes its cycle C3. Thus Frame2 was blocked for a while B2, whose maximum
value is B2 = C3 – RIFS2. If all frames are considered of lower priority than 2, the
maximum block time of Frame2 is:

2)(22 >∀−= jRIFSCmáxB j (4)

 In general, for any frame of priority i, time blocking by priority inversion is:

ijRIFSCmáxB iji >∀−=)((5)

 Another deadlock occurs when a frame must wait until the next cycle to be
transmitted, because its request arrived a moment after the expiration of its RIFS,
having requirements that cause a priority inversion (Figure 7).

Figure 7. Deadlock of a frame of priority 2 to the end of RIFSN

 In this case, the deadlock time is B2 = RIFSN – RIFS2. As is lower than the
priority inversion blocking, remains valid (5).

 Based on these considerations, (3) is extended as follows (6):

ii
ij

j
j

i
i BCC

T
TT ++⎥
⎥

⎤
⎢
⎢

⎡
≥ ∑

<∀

 (6)

 In (6), it isn’t taking into account the occurrence of collisions, which is
discussed in 3.4.

12th Brazilian Workshop on Real-Time and Embedded Systems 95

3.4 Collision by drift of local clocks

When takes place an idle interval of duration greater than or equal to RIFSN, all the
nodes must restart their RIFS timers with a periodicity RIFSN.

 In case of almost simultaneous requests of consecutive priorities, due to the
asynchrony that could exist between clocks of different nodes, it could have cancelled
(or reduced almost totally) the difference of one ST between adjacent priority levels,
giving rise to a collision (Figure 8).

Figure 8. Collision by drift of local clocks

 The way in which each node detects a collision depends on the time gap
between the ends of the collided transmissions. Nevertheless, after detected a collision
and resynchronized the RIFS timers, each node that has been involved in the collision,
restarts the process to try a new transmission. This is the unique situation for which a
retransmission is allowed, i.e., after a collision following a silence longer than RIFSN.

Figure 9. Collisions Type 1 (left) and Type 2 (right)

 Figure 9 shows both types of collisions. In Type 1, FrameB finalizes an amount
of time after FrameA, enough to enable node A to sense carrier during the SIFS after its
transmission. Node A restarts its RIFS timer with the end of transmission of B.
However, B detects the collision by the lack of ACK, and therefore it assumes that the
new beginning of its RIFS timer is the end of its own transmission. The remaining
nodes that have not been involved with the collision, restart their timers when the
medium becomes idle, i. e. after the end of FrameB. In this case, the end of transmission
of FrameB is the event that allows the clock synchronization between all the nodes.

 In Type 2, the involved frames finalize with a tiny difference of time, which not
allows the detection of the later ending frame by the other node. Then, all the nodes
synchronize with the last end of transmission (FrameA in the example), with the
exception of the node that ends in first place its collided transmission (FrameB in the

96 Proceedings

example). But this gap is smaller than that it is needed to cause a new collision, because
it did not allow the sensing of the later end-of-frame by the first finishing node.

 After collision detection and clock synchronization, the pending transmissions
will be dispatched according to their RIFSi, following the rules of WRTMAC.

3.5 Worst-case delay due to a collision

 Figure 10 shows that, after a long idle period a request arrives for the sending of
Framei, but it comes immediately after the expiration of RIFSi. Then, the node must
wait until the next cycle to try again. Since there are no pending requests of priorities
lower than i, all the RIFS the timers will be restarted after the expiration of RIFSN. Until
that moment, the delay accumulated by Framei is:

 Di = RIFSN – RIFSi (7)

 During the next cycle starts the transmission of Framei, but a collision occurs.
Figure 10 shows the worst-case collision delay for Framei, because is involved the
longest frame (the effect would be the same if Framei is the longest one).

Figure 10. Worst-case delay due to a collision

 After the collision, a new cycle starts. If Framei continues being the highest
priority among those that are awaiting transmission, the delay due to the collision is:

Coli = Di + RIFSi + max(tFRAME) (8)

 Replacing Di from (7), and as the resulting delay does not depend on frame
priority, it is designated generically as Col:

Col = RIFSN + max(tFRAME) (9)

 Now it should be modified the formula (6) to include the delay due to a
collision. However, the priority inversion blocking, Bi, and the delay due to a collision,
Col, are mutually exclusive. It could happen one or the other but not both. Thus, the
minimum possible period between requests of the ith-message is:

),max(ColBCC
T
TT ii

ij
j

j

i
i ++

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
≥ ∑

<∀

 (10)

 The formula (10) allows the schedulability analysis for a particular system,
based on the amount of messages, their duration and periodicity.

12th Brazilian Workshop on Real-Time and Embedded Systems 97

 Although the Rate Monotonic scheduling requires that priorities must be
assigned in inverted order with respect to the request periods, if some (or eventually all)
messages have the same period, it must be assigned different RIFSi to each one, to allow
the medium access arbitration.

3.6. Collision-Free operation

Given that idle intervals greater than RIFSN can lead to the occurrence of collisions, one
way to avoid them could be to avoid the occurrence of such long intervals without
transmissions.

 A simple strategy could be that, the node designated for the transmission of the
lowest priority frames, always should perform a transmission. Therefore, if at RIFSN
timer expiration it does not have a pending request for the transmission of a message, it
must send a dummy frame, whose sole purpose is to occupy the medium, allowing the
synchronization of all nodes with the end of this transmission.

 Using this simple strategy, becomes valid the formula (6) to establish the
minimum possible period for a given message i.

4. Performance evaluation
Given the initial motivation that led to the development of WRTMAC, its application in
industrial control systems, usually based on small periodical messages, they was
evaluated the maximum number of messages that could be driven by a network of this
type and / or the shortest feasible period for each one. Also, the utilization factor was
calculated, defined it as the fraction of the total time that the medium is used to
transport data.

 It has been considered that the network is used for the transmission of a given
set of messages of equal size and period. It has been selected the 802.11b physical layer
at 11 Mbps, with long preamble (192 microseconds); message payload of 50, 100 and
1500 bytes (plus 36 bytes of header), and 14 bytes of ACK. Also, it has been evaluated
two options: one of this based on Formula (10) –with collisions– and the other based on
Formula (6) –collision-free–. The utilization factor has been calculated for the free-
collision mode. The results are showed in Table 2.

 It is observable that there are no significant difference between payloads of 50
and 100 bytes (typical sizes for supervisory and control systems).

 Also, there is a small improvement by applying the free-collision model. Hence,
it could be simplified the MAC mechanism, eliminating the handling of collisions and
its associated retransmissions.

 Moreover, it can be seen that for long messages (1500 bytes) the minimum
period does not increase proportionately (eg. 77 ms for 64 messages of 100 bytes each;
143 ms for 64 messages of 1500 bytes each). It is allowed to estimate that this network
could be used with a mixing of short messages (monitoring and control) and long
messages (data, images, etc.), with a small impact on the real-time performance.

98 Proceedings

Table 2. Minimum period and utilization factor, based on quantity and size of
messages

 Minimum Period (ms) Utilization
Factor (%)

Payload
(bytes)

N° of
messages

With
collisions Collision-free

8 6 4 4.8 %
16 12 9 4.8 %
32 28 27 4.3 %
64 75 74 3.1 %

50

128 232 230 2.0 %
8 6 6 9.7 %

16 12 12 9.7 %
32 29 29 8.0 %
64 78 77 6.0 %

100

128 237 234 3.9 %
8 15 15 58.1 %

16 30 30 58.1 %
32 63 62 56.3 %
64 144 143 48.8 %

1500

128 368 366 38.1 %

 As can be expected, the utilization factor increases with the payload size,
because the influence of the overhead due to headers, ACK, etc. is reduced. However,
the utilization factor decreases significantly as the total number of messages increases.
This is due to the growing overhead associated with the different RIFSs needed to
arbitrate the medium access. Based on this situation, a way to improve the network
performance could be to group several messages, sharing the same RIFS. However, as
RIFS is used to arbitrate the medium access, the RIFS sharing could be possible only
when there are more messages than nodes. In these cases, as it is not possible a collision
between messages originated in the same node, it could be possible that several
messages share the same RIFS value. This will be analyzed in a future work.

5. Conclusions
WRTMAC (Wireless Real Time Medium Access Control) is a proposal that implements
a MAC based on EDCA concepts of the standard 802.11e, in order to achieve a
mechanism for distributed wireless medium access, allowing predictable access time to
the medium of the devices in the network. Changes are proposed to make suitable the
EDCA mechanism, in order to generate as Categories Access (AC) as devices and/or
messages are in the network. This will be deterministic the access time to the medium.
This proposal could bring the EDCA mechanism for real-time industrial applications.

 It was shown that WRTMAC allows the implementation of a Rate Monotonic
Scheduling (RMS) scheme, since it is possible to know the minimum feasible period of
a message, according to all messages.

 The proposal also shows that, despite collisions can occur, the collided frames
will be retransmitted, and the collision will be solved in a bounded time. Moreover,
WRTMAC can operate in a free-collision mode.

12th Brazilian Workshop on Real-Time and Embedded Systems 99

 Furthermore, when evaluating the performance of WRTMAC over traffic
patterns typical of industrial application networking, it was noted that this mechanism
provides an adequate performance without times uncertainties. In addition it was shown
that the network could be used by combining short and long messages (for monitoring,
control and general data, images, etc.), without greatly real-time performance
degradation.

 As it was analyzed, the increase in the number of RIFS diminishes the utilization
factor of the network, due to the RIFS overhead. Hence, future works will be oriented to
share the same RIFS between several messages originated in the same node. The goal
will be to develop a methodology to establish the minimum number of RIFS needed for
a given set of messages.

References
Willig A., Matheus K. and Wolisz A. (2005), “Wireless Technology in Industrial

Networks”, Proceedings of the IEEE, Vol. 93, No. 6 (June), pp. 1130-1151.

Vanhatupa T. (2008), “Design of a Performance Management Model for Wireless Local
Area Networks”, PhD Thesis.

“IEEE Std 802.11e; Part 11 (2005): Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications and Amendment 8: Medium Access Control
(MAC) Quality of Service Enhancements”.

“IEEE Std 802.11; Part 11 (2007): Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications”.

Vittorio S. and Lo Bello L. (2007), “An Approach to Enhance the QoS Support to Real-
Time Traffic on IEEE 802.11e Networks”, 6th Intl Workshop On Real Time (RTN07)
Pisa Italy.

Ferré P., Doufexi A., Nix A. and Bull D. (2004), “Throughput Analysis of IEEE 802.11
and IEEE 802.11e MAC”, WCNC, IEEE Communications Society.

Pereira da Silva M. and Becker Westphall C. (2005), “Performance Analysis and
Service Differentiation in the MAC SubLayer of IEEE 802.11e Ad Hoc Networks”,
Proceedings of the Advanced Industrial Conference on Telecommunications, IEEE.

Bensaou B., Wang Yu and Chi Chung Ko (2000), “Fair Medium Access in 802.11
based Wireless Ad-Hoc Networks”, IEEE/ACM The first Annual Workshop on
Mobil Ad hoc Networking e Computing (MobiHoc´00), Boston, EUA.

Willig A.(2008), “Recent and Emerging Topics in Wireless Industrial Communications:
A Selection”, IEEE Transactions On Industrial Informatics, V4 Nº 2.

Robert Bosch GmbH (1991), “CAN Specification 2.0”. www.semiconductors.bosch.de

Liu and Layland (1973), “Scheduling algorithms for multiprogramming in a hard real-
time environment”, Journal of the ACM, Vol.20 Nº 1, pp. 46-61.

Lehoczky J., L. Sha, and Y. Ding (1989), “The rate monotonic scheduling algorithm:
Exact characterization and average case behavior”. Proc. IEEE Real-Time Systems
Symposium, pp. 166-171.

100 Proceedings

Performance Evaluation of a Real-Time MAC Protocol for
MANETS

Marcelo M. Sobral1, Leandro B. Becker 1

1 Departamento de Automação e Sistemas
Universidade Federal de Santa Catarina (UFSC) – Florianopolis, SC – Brazil

{sobral,lbecker}@das.ufsc.br

Abstract. A wireless ad-hoc network for mobile nodes is characterized by a
highly-dynamic topology that cannot predict the duration of the links among
the nodes and neither the density of nodes within the network. Our previously
proposed HCT (Hybrid Contention/TDMA) Real-Time MAC protocol provides
a kind of short-range resource reservation policy for groups of nodes, which
lasts while the participant links are available. Moreover, it adapts to continuous
topology modifications. This paper analyses the performance of the HCT MAC
protocol in special networks scenarios that deal with nodes mobility. Obtained
results show that exists a direct relation between mobility degree and expected
clustering performance of the protocol, which influences its real-time perfor-
mance.

1. Introduction
A new generation of applications will require communication capacity in environments
without any infrastructure. To make the problem more complex, such applications might
be composed by mobile nodes, which rely on wireless links to achieve communicability.
The literature recently proposed the term MANET (Mobile Ad-Hoc Networks) to repre-
sent such application domain. Some MANET applications present an additional complex-
ity because they require real-time guarantees with respect to the communication medium.
An example of such applications is vehicle-to-vehicle (V2V) systems [Voelcker 2007],
like platooning, which helps to reduce traffic congestions and provide safe driving. New
areas of research in the space community have similar communication requirements, as
for example in distributed satellite systems (DSS) [Bridges and Vladimirova 2009] where
multiple spacecraft in varying configurations are used to achieve a mission’s goals collab-
oratively.

In this context, we recently proposed a hybrid medium access control mechanism
named HCT (Hybrid Contention/TDMA-based) MAC [Sobral and Becker 2008], which
aims to provide a deterministic medium access by means of resource reservation. It also
supports reconfiguration and mobility by using a contention-based approach. Therefore,
it assumes that the mobile nodes are self-organized in clusters, used exclusively to sup-
port the allocation of time-slots within the corresponding member nodes. Ideally, clusters
should be defined in a way that it allows as many nodes as possible to operate in resource-
reservation mode. In [Sobral and Becker 2009] we addressed the problems related to the
dynamic self-organization of clusters. More specifically, we presented an approach to
establish the clusters in a distributed and autonomous way, taking into account the neigh-
borhood quality, which stands for the communication quality among neighbour nodes.

12th Brazilian Workshop on Real-Time and Embedded Systems 101

An excellent neighborhood quality would imply a high number of nodes com-
municating to the cluster-head with suitable link quality, thus improving the amount of
clusterized nodes and cluster longevity. By definition, more clusterized nodes and more
lasting clusters increase the operation in resource-reservation mode of the involved nodes.

In this paper we present a performance evaluation of the HCT-MAC to assess the
resulting cluster formation in specific scenarios dealing with nodes mobility. Our previous
performance evaluation used only static scenarios. We focused this new evaluation in
quantifying (i) cluster longevities and (ii) rate of clusterized nodes. Rate of clusterized
nodes gives the average number of nodes that are cluster members. We also investigate
the relation between both results and the neighborhood size, which gives the number of
neighbors that receive frames sent by a node.

The remainder of the paper is structured as follows: section 2 gives a brief
overview of the HCT, including its clustering strategy and how it computes the neigh-
borhood quality. Section 3 presents preliminary results that show the resulting clustering
rates and longevities for small networks which nodes move according to some mobility
scenarios, and the consequent neighborhood sizes. Finally, section 4 concludes the paper
and points out some future directions of our work.

2. Overview of HCT MAC Protocol
In [Sobral and Becker 2008] we presented the Hybrid Contention/TDMA-based (HCT)
MAC, which aims to provide a time bounded medium access control to mobile nodes that
communicate through an ad-hoc wireless network. A key issue in this protocol is to self-
organize nodes in clusters (i.e: set of neighbor nodes), as a mean to solve the problem of
timely transmission of messages. Our protocol assumes as basic requirements a periodic
message model, where the assignment of time-slots must be done within clusters. A
competition strategy is adopted, without the need of a global coordinator nor scheduler,
in such a way that time-slots are iteratively allocated by the nodes.

The HCT-MAC is a hybrid protocol because it has both contention-based and
resource-reservation characteristics. A TDMA-based MAC protocol divides time in so-
called time-slots, being responsible to assign one or more time-slots to each node. To
solve this problem, the HCT-MAC uses a contention-based approach to allocate slots: if
a node knows which slots are idle, it can try to use some of them, chosen randomly, and
then verifies if any collision has occurred. For each chosen slot, if there was no collision,
the node may assume that the slot is allocated. For the remaining slots, it can repeat
the procedure until all the needed slots are allocated or, in the worst-case, no slots are
available anymore. This protocol assigns the time-slots iteratively, until the allocation
stabilizes, i.e. the nodes allocate all needed slots. The already allocated time-slots can
be used just like in a TDMA protocol, revealing the resource-reservation aspect of the
HCT-MAC.

The timing in the HCT has a periodic and hierarchical structure, as ilustrated in
figure 1. A cycle is the basic period for transmissions, thus it works like a time unit for
the protocol. It is an interval of time that is common to all clusters, and is divided in
superframes, which are assigned to the clusters. Superframes are all equal in size, which
means that they contain the same number of time-slots, plus two control frames called
beacons. Therefore, clusters need to allocate superframes, and cluster members allocate

102 Proceedings

Figure 1. Timing in the HCT: cycles of length R divided in superframes

time-slots within those superframes.

The TDMA component of the HCT, described in [Sobral and Becker 2009], de-
pends on the clustering of the nodes, which must be obtained in a self-organized man-
ner. This is due to the fact that the HCT protocol is designed to be used in mobile ad-
hoc networks, where the nodes are not previously aware of the topology, neither of their
neighborhoods. The chosen approach relies on initial contention-based access, that shifts
gradually to time-based as clusters are formed and become stable. That means, as nodes
self-organize in clusters, they can reserve bandwidth and transmit messages in a timely
manner. This implies procedures for the neighborhood discovery, the collection of infor-
mation to support the independent choice of the best candidate nodes to start clusters, and
the announcement of new clusters and ingress of interested nodes.

2.1. The Clustering Approach
As described in [Sobral and Becker 2009], clusters are simply sets of nodes that agree to
share a superframe, which represents a portion of the network bandwidth. A key element
in the cluster topology is the cluster-head, a special node responsible to start cluster trans-
missions, to account for idle and used time-slots, and to report successful transmissions.
Ideally, the cluster-head should be the node with the best neighborhood quality within
the region to be covered by the cluster, in order to minimize the probability of errors in
transmissions inside the cluster. In our proposed HCT it is not possible to determine ex-
actly the nodes with best neighborhood quality, since no node has a global view of the
network, and no global information is maintained by the protocol. But the information
about the neighborhoods, estimated based on the received frames, can be collected and
shared locally among the nodes to help them to decide to become or not cluster-heads.
Thereby, the cluster-heads can be self-elected according to the information they are able
to obtain about the nodes around them.

The rule for establishing clusters is guided by the fact that the cluster-head should
be the node with the best neighborhood quality (NQ). The quality of a neighborhood of
a node is defined in this work as a function of the qualities of links between this node
and each of its neighbours. It expresses both the quantity of neighbours and their link
qualities. A high NQ means few or no transmission errors (missed or corrupted frames)
or, in other words, a high frame reception rate. Therefore clusters have higher probability
to be stable, because more frame losses would force member nodes to try to bind to other
clusters.

2.2. Neighborhood Quality Computation
HCT needs to compute continuously the Neighborhood Quality (NQ). The NQ of
a node depends on the quality estimation of individual links to its neighbours.

12th Brazilian Workshop on Real-Time and Embedded Systems 103

In [Sobral and Becker 2009], NQ was defined as a moving average of the sum
of RSSI-based measures of received frames. The chosen link quality estimator
(LQE) derived from the RSSI of the received frames because, as demonstrated in
[Zuniga and Krishnamachari 2004], there is a relation between the expected PRR (Packet
Reception Rate) and the RSSI. However, as discussed in [Baccour et al. 2010], this kind
of LQE does not fully capture the properties of a link. To overcome this problem we are
moving towards the adoption of F-LQE [Baccour et al. 2010], a new link quality estima-
tor that combines several link properties to better characterize its quality.

The HCT protocol uses LQE also to increase the probability of nodes with better
link qualities (relative to the cluster-head) to become members of a cluster. When a node
tries to ingress a cluster, it waits for the Start Beacon control frame, chooses randomly an
idle time-slot and then transmits in the selected time-slot. If the cluster-head receives such
transmission, it acknowledges it in the Finish Beacon control frame but with probability
pq; it means that the cluster-head ignores with probability 1−pq the received transmission.
This probability pq is higher for transmissions received with high link quality. Thus, HCT
tries to establish clusters with higher neighborhood quality, increasing the probability that
their member nodes are those with better link quality.

2.2.1. F-LQE

[Baccour et al. 2010] defines F-LQE as a link quality estimator based on four measured
properties: packet delivery (SPRR), asymmetry (ASL), stability (SF) and channel quality
(ASNR). By combining these properties, it aims to provide a more accurate link qual-
ity estimation. The instantaneous quality LQ(i) of the link of node i is expressed as a
membership in the set of good links, according to a fuzzy rule shown in equation 1. The
overall quality FLQEi(α,w) of node i is averaged over a window of w received frames
(suggested to be 30), and smoothed according to a parameter α (suggested to 0.6), as can
be seen in equation 2. Its attractiveness to the HCT resides both in the ability to capture
important aspects of link quality and the smoothness and stability of generated values.

LQ(i) = β ·min(µSPRR(i), µASL(i), µSF (i), µASNR(i)) +

(1− β) ·mean(µSPRR(i), µASL(i), µSF (i), µASNR(i)) (1)

FLQEi(α,w) = α · FLQE + (1− α) · LQ(i) (2)

2.2.2. F-LQE metrics within HCT

To compute its four link properties (packet delivery, asymmetry, stability and channel
quality), F-LQE needs to keep a history of measured values. They must be calculated for
each individual link, i.e., a node computes their values individually for each one of its
neighbours. But since HCT transmits always in broadcast, some adjustments are needed
to compute these measures:

104 Proceedings

• Packet delivery: it depends on SPRR (Smoothed PRR), that accounts for the ac-
tually received frames compared with the transmitted ones. HCT can obtain this
estimator by the inclusion of a sequence number within each frame. Therefore, re-
ceiver nodes can compare the number of actually received frames and the interval
of sequence numbers to compute the PRR.
• Channel quality: easily obtained from the RSSI of received frames subtracted by

the noise floor.
• Stability: it corresponds to the variability of the PRR, as obtained in Packet deliv-

ery. The F-LQE defines the stability as the coefficient of variation, i.e. the reason
between standard deviation and mean.
• Asymmetry: the hardest to obtain, because it depends both on PRRup and

PRRdown. PRRdown is straightforward, since it is the same as the Packet de-
livery, but PRRup is the Packet delivery as seen by the neighbour. It is not feasible
to make the neighbour to transmit its Packet delivery, but PRRup could be derived
if the neighbour would acknowledge each received frame. Unfortunately, since
HCT uses only broadcasts, this is also not feasible. Therefore, it was decided to
exclude this metric from F-LQE within HCT

2.2.3. Using F-LQE to Compute the Neighborhood Quality

The Neighborhood Quality (NQ) was modified to better explore the F-LQE. Obviously,
a good neighborhood should be composed by neighbours with good link quality estima-
tions. It means it depends both on the quantity of neighbours and their corresponding LQE
values. As defined in [Sobral and Becker 2009], NQ was computed as the sum of the LQE
values, but with the adoption of F-LQE it would be better to calculate the product of the
F-LQE values (Lij), as shown in equation 3. The parameter LREF (Link Quality Refer-
ence) was chosen to emphasize good links. Thus, NQij value increases if Lij > LREF ,
otherwise it decreases.

NQj = ‖Nj‖
∏
i∈Nj

(1 + Lij − LREF) (3)

Finally, to avoid sudden changes in NQj , which can appear when frames from
neighbours are missed for just few cycles (for instance due to external interferences), a
smoothing of NQj is applied as seen in equation 4 (parameter β ∈ (0, 1]). The resulting
metric is called SQj (Smoothed Neighborhood Quality).

SQj = β ·NQj + (1− β) · SQj (4)

3. HCT Evaluation
HCT was designed to be used in networks containing mobile nodes. In such scenarios,
it is expected that clusters arise and disappear dynamically, as the network changes its
topology. Depending on the mobility degree of the network, reorganization of clusters are
expected to occur more or less frequently. Since nodes transmit in resource-reservation
mode only when they are members of clusters, the clustering performance has great im-
portance to the HCT. The clustering performance can be expressed as:

12th Brazilian Workshop on Real-Time and Embedded Systems 105

• Clustering rate: rate of nodes that are members of cluster.
• Cluster longevity: expected longevity of clusters, represented by the interval be-

tween the moment a node becomes a cluster-head and the moment it reverts to
single node (this occurs when its cluster becomes empty).

An important aspect of HCT performance is the neighborhood size, which gives
the number of neighbours that receive frames sent by a node. This metric can be investi-
gated both through its average over all transmission cycles, and by a ratio to the potential
neighborhood (i.e. the nodes that can receive the frame). We investigate here a possi-
ble relation between clustering rate, longevity, and neighborhood size. This might hold
because as more nodes are members of clusters, and consequently operate in resource-
reservation mode, less collision is expected and more nodes receive each frame.

The HCT performance in networks with mobile nodes was investigated by means
of simulations. They were executed using a simulation model of HCT developed using the
Omnet++ simulation framework [Varga 2001], assuming a IEEE 802.15.4 physical layer.
The HCT models uses as physical layer the project Castalia, maintained by the National
ICT at the University of Australia [Pham et al. 2007], which implements the signal model
proposed in [Zuniga and Krishnamachari 2004] and simulates a IEEE 802.15.4 compat-
ible radio. This model derives the PRR (Packet Reception Rate) of each link according
to a path loss model as function of the corresponding SNR (Sound to Noise Ratio). The
Castalia model needed to be modified to support mobility, in such way it recomputes its
internal PRR matrix each time a node moves.

Two special simulation scenarios were created:

1. Random: the simulations are composed by networks with changing topologies
according to random node speeds and increasing speed averages. Nodes were
scattered and enclosed within a square region, moving in constant directions and
reflecting on the walls. These scenarios should demonstrate a pessimist situation
for the HCT, since few patterns can exist in such networks. Indeed, only the
average speed of the nodes dictates the duration of their links. This mobility model
can be related to movements in the urban space, like people moving in squares or
malls.

2. Race: the networks were composed by nodes that move all in the same direction,
but with slight different speeds. In these scenarios, the relative speeds between
nodes are small and thus it is expected a less frequent cluster reorganization. This
mobility model can be related to cars moving along a street or highway, people
runnning in a competition, and other cases where comunnicating devices move in
the same direction.

In both cases the networks were composed by 20 nodes. For each of these scenar-
ios, the maximum speeds varied between 1 and 40 m/s. For the random mobility model,
the speed of each node was chosen from an uniform distribution between 0 and the max-
imum speed, and the direction was chosen randomly and only changed when the node
reached the boundaries of the square area. For the race model, the speeds were chosen
from a normal distribution, using as mean half of the maximum speed and a standard de-
viation such that the speeds stay below the maximum speed with probability 0.99. In both
models the speeds do not change along the simulations. Each simulation generated statis-
tics for the clustering rate and cluster longevity. The cluster longevity was expressed as

106 Proceedings

(a) Cluster longevity as function of speed (b) Clustering rate as function of speed

Figure 2. Clustering performance

a histogram and also as an expected value, calculated from the histogram. The clustering
rate was shown as the number of clusterized nodes as function of the average speed.

3.1. Obtained results

The results for the cluster longevities are shown in figure 2(a). The plots show that cluster
lifetimes drop faster from 0 to 5 m/s, and for greater average speeds it stays around 1.5
s. The race scenario gives a slight better cluster longevity for higher speeds. Since in
this kind of simulation the nodes move all in the same direction, but with slight different
speeds, their smaller relative speeds allow more durable links. In the case of the random
scenario, although the relative speeds are potentially higher because nodes can move in
any direction, the more dense resulting network favors the cluster longevities. In the
simulation, the network density effect prevails for smaller average speeds.

Clustering rate, another relevant metric of performance of HCT, is shown in figure
2(b). There is a slight difference between random and race scenarios, with the random
one giving higher clustering rates. It must be noted that in the race scenario the relative
speeds between nodes are lower than in the random scenario. This leads to more durable
memberships, since it takes longer to a node to get out of sight of its cluster-head. But
since the nodes are continuously scattering along the race line, it is more probable that
once a node gets single, it will remain longer in this state due to the lower network density.

Both clustering rate and longevity expresses the behaviour of clustering within
the HCT protocol in the simulated scenarios. The resulting performance, in the point of
view of an application, can be seen in the rate of messages each node can transmit in
resource-reservation mode, and the number of neighbours that receive those messages,
known as neighborhood size. Therefore, the neighborhood size becomes an important
way to investigate the success of HCT in delivering frames. In the simulations of the
random scenario, the neighborhood sizes were averaged for each simulated speed and
the results are shown in figure 3(a). It decreases as the speeds get higher, that can be
related to the clustering performance. In figure 3(b) the neighborhood size is related to
the clustering rate, revealing a linear relation. As shown in figure 3(c), a similar relation
to the cluster longevity was not found.

12th Brazilian Workshop on Real-Time and Embedded Systems 107

(a) As function of average speed (m/s) (b) Relation to clustering rate

(c) Relation to cluster longevity

Figure 3. Average neighborhood size

108 Proceedings

4. Conclusions and Future Work

This paper extended previous performance evaluation already conducted for the HCT
MAC by adopting scenarios that deal with the mobility of nodes. Previous evaluation
only considered static nodes.

The evaluation presented in this paper was performed by means of simulations us-
ing two different mobility scenarios: (i) random movements and (ii) race emulation. The
measured clustering performance was expressed as clustering longevity, clustering rate,
and neighborhood size. As expected, the clustering performance decreases as nodes move
at higher speeds, as this creates more dynamic topologies, demanding more cluster recon-
figurations. It is also observed that both clustering rate and cluster longevity decreases
with an exponential-like curve as function of the speed of nodes.

Curiously, the race-emulation scenario presented worse results in these respect,
although the smaller relative speeds between nodes can favor longer cluster lifetimes.
This is due to the fact that the race-emulation generates a more sparse network, so it is
less probable that a single node has a satisfactory neighborhood to clusterize.

Another observation is that, as expected, the neighborhood size also decreases as
node speed gets higher. However, it shows a linear relation of the neighborhood size to
the clustering rate, that gives the rate of nodes that are operating in resource-reservation
mode. This relation was not found when compared to the cluster longevity. The neigh-
borhood size corresponds to the quantity of nodes that successfuly receive frames from
their neighbours, and is a measure of performance of the data delivery in the protocol.
Therefore, a higher clustering rate improve the data delivery, but the same cannot be said
about the cluster longevity.

Despite this evaluation, there exists a number of open questions regarding the ef-
ficiency of the HCT protocol in mobile networks. Firstly, it must be further investigated
the scalability of the protocol compared to the network size and mobility degree. There
must exist a maximum node speed below which the protocol has a satisfactory perfor-
mance. The overall performance of the protocol depends on the clustering performance,
which is influenced by the neighborhood quality. Currently, the neighborhood quality
is calculated as a function of the quantity of neighbours and their link qualities, and its
instantaneous values are used to support clustering decisions. The neighborhood quality
could be changed to try to anticipate the neighborhood behaviour, increasing if the neigh-
borhood is becoming better or decreasing otherwise. Finally, clusters could change their
cluster-heads to adapt to changes in the neighborhood qualities of the cluster members. A
cluster-head which detects that its neighborhood quality is significantly lower than one of
its cluster members could delegate the cluster-head role to that node and revert to single
node.

5. ACKNOWLEDGMENTS

The authors would like to thanks the Brazilian Research agencies FAPESC, CAPES, and,
in special, CNPq (Brazilian National Counsel of Technological and Scientific Develop-
ment) for the grant 486250/2007-5.

12th Brazilian Workshop on Real-Time and Embedded Systems 109

References
Baccour, N., Koubaa, A., Youssef, H., Jamaa, M. B., do Rosario, D., Alves, M., and

Becker, L. (2010). F-lqe: A fuzzy link quality estimator for wireless sensor networks.
In The 7th European Conference on Wireless Sensor Networks (EWSN 2010), Coimbra,
Portugal.

Bridges, C. P. and Vladimirova, T. (2009). Agent computing applications in distributed
satellite systems. In 9th International Symposium on Autonomous Decentralized Sys-
tems (ISADS 2009), Athens, Greece.

Pham, H. N., Pediaditakis, D., and Boulis, A. (2007). From simulation to real deploy-
ments in wsn and back. In IEEE International Symposium on World of Wireless, Mobile
and Multimedia Networks, 2007. WoWMoM 2007, pages 1–6.

Sobral, M. M. and Becker, L. B. (2008). A wireless hybrid contention/tdma-based mac
for real-time mobile applications. In ACM Symposium on Applied Computing 2008,
Real-Time Systems Track, Fortaleza, Brazil.

Sobral, M. M. and Becker, L. B. (2009). Towards a clustering approach to support real-
time communication in ad-hoc wireless networks. In Brazilian Workshop on Real-Time
Systems 2009 (WTR 2009), Recife, Brazil.

Varga, A. (2001). The omnet++ discrete event simulation system. In Proceedings of the
European Simulation Multiconference, pages 319–324, Prague, Czech Republic. SCS
– European Publishing House.

Voelcker, J. (Oct. 2007). Cars get street smart. IEEE Spectrum, 44(10):16–18.

Zuniga, M. and Krishnamachari, B. (2004). Analyzing the transitional region in low
power wireless links. In Sensor and Ad Hoc Communications and Networks, 2004.
IEEE SECON 2004. 2004 First Annual IEEE Communications Society Conference on,
pages 517–526.

110 Proceedings

MASIM: A Tool for Simulating Mobile Agent Applications on
Wireless Sensor Networks

Marcos Camada1, Carlos Montez1, Flávio Assis2

1Pós-Graduação em Eng. Automação e Sistemas – Univ. Federal de Santa Catarina (UFSC)
88040-900 – Florianópolis – SC – Brazil

2Programa de Pós-Graduação em Mecatrônica – Univ. Federal da Bahia
40170-110 – Salvador – BA – Brazil

{mcamada, montez}@das.ufsc.br, fassis@ufba.br

Abstract. A mobile agent is an autonomous software entity that is able to mi-
grate between nodes of a distributed system, carrying its code and execution
state. Recently, mobile agents have been proposed to be used in wireless sen-
sor networks, as an approach to reduce energy consumption of wireless sensor
nodes. The advantages provided by mobile agents, however, depend on specific
application aspects and on the particular way how they are used to accom-
plish some task. Due to the lack of suitable tools for the simulation of mobile
agent-based applications over wireless sensor networks, this paper introduces
a tool for this purpose, called MASIM. This tool extends the toolboxes of MAT-
LAB/TrueTime. This paper describes the general features of MASIM and illus-
trates its use to a specific scenario, where a protocol based on mobile agents
and one based on message passing are compared.

1. Introduction
A Wireless Sensor Network (WSN) is a type of wireless network whose nodes are com-
puting devices equipped with sensors, such as temperature, light or humidity sensors
[Yu et al. 2004]. These networks might be composed of tens or even thousands of nodes,
that can be deployed randomly in a environment, present mobility and be self-organizable
[Malik and Shakshuki 2007]. Sensor nodes are typically small autonomous devices with
strongly limited processing power and memory capacity, with a short-range transceiver
and with non-replaceable batteries [Ye et al. 2001]. Therefore, they should be designed
so as to spend as less energy as possible, so that network lifetime can be increased.

Mobile agents have been proposed to be used in WSN as an approach to conserve
energy of nodes (see, for example, [Chen et al. 2006]). A mobile agent is an autonomous
software entity that has as its main feature the ability to migrate between nodes, carrying
its code and execution state. Mobile agents may provide additional advantages such as
reduction of network load, complexity reduction in the design of interfaces provided by
nodes, and capacity to autonomously adapt to changes in the system, thus contributing
to systems robustness and fault tolerance [Lange and Oshima 1999]. However, the ad-
vantages provided by mobile agents depend on specific application aspects and on the
particular way how they are used to accomplish some task [Jansen et al. 1999].

Simulation is one important tool to help evaluating the potential advantages of
using mobile agents in specific application scenarios. There are currently many simula-

12th Brazilian Workshop on Real-Time and Embedded Systems 111

tion tools for WSN, but, to the best of our knowledge, none of them provides specific
abstractions and functionality to simulate mobile agents over WSN.

This paper describes a tool to fulfil this need. We describe MASIM (Mobile Agent
SIMulator in Wireless Sensor Network), a toolbox for simulating mobile agents on MAT-
LAB [MathWorks 2009]. MASIM provides abstractions and functionality for modelling
mobile agents, their environment and interactions between the many system components
involved. The model used in MASIM is compatible with the mobile agents model de-
fined by FIPA (Foundation for Intelligent Physical Agents) [FIPA 2004] and OMG (Ob-
ject Management Group) [OMG 1997], two important standardized efforts in the context
of mobile agent systems. MASIM uses an energy model that defines how each component
spends energy which is based on the hardware specification of Mica2 [Crossbow 2009],
one of the most important sensor node platforms. MASIM can also be easily extended to
use energy models based on different platforms. We believe that extending MATLAB has
the particular advantage of adding functionality to a system which is very frequently used
for computer simulation.

This paper is structured as follows. In Section 2 we compare our approach to other
existing wireless network simulation environments. In Section 3 we describe MASIM. In
Section 4 we describe a particular use of MASIM to evaluate the advantages that mobile
agents might bring for a specific scenario. Finally, in Section 5 we conclude the paper.

2. Related Work
MATLAB is a tool for the development and analysis of algorithms and data visualization
with main focus on numeric computation [MathWorks 2009]. The MATLAB environ-
ment provides a set of libraries, called toolboxes, which can be developed in the native
language of MATLAB or C++ MEX (based on ANSI C++). MATLAB can be used in-
tegrated with Simulink, which provides a graphical environment and a set of libraries for
the design, simulation, testing and implementation of different types of systems, includ-
ing communication, control and signal processing systems [Simulink 2009]. Simulink
can be extended by libraries. A library of particular importance for this work is TrueTime
[Ohlin et al. 2007]. TrueTime provides resources for the simulation of real-time control
systems. It provides a set of functions and programming building blocks for specify-
ing such systems: kernel block, network block, Wireless Network and a battery block
[Ohlin et al. 2007]. MATLAB with Simulink and TrueTime thus provide resources for
defining an energy model for a WSN and support IEEE 802.15.4 [IEEE 2006], which is
becoming a de facto standard for the physical layer and medium-access control sublayer
of sensor networks.

There are currently many different simulation tools for wireless sensor networks.
Some of them, closely related to our system, are: TOSSIM [Levis et al. 2003], Atemu
[Polley et al. 2004], SENSE [Chen et al. 2004], ns-2 [Fall and Varadhan 2008] and J-Sim
[Sobeih et al. 2005].

TOSSIM is a discrete event simulator for wireless sensor nodes which are based
on the TinyOS operating system. TOSSIM simulates the behavior of hardware compo-
nents, such as the ADC, clock and EEPROM memory, the flash boot sequence, and com-
ponents of the wireless communication protocol stack. The main feature of this simulator
is the fact that the code used for simulation can be installed with no modifications on real

112 Proceedings

devices.

Atemu (Atmel Emulator) is a sensor network simulator which is based on the
standard Mica2 [Crossbow 2009] architecture and the AVR (Advanced Virtual RISC) mi-
croprocessor (although it can simulate heterogeneous WSN). The system provides com-
ponents to be used in the specification of the simulation scenario, such as processor, clock
and radio device. It allows the simulation of low-level operations on sensor nodes.

SENSE is a discrete event simulator for sensor networks which is based on the
IEEE 802.11 standard with DCF (Distributed Coordination Function) as its physical /
MAC sublayer. This simulator implements a battery model, which enables a control over
energy spent based on the used electrical current.

NS-2 (Network Simulator 2) is a discrete event simulator that has a broad sup-
port for simulation of wired and wireless networks. Its support for modelling energy is,
however, very limited.

J-Sim is a simulation tool for WSN developed in Java. It provides components
for modelling typical WSN elements, such as battery, processor and radio models, and a
phenomena generator. It is based on the IEEE 802.11 standard at the physical layer and
MAC sublayer.

Among the systems cited above, MATLAB was the system which provided most
adequately basic building blocks for constructing MASIM, specially due to its support for
IEEE 802.15.4 and bulding blocks for specifying energy models.

3. MASiM
In this section we describe the main features and some implementation aspects of
MASiM. MASiM was built using MATLAB with Simulink and TrueTime. We first pro-
vide a description of the system from a conceptual point-of-view, presenting the adopted
WSN model (Section 3.1) and agent model (Section 3.2). We then describe the main
system classes (Section 3.3), the system task model (Section 3.4).

3.1. WSN Model

In MASiM, a WSN is composed of two types of nodes: sensor node and base station.
A WSN might have more than one base station. Base stations and sensor nodes have
different hardware and software characteristis, but all sensor nodes are homogeneous.
All nodes, including the base station, are capable of moving in the environment. Thus
communication links between nodes are dynamic.

The main function of a sensor node is to monitor some physical characteristic of
an environment and transmit the sensed data to the base station through wireless links.
Each node maintains information about its energy level, its position in the environment
(localization) and about time. The clocks of nodes are all synchronized. Each node is
uniquely identified in the network.

Sensor nodes are organized in a mesh network (mesh) as defined by Zigbee1.
Not all sensor nodes might reach the base station in a single communication hop. Thus,
communication between sensor nodes and the base station will be primarily multihopping.

1http://www.zigbee.org

12th Brazilian Workshop on Real-Time and Embedded Systems 113

The range of the base station radio device is assumed to be larger than the range of sensor
node radios. Thus, the resulting communication network is asymmetric, in the sense that
a base station might reach a sensor node with a single hop, but this node might not reach
the base station directly. The nodes are aware of their active neighbouring nodes and each
node periodically broadcasts its location to its neighbours. Additional data, such as the
energy level of the node, might be piggybacked in these periodical messages.

The network uses IEEE 802.15.4 without beacon [IEEE 2006] as the physical
layer and MAC (Medium Access Control) sublayer. Since there is no beacon, there is
no formation of superframe, and (unslotted) CSMA/CA (Carrier Sense Multiple Access /
Collision Avoidance) is used as the medium access control mechanism.

3.2. Mobile Agent Model
The mobile agent model adopted in MASiM is based on the model defined by FIPA
[FIPA 2004]. A mobile agent can be in one of the following states: Started, Active,
Suspended, and Waiting. The meaning of these states and the possible state transitions
are described below.

On each node, mobile agents execute on logical places called here agencies. From
a functional point-of-view, an agency represents the needed functionality that must be
present on a node so that agents can execute there. We will, however, use the terms
agency and node here interchangeably to denote the place where agents execute.

A mobile agent is instantiated at a node in the Start state. In this state, the agent
receives its mission and its unique identifier. The user of MASiM is responsible for ensur-
ing the uniqueness of this identifier. When the agent starts execution, it enters the Active
state.

While at the Active state, an agent performs the operations defined in its mission.
Two special operations are the movement and cloning operations. The implementation
of these operations involves the execution of a specific protocol for mobility and cloning.
Before an agent can move from an agency to another or before an agent can be cloned at
a specific node, a negotiation protocol is carried out between the agency where the agent
currently is, which will be called here the original agency, and the target agency, i.e., the
agency to where the agent wants to move or the agency where the new instance of the
agent will be created. The agent stays in the Suspended state from the beginning of the
movement or cloning process until its end.

The mobility protocol is illustrated in the activity diagram in Figure 1. This pro-
tocol starts when an agent calls a movement operation, defined at the interface of the
original agency. One of the parameters of this call is the identifier of the target agency.
At this point, the agent enters the Suspended state. The original agency sends a message
that contains a copy of the agent (code and state) for the target agency. The target agency
will check whether there are sufficient resources for instantiating the agent locally. If the
resources are sufficient, the agency creates the new instance of the agent. This instance is,
however, created in the Suspended state. The target agency then sends a message to the
original agency confirming that the movement operation was accepted. When the original
agency receives this message, it destroys the local instance of the agent and, after that,
sends a message to the target agency, allowing it to start the execution of its instance of
the agent. When the target agency receives this message, it resumes the execution of the

114 Proceedings

agent. The agent enters again the Active state. If the target agency does not have enough
resources to execute the agent, it sends a message to the original agency denying receiving
the agent.

Figure 1. Activity Diagram of the agent mobility protocol.

The cloning protocol is illustrated in the activity diagram depicted in Figure 2. It
begins in a way similar to the mobility protocol. The cloning operation has as one of its
parameters the identifier of the remote agency where the clone agent shall be created (the
target agency). After the agent calls the cloning operation, the agency where it is (original
agency) sends a message to the target agency. The agent enters the Suspended state. This
message contains the code and state of the agent to be cloned. The target agency checks if
there are enough resources to create the local copy of the agent. If yes, it sends a message
to the original agency confirming the creation of the clone agent, but, differently from the
mobility protocol, the agent instance at the target agency immediately enters the Active
state. When the original agency receives the confirmation message, the local instance of
the agent enters the Active state too. As in the mobility protocol, if there are not enough
resources for creating the agent at the target agency, the target agency sends a message to
the original agency denying creating the clone.

During an agent movement or cloning operation, the agent execution and data
state are transformed into a byte stream (a process called serialization), to be transfered
to the target node. At the target node, this byte stream is used to reinstantiate the agent or
create a new copy of it (deserialization) [Guenes et al. 2003]. This process is performed
by the TrueTime toolbox, and how this is done is out of the scope of this work. However,
the agent size can increase during its execution, due to data collected along its path. In
MASiM, the user is responsible for determining how the agent size will grow at each
migration.

An agent can send and receive messages. The process of receiving messages is
blocking. When an agent is waiting for a message, it enters the Waiting state. It only

12th Brazilian Workshop on Real-Time and Embedded Systems 115

Figure 2. Activity Diagram of the protocol for cloning the agent.

enters the Active state again when a message arrives. If a message is sent to a specific
agent at an agency and this agency is not at this agency, the message is discarded.

3.3. Main MASiM Classes

The main classes in MASiM are: NodeMessage, AgencyMessage, MessageInfor-
mationAgency, AgentMessage, InformationAgency, Phenomenon, Agent, Mission,
State, Nodes and Agency.

Nodes, agencies and agents communicate with each other by exchanging mes-
sages. In MASiM messages are exchanged asynchronously. If an entity sends a message
to another non-existent entity, the message is discarded. MASiM defines a message class
hierarchy. Three types of messages are defined: NodeMessage, AgencyMessage and
AgentMessage.

The NodeMessage class models messages exchanged between nodes. The main
attributes of this class are: sender, target and identifier. The sender refers to the node that
sends the message. The target attribute represents the node to which the message is sent.
The identifier attribute refers to the unique identifier of the message. The contents of a
NodeMessage is the data that is sent to the destination node. This content is represented
by the AgencyMessage.

An agency message, represented by the AgencyMessage class, like NodeMes-
sage, has as attributes the agency that sent the message (sender), the agency to which the
message is being sent (target) and the unique identifier of the message (identifier).

MessageInformationAgency is an abstract class that can be extended by the
classes Agent, InformationAgency and AgentMessage. The MessageInformationA-
gency class contains the phenomenon of the sender agency. Class Phenomenon repre-
sents the phenomenon that a given node monitors. This class has an attribute that identifies
the type of phenomenon (type).

The Agent class models the agents. This class has as attributes a unique (agent)
identifier, an attribute that contains the set of agencies that the agent has already vis-
ited (trace) and, if the agent is a clone of another agent, it contains also an attribute that

116 Proceedings

identifies the agency from where the agent was created (parentAgency). This reference
becomes obsolete if the original agent moves and does not send a message to its cloned
agents informing its new location. At the time an agent is instantiated, the agent receives
its identifier and its mission. The Agent class contains an additional attribute which rep-
resents this mission (mission). This attribute can not be changed.

In addition to its attributes, the Agent class has also the following methods: move,
to move the agent to a target agency; clone, to create a clone of the agent; sendMessage,
to send a message to one or a set of agents - if a particular agent is not specified, the
message is sent to all agents in a particular agency; getMessage, to receive a message;
enabled, to verify if the agent is in the Suspended state; and executeMission, to initiate
agent execution.

The mission of the agent is represented by the Mission class. This class has a
set of states. These states determine the set of operations that the agent must execute.
These operations are defined by the user. The Mission class contains an identifier of
the current execution state (currentStateIdentifier) and the identifier of the next execution
state (nextStateIdentifier) of the agent. These attributes are used to determine what state
the agent must enter after moving or being cloned.

The MessageAgent class models messages that an agent sends to another agent
at a certain agency. This class has the following attributes: sender, which identifies the
agent that has sent the message; receiver, which identifies the agent to which the message
is being sent; targetAgency, which identifies the agency where the receiver agent must be
to receive the message; and messageContents, which conveys the actual information to
be transmitted. When the target agency receives a message, it stores it in an appropriate
memory buffer, where the agent can read it. If the receiver agent is not at the target agency
when the message arrives, the agency discards the message. No confirmation of receipt is
sent to the sender agent.

The AgencyInformation class represents the data that AgencyMessage might
contain during the execution of the mobility or the cloning protocol.

The Node class represents a network node. Each node is uniquely identified by
the attribute identifier. The battery energy level of the node is represented by the attribute
battery. The value of the local clock of the node is represented by the attribute clock. The
attribute memory determines the amount of free memory available on the node. A node in
a WSN can be of one of two types: base station or sensor node. The base station is mod-
elled with the Node class. A sensor node is modelled with the SensorNode class. This
class extends the features of the Node class and contains an additional attribute, called
Sensor, which is the current value of the sensor. The type of phenomenon monitored by
the node is represented by the attribute phenomenon.

An agency is modelled by the Agency class. This class is uniquely identified
by the attribute identifier. The value of this attribute will match the same value of the
identifier of the node where the agency is. The methods it provides are used by agents
to access information about the resources of the node. To get information on the energy
level of the node, the method getEnergyLevel is invoked. The method getFreeMemory
returns how much free memory is available on the node. The method getValueSensor
returns the current value of the sensor. The type of phenomenon monitored by the node is

12th Brazilian Workshop on Real-Time and Embedded Systems 117

represented by the method getPhenomenon.

The role of the controller class Simulation is performed by MATLAB with
Simulink and the TrueTime toolbox. The Simulator is responsible for executing the
simulation, controlling time and the simulation variables, like the level of the nodes bat-
teries, nodes mobility and the execution of the methods of the network components.

In all classes described above there are methods for reading and writing all the
attributes of the class.

3.4. Programming Tasks

MASIM was programmed using C ++ MEX programming language and was based on
the resources provided by the TrueTime toolbox. The use of TrueTime requires that the
programming follow a model based on tasks, which can be periodic or aperiodic. A task
can communicate with other tasks through shared memory regions called Mailboxes. To
follow this programming model, MASIM tasks were organized into two groups: Node
Tasks and Agency Tasks. Node Tasks are those related to operations present in all nodes,
and Agency Tasks are those existing only in nodes that run the agency. Thus, the Node
Task are:

• Node’s Received Message Handler: aperiodic task triggered by an interrupt
when a message arrives. This task has the role of receiving and forwarding the
message to the task responsible for it;
• Neighborhood Message Handler: aperiodic task triggered by Node’s Received

Message Handler with a role to process messages with information about neigh-
boring nodes. This neighborhood information are stored in memory for the use of
agents;
• Simple Message Handler: task triggered by Node’s Received Message Handler

with a role of dealing with messages defined by a user. The way that this message
should be handled is specified by the user;
• Sent Message Handler: aperiodic task responsible for sending messages to an-

other node. This task is triggered after a particular task to put a information to be
sent in a Mailbox. This task gets the information and creates a message to be sent;
• Notification to the Neighborhood Node: periodic task whose role is to send

a message to neighboring nodes with information about the current node. The
information that are sent are: the energy level, the node identifier and coordinates.
This task puts these information in the Mailbox and triggers an event that activates
the task Node’s Received Message Handler. This last task will be responsible for
sending messages on the node to all neighboring nodes.

The tasks that have a role to perform operations related to the agency are as fol-
lows:

• Agency’s Received Message Handler: aperiodic task triggered by the Node’s
Received Message Handler. This task has the role of receiving and processing
messages in its Mailbox. If the message destination is the agency, this task will
process this message. This occurs when a message is related to mobility or cloning
protocol. However, if the message contains an agent, this task forwards it to Cre-
ator Agent task, which is responsible for instantiating the agent on the local node.

118 Proceedings

The message destination may a local agent. Thus, this message is forwarded to the
Controller Execution Agent task, which is responsible for delivering the message
to the agent, if one exists. Otherwise, this message is discarded;
• Creator Agent: aperiodic task triggered by the task Agency’s Received Message

Handler. This job role is to instantiate a particular agent that has been received
during mobility or cloning for the current node;
• Controller Execution Agent: periodic task whose role is to run the agents fol-

lowing a run queue. This task executes and controls the cycle of the mission of
each agent.

4. Assessment of The MASIM Tool through Simulation Scenarios

4.1. Manufacturing environment scenarios

Aiming to build scenarios with mobile agents in a distributed system, a manufacturing
environment was adopted, similar to that proposed by [Krishnamurthy and Zeid 2004].
In such environments, it is necessary to monitor the operation of various equipments,
collect data and forward them to a centralized operation room where decisions are taken
based on individual or collective information obtained by this monitoring.

A set of sensor nodes distributed in some factory environments can monitor equip-
ments, and mobile agents could be used both to collect data in a intelligent and selective
way and to convey information about the plant to destination (a base station). It was con-
sidered scenarios where a node can communicate directly with the base station only if it
is in a certain distance of the base station (they are neighbors). Moreover, there is the
possibility that there are unconnected nodes, that is, nodes without neighbors in the net-
work. Finally, the data collected can be related to information of alarms from equipment
malfunctioning, and there may be a need for a maximum time (deadline) for which this
information reaches the operations room, and the data has a freshness constraints.

Therefore, through the use of Simulink/Matlab files (MDL files) in MASIM, some
manufacturing scenarios were modeled based on two different approaches: (i) a simple
diffusion-based approach; and (ii) mobile agent-based approach.

4.1.1. First Approach: A Simple Diffusion Protocol (without mobile agents)

In this approach, when a node receives a message with a monitored event from another
node, it attaches the received data to its message and forwards it to neighbors. After
that, when the first message arrives to the base station, it is considered that the mission is
complete.

4.1.2. Second Approach: Agents that Moves Beyond The Range of Base Station

The protocol based on agents has the goal to achieve a trade-off between energy con-
sumption and network coverage (Figure 3). In State 0, there is an agent in the base
station that clones itself to all neighboring nodes. In State 1, clones choose to move to
their neighboring nodes of higher energy level until they find a particular node where the
target phenomenon was observed. When this happens, in State 2, each agent tries to send

12th Brazilian Workshop on Real-Time and Embedded Systems 119

a message to the agent in the base station. However, it is possible there may be a clone
agent far from the base station. In this case, this agent moves back toward base station,
until it reaches a node neighboring the base station, before it send the message:

To simplify the understanding of this algorithm, states State 3, 4, 5 and 6 only
carry out the operation to complete the mission of the agent. The States 4 and 5 handle
exceptions that may occur in the cloning and mobility, respectively. When the operations
of receiving target phenomenon and find phenomena are carried out successfully, the final
States 3 and 6 are invoked.

Figure 3. Specification of the agent’s mission.

4.2. Comparison of agent-based and message-based approaches

In order to exercise the simulator, both approaches based on agents and based on diffusion
messages were implemented with two densities of nodes: 50 and 100 nodes. For each
density, 20 simulations were performed, each one with the duration of 100s. In each
simulation, the nodes are redistributed randomly in area.

The nodes used in the simulations are based on the hardware configuration of the
Mica2. Thus, the energy source of the sensor nodes are two batteries with 3V and 27000J
of energy. These nodes were randomly scattered over a fully plan area of 300m2, and after
the deployment, the nodes are considered fixed (non-mobile nodes). In each simulation
scenario, it is also considered that only 10% of nodes monitors the target phenomenon.
The radio signal from the antenna has an operating range of 99m and there may be dis-
connected nodes in the network. In each node there is energy consumption due to data
processing and communication (sending and receiving messages). In this work, is not
considered the energy consumption due to sensor or actuator tasks. Thus, the receipt and
sending of one message and processing performed by the processor spends 16.62∗10−4J ,
9.6 ∗ 10−4J and 4.8 ∗ 10−4J , respectively [Polastre et al. 2004].

Simulations show that the proposed approach based on agents is the better choice
in respect to energy consumption (Table 1). There was a considerable increase in energy
consumption by the nodes in the approach based on diffusion, because, as the number of
nodes increase, the amount of messages received for each node also increase. However,
the diffusion approach is more effective in coverage, because, at the end of the simulation,
all nodes have been achieved by the protocol in all scenarios. The coverage parameter
means the amount of network nodes that were recognized by the base station through a

120 Proceedings

Table 1. Energy consumption and coverage.
Energy consumption Coverage

50 nodes 100 nodes 50 nodes 100 nodes
Agent-based 0,238J 0,239J 14% 12%

Diffusion-Based 0,418J 0,601J 100% 100%

specific protocol. The average coverage for the agent-based approach were 14% and 12%
for densities of 50 and 100 nodes, respectively.

In respect of time constraints, the diffusion-based protocol may be more effective
to attend tight deadlines, because messages arrive at base station in a minimum time (2s).
This value was much smaller than that obtained by agent-based approach (average of 15s).

5. Conclusions
This work aimed to develop a tool for simulating agents in Wireless Sensor Networks
called MASIM. With this tool it is possible to specify simulation scenarios using static or
mobile agents. The flexibility in MASIN was achieved through the provision of functions
and block diagrams, which facilitate the programming of scenarios and agents mission,
determining different behaviors of the agent during its lifetime.

The programming interface developed allows the use of functions and data struc-
tures facilitating users to program the simulation models: the network topology may be
defined using the block diagrams available; the programming of nodes and defining the
mission of agents are made through the C++ MEX; and mission of agents can be modeled
as a state machine. To exercise the simulator, showing its flexibility, was built simu-
lations of scenarios based on mobile agents and dissemination of messages in a WSN.
Results from these simulations shown possible advantages and disadvantages of using the
approach of mobile agents concerning energy saving and network coverage metrics.

As future work, the tool is going to allow the user to specify custom information
about the neighborhood. Moreover, it is going to allow the definition of custom protocols
for cloning and mobility of agent. It is expected too that the user is going to able to
program the settings using the MATLAB language, in addition to C++ MEX.

References
Chen, G., Branch, J., Pflug, M. J., Zhu, L., and Szymanski, K. (2004). Sense: A sensor

network simulator. http://www.cs.rpi.edu/ szymansk/papers/wpcn.04.pdf. Accessed
on Jan. 2010.

Chen, M., Kwon, T., Yuan, Y., and Leung, V. C. (2006). Mobile agent based wireless
sensor networks. Journal of Computers, 1.

Crossbow (2009). Mica2 - wireless measurement system. ”http://www.xbow.com/
products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.
pdf”. Accessed on Jan. 2010.

Fall, K. and Varadhan, K. (2008). The ns Manual. UC Berkeley and LBL and USC/ISI
and Xerox PARC.

FIPA (2004). Fipa agent management specification. ”http://www.netlib.org/
lapack”. Accessed on Jan. 2010.

12th Brazilian Workshop on Real-Time and Embedded Systems 121

Guenes, M. H., Tiersem, M. E., Yildiz, M., and Kuru, S. (2003). Performance analy-
sis of mobile agents using simulation. In Proc. of the Advanced Engineering Design
Conference (AED2003), Praga, Czech Republic.

IEEE (2006). Part 15.4: Wireless medium access control (mac) and physical layer (phy)
specifications for low-rate wireless personal area networks (wpans). Technical report,
IEEE Computer Society.

Jansen, W., Mell, P., Karygiannis, T., and Marks, D. (1999). Applying mobile agents to
intrusion detection and response. Technical report, National Institute of Standards and
Technology Computer Security Division, Washington, D.C, EUA.

Krishnamurthy, S. and Zeid, I. (2004). Distributed and intelligent information access in
manufacturing enterprises through mobile devices. In Journal of Intelligent Manufac-
turing, pages 175 – 186. Kluwer Academic.

Lange, D. B. and Oshima, M. (1999). Seven good reasons for mobile agents. Commun.
ACM, 42(3):88–89.

Levis, P., Lee, N., Welsh, M., and Culler, D. (2003). Tossim: accurate and scalable
simulation of entire tinyos applications. In Proc. of the 1st Int. Conf. on Embedded
Networked Sensor Systems, pages 126 – 137, Los Angeles, California, EUA. ACM.

Malik, H. and Shakshuki, E. (2007). Data dissemination in wireless sensor networks using
software agents. In Annual Int. Symp. on High Performance Computing Systems and
Applications, page 28, Saskatoon, Saskatchewan, Canadı̈¿1

2
. IEEE Computer Society.

MathWorks, T. (2009). MATLAB Getting Started Guide. The MathWorks, Inc.

Ohlin, M., Henriksson, D., and Cervin, A. (2007). TrueTime 1.5 - Reference Manual.
Department of Automatic Control, Lund University.

OMG (1997). Mobile agent system interoperability facilities specification. ”http://
www.omg.org”. Accessed on Jan. 2010.

Polastre, J., Hill, J., and Culler, D. (2004). Versatile low power media access for wire-
less sensor networks. In Proc. of the 2nd Int. Conf. on Embedded Networked Sensor
Systems, pages 95 – 107, Baltimore, MD, EUA. ACM.

Polley, J., Blazakis, D., McGee, J., Rusk, D., and Baras, J. (2004). Atemu: a fine-grained
sensor network simulator. In First Annual IEEE Comm. Society Conf. on Sensor and
Ad Hoc Communications and Networks, 2004. IEEE SECON 2004, pages 145 – 152.

Simulink (2009). Simulink 7 - Simulation and Model-Based Design. The MathWorks.
Accessed on January 2010.

Sobeih, A., Chen, W.-P., Hou, J. C., Kung, L.-C., Li, N., Lim, H., ying Tyan, H., and
Zhang, H. (2005). J-sim: A simulation and emulation environment for wireless sensor
networks. IEEE Wireless Communications magazine, 13:2006.

Ye, W., Heidemann, J., and Estrin, D. (2001). An energy-efficient mac protocol for wire-
less sensor networks. pages 1567–1576.

Yu, Y., Krishnamachari, B., and Prasanna, V. K. (2004). Issues in designing middleware
for wireless sensor networks. IEEE Network, 18:15 – 21.

122 Proceedings

12th Brazilian Workshop on
Real-Time and Embedded Systems

♦

Work in Progress Session

Framework para Integração entre Ambientes Inteligentes e
o Middleware do Sistema Brasileiro de TV Digital

Reiner F. Perozzo1, Carlos E. Pereira1

1Departamento de Engenharia Elétrica – Universidade Federal do Rio Grande do Sul
Av. Osvaldo Aranha, 103 – 90035-190 – Porto Alegre – RS – Brasil

reiner.perozzo@ufrgs.br, cpereira@ece.ufrgs.br

Abstract. Since December 2007, Brazil is implementing the Brazilian Digital
Television System (SBTVD). Moreover this new system to provide high
definition images, offers interactivity through the Ginga middleware, which
transforms the digital TV receivers - set-top boxes (STBs) – in the computing
platforms of interaction between viewers and applications that run on the
middleware. These STBs are becoming increasingly present in homes, which
enables its integration with the Ambient Intelligence (AmI). This paper
proposes a framework for integration between AmI and the SBTVD, in order
to allow the management of automated services in AmI, by means of television
sets and STBs with Ginga middleware.

Resumo. Desde dezembro de 2007 o Brasil está implementando o Sistema
Brasileiro de TV Digital (SBTVD). Além desse novo sistema proporcionar
imagens em alta definição, oferece a interatividade, através do middleware
Ginga, o qual transforma os receptores de TV digital – set-top boxes (STBs) –
em plataformas computacionais de interação entre os telespectadores e as
aplicações que são executadas sobre o middleware. Esses STBs estão se
tornando cada vez mais presentes nas residências, o que possibilita a sua
integração com os Ambientes Inteligentes (AmI). Este trabalho propõe um
framework para integração entre AmI e o SBTVD, a fim de permitir que os
serviços automatizados do AmI possam ser gerenciados através de televisores
e STBs com o middleware Ginga.

1. Introdução
A chegada da TV Digital no Brasil está trazendo consigo pelo menos três grandes
vantagens: (i) melhor qualidade de som e imagem; (ii) portabilidade, pois permite ao
telespectador assistir TV em movimento, utilizando dispositivos móveis como telefones
celulares e TVs portáteis; (iii) interatividade, a qual permite que o telespectador consiga
interagir com a programação e acessar uma variedade de serviços, tais como: t-
government, t-banking, t-commerce e outros [Silva 2008]. O acesso a esses serviços e a
TV interativa (TVi) é possível no Sistema Brasileiro de TV Digital (SBTVD) graças a
especificação de um middleware [Ginga 2009], composta por três módulos principais:
Ginga-CC, Ginga-NCL e Ginga-J. O Ginga consiste na camada de software posicionada
entre o código das aplicações e a infraestrutura de execução (plataforma de hardware e
sistema operacional) dos set-top boxes (STBs), oferecendo suporte às aplicações
interativas [Soares 2008].

12th Brazilian Workshop on Real-Time and Embedded Systems 125

 Tendo em vista os recursos oferecidos pelo Ginga e a presença crescente dos
STBs nas residências, estes podem ser utilizados como plataformas computacionais
integrantes dos chamados Ambientes Inteligentes (AmI) - ambientes automatizados com
dispositivos capazes de se auto-gerenciarem e cientes de tudo que os cercam [Ark e
Selker 1999], [Ducatel 2001]. No AmI predomina a visão de um mundo cercado por
uma grande quantidade de dispositivos que oferecem suporte inteligente nas atividades
diárias dos usuários. Nesse caso, há uma relação direta entre os AmI e a automação
predial/residencial, pois o desenvolvimento de projetos nessa área necessita de espaços
físicos automatizados, o que inclui sensores, atuadores e diversos sistemas de controle
[Nazari 2009], [Edwards 2006]. Uma ampla variedade de serviços em áreas como
segurança (controle de acesso, identificação de usuários), conforto (controle de
temperatura e umidade, iluminação) e entretenimento estão surgindo diariamente,
trazendo consigo muitos desafios a serem resolvidos, como, por exemplo, o
gerenciamento dos serviços de automação e os sistemas de interação homem-máquina
(IHM) existentes nesses ambientes [Tsourakis 2006], [Perozzo e Pereira 2008].
 Dessa forma, este trabalho propõe a integração entre AmI e o SBTVD, através
de um framework que permita aos usuários utilizar o televisor não somente para assistir
a programação das emissoras em alta definição, mas também, para gerenciar os serviços
e os dispositivos de automação existentes no AmI.

2. Trabalhos Relacionados
O desenvolvimento de aplicações para TV Digital vem sendo bastante explorada
recentemente no Brasil e principalmente em países onde a TV interativa já está presente
há mais tempo [Dolan 2001], [Hopkins 2009], sendo possível encontrar diversos grupos
de pesquisa trabalhado em projetos cujo objetivo está focado na construção de
aplicações interativas [Peta5 2009], [Filgueiras e Giannoto 2009]. Dentre esses
trabalhos destaca-se a proposta de [Simioni e Roesler 2006], que apresenta um
framework para criação de aplicações de TV Digital e cujo objetivo é facilitar e agilizar
o desenvolvimento desse tipo de aplicação. Esse framework é baseado na estrutura
Globally Executable - Multimedia Home Platform (GEM - MHP) [DVB 2010]. Em
linhas gerais, [Simioni e Roesler, 2006] concentram a proposta no desenvolvimento de
aplicações interativas voltadas ao comércio eletrônico e ao acompanhamento de
informações referente ao mercado financeiro. O framework é responsável por gerenciar
as informações recebidas pelo STB e está dividido em três camadas: i) Catálogo:
responsável pelo gerenciamento da base de dados; ii) Painel: responsável por montar a
interface da aplicação; iii) Aplicação: utiliza as informações geradas pelas outras
camadas. A camada Catálogo irá manipular os arquivos recebidos pelo carrossel de
dados e fornecer à camada Painel os itens que sejam solicitados. Esta, por sua vez,
disponibiliza uma interface para a Aplicação. Basicamente, as aplicações que utilizam
esse framework recebem dados de um arquivo eXtensible Markup Language (XML) que
servem para a atualização das interfaces de interação. De acordo com o conteúdo da
informação recebida, a aplicação recria a interface, substituindo um determinado item.
 Quanto à utilização de STBs e TVs para gerenciamento de residências, é
apresentado por [Cabrer 2006] uma proposta de integração entre duas tecnologias: a
MHP para TV Digital e a Open Services Gateway Initiative (OSGi) [OSGi 2009] como
uma plataforma para configurações de gateways residenciais. Com os avanços
tecnológicos que vem ocorrendo nos últimos anos, os gateways residenciais são

126 Proceedings

fundamentais para a criação de pontes de comunicação entre os ambientes inteligentes,
seus dispositivos e o mundo externo. Na proposta de [Cabrer 2006] o usuário pode
interagir com os serviços existentes na residência, acionando dispositivos através do
televisor. Dessa forma, há a integração entre o MHP e o OSGi, sendo que o primeiro
está orientado a funções, e o segundo orientado a serviços. Como as duas tecnologias
possuem arquiteturas distintas foi desenvolvido um XbundLET, uma aplicação que
permite a interação natural entre o MHP e o OSGi. Um Xbundlet não apenas define uma
ponte de comunicação entre essas plataformas, como também constitui em um elemento
de software híbrido que pode ser executado em ambas as arquiteturas. A integração
entre diferentes plataformas também é apresentada na proposta de [Viana 2009], cujo
objetivo é a criação de uma interface de acesso chamada Ginga OSGi Bridge, capaz de
oferecer às aplicações Java e NCL uma ponte de acesso transparente ao framework
OSGi. Nesse caso, as aplicações desenvolvidas poderiam verificar estados de sensores,
acionar dispositivos e interagir com os serviços residenciais que estivessem disponíveis
no ambiente e, consequentemente, no framework OSGi. Por outro lado, a proposta de
[Viana 2009] necessitaria que a especificação do middleware Ginga fosse ampliada para
suportar a comunicação transparente entre as aplicações Ginga e o framework OSGi.

3. Framework Proposto
 Nesta seção é apresentada a proposta de um framework responsável pela
integração entre AmI e o SBTVD, a fim de permitir que os serviços e os dispositivos de
automação presentes no AmI possam ser acessíveis por aplicações interativas que são
executadas sobre o middleware Ginga. Nesse caso, a idéia principal é agregar valor aos
receptores de TV Digital, permitindo que estes possam, além de decodificar o sinal da
TV Digital, se tornarem plataformas computacionais de gerenciamento do AmI,
oferecendo aos usuários uma outra possibilidade de interação.

3.1. Modelo Conceitual
 O modelo conceitual do framework tem por objetivo facilitar a compreensão da
proposta, através da identificação de alguns requisitos do domínio da aplicação e que o
framework deve atender, tais como:
 - (i) Auxiliar na construção de aplicações interativas para acesso aos serviços e
dispositivos de automação existentes nos AmI;
 - (ii) Permitir a criação de projetos de aplicações interativas independentes de
plataforma de hardware, através de modelos orientados a objetos;
 - (iii) Possibilitar a reutilização de projetos, otimizando o tempo de
desenvolvimento de novas aplicações;
 - (iv) Permitir a geração automática de código, criando aplicações baseadas no
perfil do hardware da plataforma alvo e no perfil da linguagem de programação
suportada pelo middleware de interatividade;
 - (v) Permitir que as aplicações construídas sejam capazes de, em tempo de
execução, realizarem a descoberta de novos dispositivos e serviços que são inseridos no
AmI e adaptarem as interfaces de acesso com base nos resultados obtidos dessa
descoberta.

12th Brazilian Workshop on Real-Time and Embedded Systems 127

Figura 1. Arquitetura do Framework Proposto

 Dessa forma, conforme ilustrado na Figura 1, a arquitetura do framework
proposto está dividida em três níveis: (i) Modelagem: esse nível contém uma
representação computacional do mundo real, ou seja: os usuários, os dispositivos físicos
de automação e os serviços disponíveis no AmI são representados através de modelos
orientados a objetos; (ii) Codificação: baseado na modelagem e nos requisitos do
projeto, esse nível é o responsável pela codificação das aplicações interativas que serão
executadas nas plataformas alvo com suporte ao Ginga, criando uma interface de acesso
aos dispositivos e serviços que se deseja instanciar; (iii) Execução: nesse nível são
executadas as aplicações interativas e os módulos de adaptação e gerenciamento do
AmI, os quais realizam desde funções mais simples, como o acionamento de
dispositivos de automação e a verificação do estado atual de algum sensor, até a
realização de funções mais complexas, como a descoberta e a disponibilização de novos
serviços ou dispositivos que são inseridos dinamicamente no AmI.
 Em cada nível da arquitetura existem diversos componentes que realizam
funções específicas, colaborando uns com os outros, através de um fluxo de
informações que é iniciado pelo Gerador de Modelos, o qual é o responsável por
transformar em modelos computacionais todos os usuários, serviços e dispositivos
existentes no AmI, tais como: sensores, atuadores e controladores. Os modelos
orientados a objetos são extremamente importantes pelo fato de serem independentes
das plataformas de hardware, o que facilita a reutilização de projetos. A partir da
modelagem, o componente Gerador de Interface realiza uma leitura dos modelos
orientados a objetos, criando uma associação entre as classes existentes nesses modelos
e as representações gráficas disponíveis em uma biblioteca de imagens, cujo resultado

128 Proceedings

dessa operação é uma Interface de Acesso aos objetos (instâncias das classes). Essa
interface é uma aplicação interativa que é executada nos receptores de TV Digital e que
permite aos usuários gerenciar os serviços e os dispositivos de automação presentes no
AmI, onde esses receptores utilizam da mesma infraestrutura de comunicação de dados
disponibilizada para os serviços e dispositivos que compõem o ambiente. Além disso, o
Gerador de Interface permite que a partir de um único projeto seja possível ter a mesma
aplicação sendo executada em diferentes receptores de TV Digital, tanto os fixos (TVs e
STBs) quanto os móveis (telefones celulares), de acordo com a especificação do
middlware Ginga, a qual prevê a utilização das linguagens NCL e Java para o
desenvolvimento de aplicações.
 Quando a Interface de Acesso é inicializada, entram em ação os outros quatro
componentes dinâmicos do framework: (i) Gerenciador de Dispositivos: o qual é o
responsável por monitorar o estado de operação de cada dispositivo de automação e
realizar a descoberta de novos dispositivos que possam ser inseridos no AmI; (ii)
Gerenciador de Serviços: responsável pela descoberta dos novos serviços que são
disponibilizados pelos dispositivos ou informar à Interface de Acesso caso algum novo
serviço seja composto por outros serviços (services composition); (iii) Gerenciador de
Usuários: componente que identifica a inserção de um novo usuário ou de um novo
perfil de usuários que utiliza o AmI, tais como: perfis de convidado, administrador do
sistema, emergência, etc.; (iv) Adaptador de Contexto: com base nas informações
obtidas pelos gerenciadores, esse componente adapta a Interface de Acesso atualizando
as informações referentes aos usuários, aos serviços e aos dispositivos de automação.
Por exemplo, no caso de ser inserido um novo dispositivo de automação no AmI, o
Adaptador de Contexto notifica a Interface de Acesso para que seja criada uma nova
instância daquele objeto, permitindo que o novo dispositivo fique disponível,
automaticamente, na Interface de Acesso do usuário.

4. Conclusões e Trabalhos Futuros
Neste trabalho foi proposto um framework para integrar os AmI e o SBTVD, o qual é
utilizado no desenvolvimento de aplicações interativas que servem para gerenciar os
serviços e os dispositivos de automação existentes nos AmI. A principal contribuição
deste trabalho está na arquitetura do framework e nos seus componentes que permitem
agregar valor aos STBs e TVs, os quais além de decodificarem o sinal da TV Digital
podem ser utilizados como plataformas computacionais de automação
predial/residencial. Atualmente, o framework está em fase de implementação e estão
sendo construídos cenários que servirão como base para estudos de casos e validação da
proposta. Dentre os projetos que estão no domínio desse trabalho destaca-se o acordo de
pesquisa firmada com uma empresa multinacional, fabricante de eletrodomésticos de
linha branca, cujo escopo do projeto consiste em permitir que um refrigerador
inteligente consiga ser gerenciado por receptores de TV Digital com suporte ao
middlewre Ginga.

Referências
Ark W. S and Selker, T. (1999) “A Look at Human Interaction with Pervasive

Computers”. In: IBM Systems Journal, v. 38, n. 9, p. 504 – 507.

12th Brazilian Workshop on Real-Time and Embedded Systems 129

Cabrer, M. R. et al. (2006) “Controlling the Smart Home form TV. In: International
Conference on Consumer Electronics, 2006, Las Vegas: Proceedings… New York:
IEEE, p. 421 - 429.

Dolan, M. A. (2001) "Report on Television Data Applications".
<http://www.itl.nist.gov/div897/staff/barkley/tv-data-apps-mdolan.pdf>

Ducatel, K. et al. (2001) “Scenarios for Ambient Intelligence (ISTAG Report)”. In.
Institute for Prospective Technological Studies (European Commission), Seville.

DVB (2010) " Open Middleware for Interactive TV". <http://www.mhp.org/>.
Edwards, W. K. (2006) “Discovery systems in ubiquitous computing”. In: Pervasive

Computing, IEEE. Vol. 5, Issue 2, April-June, pp. 70-77.
Filgueiras, L. V. L. e Giannoto, E. C. (2009) "Estudo de aplicações interativas na TV

usando rastreamento do olhar". In: 1 Simpósio Internacional de Televisão Digital
(SIMTVD), Nov, Bauru, Brasil. pp. 391-409.

Ginga (2009) “Ginga Digital TV Middleware Specification for SBTVD”.
<http://www.ginga.org.br>

Hopkins, B. (2009) "Creating Interactive TV Applications With the Tru2way Platform
and OCAP". <http://java.sun.com/developer/technicalArticles/javame/iptv-tru2way>

Nazari, A. A. S. et al. (2009) “3DSim: Rapid Prototyping Ambient Intelligence”.
<http://www.igd.fhg.de/igd-a1/projects/amilab/index.html>.

OSGi (2009) "Open Services Gateway Initiative". <http://www.osgi.org/>.
Perozzo, R. F. e Pereira, C. E. (2008) “Management of Services in Intelligent

Environments for Mobile Devices”. In: 4th IET International Conference on
Intelligent Environments, 2008, Seattle, USA. v. 1. p. 1-6.

Peta5, (2009) "Aplicações para TV Digital Interativa". <http://www.peta5.com.br>
Silva, A. (2008) “Receptores de TV Digital”. In. Revista da Sociedade Brasileira de

Engenharia de Televisão, ISSN 1980-2331, n. 105, pp. 27-29.
Simioni, A., Roesler, V. “Um framework para o desenvolvimento de aplicações

interativas para a Televisão Digital”. In: ERRC - Escola Regional de Redes de
Computadores, 2006, Passo Fundo, Brasil. UPF. v. 1. p. 10-16.

Soares, L. F. G. (2008) “TV interativa se faz com Ginga”. In. Revista da Sociedade
Brasileira de Engenharia de Televisão, ISSN 1980-2331, n. 105, pp. 30-35.

Tsourakis, N. et al. (2006) “An Architecture for Multimodal Applications over Wireless
Data Networks”. In: Int. Conf. on Intelligent Environments, IEEE, p. 221 - 227.

Viana, N. S. et al. (2009) “A Convergence Proposal between the Brazilian Middleware
for iDTV and Home Network Platforms”. In: 5th IEEE International Workshop on
Networking Issues in Multimedia Entertainment (NIME'09), Las Vegas-USA. p. 1-5.

130 Proceedings

Modelo de Arquitetura para Construção de Plataformas de

Software Embarcado

Gustavo A. F. B. Melo, Sérgio V. Cavalcante

Centro de Informática – Universidade Federal de Pernambuco (UFPE)
CEP. 50740-540 – Recife – PE – Brazil

{gafbm,svc}@cin.ufpe.br

Abstract. The development of embedded software is still very difficult. A few

tools assist the embedded application design with visual modeling and

automatic code generation, but they fail to support the HAL. This paper

proposes an open architecture for reusable and easily portable software

platform design. The architecture is composed of nine layers which encapsulate

and separate features and functionalities of the microcontroller, peripherals,

electronic components, kernel and middleware. This work aims standardization

for embedded software development which allows you to automate the process

of elaborating software platforms.

Resumo. O desenvolvimento de software embarcado ainda é muito deficiente.

Algumas ferramentas auxiliam o projeto de aplicações embarcadas com

modelagem visual e geração automática de código, mas falham no suporte a

HAL. Este artigo propõe uma arquitetura para projetar plataformas de

software reusável e de fácil portabilidade. A arquitetura é composta por nove

camadas que encapsulam e separam características e funcionalidades do

microcontrolador, periféricos, componentes eletrônicos da placa, kernel e

middleware. Este trabalho visa uma padronização no desenvolvimento de

software embarcado que permite automatizar o processo de construção de

plataformas de software.

1. Introdução

O desenvolvimento de sistemas embarcados é um processo que envolve duas abordagens
contrastantes. Por uma lado o desenvolvimento de hardware é suportado por métodos
analíticos e ferramentas de síntese automática (EDA) [1], como IDEs para construção de
ASICs e PCBs. Por outro lado o desenvolvimento de software embarcado não tem
acompanhado a mesma velocidade e eficiência, principalmente no que diz respeito à
automatização. Algumas poucas ferramentas auxiliam o projeto de software embarcado
com modelagem visual e geração automática de código [2][3], mas têm uma deficiência
no suporte às interfaces de hardware. Boa parte disso deve-se ao fato de que as
plataformas de hardware utilizadas por sistemas embarcados apresentam arquiteturas
bastante distintas [4]. Além disso, esses dois paradigmas (projeto de hardware e software)
têm sido tratados de forma ortogonal. Grande parte das metodologias de co-design [5][6]
baseiam-se em dividir o projeto em hardware e software, e depois desenvolvê-los
separadamente. No entanto, alguns componentes de software podem ser modelados de
modo que eles sejam diretamente relacionados a componentes de hardware.

12th Brazilian Workshop on Real-Time and Embedded Systems 131

 AUTOSAR [7] é uma parceria de empresas a fim de estabelecer uma
padronização aberta à indústria para arquiteturas elétrico-eletrônicas automotivas. O
principal conceito de AUTOSAR é separação entre aplicação e infra-estrutura.
Entretanto, esta abordagem é muito direcionada a aplicações automotivas, além de ser
bastante restritiva. EPOS [4] é um sistema operacional baseado em componentes
desenvolvido para permitir portabilidade da aplicação. Contudo, as abstrações de
hardware designadas por esta abordagem não separam interface de acesso e controle de
acesso, o que acarreta em menos modularidade.

 Este artigo propõe uma arquitetura para construção da plataforma de software no
nível de componentes. Ele descreve uma estrutura de software embarcado reusável e de
fácil portabilidade, que é composta por nove camadas que encapsulam e separam
características e funcionalidades do microcontrolador, periféricos, componentes
eletrônicos da placa, kernel e middleware.

 A seção 2 apresenta a arquitetura proposta para o desenvolvimento de software
embarcado, bem como descreve cada uma das suas nove camadas. Um exemplo real de
utilização da arquitetura é apresentado na seção 3. As conclusões do trabalho são
expostas na seção 4.

2. Arquitetura

A arquitetura proposta utiliza os padrões de projeto Layered Pattern e Five-Layer
Architecture Pattern [8]. Ela organiza o software embarcado em camadas, de modo a
facilitar o reuso e a manutenabilidade dos componentes do sistema (Figura 1). Esta
estrutura permite ao projetista abstrair a plataforma em termos de hardware e sistema
operacional, proporcionando um alto grau de portabilidade da aplicação embarcada.

Figura 1. Embedded Software Architeture

 A plataforma de hardware constitui-se dos componentes eletrônicos os quais o
software é capaz de acessar. Exemplo: chip com o core do processador e seus periféricos,
memória flash, LCD, LED ou FPGA. A plataforma de software provê as funcionalidades
necessárias para lançar uma aplicação, dando suporte a escalonamento, gerenciamento de
memória, acesso ao hardware e outros. Os componentes da plataforma de software são
divididos em nove camadas: Target, PADL, PHDL, BADL, BHAL, Kernel Core, Kernel
Port, Services e Application. As subseções seguintes descrevem com maiores detalhes
cada uma das camadas da plataforma de software.

132 Proceedings

2.1 Target

Existem diferentes fabricantes que fornecem diferentes famílias de processadores. Cada
uma dessas famílias possui suas peculiaridades. Além disso, vários compiladores
distintos dão suporte a uma família. O código necessário para o startup do
microcontrolador, definição dos vetores de interrupção e os tipos básicos são parcelas do
software que normalmente diferem entre os compiladores e/ou processadores. Toda esta
parte do software dedicada à combinação processador/compilador é encapsulada na
camada Target. Dessa forma é possível mudar o compilador usado no projeto trocando
apenas o componente Target. A abstração que esta camada proporciona também permite
a portabilidade do resto do software para o caso de troca do microcontrolador por outro
da mesma família e com diferente capacidade de memória.

2.2 PADL

Camada Dependente da Arquitetura do Periférico (Peripheral Architecture Dependent

Layer) inclui os componentes de software que permitem o acesso direto aos periféricos
do microcontrolador por meio de seus registradores. Cada família de microcontrolador
possui um conjunto de periféricos com uma arquitetura particular. É função dos
componentes desta camada definir a interface de acesso, independente do compilador,
aos registradores de cada um dos periféricos. Assim podemos desenvolver as interfaces
para cara periférico do microcontrolador sem se preocupar com as peculiaridades do
compilador.

2.3 PHAL

Camada de Abstração de Hardware do Periférico (Peripheral Hardware Abstraction

Layer), como o próprio nome diz, abstrai especificidades da arquitetura dos periféricos
do microcontrolador e permite que as camadas superiores sejam independentes do
hardware. Este conceito já é bem difundido no campo de sistemas operacionais
[9][10][11].

 O motivo de a camada PHAL ser separada da camada PADL é que um mesmo
periférico pode ter mais de uma abstração de hardware. Um exemplo é a UART1 do
microcontrolador LPC2368 [12]. Esta UART (Universal Asynchronous Receiver

Transmitter) possui todas as funcionalidades das outras UARTs e mais a funcionalidade
de controle de fluxo. Um componente phal_uart pode implementar todas as UARTs
deste chip, inclusive a UART1, enquanto o componente phal_modem_uart pode
contemplar as características específicas de controle de fluxo da UART1.

2.4 BADL

Camada Dependente da Arquitetura da Placa (Board Architecture Dependent Layer)
possui os módulos que permitem o acesso, através dos periféricos, aos elementos da placa
externos ao microcontrolador. Os componentes desta camada implementam o protocolo
específico para acessar determinado hardware, como por exemplo uma determinada
memória flash serial da ou um simples LED, por meio dos componentes PHAL.

2.5 BHAL

Camada de Abstração de Hardware da Placa (Board Hardware Abstraction Layer) é
análoga a PHAL, abstrai as características específicas dos componentes eletrônicos da

12th Brazilian Workshop on Real-Time and Embedded Systems 133

placa, discutidos na seção 2.4. Uma memória flash serial Atmel família AT45
badl_atmel_45_flash é encapsulada por um módulo bhal_flash_memory, que possui uma
interface genérica para todas as memórias flash.

2.6 Kernel Port

Esta camada tem o papel de garantir a portabilidade do kernel. Várias funções do kernel
utilizam rotinas que dependem da arquitetura do microcontrolador. Como muitas vezes
estas rotinas são escritas em assembly, elas dependem também do compilador. O port do
kernel tem o objetivo de abstrair esta porção que é específica a
microcontrolador/compilador [9]. Os componentes desta camada podem utilizar módulos
da camada PHAL, Target ou ainda acessar diretamente a CPU.

2.7 Kernel Core

É a essência do kernel. Todas as funções do kernel, independentes do hardware e
compilador, são implementadas nesta camada. Rotinas de criação de tarefas, troca de
contexto, entrada e saída de seção crítica e incrementação do tempo são exemplos da
infra-estrutura que o kernel fornece para os componentes da camada Service (seção 2.8),
como, por exemplo, serviço de controle de tempo (delay), serviço de semáforo e serviço
de fila, além do serviço de escalonamento.

 Já que cada kernel apresenta funcionalidades distintas, fica difícil determinar
interfaces genéricas para todos os kernels. Cada componente possui uma API diferente.
Por outro lado alguns kernels suportam interfaces padronizadas para RTOS, como
POSIX [13] e µITRON [14], o que pode aumentar a reusabilidade.

2.8 Services

Esta camada encapsula todo o acesso da aplicação à plataforma de software.
Funcionalidades como escalonamento, gerenciamento de memória, acesso a dispositivos
periféricos, storage, dentre outros, são disponibilizadas para as aplicações por meio de
componentes chamados serviços. Esta idéia baseia-se no conceito de middleware [15], na
qual um conjunto de serviços permite que múltiplos processos rodando em uma ou mais
plataformas interajam independentemente da arquitetura (interoperabilidade).

 Como foi dito, os dispositivos do sistema, sejam eles IO, comunicação,
armazenamento de dados ou outros, têm interface com a aplicação por meio de serviços,
que gerenciam o recurso de uma determinada forma (fila, semáforo,...). Se existem duas
formas diferentes de gerenciar um recurso, como uma UART, deve haver dois
componentes de serviços diferentes, um para cada tipo de gerenciamento. O projetista
que deve decidir qual serviço deve ser instanciado para gerenciar a UART da forma mais
apropriada às necessidades da aplicação.

2.9 Application

Esta camada designa os componentes que implementam as funcionalidades do sistema
embarcado. Os módulos da aplicação dependem das interfaces fornecidas (serviços
instanciados) pela camada Service, e.g. escalonamento de tarefas, mas são totalmente
independentes da arquitetura de hardware da plataforma. Para rodar um componente da
aplicação em outra plataforma basta que esta outra plataforma possua os mesmos
serviços que este componente utiliza.

134 Proceedings

3. Exemplo

Esta seção apresenta um exemplo de utilização da arquitetura proposta para o projeto de
um painel de LEDs. A plataforma de hardware é a placa MCB2300 da Keil [12]
(microcontrolador LPC2368 da NXP) com uma memória flash serial da Atmel, família
AT45 [16]. O RTOS aplicado foi o FreeRTOS [17]. O projeto de software possui 73
arquivos contendo 6553 linhas úteis de código.

 Primeiro, nós mapeamos os componentes de hardware da placa em componentes
de software. Como visto, os recursos da placa utilizados são o microcontrolador
LPC2368, uma flash e um LED. Para o primeiro, um componente da camada Target foi
instanciado. Para os outros, dois componentes da camada BHAL são instanciados. Os
módulos BHAL proveêm abstração de hardware, mas eles precisam acessar
funcionalidades específicas dos respectivos componentes eletrônicos. Portanto, os
módulos bhal_led e bhal_flash_memory são implementados, respectivamente, sobre os
módulos badl_led e badl_atmel_45_flash (implementação BADL para a memória AT45).
Os componentes da placa são conectados ao microcontrolador através de pinos que são
controlados pelos periféricos. Cada módulo BADL depende dos componentes PHAL
relacionadas a cada um dos periféricos utilizados. O módulo badl_led depende do
módulo phal_io_port, enquanto o módulo badl_flash_memory depende de phal_io_port,
bem como de phal_spi. O componente phal_spi acessa padl_spi (SPI), padl_pincon (Pin
Connect Block), padl_sysctrl (System Control Block) e padl_vic (Vectored Interrupt
Controller), todos periféricos do LPC2368. O componente phal_io_port também depende
de padl_pincon e padl_sysctrl, além de usar o módulo padl_gpio (General Purpose
Input/Output).

 O port do FreeRTOS, além de outros detalhes, utiliza o timer. Portanto, o
componente kernel_port_FreeRTOS torna-se dependente de phal_timer. Este, por sua
vez, faz uso das interfaces implementadas pelos componentes padl_timer, padl_sysctrl e
padl_vic. O componente kernel_FreeRTOS, a essência do kernel, usou a implementação
original do núcleo do FreeRTOS. Após instanciar os componentes do kernel nós criamos
os serviços necessários à aplicação. O primeiro serviço, service_led fornece um suporte
simples para acessar o LED. O acesso à memória flash é garantida por
service_lightdot_storage. O componente service_frt_panel fornece acesso ao painel de
LEDs. O serviço service_scheduling dá suporte a escalonamento baseado em prioridade
para tarefas periódicas, usando a infra-estrutura de kernel_FreeRTOS. O serviço de
tempo (service_time) é essencial para tarefas que exigem a função de delay. Daí então
criou-se a aplicação. O módulo LedTest é responsável por fazer o LED piscar. O
componente DrawPanel destina-se a exibir rolando uma mensagem lida da unidade de
armazenamento.

4. Conclusão

Atualmente há uma deficiência de modelos de arquitetura de software embarcado
apropriados para a composição de plataformas de software por meio da conexão de
componentes. Este artigo apresentou uma arquitetura para o desenvolvimento de software
embarcado visando maximizar a reusabilidade e portabilidade dos componentes de
software. Esta arquitetura proposta foi exemplificada por um projeto de um painel de
LEDs, que demonstra a implementação de componentes para cada camada.

12th Brazilian Workshop on Real-Time and Embedded Systems 135

 Pretendemos evoluir este trabalho a fim de elaborar uma padronização para o
projeto de software embarcado que permita a criação de repositórios de componentes,
como acontece com plataformas de software desktop (Java, C #,...). Dessa forma, a
construção de uma plataforma exige apenas instanciar os componentes de cada camada
do repositório correspondente.

5. Referências

[1] Hazinger, T.A. and J. Sifakis. (2006) “The Embedded Systems Design Challenge”,
In: Proc. of the 14 International Symposium on Formal Methods.

[2] The MathWorks, “Simulink - Simulation and Model-Based Design”,
www.mathworks.com/products/simulink/, 1994.

[3] Ha, S., Kim, S., Lee, C., Yi. Y., Kwon, S. and Joo, Y.-P. (2007) “PeaCE: A
hardware-software codesign environment for multimedia embedded systems”, In:
ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3,
pp. 1-25.

[4] Marcondes, H., Junior, A., Wanner, L., Cancian, R., Santos, D., and Fröhlich, A.
(2006). “EPOS: Um Sistema Operacional Portável para Sistemas Profundamente
Embarcados”. Workshop de Sistemas Operacionais.

[5] Cavalcante, S. (1997) “A Hardware-Software Codesign System for Embedded
Real-Time Applications”, PhD Thesis, Department of Electrical and Electronic
Engineering, University of Newcastle.

[6] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, B. Tabbara. (1997)
“Hardware-software co-design of embedded systems: the POLIS approach”.
Norwell, MA: Kluwer Academic Publishers.

[7] AUTOSAR GbR. (2006) AUTOSAR – Technical Overview V2.0.1.

[8] B. P. Douglass, (2002), “Real-Time Design Patterns: Robust Scalable Architecture
for Real-Time Systems”, Addison-Wesley.

[9] A. J. Massa, (2002), “Embedded Software Development with eCos”, Prentice Hall.

[10] A. Tanenbaum, (1992), “Modern Operating Systems”, Prentice Hall, Englewood
Cliffs, NJ.

[11] “Windows NT Hardware Abstraction Layer (HAL)”, Microsoft,
http://support.microsoft.com/kb/99588, (2006).

[12] Keil, “MCB2300 Evaluation Board”, www.keil.com/mcb2300/, abril/2010.

[13] D. R. Butenhof, (1997), “Programming with POSIX threads”, Addison-Wesley.

[14] µITRON4.0 Specification, (1999), ITRON Committee, TRON Association, Japan.

[15] J. M. Myerson, (2002), “The Complete Book of Middleware”, Auerbach

Publications.

[16] Atmel, “Atmel DataFlash”, www.atmel.com/products/DataFlash/, abril/2010.

[17] Real Time Engineers Ltd., “FreeRTOS”, www.freertos.org, acessado em
abril/2010.

136 Proceedings

Communication Middleware For Hospital Automation:
Send Alerts and Monitoring of Vital Signs

Cicília R. M. Leite12, Bruno G. De Araújo 1, Ricardo A. M. Valentim1, Gláucio B.
Brandão1 and Ana M. G. Guerreiro1

1Department of Computer and Automation Engineering, Federal University of Rio
Grande do Norte – 59075-750 - Natal – RN - Brazil

2 State University of Rio Grande do Norte and College of Science and Technology
Mater Christi - Departament of Computing – State University of Rio Grande do Norte

(UERN) 59.625-620 – Mossoró – RN – Brazil
{ciciliamaia,brunogomes, valetim, glaucio,anamaria}@dca.ufrn.br

Abstract. The development of middleware has emerged as an area of research.
It is expanding and is focused the integration of services available for
distributed applications. In this context, many challenges have also arisen
with the use of middleware, such as communication, flexibility, performance,
integration with the Web and the computer itself. The development of
middleware for mobile computing incorporates new challenges to developers
because of the limitations of the mobile devices. Thus, they have to
understanding the new technologies of mobile computing and middleware, in
order to integrate them. The objective of this work is to develop a context-
aware middleware and service-oriented for data management in real-time
using mobile devices.

1. Introduction
The remarkable advances in wireless communication and distributed systems, and the
popularization of mobile devices have turned mobile computing into a reality. Mobile
computing is exemplified by devices having some form of processing, such as laptops,
PDAs, cell phones, and smart sensors, among others. These devices are related if they
are connected through a wired network.
 Thus, one can see that the link between the ubiquitous devices favors, which can
be understood as the ability to participate in distributed computing regardless of where
the device is located. The differences in network connectivity, capacity and platform
resource availability can significantly affect application performance. Traditional
middleware systems such as CORBA and DCOM have been successful in dealing with
heterogeneity in hardware and software platforms that enable portability, thereby
facilitating the development of distributed applications.
 In this context, we offer appropriate support to address the dynamic aspects of
mobile systems. Modern distributed applications require middleware that is able to
adapt to environmental changes and is compatible with the level of service quality
needed. Using Java technology we developed middleware that will provide data
monitoring services, such as real time database access, and send alerts to mobile
devices. Thus, the methodology consists of two phases: theoretical and experimental.
The theoretical phase consists of reading scientific articles to understand the system,
whereas the experimental phase involves system development.
 This article is organized as follows: In Section II, we describe the related work.
In Section III, we present an overview of the proposed middleware. In Section IV, we
present middleware development, its design concept, its implementation, a case study to
validate the specific middleware, as well as experiments and results. And finally, in
Section V, concluding remarks and a discussion are given regarding future research.

12th Brazilian Workshop on Real-Time and Embedded Systems 137

2. Related Work

Continuous data stream processing, emerging as a new research field, concerns the
processing of information from sources that produce data at a fast and continuous rate.
 For example, information from sensory devices can be considered as a
continuously expanding and unlimited sequence of data items without any boundaries.
Traditionally, such information required special monitoring applications and equipment
that processed and reacted to continual inputs from several sources, such as in a weather
monitoring station, patient monitoring equipment, etc.
 Advances in electronics have contributed to an increased demand in distributed
applications that allow the use of devices with embedded processing power [4].
Examples are industrial networks that use intelligent node controlling processes.
According to Pedreiras [12], this occurs because of the trend towards decentralized
computing, currently converging to a distributed environment. The functionalities of
many processing elements will be processed and compared to centralized computing,
which encapsulates functionalities in a single processor with more processing power.
 Several studies have been conducted to address various problems faced by
industrial automation systems that can potentially be adapted and used in hospital
automation. In 1976 Nitzan and Rosen [11] foresaw that industrial automation concepts
could be automated using programmable systems such as data acquisition for process
control; signal monitoring and processing, providing cost reduction and process
optimization. These concepts have been incorporated into the medical environment,
making them feasible for use in hospital automation [2].

3. Overview of Middleware
This article presents the development of service oriented context-aware middleware for
real-time data management using mobile devices. Middleware tracks data in real time,
providing the following services: real-time access to databases from the mobile device;
constant database updating from continuous reading data acquisition devices; automatic
integration of the various Database Management Systems (DBMS), regardless of their
platforms; and the sending of alerts to mobile devices.
 After specification and analysis, a prototype will be developed and integrated
with a hospital system to detect risk-patients in order to trigger the timely intervention
of a Medical Emergency Team (MET).
 Hospital systems, highly dependent on information management, must reduce
costs and increase efficiency and agility, in addition to ensuring the readiness and
effectiveness of the procedures performed. Thus, this project will be of great importance
for public health, contributing directly to enhancing services and medical diagnoses,
thereby improving the quality of products and services provided to the population.

 3.1 System Framework
Capable robust systems are needed to effectively control large volumes of information.
Accordingly, middleware was designed with functionality for monitoring information
through real-time database queries, in addition to being able to send alerts in critical
situations defined by the user. The middleware is based on five stages, as shown in
Figure 1.
 The first stage is acquisition, responsible for obtaining the data and sending
them to a local server, which will in turn relay them to a central server; the second stage
involves pre-processing the recovered data, which will be processed by a Digital Signal
Processing (DSP) technique such as wavelet transform. In the classification stage, the
pre-processed data will be transformed to classify them according to the problem; post-
processing is where the data is formatted to be compatible with the system device and
are prepared and sent to the registered user of this device. In this stage the middleware
is capable of monitoring these data and sending alerts to pre-defined devices.

138 Proceedings

Figure 1. System Framework

Figure 2. Automatic

Configuration Service of the
Database

4. Middleware Development
The system offers access to different databases, and the idea is to automate the
processes, providing automatic database configuration. The user has only to transmit
database information (server, base, port, driver and url model), to be connected
automatically, as shown in Figure 2.
 Finally, there is a service that sends alerts when critical information is detected.
It is able to send Short Message Service (SMS) and alert messages to mobile phones
and e-mail addresses, with a predefined message from of a registered user.
 To send an SMS, the modem (port, speed, model and brand) must be configured,
as shown in Figure 3. To send one by e-mail, server configuration (SMTP, e-mail, user
and password) must be performed, as illustrated in Figure 4.
 The middleware was developed in Java using the 1.6.0-14 JDK standard library
and Eclipse 3.4 environment (Eclipse, 2009). A number of API’s and frameworks were
also used. The real-time database access was developed with temporal characteristics of
the real-time language (LC-RTDB), specified in Leite, 2009 [8].
 An automatic database configuration uses JPA, as shown in Figure 4.
Configuration of the E-mail technology (Java Persistence API) and sends alerts by
SMSLib Framework, which requires the computer to be connected to a GSM modem to
send the SMS. An internet connection is the only requirement to send an e-mail.

Figure 3. Configuration of the

Modem

Figure 4. Configuration of the E-

mail

12th Brazilian Workshop on Real-Time and Embedded Systems 139

 The same middleware specification was used for the development application.
The only difference is that the application contains no implemented business logic; it
accesses the middleware methods by using its own services.
 The middleware developed was applied to the Intensive Care Unit (ICU), where
patients require continuous monitoring of vital signs. The application aimed at early
detection of risk situations, allowing health professional intervention. This middleware
emphasizes the fast transmission to the medical staff of information regarding a
patient’s vital signs, because it allows prediagnosis when a possible risk is detected. To
achieve efficient control, a secure and robust application is required, as illustrated in
Figure 5. The middleware developed can be used for this purpose because of the
services it offers. The first stage involves registering information on physicians and all
the possible ways of sending them alerts, such as email, phone number, etc. This
represents the test of middleware services through application.
 After registration, an alert will be sent to the doctor by e-mail or SMS if any
patient condition falls outside normal limits. A periodic query is set if the patient goes
to the ICU, as illustrated in Figure 6. The monitoring screen is best viewed in Figure 7,
where the patients conditions are displayed.

 In conclusion, the main idea of the middleware tests was to satisfactorily
consolidate the functions developed, and validate the services offered through a case
study. The middleware can be used in different situations, since domestic monitoring
for critical applications shows promising potential.
 To measure the performance and efficiency of the experiment were tested by
sending several alert messages between a server and a mobile device and vice versa. We
used a computer with the following configuration Intel Core 2 Duo 2.4 Ghz, 4GB RAM,
Network Card Wireless Intel. The device was a mobile phone with wifi access. Two
tests were conducted, each on a different network.

Figure 5. Application the Mobile Communication Middleware for Hospital

Automation

To get an estimate of the total broadcasting time occurred during the message
transmission system, we use the RTT (Round Trip Time), which corresponds to the time
spent and return a message through the network. Thus, using equation (1) can perform
this calculation.

 (1)

140 Proceedings

 Thus, the time spent (Tg) of sending only corresponds to half the RTT. In the

test, several items were made and receipts of alert messages to take an average time
spent. With the outcome of this experiment, the order to have a idea of the feasibility of
using this system in a network environment. The first test was conducted in a residential
local area network using a router, 54 Mbps, with the server connected to the router via
cable. The second test was performed using a 150 Mbps network with several
computers and traffic, in which the server is connected via wireless network. In both
tests the mobile device to connect through the wireless network. The result is shown in
Table 1

Figure 6. Window of

Monitoring

Figure 7. Real-Time Periodic

Query

Table 1. Analysis of the peformance - Tests

Network TEST 01
(Milisegundos)

TEST 02
(Milisegundos)

1 2 16
2 4 14

 5. Conclusions
In this article, we sought to put forth the main concepts of middleware and mobile
computing and the mobile computing challenges facing middleware. We developed, a
service-oriented context-aware middleware for real-time data management using mobile
devices. A case study monitored medical diagnoses by sending the results presented to
validate the middleware, services and functions developed. The middleware was used in
a hospital setting.
 This work, once implemented, will help meet the demand for innovative
software and hardware required in automation systems, more specifically in hospital
automation. The results of this research project may contribute significantly to
information and communication systems in hospitals. Hospital systems are too costly
for public institutions to acquire, so our alternative was to develop an open system that
enables hospital procedure management. This project will have an important impact on
scientific and hospital automation, because it allows the development of an intelligent

12th Brazilian Workshop on Real-Time and Embedded Systems 141

system that will help not only doctors but also the entire health team to monitor and
diagnose their patients.

Acknowledgment
This work relied on the support of the Laboratory of Hospital Automation and
Bioengineering (LAHB) of the Department of Automation and Computer Engineering
of the Federal University of Rio Grande of the Norte.

References

[1] Brito, A. E. M., Brasileiro, F. V., Leite C. E., Buriti, A. C. Ethernet Communication

in Real-Time to a Netowork of Microcontrollers, Annals of XV Brazilian Conference
on Automatica (CBA 2004)-Brazil, September 2004.

[2] Brooks, J.; Brooks, L. Automation in the medical field. Engineering in Medicine and
Biology Magazine, IEEE Volume 17, Issue 4, July-Aug. 1998 Page(s):76, 81.

[3] Carreiro, F., Moraes, R., Fonseca, J. A e Vasques, F. Real-Time Communication in
Unconstrained Shared Ethernet Networks: The Virtual Token-Passing Approach,
submitted at Emerging Technologies and Factory Automation - ETFA, Catania, Italy,
2005.

[4] Dietrich, D., Sauter, T. Evolution Potentials for Fieldbus Systems. WFCS 2000,
IEEE Workshop on Factory Communication Systems. Porto, Portugal, September
2000.

[5] Dolejs, O., Smolik, P., e Hanzalek Z. On the Ethernet use for real-time publish-
subscribe based applications. In 5th IEEE International Workshop on Factory
Communication Systems, Vienna, Austria, Sep. 2004.

[6] IEEE 802.3/ISO 8802-3 - Information processing systems - Local area networks -
Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access
method and physical layer specifications, 2nd edition, 21 September 1990.

[7] Gullikson, M. L. Risk Factors, Safety, and Management of Medical Equipmet. IEEE
The Biomedical Engineering Handbook. ISBN 0-8493- 8346-3. USA, 1995.

[8] Leite, C. R. M. Linguagem de Consulta para Aplicacõoes em Tempo-Real
[dissertacão], Campina Grande: Universidade Federal de Campina Grande, 2005.

[9] Moraes, R.; Vasques, F., Real-time traffic separation in shared Ethernet networks:
simulation analysis of the h-BEB collision resolution algorithm, Embedded and Real-
Time Computing Systems and Applications, 2005. Proceedings. 11th IEEE
International Conference on, vol., no.pp. 89- 92, 17-19 Aug. 2005.

[10] Murakami, Alexandre; Gutierrez,M. A.; Lage, Silvia Helena Gelas; Rebelo,
Marina de Fátima de Sá; Ramires, José Antonio Franchini. A Continuous Glucose
Monitoring System in Critical. IEEE Computers in Cardiology, v. 32, p. 10-14, 2006.

[11] Nitzan, D.; Rosen, C.A. Programmable Industrial Automation. Transactions on
Computers. Volume C-25, Issue 12, Dec. 1976 Page(s):1259 - 1270.

[12] Pedreiras, P., Almeida, L., Gai, P. and Giorgio, B. FTTEthernet: A Flexible
Real-Time communication Protocol That Supports Dynamic QoS Management on
Ethernet-Based Systems. IEEE Transactions on Industrial Informatics, Vol. 1, No. 3,
August 2005.

[13] RFC 4541. Christensen, M., Thrane &Thran, Kimball, K. IGMP and MLD
Snooping Switches Considerations. Hewlett-Packard, May, 2006.

[14] Thomesse, J.-P. Fieldbus and interoperability Contr. Eng. Pract., vol. 7, no. 1,
pp. 81-94, 1999.

142 Proceedings

[15] Valentim, R. A. M.; Morais, A. H. F.; Brandao, G. B.; Guerreiro, A. M. G. A
performance analysis of the Ethernet nets for applications in real-time: IEEE 802.3
and 802.3 1 Q. Industrial Informatics, 2008. INDIN 2008. 6th IEEE International
Conference on 13-16 July 2008 Page(s):956 - 961. 2008.

[16] Várady, P., Benyo, Z. and Benyo, B. An open architecture patient monitoring
system using standard technologies. IEEE Transactions on Information Technologies
in Biomedicine, Vol. 6, No. 1, pp.95?98, 2002.

[17] Varshney, U. Patient monitoring using infrastructure-oriented wireless LANs.
International Journal of Electronic Healthcare, Volume 2, Number 2 / 2006, 149-163,
2006.

[18] Viegas, R. Valentim, R. A. M. Texeira, D. G. Guedes, L. A. Performance
Measurements of Protocols to Ethernet Real-Time Applications Emerging
Technologies and Factory Automation, 2006. ETFA ’06. IEEE Conference on 20-22
Sept. 2006 Page(s):1352 - 1355. 2006.

12th Brazilian Workshop on Real-Time and Embedded Systems 143

Projeto de Redes Intraveiculares Híbridas
Rodrigo Lange1, Rômulo de Oliveira1, Nestor Roqueiro1

1Departamento de Automação e Sistemas
Universidade Federal de Santa Catarina (UFSC)

Caixa Postal 476 – 88040-900 – Florianópolis – SC – Brasil

Abstract. O FlexRay é um protocolo de comunicação que tem sido fortemente
promovido como o futuro padrão de fato para sistemas automotivos de tempo
real. Entretanto, a maioria dos dispositivos como sensores e atuadores para
fins automotivos atualmente disponíveis utilizam outros protocolos como Con-
troller Area Network (CAN) e Local Interconnect Network (LIN). Caso exista
troca de informações entre dispositivos localizados em segmentos de redes que
utilizam protocolos diferentes, será necessário um gateway entre estes segmen-
tos. Este artigo descreve os primeiros resultados e observações de um trabalho
onde são estudados aspectos relativos ao projeto de redes veiculares que utili-
zam gateways para trocas de dados.

1. Introdução
Desde a década de 1970 tem sido observado um crescimento exponencial no número
de dispositivos eletrônicos incorporados em veículos automotores, sendo que no ano de
2004 um veículo high-end chegava a utilizar mais de 60 microprocessadores que trocavam
2.500 tipos de mensagens de dados. Uma das razões para este crescimento tecnológico
é o surgimento de novos hardwares e softwares que facilitaram a introdução de funções
cujo desenvolvimento seria oneroso ou mesmo impossível utilizando apenas componen-
tes mecânicos e hidráulicos. Neste ambiente, o Controller Area Network (CAN) tem sido
o padrão de fato com mais de 400 milhões de nodos vendidos a cada ano. Mas segundo
alguns autores, o CAN não é adequado para uso nos futuros sistemas X-By-Wire que pos-
suem características hard real-time por natureza e exigem comunicação de alta velocidade
determinística e robusta. Uma das iniciativas para atender às necessidades dessas aplica-
ções foi o desenvolvimento do protocolo FlexRay, frequentemente citado como sendo o
protocolo que vai se tornar predominante para as comunicações em sistemas automotivos
[Navet and Simonot-Lion 2008].

No entanto, atualmente a disponibilidade comercial de sensores e atuadores com
interface FlexRay é reduzida ou mesmo inexistente. Pode ser citado como um exemplo
dessa deficiência um catálogo da Bosch Motorsport [Bosch 2010], que oferece diversos
dispositivos com interfaces CAN mas nenhum com FlexRay. Um projeto em que o Flex-
Ray seja definido como principal protocolo e no qual se pretenda utilizar sensores e atu-
adores comerciais possivelmente necessitará de gateways para gerenciar a troca de dados
entre dispositivos interligados a segmentos de rede que utilizam protocolos diferentes.
Para um bom projeto de uma rede veicular, deve-se levar em consideração não apenas o
impacto destes gateways, mas também as características dos próprios protocolos, como
sua velocidade e o formato dos quadros.

Este artigo apresenta os primeiros resultados de um projeto cujo principal obje-
tivo é propor técnicas para o projeto de redes veiculares onde gateways gerenciam a troca

12th Brazilian Workshop on Real-Time and Embedded Systems 145

de dados entre dispositivos localizados em segmentos de rede que utilizam os protocolos
FlexRay e CAN. O trabalho foi motivado pelas necessidades de um projeto maior no qual
está sendo desenvolvido um veículo conceitual chamado Flue: um triciclo inclinável para
uso urbano com capacidade para dois passageiros (Figura 1). O objetivo é desenvolver
um veículo leve e que utilize sistemas X-by-Wire para melhorar as características de con-
sumo e baixa emissão de poluentes [de Souza Vieira et al. 2009]. Sendo que a literatura
indica o FlexRay para uso em sistemas X-by-Wire [Navet and Simonot-Lion 2008], este
foi escolhido como sendo o principal protocolo de comunicação do veículo. Mas devido a
dificuldade de obtenção de sensores comerciais com interface FlexRay optou-se por utili-
zar dispositivos CAN disponíveis no mercado. As leituras são enviadas para as Electronic
Control Units (ECU’s) localizadas no segmento FlexRay através de gateways, evitando
assim o esforço necessário para o desenvolvimento e validação de sensores específicos.

Front
Wheels

Figura 1: Ilustração do veículo conceitual [de Souza Vieira et al. 2009]

2. FlexRay

O FlexRay é um protocolo desenvolvido por um consórcio de diversos fabricantes com
o objetivo de suceder ao CAN em aplicações que exigem determinismo, sincronização,
largura de banda e confiabilidade, tais como sistemas X-by-Wire.

O controle de acesso ao meio (Media Access Control, MAC) do FlexRay é ba-
seado em um ciclo de comunicação periódico com duração predefinida Tbus. Um ciclo
do FlexRay contém um Segmento Estático (Static Segment, ST), um Segmento Dinâ-
mico (Dynamic Segment, DYN) e dois segmentos de protocolo Network Idle Time (NIT)
e Symbol Window (SW). Tanto o ST como o DYN são compostos por vários slots de
tempo, controlados por contadores exclusivos. Durante a fase de projeto é atribuído um
identificador FrameID para cada mensagem que pode ser transmitida em um cluster.
Em um dado slot ST ou DYN apenas um nodo é autorizado a enviar dados para o barra-
mento, e esse é o nodo que contém a mensagem com o identificador igual ao valor atual
do contador de slots. A Figura 2 ilustra um ciclo de comunicação FlexRay.

Um ciclo de comunicação FlexRay sempre contém um ST. Dentro do ST a ar-
bitragem das mensagens é feita através do Time Division Multiple Access (TDMA). O
ST contém um número configurável de slots estáticos, sendo que todos têm uma duração
idêntica. Se uma mensagem não estiver pronta no início de seu slot, este permanece vazio
e nenhuma outra mensagem pode ser enviada [FlexRay 2005].

Assim como no ST, o DYN tem tamanho fixo e é dividido em slots, sendo os iden-
tificadores dos slots atribuídos aos nodos da rede. No entanto, a coordenação de trans-
missão utiliza um método mais flexível, chamado por alguns autores de Flexible TDMA
(FTDMA). Neste método, o DYN é dividido em minislots (MS) que possuem tamanho

146 Proceedings

Mb MdMaC3A1 B2

Slot

t(b)

Tbus

1 2 3

Static Segment Dynamic Segment

1 2 3 4

M
S

0 0

M
T
S

Sw
in

N
IT

1 2 3

Static Segment Dynamic Segment

1 2

M
S

M
S

3 4 5 6 7 8 9 10

M
S

11

M
S

M
S

M
S

M
S

M
S

M
S

0 0

M
T
S

S
w

in

N
IT

Tbus

Slot

t(a)

Tbus

1 2 3

Static Segment Dynamic Segment

1 2

M
S

M
S

3 4

M
S

M
S

5 6

M
S

M
S

7 8

M
S

M
S

9 10

M
S

M
S

11

M
S

12

M
S

13

M
S

14

M
S

15

M
S

16

M
S

17

M
S

18

M
S

19

M
S

20

M
S

0 0

Sw
in

N
IT

1 2 3

Static Segment Dynamic Segment

1 2

M
S

M
S

3 4

M
S

M
S

5 6

M
S

M
S

7 8

M
S

M
S

9 10

M
S

M
S

11

M
S

12

M
S

13

M
S

14

M
S

15

M
S

16

M
S

17

M
S

18

M
S

19

M
S

20

M
S

0 0

S
w

in

N
IT

Tbus

Mc Me

Figura 2: Ciclo de Comunicação FlexRay [Pop et al. 2008]

igual. Assim como no ST, é atribuído um identificador para cada mensagem, e este iden-
tificador reflete a prioridade da mensagem. O comprimento de uma mensagem dinâmica
pode ser arbitrário mas esta deve caber dentro do DYN. No início de um segmento di-
nâmico, é permitida a transmissão da mensagem de maior prioridade. Se a mensagem
não estiver pronta no início do seu slot um quadro vazio com o tamanho de um MS é
transmitido. Após a transmissão o acesso é dado para a próxima mensagem, que é envi-
ada se estiver pronta e se couber na parte restante do segmento DYN. Caso contrário, é
enviado um quadro vazio com tamanho de um MS. Este processo é repetido para todas as
mensagens, ou até o fim do segmento DYN.

Na Figura 2.b o comportamento do FlexRay é exemplificado. As mensagens A1,
B2 eC3 são alocadas no ST, eMa,Mb,Mc,Md,Me são alocadas no DYN. Em primeiro
lugar, considere-se o comportamento do ST. No primeiro ciclo A1 e C3 são enviadas. No
segundo ciclo, B2 (que por algum motivo não estava pronta no primeiro ciclo) é enviada.
Considerando-se o DYN, no primeiro ciclo são enviadasMa eMb. ParaMc não existe o
número necessário de MS, de forma que esta é postergada para o ciclo seguinte e apenas
um MS é utilizado. A mensagem Md é enviada, não restando mais MS no ciclo. No
segundo ciclo, dois MS são utilizados por não existirem mensagens paraMa eMb. Mc
é enviada, outro MS é transmitido devido aMd e, por fim,Me é enviada.

Na literatura o ST é abordado entre outros em [Schmidt and Schmidt 2008b] e
[Grenier et al. 2008]. Aspectos relativos ao DYN são discutido em [Pop et al. 2008],
[Schmidt and Schmidt 2008a] e [Chokshi and Bhaduri 2010].

3. CAN
O Controller Area Network (CAN) é um barramento de rede projetado para proporcio-
nar uma comunicação simples, robusta e eficiente e é atualmente o padrão de fato para
aplicações automotivas. O CAN está presente nos diversos domínios de um veículo, com
velocidades variando de 125kbit/s até 1 Mbit/s. Cada mensagem possui um identificador
numérico cujo valor determina sua prioridade. Um quadro CAN padrão pode conter até 8
bytes de dados. Um quadro CAN padrão pode conter até 8 bytes de dados de carga útil.

Falando de forma livre, projetar uma rede CAN consiste em atribuir identifica-
dores para as mensagens e verificar se o sistema é escalonável. Um método comum de
verificar a escalonabilidade do sistema é calcular o tempo de resposta (worst-case res-
ponse time, wcrt) de cada mensagem e então comparar o wcrt com seu deadline. Um
método bem conhecido para o cálculo do wcrt de mensagens CAN é apresentado em
[Davis et al. 2007]. Já a atribuição dos identificadores pode ser feita, por exemplo, com a

12th Brazilian Workshop on Real-Time and Embedded Systems 147

implementação Ada Assign_Pri apresentada em [Burns and Wellings 2001].

4. Gateway
Dos trabalhos existentes na literatura que são relacionados a gateways para redes vei-
culares com FlexRay, pode-se citar [Da 2007] onde é abordado o projeto de gateways
seguindo o padrão AUTOSAR, [Seo et al. 2008a] e [Seo et al. 2008b], onde são repor-
tadas implementações de gateways em placas de desenvolvimento. Entretanto, nenhum
dos trabalhos citados aborda questões como análise do tempo de resposta ou de escalona-
mento.

5. Questões Relacionadas ao Projeto de Redes Veiculares com Gateways
Devido às características dos componentes presentes em uma rede veicular, existem vários
pontos e problemas que devem ser considerados no projeto de um sistema que utilize ga-
teways. Existem aspectos relacionados especificamente aos gateways, como por exemplo
os algoritmos dos softwares que precisam considerar as diferenças de quadros e velocida-
des dos protocolos, ou questões relativas ao uso de padrões como o AUTOSAR [Da 2007].
Outros aspectos dizem respeito especificamente aos sensores e atuadores. Este trabalho
não aborda questões relacionadas especificamente aos gateways ou dispositivos de forma
isolada, mas sim questões relacionadas ao projeto da rede como um todo. Apesar da lite-
ratura apresentar trabalhos que abordam todos os pontos que serão levantados aqui, pelo
nosso conhecimento não existem trabalhos que apresentem uma solução completa para o
problema.

Para um melhor entendimento dos aspectos que serão descritos abaixo, será uti-
lizada como exemplo uma rede veicular composta por um segmento FlexRay de 1Mbps
que também atua como backbone, um segmento CAN-B com velocidade de 50kbp/s e um
segmento CAN-C de 500kbp/s, todos interligados por gateways (Figura 3).

CAN-B
Segment
(50kbps)

Gateway
A

FlexRay
(1Mbps)

Gateway
B

CAN-C
Segment
(500kbps)

Figura 3: Exemplo de rede com três segmentos

Pode-se dizer que o projeto de uma rede é uma busca de definições para diversos
parâmetros, sendo que as escolhas para um dos parâmetros podem influenciar diretamente
as escolhas que poderão ser feitas para outros parâmetros. No exemplo, considere-se uma
mensagemm gerada por um dispositivo conectado ao segmento CAN-C. A mensagemm
também é utilizada por um dispositivo conectado ao segmento CAN-B. Tanto o tamanho
do ciclo FlexRay como o modo de transmissão dos dados m no FlexRay (no ST ou no
DYN) tem impacto direto na escolha da prioridade dos quadros que conterão m nos bar-
ramentos CAN, visto que estas prioridades devem ser altas o suficiente para evitar quem
perca seu deadline.

Uma opção para a definição de todos os parâmetros da rede seria através de Pro-
gramação Linear Inteira onde, obedecendo a restrições fornecidas e informações sobre
as mensagens, a resolução de uma formulação desse como resultado definições ótimas

148 Proceedings

para um sistema completo. No entanto este tipo de técnica é computacionalmente cara,
podendo ser inviável para sistemas grandes. Além disso, um sistema resultante pode ser
válido apenas para o conjunto inicial de mensagens, sendo necessária a obtenção de um
novo conjunto completo de definições mesmo para pequenas modificações. Por estes
motivos esta abordagem não será explorada.

Neste trabalho optou-se por procurar uma abordagem com custo computacional
baixo que permita a criação de sistemas mais flexíveis (que não necessitem a alteração
do sistema como um todo no caso de mudanças). Para que este objetivo seja atingido,
uma das etapas foi o levantamento de questões que podem influenciar nas definições para
os diversos parâmetros de uma rede. Até o presente momento, as questões identificadas
foram: a) Como considerar a interferência dos gateways no cálculo do wcrt de uma men-
sagem? b) É possível a formação de filas de mensagens nos gateways devido ao fato dos
segmentos possuírem velocidades diferentes? Se sim, como isso pode ser evitado? c)
Como definir os tamanhos para o ciclo e os segmentos do FlexRay, se considerada a rede
como um todo? d) Em qual segmento do FlexRay alocar uma mensagem que é origi-
nada em um dos barramentos CAN e que deve ser enviada através de um gateway? Quais
os fatores devem ser levados em conta na decisão sobre a alocação? e) Para as mensa-
gens que são transmitidas de um barramento CAN para outro, sem serem aproveitadas
por dispositivos no barramento FlexRay, vale a pena fazer algum tipo de agrupamento de
mensagens? Qual o impacto deste agrupamento?

No atual estágio deste projeto estão sendo feitos estudos sobre o uso de técnicas
de particionamento de deadlines como ferramenta para a definição dos parâmetros de
uma rede veicular. Para isso, as técnicas apresentadas em [Kao and Garcia-Molina 1997]
tem sido modificadas de forma a abranger os pontos apresentados no parágrafo anterior.
Entretanto, os estudos tem esbarrado em um problema relacionado à literatura disponível
sobre o FlexRay: até o presente momento, todos os estudos que abordam o cálculo do
wcrt de uma mensagem do DYN tem sido questionados por apresentarem abordagens que
resultam em valores ou otimistas ou muito pessimistas [Chokshi and Bhaduri 2010].

6. Resultados Experimentais
Visando ilustrar alguns dos resultados já obtidos neste trabalho, apresentamos um pe-
queno exemplo que utiliza alguns dos sensores e atuadores do projeto Flue.

Msg Descrição C T D Bus R
m1 Speed Sensor 8 10.0 10.0 CAN⇒ FR 0.0570 ms
m2 Yaw-rate Sensor 3 10.0 10.0 CAN⇒ FR 0.0544 ms
m3 Incln and Acc 8 10.0 10.0 CAN⇒ FR 0.0570 ms
m4 DataLog 1 8 20.0 20.0 CAN⇒ FR 0.0570 ms
m5 DataLog 2 6 20.0 20.0 CAN⇒ FR 0.0560 ms
m6 Left Tilt Ac. 2 5.0 5.0 FR 0.0528 ms
m7 Right Tilt Ac. 2 5.0 5.0 FR 0.0528 ms
m8 Steering Pos. 2 10.0 10.0 FR 0.0528 ms

Tabela 1: Exemplo de Sistema (C em bytes, T, D e R em ms)

Neste exemplo, sensores conectados a um barramento CAN de 50kbp/s enviam
suas leituras para dispositivos em um barramento FlexRay de 1Mbp/s. Para o cálculo do
wcrt R de cada mensagem foi utilizada a estratégia UD [Kao and Garcia-Molina 1997]

12th Brazilian Workshop on Real-Time and Embedded Systems 149

em conjunto com as equações presentes nos trabalhos citadas neste documento. Foi con-
siderado um wcrt RGW do gateway como sendo 0,1ms. Para o FlexRay, foram conside-
rados um Tbus de 5ms, um ST com 3ms e um DYN com 2ms. Todas as mensagens foram
alocadas no ST. A Tabela 1 apresenta os resultados deste exemplo.

7. Agradecimentos
Ao CNPq, CAPES e PPGEAS/UFSC pelo suporte financeiro, e ao Dr. Rodrigo Vieira e
demais membros do LI pela ajuda sobre aspectos relacionados ao triciclo.

Referências
Bosch (2010). Bosch Motorsport Catalog Edition 2010/1. Available at http://www.
bosch-motorsport.de/.

Burns, A. and Wellings, A. (2001). Real-time Systems and Programming Languages:
ADA 95, Real-time Java, and Real-time POSIX. Addison Wesley, third edition.

Chokshi, D. and Bhaduri, P. (2010). Performance Analysis of FlexRay-based Systems
Using Real-Time Calculus, Revisited. In Symposium On Applied Computing.

Da, Z. W. (2007). Performance Analysis of AUTOSAR vehicle Network Gateway. Mas-
ter’s thesis, Ireland.

Davis, R., Burns, A., Bril, R., and Lukkien, J. (2007). Controller Area Network (CAN)
Schedulability Analysis: Refuted, Revisited and Revised. Real-Time Systems.

de Souza Vieira, R., Padilha, R., Nicolazzi, L., and Roqueiro, N. (2009). Five Degrees of
Freedom Model for a Tilting Three-Wheeled Narrow Vehicle. IEEE Transactions on
Vehicular Technology.

FlexRay (2005). FlexRay Communications System Protocol Specification Version 2.1.
Available at http://www.flexray.com/.

Grenier, M., Havet, L., and Navet, N. (2008). Configuring the Communication on FlexRay
- The Case of the Static Segment. Proceedings of ERTS.

Kao, B. and Garcia-Molina, H. (1997). Deadline Assignment in a Distributed Soft Real-
Time System. IEEE Trans. Parallel Distrib. Syst.

Navet, N. and Simonot-Lion, F. (2008). Automotive Embedded Systems Handbook. CRC.
Pop, T., Pop, P., Eles, P., Peng, Z., and Andrei, A. (2008). Timing Analysis of the FlexRay
Communication Protocol. Real-Time Systems.

Schmidt, E. and Schmidt, K. (2008a). Message Scheduling for the FlexRay Protocol: The
Dynamic Segment. IEEE Transactions on Vehicular Technology.

Schmidt, K. and Schmidt, E. (2008b). Message Scheduling for the FlexRay Protocol: The
Static Segment. IEEE Transactions on Vehicular Technology.

Seo, S., Kim, J., Moon, T., Hwang, S., Kwon, K., and Jeon, J. (2008a). A Reliable
Gateway for In-vehicle Networks. Proceedings of the 17th World Congress The Inter-
national Federation of Automatic Control.

Seo, S., Moon, T., Kim, J., KIM, S., Son, C., Jeon, J., and Hwang, S. (2008b). A Gateway
System for an Automotive System: LIN, CAN, and FlexRay. 6th IEEE International
Conference on Industrial Informatics INDIN.

150 Proceedings

Método para Diminuir o Tempo de Interferência de Tarefas de
Tempo Real

Ítalo Campos de M. Silva1, Rômulo Silva de Oliveira1, Luciano Porto Barreto2

1Departamento de Automação e Sistemas – Universidade Federal de Santa Catarina (UFSC)
Caixa Postal 476 – 88040-900 – Florianópolis – SC – Brasil

2Departamento de Ciência da Computação – Universidade Federal da Bahia (UFBA)
CEP 40170-110 – Salvador – BA – Brasil

{italo,romulo}@das.ufsc.br, lportoba@ufba.br

Abstract. Real-time tasks run on Linux with PREEMPT-RT patch won best
accuracy from the use of high resolution timers. These timers are processed
through interrupts and interfering with all tasks that are running, whether real
time or not. Some of these timers are processed in hard irq unnecessarily in-
terfering with real time tasks for a longer time than necessary. This article
proposes a method to solve this problem and reduce the time of preemption of
these tasks.

Resumo. As tarefas de tempo real executadas no Linux com o patch PREEMPT-
RT ganharam melhor precisão desde a utilização dos temporizadores de alta
resolução. Estes temporizadores são processados através de interrupções, in-
terferindo em todas as tarefas que estejam executando, sejam elas de tempo
real ou não. Alguns destes temporizadores são processados em hard irq des-
necessariamente, interferindo em tarefas de tempo real por um tempo maior do
que necessário. Este artigo propõe um método para resolver este problema e
diminuir o tempo de preempção destas tarefas.

1. Introdução
O Linux vem se tornando cada vez mais popular, pois ele é um sistema operacional de
propósito geral que fornece bom desempenho, estabilidade e baixo tempo médio de res-
posta. Ele está sempre em constante evolução devido ao grande conjunto de desenvolve-
dores que estudam seu código e tentam melhorá-lo. Devido a ser um sistema operacional
de código aberto, o seu kernel pode ser estudado e alterado por qualquer pessoa, sendo
ele muito utilizado no meio acadêmico por tais motivos.

O desenvolvimento do kernel padrão do Linux não tem como prioridade supor-
tar aplicações de tempo real, mas mesmo assim ele já implementa o padrão POSIX.4
[POSIX.13 1998]. Mas para suportar de forma mais completa aplicações de tempo real,
existem patches que alteram o código do kernel padrão. Um deles e o estudado para este
artigo é o PREEMPT-RT, que tem como objetivo prover determinismo para tarefas de alta
prioridade no kernel [Molnar 2005].

Este artigo irá propor alterações no kernel do Linux com PREEMPT-RT, na tenta-
tiva de diminuir o tempo de interferência causada sobre tarefas de tempo real em determi-
nadas situações. Demonstrando através de medições e equações matemáticas o problema

12th Brazilian Workshop on Real-Time and Embedded Systems 151

existente, logo depois demonstra-se através de exemplos e equações o que deve ocorrer
com as alterações propostas.

2. Hard irq e SoftIRQ
O Linux trabalha com o conceito de chamar a atenção do processador quando necessário
através de interrupções, as quais são utilizadas para alterar o fluxo de execução normal
do sistema [Mauerer 2008]. Quando a interrupção é gerada, o processador pára tudo o
que está fazendo e executa um código responsável por tratá-la (tratador de interrupção)
em contexto de interrupção. Após esta interrupção ter sido tratada, o processador volta a
executar o que estava sendo executado.

O tratador de interrupções em geral é dividido em duas partes: Top Half (ativida-
des executadas assim que ocorre a interrupção) e Bottom Half (atividades relacionadas à
interrupção que podem ser postergadas para executarem em um momento mais oportuno)
[Love 2005]. As atividades executadas em Top Half também podem ser ditas que estão
sendo executadas em hard irq. Já a softIRQ é uma maneira de postergar trabalho dentro
do kernel, ou seja, é um dos tipos de tarefas da Bottom Half.

3. Temporizadores de Alta Resolução
O Linux utiliza-se de temporizadores para realizar muitas tarefas, como atualizar a hora
do sistema, detectar falhas de envio de pacotes pela rede, escalonar tarefas, entre outras.
Algumas destas tarefas não têm necessidade de uma grande resolução temporal, mas ou-
tras podem oferecer um serviço bem melhor dependendo da resolução temporal que o
kernel forneça a elas [Etsion et al. 2001].

No intuito de melhorar o desempenho de muitas tarefas, as quais necessitavam
de melhor precisão temporal, o subsistema de tempo do kernel do Linux foi alte-
rado, facilitando a manutenção e desenvolvimento de temporizadores, tendo também
sido desenvolvido um tipo de temporizador com alta resolução (High Resolution Timer)
[Gleixner and Niehaus 2006].

A diferença fundamental entre estes temporizadores e os já existentes (temporiza-
dores clássicos) é que estes utilizam-se de interrupções de disparo único (one-shot). Desta
forma um dispositivo de relógio é programado para gerar uma interrupção no momento
exato em que o temporizador deve expirar, sendo este dispositivo reprogramado para o
momento da próxima expiração sempre que for gerada a interrupção.

Estes temporizadores possuem um ponteiro para uma função, a qual deve exe-
cutar sempre que eles expirem. Como eles são executados através de interrupções, eles
impõem sua execução acima de qualquer tarefa que esteja sendo processada. Mas alguns
temporizadores de alta resolução não precisam ser processados em hard irq, tendo seu
processamento postergado, sendo executados através de softIRQs. Assim os temporiza-
dores de alta resolução na sua maioria aumentam de forma considerável o tempo gasto no
processamento de interrupções, garantindo que as funções ligadas a eles são processadas
no menor tempo possı́vel depois que eles expiram.

4. Descrição do Problema
Os temporizadores de alta resolução preemptam as tarefas que estão sendo executadas
no sistema por um tempo maior ou menor, dependendo da quantidade de temporizado-

152 Proceedings

res expirando ao mesmo tempo e se eles devem ser executados via hard irq ou softIRQ.
Mas ainda existem alguns temporizadores dos que são executados via hard irq que são
utilizados como sleeps por determinadas tarefas, ou seja, utilizados para acordar a tarefa
depois de um perı́odo de tempo. Através de medições realizadas no kernel do Linux,
verificou-se que o maior número de temporizadores de alta resolução são os executados
em hard IRQ, mas que não são definidos explicitamente como temporizadores de sleep,
tendo na sua maioria de execuções 475 temporizadores por segundo como pode ser veri-
ficado na figura 1. Seguido deles estão os que são definidos explicitamente como sleep,
com uma maioria de 100 temporizadores por segundo e os executados via softIRQ são
pouquı́ssimos.

Figure 1. Quantidade de HRTimers executados por segundo

Os temporizadores definidos explicitamente como sleep, tem o objetivo de retirar
uma tarefa da fila de espera do processador e colocá-la na fila de prontos, desta forma
a tarefa será escalonada pelo processador e entrará em execução assim que for possı́vel.
Mas esta tarefa que será acordada pelo temporizador possui uma prioridade, a qual é
utilizada para definir quando ela será executada pelo processador. Desta forma mesmo
ela sendo acordada pelo temporizador em hard IRQ, ela deverá esperar ser executada de
acordo com sua prioridade. Sendo assim, caso existam outras tarefas de maior prioridade
na fila de prontos, elas serão executadas antes desta tarefa. Assim acordá-la neste mo-
mento não causará nenhum benefı́cio para ela, pois ela terá de aguardar sua execução de
qualquer forma e ainda atrapalha por um tempo maior as tarefas de prioridades maiores
que a dela.

Como exemplo supõe-se três tarefas escalonadas pela polı́tica de escalonamento
para tempo real SCHED FIFO (T1, T2 e T3), as quais têm prioridades 90, 80 e 70 res-
pectivamente. Considera-se a tarefa T1 com deadline e perı́odo igual a 32 e as tarefas T2
e T3 com deadline e perı́odo igual a 30. Considera-se também o tratador de interrupção
dos temporizadores como uma tarefa de mais alta prioridade, já que executa em hard IRQ.
Então como demonstrado na figura 2, T1 começa a executar e logo após dois temporiza-
dores responsáveis por acordar T2 e T3 expiram, gerando uma interrupção no processador
que executa o tratador de interrupção, o qual preempta todas as tarefas em execução e con-
duz T2 e T3 para a fila de prontos. Depois da interrupção ser tratada as tarefas voltam a
executar de acordo com suas prioridades. Pode-se verificar na figura 2 que o tratador de
interrupção gasta um tempo considerável, justamente para acordar as tarefas T2 e T3 que
não vão poder executar ainda, preemptando de forma desnecessária T1.

12th Brazilian Workshop on Real-Time and Embedded Systems 153

Figure 2. Exemplo de como o tratador de interrupção atrapalha tarefas de alta
prioridade

Pode-se calcular o tempo que o tratador de interrupção dos temporizadores gasta,
preemptando as tarefas em execução no sistema, utilizando a equação (1).

CIRQ = CTC + CFG + CTIH (1)

Onde CIRQ é o tempo total gasto pela chamada de interrupção do processador,
CTC é o tempo gasto na troca de contexto, CFG é o tempo gasto nas funções gerais de
interrupção (como atualizar estatı́sticas e variáveis) e CTIH é o tempo gasto pelo trata-
dor de interrupção dos temporizadores de alta resolução, o qual pode ser calculado pela
equação (2).

CTIH =
n∑

i=1

(
CFT (i)

)
(2)

Onde CFT (i) é o tempo de computação da função atrelada ao temporizador i, o
qual varia bastante de acordo com o que ele executar, podendo ter vários fatores res-
ponsáveis pela variação da mesma função.

5. Abordagem Proposta

Este trabalho propõe diminuir o tempo de preempção que uma tarefa pode sofrer pelo tra-
tador de interrupções em alguns casos. Mais especificamente quando a interrupção é para
tratar temporizadores expirados e que tenham como função acordar alguma tarefa. Pois a
proposta é fazer com que as funções ligadas a estes temporizadores sejam executadas em
momentos posteriores, não atrapalhando assim as tarefas com prioridades maiores do que
a que criou o temporizador. Mas ainda assim acordar a devida tarefa no momento que ela
possa ser executada sem atrapalhar outras de prioridade maior.

Figure 3. Exemplo de como deve funcionar após a implementação

154 Proceedings

A proposta é criar uma tarefa com prioridade dinâmica, ou seja, sempre que
necessário ela terá sua prioridade modificada. Ela será responsável por executar todas
as funções ligadas aos temporizadores definidos explicitamente como sleeps. Esta tarefa
então assumirá a prioridade da outra que criou o temporizador, executando assim apenas
quando não existir nenhuma tarefa com prioridade maior. Desta forma ela acordará a
devida tarefa no momento que esta já possa executar, respeitando assim as prioridades.

Para isso ser possı́vel devem ser feitas algumas alterações no kernel do Linux,
como criar uma árvore vermelha e preta, a qual armazenará estes temporizadores pela
prioridade ligada a eles. Então em vez de processar esses temporizadores expirados em
hard IRQ, eles devem ser transferidos da árvore vermelha e preta onde são ordenados por
tempo de expiração para a árvore criada. Logo em seguida a tarefa criada para processar
estes temporizadores deve ser acordada, tendo sua prioridade alterada de acordo com os
temporizadores expirados.

Desta forma, caso haja uma tarefa T com prioridade P executando no processador
e existam n temporizadores com prioridades menores que P, as quais irão expirar antes
que a tarefa T termine de executar, esta tarefa não vai sofrer uma preempção tão grande.
Isso pode ser verificado pela alteração do cálculo da variável CTIH da equação (1) de-
monstrado pela equação (3).

CTIH =
n∑

i=1

(
CTA(i)

)
(3)

Onde CTA(i) é o tempo gasto para trocar o temporizador i de uma árvore vermelha
e preta para outra. Lembrando que o tempo para remover ou inserir um temporizador em
uma árvore vermelha e preta é log(n), mas para a árvore criada para este trabalho o n tem
um valor máximo de 100 nodos (log(100) = 2), pois os temporizadores são classificados
entre as 100 prioridades de tempo real. Desta forma o tempo para realizar esta troca varia
mais devido a quantidade de nodos na primeira árvore. Através da figura 4, pode-se
verificar que o tempo gasto para trocar o temporizador de fila é bem menor que o tempo
gasto para acordar a tarefa, como isso faz parte da proposta deste trabalho, realmente o
tempo gasto em hard irq vai ser diminuı́do.

Figure 4. Variação de tempo para acordar uma tarefa e trocar um temporizador
de árvore

12th Brazilian Workshop on Real-Time and Embedded Systems 155

Com estas alterações pretende-se diminuir o tempo em certas execuções do tra-
tador de interrupção, diminuindo assim o tempo de preempção que ele causa às tarefas.
Mas as tarefas que devem ser acordadas por estes temporizadores acabam recebendo al-
gum acréscimo no atraso de sua liberação (release jitter) como pode ser visto na figura 3.
Este acréscimo se dá porque a tarefa que já deveria estar na fila de prontos, ainda está na
fila de espera e ainda deve mudar de fila através da execução da tarefa criada para isso.
Então devido a execução desta tarefa que processará o temporizador, o atraso na liberação
deverá ser pouco incrementado.

Aplicando-se as alterações sugeridas ao exemplo da figura 2, pode-se supor que
o escalonamento deste exemplo ficaria semelhante ao exemplo da figura 3. Onde TP
é a tarefa proposta para este trabalho e durante sua execução no exemplo, ele tem sua
prioridade alterada para a prioridade da tarefa T2 e T3 respectivamente. Então através do
exemplo pode-se verificar a diminuição do tempo de preempção que a tarefa T1 sofre, já
a tarefa T2 não sofre alteração na sua execução, mas a tarefa T3 sofre um atraso maior na
sua liberação.

6. Conclusão
Neste artigo foi proposto um método de postergar a execução de alguns temporizadores
utilizados para acordar tarefas. De acordo com os cálculos apresentados neste artigo,
pode-se ter uma prévia da diminuição do tempo de preempção de algumas tarefas, onde
quanto maior a carga de temporizadores deste tipo, melhor se aplica este método, pois
diminui consideravelmente o tempo gasto no tratador de interrupção.

O próximo passo deste trabalho será realizar as alterações necessárias no kernel
do Linux, como criar a tarefa responsável por processar os temporizadores, adicionar
alguns campos na estrutura dos temporizadores de alta resolução e alterar alguns tre-
chos de código relacionado a eles. Depois testar, medir os tempos de execução, verificar
a diferença na execução entre o kernel base e o alterado e por fim validar os cálculos
baseado nos tempos da alteração realizada.

References
Etsion, Y., Tsafrir, D., and Feitelson, D. G. (2001). Effects of clock resolution on the

scheduling of real-time and interactive processes. School of Computer Science and
Engineering.

Gleixner, T. and Niehaus, D. (2006). Hrtimers and beyond: Transforming the linux time
subsystems. Proceedings of the Linux Symposium.

Love, R. (2005). Linux Kernel Development. Novell.

Mauerer, W. (2008). Professional Linux Kernel Architecture. Wiley Publishing, Inc.,
Indianapolis.

Molnar, I. (2005). PREEMPT-RT. Disponı́vel em:
http://www.kernel.org/pub/linux/kernel/projects/rt - Último acesso em: 27 fev
2010.

POSIX.13 (1998). IEEE Std. 1003.13-1998. Information Technology -Standardized Ap-
plication Environment Profile-POSIX Realtime Application Support (AEP).

156 Proceedings

Análise da Plataforma SunSPOT para Programação de
Sistemas de Controle Distribuı́do em Rede de Sensores sem Fio∗

André Cavalcante1, Rodrigo Allgayer1, Ivan Müller1, Jovani Balbinot1, Carlos E. Pereira1

1Departamento de Engenharia Elétrica – Universidade Federal do Rio Grande do Sul (UFRGS)
Av. Osvaldo Aranha, 103 – Porto Alegre/RS – Brasil

andrecavalcante@ufam.edu.br, allgayer@ece.ufrgs.br, ivan.muller@ufrgs.br,
jovani.balbinot@gmail.com, cpereira@ece.ufrgs.br

Abstract. This work presents a temporal analysis for a diferential control sys-
tem of a mobile robot in SunSPOT platform. In such system, which is pro-
grammed in Java, each part of it is executed in distinct processor device. These
devices form a wireless sensor network. The results of simulations on PC are
compared with experimental data and reveal inserted errors by the communica-
tion system and by the processing load of the platform.

Resumo. Este trabalho apresenta uma análise temporal para um sistema de
controle diferencial de um robô móvel em uma plataforma SunSPOT. Neste sis-
tema, programado em Java, cada parte é executada em dispositivos de proces-
samento distintos. Estes dispositivos formam uma rede de sensores sem fio. Os
resultados de simulações em PC são comparados com os dados experimentais
e revelam os erros introduzidos pelo sistema de comunicação e pela carga de
processamento da plataforma.

1. Introdução

Sistemas de controle distribuı́dos são desejáveis por diversas vantagens tais como o au-
mento na robustez do sistema, redundância e a migração de tarefas entre os sistemas com-
putacionais da rede [Zampieri 2008]. Também, a carga de processamento por máquina é
balanceada, não sobrecarregando somente uma máquina da rede, ao contrário de sistemas
centralizados onde o servidor pode estar sobrecarregado.

Atualmente, diversas tecnologias e protocolos de comunicação possuem ca-
pacidade de proporcionar a interligação de sistemas de forma distribuı́da, incluindo
comunicações cabeadas e comunicações sem fio. Com o avanço da comunicação sem fio,
há agora a possibilidade da utilização deste tipo de tecnologia em ambientes industriais,
reduzindo-se custos devido a não necessidade de uma estrutura fı́sica (cabos e barramen-
tos) para transmissão de dados entre os dispositivos do sistema [Kawka and Alleyne 2005,
Liu and Goldsmith 2004].

Por outro lado, a utilização de sistemas distribuı́dos demanda uma arquitetura de-
scentralizada muito dependente do comportamento do sistema de comunicação.

Este artigo analisa o desempenho de um sistema de controle distribuı́do utilizando-
se Rede de Sensores Sem Fio (RSSF). Como plataforma de desenvolvimento foi utilizado

∗Este trabalho é parcialmente financiado pelas instituições CAPES, CNPq e FAPEAM.

12th Brazilian Workshop on Real-Time and Embedded Systems 157

nodos SunSPOTs [Microsystems 2010b]. Uma API (Application Programming Interface)
que possibilita a chamada de métodos remotos também foi desenvolvida a fim de facilitar
a programação de sistemas distribuı́dos.

O texto está dividido da seguinte forma, na Seção 2, apresenta-se as caracterı́sticas
e as dificuldades que surgem na programação de sistemas de controle distribuı́dos uti-
lizando Java e SunSPOT. A seguir, na Seção 3, é descrita a API desenvolvida para
chamada de métodos remotos. Na Seção 4, é apresentada a aplicação desenvolvida para
posterior análise, e na Seção 5, os resultados obtidos. Por fim, na Seção 6, são colocadas
as conclusões finais deste trabalho e apresentados os trabalhos futuros.

2. Programação de aplicações distribuı́das
Em um ambiente industrial, é importante a realização de distribuição completa em uma
rede de sensores, isto é, que todos os nodos da rede possam acessar as respectivas
aplicações distribuı́das em todos os demais nodos, independente de qual tipo é tal nodo.
Isso significa que as aplicações que são executadas em uma rede industrial, abstraem a
própria rede, de acordo com a sua aplicação. Não é interessante para o programador ter
que criar código para tratar diferentes tipos de nodos (sensores, atuadores, repetidores,
controladores, entre outros).

Além disso é esperado que, em uma rede industrial, as aplicações e a rede ten-
ham certas caracterı́sticas, como a auto-organização, onde os nodos têm a capacidade de
organizar-se autonomamente na rede. Para realizar a auto-organização, o desenvolvedor
deve prover a rede com a capacidade de distribuição automática de endereços e portas de
comunicação, bem como a descoberta de serviços. A rede deve também ser capaz de se
comunicar com dispositivos não anteriormente planejados, desde que respeitadas algumas
interfaces padronizadas.

Uma arquitetura promissora que permite distribuição e possui um registro dos ob-
jetos (e serviços) disponı́veis na rede é o RMI (Remote Method Invocation) [Waldo 1998].
O RMI é uma interface de programação que permite a execução de chamadas remotas no
estilo RPC (Remote Procedure Call) em aplicações desenvolvidas em Java. Através da
utilização da arquitetura RMI, é possı́vel que um objeto ativo em uma máquina virtual
Java possa interagir com objetos de outras máquinas virtuais Java, independentemente da
localização dessas máquinas virtuais na rede. Dessa forma, algumas das caracterı́sticas
de RMI são desejáveis para sistemas industriais.

3. Chamadas de métodos remotos na plataforma SunSPOT
A plataforma de escolha para este trabalho foi a SunSPOT. Esta foi desenvolvida para
a programação de aplicações para rede de sensores sem fio utilizando funcionalidades
da linguagem Java. Possui sensores embarcados e um rádio de comunicação sem fio,
representados por objetos Java cujas funcionalidades são acessadas através de métodos.

Enquanto é simples e rápido o acesso aos periféricos do SunSPOT, o mesmo
apresenta algumas limitações importantes no que tange o desenvolvimento de uma
rede de sensores e atuadores completamente distribuı́dos. Por ser baseado na CLDC
1.0 [Microsystems 2010a], o SunSPOT não possui as caracterı́sticas de Java necessárias à
chamadas de métodos remotos e também não possui nenhum tipo de serialização de ob-
jetos. Porém, tais caracterı́sticas podem ser inseridas no sistema através da programação

158 Proceedings

de uma API. Com o objetivo de prover ao programador tanto a serialização quanto a
chamada remota de métodos foi desenvolvida uma API denominada mRMI (minimum
Remote Method Invocation), na tentativa da utilização de um SunSPOT em ambientes
industriais.

Assim definiu-se uma interface denominada de Externalizable. Quando ob-
jetos de uma classe necessitarem ser serializados (externalizados, no jargão do RMI),
basta que a classe implemente a interface. Assim, os objetos das classes especiais
ObjectOutputStream e ObjectInputStream podem operar sobre um objeto
que implemente Externalizable, realizando o transporte dos objetos pela rede. As
classes ObjectOutputStream e ObjectInputStream também necessitaram ser
criadas. Contudo cabe à classe que implementa Externalizable realizar a escrita
e leitura adequada de seus parâmetros a partir dos streams fornecidos. Essa abordagem
foi chamada de “manual”, porque deixa ao programador toda a carga do protocolo de
serialização.

Foi igualmente definida uma interface RemoteSever para permitir a construção
de servidores que possibilitem a recepção de chamadas remotas. No lado do cliente foi
criada uma interface RemoteStub que define o comportamento padrão para todos os
“stubs” da API. Foram criadas classes com um comportamento e protocolo padrão a fim
de minimizar os esforços de programação, contudo o programador deve ao menos con-
hecer o protocolo de rede para a utilização correta do sistema.

Como não há nenhuma implementação padrão no SunSPOT para o RMI, então não
há igualmente um registro de objetos remotos (o registry). Isto também teve de ser criado
e o gerenciamento de endereços e portas também teve de ser realizado manualmente.

4. Estudo de Caso: Simulação de um robô móvel distribuı́do
Como estudo de caso de um sistema de controle distribuı́do utilizando uma malha de con-
trole fechada, foi escolhido um robô móvel que se movimenta no plano [Lages 2008]. O
robô apresenta um acionamento diferencial que pode ser descrito pelo modelo no espaço
de estados dado pela Equação 1.

ẋ(t) =

 cos(x3) 0
sin(x3) 0

0 1

u(t) y(t) =

[
1 0 0
0 1 0

]
x(t) +

[
R cos(x3)
R sin(x3)

]
(1)

onde x(t) = [xc yc θ]
T , sendo (xc, yc) a posição do centro de massa do robô e θ a

sua orientação. u(t) = [v ω]T é a entrada do sistema, sendo v a velocidade linear e ω a
velocidade angular do robô. A saı́da do sistema é y(t), correspondendo a frente do robô
cujo diâmetro é D = 2R = 0.6m.

Para este sistema, tem-se:

ẏ(t) =

[
cos(x3) −R sin(x3)
sin(x3) R cos(x3)

] [
u1

u2

]
= L(x)u(t) (2)

e portanto, como L(x) é não singular, o sistema pode ser linearizado por realimentação
fazendo-se u = L−1(x)v, e sendo v a nova entrada do sistema linearizado e desacoplado

12th Brazilian Workshop on Real-Time and Embedded Systems 159

Ref
(200ms)

Modelo
(100ms)

Controle
(100ms)

Linearização
100ms

Robo
100ms

y(t)

[xref yref]Tym(t)

y′
m(t)

v(t)

u(t)

x(t)

Figura 1. Diagrama em blocos para a simulação do robô.

dado por ẏ(t) = v(t). Então, para controlar o sistema é utilizado um controlador por
modelo de referência com v(t) dado por:

v(t) =

[
ẏmx + α1(ymx− y1)
ẏmy + α2(ymy − y2)

]
(3)

A referência é dada por: xref (t) = 5
π

cos(0.1πt)

yref (t) =

{
5
π

sin(0.1πt) , para 0 <= t < 20
− 5
π

sin(0.1πt) , para t >= 20
(4)

O robô descrito pela Equação 1 foi simulado no SunSPOT e visa refletir o com-
portamento da frente do robô (a saı́da do sistema) dada a entrada da próxima posição
do centro de massa. A partir das equações mostradas, pode-se montar um diagrama em
blocos do sistema do robô móvel controlado, sendo este representado na Figura 1.

O sistema do robô foi separado em dois nodos distintos: o nodo Robô e o nodo
Referência. O nodo Robô executa as equações do robô dado pela Equação 1. Por outro
lado, o nodo Referência executa os demais blocos funcionais apresentados na Figura 1.

5. Resultados
Com base no estudo de caso desenvolvido na Seção 4 e a fim de que se tenha uma visão
clara da plataforma SunSPOT como nodo em uma aplicação de sistema de controle dis-
tribuı́do, algumas simulações foram realizadas com perı́odos de amostragem de 50ms,
80ms, 100ms e 200ms. Também foram realizadas simulações em que todas as threads
do sistema executam somente em um PC, ou somente no SunSPOT, ou utilizando uma
abordagem hı́brida. Como análise dos resultados, neste artigo são abordados dois casos.

No primeiro caso os nodos Robô e Referência executam em uma máquina PC.
Assim, a comunicação entre os nodos não apresenta interferência da rede fı́sica, e ainda
ocorre em uma plataforma capaz de suportar muito processamento. Na Figura 2(a) está
representada a referência gerada para o robô e, na Figura 2(b) a trajetória que o robô

160 Proceedings

(a) Sinal de referência (b) Sinal de saı́da

Figura 2. Simulação em uma plataforma PC

realiza ao ser simulado o seu modelo. As figuras representam um plano (x, y) sobre o
qual o robô se move.

Em outra situação, o nodo Robô é executado em um dispositivo SunSPOT, e o
nodo Referência é executado em uma máquina PC comunicando-se com o nodo Robô
através de rádio-frequência. O objetivo desta simulação é verificar o desempenho do
sistema e o jitter dos perı́odos de execução dos blocos funcionais em um sistema de
controle distribuı́do utilizando comunicação sem fio. Na Figura 3(a) está representada a
referência gerada para o robô executado em um PC e, na Figura 3(b), a trajetória que o
robô realiza ao ser simulado o seu modelo na plataforma SunSPOT.

(a) Sinal de referência (b) Sinal de saı́da

Figura 3. Simulação em uma plataforma SunSPOT

A análise estatı́stica para o perı́odo de amostragem, dos dois casos, está apresen-
tado na Tabela 5.

12th Brazilian Workshop on Real-Time and Embedded Systems 161

Tabela 1. Medidas estatı́sticas do jitter na simulação do robô nas plataformas.
Simulação PC Simulação SunSPOT

Perı́odo 0.100000s 0.100000s
Amostras 202 177
Mı́nimo 0.097000s 0.057000s

1o Quartil 0.099000s 0.092000s
Mediana 0.100000s 0.110000s
Máximo 0.105000s 0.180000s
Media 0.099801s 0.113744s

Desvio padrão 0.000860s 0.027153s

6. Conclusões
Comparando os gráficos da referência e aqui colocados, como era de se esperar as
simulações utilizando a rede sem-fio apresentam erros maiores. As simulações com
perı́odo de amostragem inferior a 100ms apresentam erros ainda maiores. As simulações
no PC contudo não apresentam os mesmos erros, o que mostra que a plataforma escolhida
(SunSPOT) carece de performance de processamento para este caso.

Igualmente o esforço necessário para a programação da API mRMI torna apenas
mais simples a construção da aplicação em si, contudo o cuidado com o protocolo de
comunicação ainda é relevante no esforço de programação. Portanto, verificou-se que o
SunSPOT pode ser utilizado para suportar uma API que implemente chamada de métodos
remotos, porém isto somente é possı́vel para aplicações pequenas, onde existe um número
limitado de nodos e de malhas de controle. Na mRMI, a complexidade do código aumenta
em função do número de nós e da complexidade da aplicação, sendo necessário uma
plataforma de hardware com maior capacidade de processamento para executar aplicações
mais complexas.

Como trabalho futuro está previsto o desenvolvimento de estimadores do atraso
do sistema para que o seu impacto possa ser minimizado.

Referências
Kawka, P. and Alleyne, A. (2005). Stability and feedback control of wireless networked systems.

In Proceedings of American Control Conference.

Lages, W. F. (2008). Projeto. Technical report, Universidade Federal do Rio Grande do Sul.

Liu, X. and Goldsmith, A. (2004). Wireless network design for distributed control. In Proceedings
of 43rd IEEE Conference on Decision and Control.

Microsystems, Sun (2010a). Connected Limited Device Configuration - CLDC. Sun Microsys-
tems. Disponı́vel em: <http://http://java.sun.com/products/cldc/>. Acesso em: março 2010.

Microsystems, Sun (2010b). Sun Small Programmable Object Technology - Theory of Operation.
Disponı́vel em: <http://www.sunspotworld.com/docs/index.html>. Acesso em: março 2010.

Waldo, J. (1998). Remote procedure calls and java remote method invocation. In IEEE Concur-
rency, volume 6, pages 5 – 7.

Zampieri, S. (2008). Trends in networked control systems. In Proceedings of 17th IFAC World
Congress.

162 Proceedings

Uma Proposta para Visualização Aumentada
em Tempo Real aplicada a Indústria

Danúbia Espíndola1,2, Carlos E. Pereira1, Renato V. Henriques1, Silvia S. Botelho2

1Departamento de Engenharia Elétrica – Universidade Federal do Rio Grande do Sul
(UFRGS)

Av. Osvaldo Aranha, 103 CEP: 90035-190 – Porto Alegre – RS – Brazil

2Centro de Ciências Computacionais – Universidade Federal do Rio Grande (FURG)
Av. Itália km 8 Bairro Carreiros – Rio Grande – RS - Brazil

{danubia,cpereira,rventura}@ece.ufrgs.br, silviacb@furg.br

Abstract. This paper describes a proposal to visualization, using techniques of
Augmented Reality that enable the real-time visualization of industrial
processes.

Resumo. Este artigo descreve uma proposta para visualização, através de
técnicas de Realidade Aumentada que possibilitam a visualização em tempo
real de processos industriais.

1. Motivação e objetivos
Integração no campo industrial significa atualmente “engenharia digital” e eficiente
gerenciamento da informação. Esta afirmação é evidenciada pela crescente quantidade
de sistemas digitais que surgem diariamente no campo industrial [Buccioli et al, 2006].
No entanto a falta de padrões em formatos digitais, a usabilidade da interface de
comunicação entre homem-computador e o entendimento da informação vem tornando-
se aspectos críticos com o surgimento acelerado dessas tecnologias.

Neste sentido, a complexidade de tarefas de manutenção, montagem e
desmontagens de máquinas e seus sistemas digitais são um excelente domínio para as
aplicações de Realidade Virtual, Mista e Aumentada (RV, RM e RA) [Georgel et al,
2009]. A visualização de sistemas com suporte a Realidade Aumentada representam
uma potencial solução em interfaces homem-máquina, auxiliando no fornecimento de
instruções contínuas, autônomas, em tempo real apresentadas no local certo e na hora
certa. As pesquisas apontam para a RA como uma técnica de visualização em tempo
real que pode ser fortemente aplicada ao contexto industrial [Regenbrecht et al, 2005].

A possibilidade de compartilhar e modificar dados remotamente; a interação em
tempo real com o equipamento assistido através de dispositivos de RA; são objetivos
claros da implantação de um sistema de visualização aumentada. Os ganhos com a
implantação destas tecnologias atuam diretamente nos requisitos de tempo, qualidade e
custo. Entre as possíveis aplicações de RA na indústria citam-se: projeto, colaboração,
treinamento, manufatura e manutenção [Schoenfelder et al, 2008] [Henderson et al,
2009].

12th Brazilian Workshop on Real-Time and Embedded Systems 163

Sendo assim este estudo pretende propor uma metodologia bem como uma
solução para validação de um sistema de visualização aumentada que atenda os
requisitos de tempo para aplicações industriais.

2. Contextualização e trabalhos relacionados
Este estudo irá explorar aspectos de Realidade Aumentada como forma de misturar
informações virtuais ao ambiente real da fábrica/equipamento para obtermos uma
visualização em tempo real guiada pelo computador. A união de objetos virtuais com o
cenário real da indústria, produzirá um ambiente único, sobreposto ao ambiente físico.
O uso de RA permitirá análise, interação e exploração de aspectos cognitivos, relatados
com a compreensão da informação, facilitando as tarefas de manutenção, treinamento,
operação e a tomada de decisão.

Entre os principais desafios na implantação de técnicas de RA para visualização
em tempo real, verificou-se a dificuldade na capacidade de sincronizar e alinhar num
mesmo sistema de coordenadas, o movimento da câmera, o ambiente do utilizador e os
objetos virtuais inseridos nesse ambiente. Ou seja, o alinhamento e a sincronização
entre o real e o virtual em tempo real. No entanto, a utilização da biblioteca ARToolkit
com a uso de marcadores para rastreamento apresenta bons resultados em termos de
tempo de processamento. Por outro lado, a complexidade de modelos de equipamentos
e plantas requer que a etapa de modelagem do ambiente virtual seja realizada
previamente.

Entre os principais trabalhos encontrados para visualização aumentada aplicada
a processos industriais destacam-se: o projeto ARVIKA, AMIRE, STARMATE, INT-
MANUS. Outros estudos relevantes são: STUDIESTUBE, DWARF, ARBA e AAR.

O ARVIKA (Augmented Reality für Entwicklung, Produktion und Service) é um
dos projetos de RA mais citados no estado da arte e é aplicado a indústrias de
manufatura da Alemanha, liderado pela Siemens [Friedrich et al, 2002]. Basicamente
utilizam-se capacetes virtuais (HMDs) para auxílio a operação de equipamentos da
indústria através da interação com objetos virtuais sobrepostos a cena real.

Figura 1 ARVIKA [Friedrich et al, 2002]

A utilização de HMD (Head Mounted Display) - optical see-through -
possibilita visualizar o ambiente real tendo como apoio a sobreposição de elementos
virtuais sobre a cena real, ou seja, o usuário tem como predominância a visualização do
mundo real. As informações dos sistemas digitais podem ser requisitadas por diversos
meios de interação, entre as soluções encontradas o comando de voz é uma alternativa

164 Proceedings

interessante uma vez que as mãos do usuário podem estar livres para manipulação do
ambiente.

Sendo assim, buscaram-se ferramentas de realidade aumentada que
possibilitassem a sobreposição de elementos virtuais sobre o ambiente real de forma
contínua em tempo real conforme a requisição do usuário. Para isto uma arquitetura
conceitual e uma metodologia para as etapas da modelagem à visualização foram
desenvolvidas, e serão apresentadas na próxima sessão, com intuito de descrever e
modelar a solução proposta.

3. Arquitetura e metodologia da proposta
A arquitetura conceitual ilustrada na figura 2 descreve os módulos envolvidos no
desenvolvimento de um ambiente misto para assistência contínua de operadores durante
a interação com equipamentos (ou plantas) industriais.

Figura 2 Arquitetura conceitual para a solução proposta.

Inicialmente dois módulos devem fornecer as entradas para o sistema de
visualização aumentada: Módulo dados do equipamento e Módulo CAD-RV. O
primeiro deve fornecer as informações sobre o equipamento a ser analisado. Estas
informações podem ser: gráficos 2D, sinais de sensores, informações textuais;
fornecidos por sistemas digitais de infotrônica utilizados na indústria .

O segundo, o módulo CAD-RV, deve gerar o modelo de realidade virtual a partir
de modelos CAD complexos ou simples, gerados por ferramentas DMU (Digital Mock-
Up). Da etapa de modelagem até a etapa de visualização devem ser realizados diversos
estágios, tais como: redução de complexidade (quando necessário) e conversão de
formatos.

As entradas fornecidas por estes módulos devem ser extraídas e integradas em
um Modelo Descritivo Integrado (IDM) que irá relacionar os diferentes modelos para
gerenciamento da visualização de acordo com os comandos do usuário. O modelo IDM
está sendo descrito na linguagem XML (eXtensible Markup Language), que é uma
linguagem de marcação para descrição hierarquizada de componentes.

O IDM além de descrever a integração de diferentes modelos, ou seja, relacionar
informações CAD, RV, RM e MD (modelo de dados do equipamento), gerencia a
apresentação de serviços na interface através de algoritmos de tomada de decisão

12th Brazilian Workshop on Real-Time and Embedded Systems 165

baseados nas informações armazenadas colaborativamente no banco de dados e nos
comandos do usuário.

A Figura 3 descreve a metodologia aplicada para desenvolvimento do módulo
CAD-RV. Primeiramente na etapa de modelagem faz-se a aquisição do modelo CAD.
Sendo o modelo complexo, passa-se a etapa de redução de complexidade para obter-se
um CAD simples. De posse do modelo simples pode-se então gerar um modelo RV (de
realidade virtual) através da etapa de conversão de formatos. Por fim, passa-se então a
etapa de visualização, ou seja, deve-se gerar o modelo misto, onde real e virtual
misturam-se e a geração do conteúdo virtual (gráficos 2D, 3D, guias textuais de tarefas
e etc) é agregada ao ambiente real.

Figura 3 Metodologia para implementação do Módulo CAD-RV.

Por fim, uma metodologia para implementação do modelo IDM, bem como, uma
descrição de suas funcionalidades: integração e gerenciamento da visualização, deve ser
descrita futuramente.

4. Implementação
Para implementação da arquitetura conceitual e da metodologia proposta acima foram
utilizados um conjunto de ferramentas descritos na Figura 4 abaixo. A visualização on-
line é quando o conteúdo virtual é gerado automaticamente sobrepondo na cena mista às
solicitações do operador e as leituras dos sistemas digitais (tais como: sistemas de
automação, sistemas de manutenção, sistemas de manufatura). Foram utilizados: Visual
Studio - C++ e as bibliotecas gráficas de Realidade Aumentada (ARToolkit), áudio
(OPENAL) e renderização (OPENGL).

A possibilidade de visualizar em tempo real objetos virtuais misturados ao
ambiente real de fábrica, deu-se principalmente pela excelente rapidez de
processamento da biblioteca gráfica ARToolkit. Esta biblioteca com suporte a
linguagem Java e C++, possui alta velocidade devido a sua boa integração com
processadores de multimídia MMX da Intel. Sendo assim, a escolha pela utilização da
ARToolkit deu-se devido a sua possibilidade de captura, rastreamento e sobreposição
em um tempo de resposta que atende aos requisitos de operações específicas de
montagem e manutenção industrial onde a seqüência de visualizações é feita por
demanda e não automaticamente.

Por outro lado, a visualização off-line consiste nas visualizações que não são
geradas de maneira autônoma pelo sistema, e sim, geradas anteriormente e armazenadas

166 Proceedings

no banco para posterior utilização. Cabe salientar que a idéia é automatizar o processo
de visualização aumentada através da descrição XML, do modelo IDM, de forma a
tornar este processo independente de plataformas e ferramentas.

Figura 4 Arquitetura de software utilizada para validação.

A ferramenta Vizup foi utilizada para redução de complexidade do modelo CAD
do Atuador CRS. Através da Solidworks importou-se o modelo CAD para conversão
em modelo VRML (Virtual Reality Modeling Language) – modelo de realidade virtual.
Outra possibilidade de formato para modelos virtuais é o X3D que deverá ser testado
futuramente.

O sistema digital que forneceu informações a respeito do Atuador CRS foi o
Watchdog Agent [Djurdjanovic et al, 2003]. Este sistema, denominado sistema de
manutenção inteligente IMS system, é utilizado na manutenção preditiva de
equipamentos críticos da indústria e pode ser observado na Figura 5 b.

Figura 5 Integração de diferentes dados (esq); Experimento em laboratório

(dir).

A figura 5 a esquerda representa a integração de diferentes modelos relacionados
através de marcadores de realidade aumentada (etiquetas impressas no ambiente real).
Nesta figura podem ser visualizados o equipamento virtual (modelo virtual), o
equipamento real, os gráficos 2D adquiridos do sistema IMS (Watchdog Agent) e os
três marcadores no atuador real.

5. Resultados e conclusões
Este trabalho apresentou um estudo sobre a integração de sistemas digitais da indústria
em ambientes de visualização aumentada para aquisição da informação em tempo real
durante as operações em chão de fábrica. De forma mais precisa, foi apresentado um

12th Brazilian Workshop on Real-Time and Embedded Systems 167

estudo de caso simulado em laboratório, para visualização aumentada de informações
oriundas de um sistema de manutenção preditiva de uma válvula utilizada na indústria
de petróleo e gás.

Após a identificação das limitações, restrições e necessidades associados a
proposta foram descritos duas etapas para implementação: arquitetura conceitual e uma
metodologia para o módulo CAD-RV da arquitetura. Estas etapas pretendem descrever
procedimentos para visualização aumentada que integram as diferentes informações e
modelos existentes. Ressalta-se que atualmente não existem ferramentas que, de forma
integrada, realizem tais procedimentos.

Para o estudo de caso apresentado a ARToolkit atendeu aos requisitos temporais
de 14 frames/segundo (em média) na solicitação das informações do Atuador CRS pelo
usuário. A utilização de marcadores para o rastreamento de objetos virtuais apresentou
bons resultados de tempo para ambientes simulados, estáticos e com baixo ruído. No
entanto, a necessidade de validação em ambientes de baixa iluminação, reais e
dinâmicos faz-se necessária.

Finalmente, além da conclusão das etapas de extração e de descrição da
integração no modelo IDM, estabelecem-se a necessidade de avaliar o uso de outros
sistemas digitais da indústria.

Referências
Buccioli, A., Bastos, A., Zorzal, E., Kirner, C. (2006) “Usando Realidade Virtual e

Aumentada na Visualização da Simulação de Sistemas de Automação Industrial” In:
SVR2006 - VIII Symposium on Virtual Reality, 2006, Belém-PA, 2006.

Djurdjanovic D., Lee J. And Ni J. (2003). Watchdog Agent, an infotronics-based
prognostics approach for product performance degradation assessment and
prediction. In Advanced Engineering Informatics, 2003 - Elsevier: pp. 109–25.

Friedrich W., Jahn D., Schmidt L., (2002), ARVIKA – Augmented Reality for
Development, Production and Service, In Proceedings of the International
Symposium on Mixed and Augmented Reality (ISMAR’02) pp.3-4.

Georgel, P., Schroeder, P., and Navab, N. (2009) “Navigation Tools for Augmented
CAD Viewing” in IEEE Computer Graphics and Applications.

Regenbrecht H., Baratoff G. And Wilke W., (2005). Augmented Reality Projects in the
Automotive and Aerospace Industries, Published by the IEEE Computer Society,
IEEE.

Schoenfelder, R. and Schmalstieg, D. (2008) “Augmented Reality for Industrial
Building Acceptance”, IEEE Virtual Reality 2008.

Henderson, S. and Feiner, S. (2009) “Evaluating the Benefits of Augmented Reality for
Task Localization in Maintenance of an Armored Personnel Carrier Turret” in IEEE
International Symposium on Mixed and Augmented Reality 2009 Science and
Technology Proceedings.

168 Proceedings

Slow Down or Race to Halt: Towards Managing Complexity of
Real-Time Energy Management Decisions ∗

Stefan M. Petters Muhammad Ali Awan

1CISTER
ISEP-IPP

Porto – Portugal

{smp,maan}@isep.ipp.pt

Abstract. Existing work in the context of energy management for real-time sys-
tems often ignores the substantial cost of making DVFS and sleep state decisions
in terms of time and energy and/or assume very simple models. Within this pa-
per we attempt to explore the parameter space for such decisions and possible
constraints faced.

1. Introduction

Currently we observe a number of trends in the way embedded systems and in particular
embedded real-time systems are deployed. Firstly, such systems have become ubiquitous
and we become increasingly dependent on them. The computing capability of the process-
ing cores is increasing at a dramatic pace leading to the change towards multi-functional
and multi-criticality devices, where hard real-time and best-effort tasks share resources.
Finally, while traditionally embedded systems were isolated single purpose devices, they
have become often networked and/or mobile.

In particular mobile devices have inherently limited energy supply in terms of bat-
teries. Also tightly packed multicore systems have increasingly thermal issues. In the past
we have developed a method to accurately predict time and energy consumption under dy-
namic frequency and voltage scaling (DFVS) based on online measurements [Snowdon
et al. 2007, Lawitzky et al. 2008, Snowdon et al. 2009]. However, a fundamental chal-
lenge is the substantial search space for online decision making. For example, our imple-
mentation [Lawitzky et al. 2008] of using DVFS in a RBED [Brandt et al. 2003] required
14 multiplications and eight additions per frequency set-point, leading for 22 set points
available in our XScale [XScale 2004] platform to a maximum observed of 26,000 cycles.
Our observations also indicated frequency and voltage scaling times of 500 to 600 µs.

On the other hand it has been shown that models used in theoretical DVFS work on
real-time systems are substantially off the mark. This covers the following assumptions:
The power model, where the power consumption is solely dependent on frequency and
voltage as given in Equation 1 does not take application dependencies into account.

P ∝ fV 2 (1)
C = c ∗ f (2)

∗This work was supported by CISTER FCT-608 and CooperatES QoS-Aware Cooperative Embedded
Systems PTDC/EIA/71624/2006

12th Brazilian Workshop on Real-Time and Embedded Systems 169

A constant number of cycles required to execute a task as provided in Equation 2 does not
take into account the number of wait states on external devices like main memory, which
changes when the core frequency is changed. Frequency switch costs are frequently con-
sidered negligible in terms of time and energy, which it is clearly not. Often frequency
and voltage is considered continuously scalable, while it in fact only changeable in dis-
crete steps. In particular frequency is often only coarsely scalable for higher frequency
set-points, which lower frequency set points can be site on a finer granularity. Individ-
ual issues have been tackled in mostly academic work, but a comprehensive approach
taking all these factors into account is outstanding. For example, [Aydin et al. 2006]
used a non constant number of execution cycles by considering an off-chip and an on-
chip component of the execution time, but did not consider the overhead of transitioning
into a different frequency set point and using an evaluation by simulation the problem
is not exposed. [Cheng and Goddard 2005] used discrete frequencies, but a application
independent power consumption, as well as assuming negligible voltage and frequency
switch cost.

The problem is acerbated when sleep states are considered. The number of differ-
ent sleep states available is processor dependent. This reaches from a simple clock gating,
where the CPU core is separated from the system clock, to deep sleep states, which power
off substantial parts of the chip. The former is available instantaneous (within a CPU core
clock cycle), while the latter requires substantial time and energy to get into and out off.

Within this work we will identify all the parameters to be considered to make
energy efficient frequency decisions in a real-time context, as well as looking into ways
to reduce the search space for such decisions. In the following section we will introduce
our system model before discussing implications for DVFS and sleep state decision taking
on a static basis and taking knowledge about system dynamic slack into account.

2. System Model
In terms of power management models we draw on our previous work [Snowdon et al.
2007], with a few generalizations. While it is not essential for the discussion to use these
models, they give an overall sense of the complexity of the task faced.

The worst-case execution time (WCET) of a task under DVFS is subject to vari-
ous components. Some time is spent actively performing computations in the CPU core,
some time is spent waiting for access to a bus, another part is contributed by the response
time of memory, which can be changed by modifying the memory frequency, some time
is spent waiting for I/O devices and so forth. Assuming all of these are subject to indi-
vidual frequency settings, we get an overall execution time C being a function of various
application dependent coefficients Ccoeff .

C =
Ccpu

fcpu

+
Cbus

fbus

+
Cmem

fmem

+ . . . (3)

In the original work, we have identified the coefficients using measurements of certain
hardware events, but for generality sake we limit ourselves to identify the makeup of
the base equations. Throughout the paper we assume Ci to be the execution time at top
speed in the understanding that for DVFS considerations the actual C(f) of the frequency
setpoint f has to be considered.

170 Proceedings

The energy consumed by a task on a given execution path is also subject to var-
ious components as identified in Equation 4. The first component is the energy spent
in the CPU core with the core voltage squared. In relation to the XScale processor the
circuitry in the CPU core is switched with 3 different frequencies and essentially covers
the switching cost of the clock circuitry. The execution time dependence is encoded in
the multiplication of C, but beyond that the coefficients γx are only architecture and not
application dependent. Certain operations are dependent on the core voltage, but not on
the CPU core frequency. An example is a multiplication function, where the same number
of transistors switches irrespective of the core frequency.

Certain other operations are independent of the core voltage and frequency. An
example could be a DMA packet transfer to the network interface, which will have a
memory frequency dependent and a memory frequency independent part. The memory
frequency independent part might still be subject to a specific frequency, for example
internal to the network interface, which might not be scalable. Similar the voltage of the
memory would be part of the coefficients. In Equation 4 this is encoded in the parameters
α and β respectively. As final components are the static power consumption Pstatic and
the memory is subject to switching over the time C. Again the voltage of the memory is
considered immutable and is part of the coefficient γ4.

E = V 2
cpu(γ1fcpu + γ2fbus + γ3fmem) ∗ C + V 2

cpuα + β + γ4fmemC + PstaticC (4)

We have shown [Snowdon et al. 2007, Lawitzky et al. 2008] how the parameters can
be obtained runtime. In later work [Snowdon et al. 2009] we have demonstrated an
approximation scheme for non RT systems, but this is concentrating on managing the
performance to battery life trade-off with no consideration for RT systems. We assume a
number of sleep states, which have monotonically increased power reduction, as well as
monotonically increased time required to enter ts and leave tw the respective state.

Beyond the model for the power management aspects we also assume a sporadic
task model with x independent tasks in which the minimum inter-arrival time Ti of a task
τi is known. We assume form of temporal isolation, which may be achieved using con-
stant bandwidth servers (CBS) [Abeni and Buttazzo 1998] or RBED [Brandt et al. 2003].
Slack is caused by the difference in worst-case assumption used during analysis and ac-
tual behavior at run-time. In later section we assume slack management as an important
tool. It identifies the room to maneuver for power management in rate based real-time
environments [Lin and Brandt 2005, Lawitzky et al. 2008]. For ease of representation
we also assume implicit deadline model, where a job has to be completed before a new
release is initiated.

3. Static Decision Taking
The least costly decision base is to statically assign frequencies and/or sleep states per
task to be performed at start or on completion of the execution respectively. Generally
speaking we have to consider the following scenarios: In a race to halt solution tasks are
executed as fast as possible and the CPU is sent to a sleep state on conclusion of a job of
the task. Alternatively a task may be subjected to DVFS to consume less execution time.

In a first step we rule out sleep states which lead to a potential violation of a
deadline even when considering only a single task. This can be motivated by a job re-
lease of a task being triggered just after a transition into a given sleep state has been

12th Brazilian Workshop on Real-Time and Embedded Systems 171

initiated. Once initiated the transition into the sleep state has to be completed, be-
fore a wakeup is triggered by the ISR corresponding to the task release. This implies
a blocking time of up to tsn + twn for sleep state n. Since it does not matter which
task has initiated the sleep state transition we can used the rule expressed in Equa-
tion 5 to express this. Any sleep state violating Equation 5 may not be used, as it may
cause a deadline miss regardless of scheduling algorithm or schedulability analysis used.

min((T1 − C1), . . . , (Tx − Cx)) ≤ tsn + twn (5)

In a second step we examine whether it is economical to use such a measure. One
observation in this context is that all tasks in the system have to follow the same rule, as
to which sleep states are economical. This is caused by the general assumption that while
one task initiates a sleep state, the processor may be transitioned into the waking state by
any other task as we do not assume in this section any knowledge of past releases of any
given task.

As such we compute the average expected idle time Ḡ produced by the system. Let
l denote the hyper period and ri represents release time per task τi as given in equations
Equation 6, Equation 7 respectively. During a hyper period l of the average-case inter-
arrival time’s T̄j of all tasks we have a total of ri releases per task τi. We also need to
compute how many releases of tasks will happen while another task is executing, as this
means that the previous job completion will not lead to a transition into a sleep state.

l = lcm(T̄1, . . . , T̄x) (6)

ri =
l

T̄i

(7)

pi =

∑
∀j∈{0,...,x}\i rj ∗ C̄j

l
(8)

r∗i = (1− pi) ∗ ri (9)

As such we expect r∗i to be the number of releases of τi which happen dur-
ing idle intervals. Equation 9 determines the r∗i . Where pi given by Equation 8
compute the probability of one release of τi happening while any other task is ex-
ecuting.. The number of idle time task releases r∗i will be a real number. How-
ever, for the average idle time computation this is of no concern. Now Ḡ can
be computed by Equation 10 where C̄i denotes the average-case execution time.
In this we assume to get approximately

∑x
0 r
∗
i transitions into a given sleep state.

Ḡ =
l −

∑x
0 ri ∗ C̄i∑x
0 r
∗
i

(10)

In order to check on the economic switching to sleep states we need to consider
the break even time ten of a sleep state. As the transitions into and out of a sleep state do
not produce progress in the computation, but consume energy and time, the system needs
to spend at least the break even time in that state.

The break even time can be estimated using the energy quantum to transition into
and out of the sleep state Es

n, Ew
n , the power consumed while in a given sleep state

Pn, and the idle power consumption of the system Pidle. Here Equation 11 quantify
the energy of sleep states along with energy of switching cost. Now a valid sleep state
which saves on energy when switching to this sleep state needs to satisfy Equation 12.

Pidle ∗ (ten + tsn + twn) = Es
n + Ew

n + ten ∗ Pn (11)
Ḡ ≤ tsn + twn + ten (12)

172 Proceedings

Additionally, the energy consumption of the system needs to be checked against
the energy consumption under DVFS, as well as against the general schedulability test
used in the system. For the latter only the switching time required to enter and leave sleep
states need to be considered.

4. Slack Management

In this section we assume that online slack information is available. In general we only
assume the difference between WCET and actual execution time is known, while the slack
caused by sporadic release of tasks is much harder to identify at runtime. A particular
concern is that tasks may obtain slack after being preempted and thus already having
some of their execution completed. This is of relevance as it adds another dimension in
the decision space. In this section we will not assume that the previous release times of
all other tasks is known and considered.

Similar to the previous section we assume that infeasible sleep states, which fail
to guarantee that all deadlines are met because of the extensive transition time, have been
removed. Opposed to the previous section, where a global decision on whether to scale
or sleep can be taken, the system has more degrees of freedom for this. We assume the
amount of slack passed to as task τi from previous tasks is labeled S. We will first discuss
the scenario where a task receives S at release time and there are no other tasks in the
ready queue. In this scenario the DVFS solution has to be computed using this S. In
order to avoid the costly computation of the optimal frequency setpoint, which has to take
into account the switching overhead etc, we assume this can be obtained with a number
of comparisons S against pre-computed values, deciding on the frequency setpoint to
be used. Furthermore the number of setpoints can likely be reduced, depending on the
type of application. In our example hardware platform, a memory intensive application
will use generally higher memory and bus frequencies when compared to a CPU bound
application.

In the case of sleep modes, the algorithm can not only consider the slack being
passed in, but also the expected slack generated by the task in question, (Ci − C̄i) or
even the average idle time Ḡ generated in the previous section. Since the expected slack
generated by the task is not changing we can consider that as a constant in the trade-off
between DVFS and using sleep modes.

When slack is passed in after preemption by a higher priority task we have to
distinguish two scenarios. If the previous decision was to opt for a race to halt than the
situation got actually more in favor of continuing the approach. However, if the previous
decision was to opt for DVFS than the situation needs to be reassessed. In a first approxi-
mation the same trade off rules as used in the previous case may be used, ignoring any but
the slack passed in after the preemption. When keeping track of the amount of execution
completed it may happen that the actual execution time used so far is already more than
the average-case execution time C̄i has been executed in which case the trade-off would
be more tuned towards DVFS.

In the case where there are more tasks in the ready queue, the situation becomes
slightly more complicated. In this case we see the following possible scenarios. Estab-
lishing from the tasks in the ready queue the cumulative average-case slack generated by
the tasks can be used to drive the decision. It is a fairly minimal extra effort, as the ex-

12th Brazilian Workshop on Real-Time and Embedded Systems 173

pected slack to be generated is inserted and removed, the same way a task is added and
removed from the ready queue.

Another approach we envisage is to keep track of the number of jobs executed
without any idle interval to reason about the expected idle interval after all jobs in the
ready queue have been completed. The reasoning for this behavior is that the presence
of many jobs executed in succession indicates that the next releases of the corresponding
tasks will only happen at a later time. Note, that this is only a heuristic, which does not
require to keep track of exact points of jobs releases in the past. However the exploration
of these issues is future work.

5. Conclusion
In this paper we have explored a number of parameters that we need to consider for energy
efficient DVFS and sleep states decision in a real-time context. Our proposed approach
aims to reduce the design space for making such decision and lighten the runtime over-
head for making energy efficient decisions. Future research will tackle work in the area of
online DVFS and sleep state decisions and possible heuristics which allow for an efficient
trade-off between the two. In particular we will explore how more information about
past releases of tasks can be incorporated without causing prohibitive decision making
overhead. Furthermore we will explore the impact the proposed methods will have on
schedulability analysis methods.

References
Abeni, L. and Buttazzo, G. (1998). Integrating multimedia applications in hard real-time systems.

In 19th RTSS, pages 4–13.

Aydin, H., Devadas, V., and Zhu, D. (2006). System-level energy management for periodic real-
time tasks. In 27th RTSS, pages 313–322, Rio de Janeiro, Brazil. Comp. Soc. Press.

Brandt, S. A., Banachowski, S., Lin, C., and Bisson, T. (2003). Dynamic integrated scheduling of
hard real-time, soft real-time and non-real-time processes. In 24th RTSS, Cancun, Mexico.

Cheng, H. and Goddard, S. (2005). Integrated device scheduling and processor voltage scaling for
system-wide energy conservation. In 2005 WS Power Aware Real-time Comput.

Lawitzky, M. P., Snowdon, D. C., and Petters, S. M. (2008). Integrating real time and power
management in a real system. In 4th OSPERT, Prague, Czech Republic.

Lin, C. and Brandt, S. A. (2005). Improving soft real-time performance through better slack
management. In 26th RTSS, Miami, FL, USA.

Snowdon, D. C., Le Sueur, E., Petters, S. M., and Heiser, G. (2009). Koala: A platform for
OS-level power management. In 4th EuroSys Conf., Nuremberg, Germany.

Snowdon, D. C., Petters, S. M., and Heiser, G. (2007). Accurate on-line prediction of processor
and memory energy usage under voltage scaling. In 7th EMSOFT, pages 84–93, Salzburg,
Austria.

XScale (2004). Intel PXA 255 Processor Developer’s Manual. Intel Corp. URL http://www.
xscale-freak.com/XSDoc/PXA255/27869302.pdf.

174 Proceedings

The Effects of Initial Offset and Clock Drift Errors on Clock

Synchronization of Networked Control Systems

Eloy M. Oliveira Junior
1
, Marcelo L. O. Souza

1

1
Space Mechanics and Control Division (DMC)

National Institute for Space Research (INPE) – São José dos Campos, SP – Brazil

eloy@dem.inpe.br, marcelo@dem.inpe.br

Abstract. Control systems of satellites, aircrafts, automobiles, traffic controls, etc., are

becoming increasingly complex and/or highly integrated due to their use of computers

networked via communication devices and protocols working in real time. In these

systems, the time requirements should be followed strictly, with great precision and

synchronization; otherwise the controls degrade until instability. This paper analyzes

the effects of initial offset and clock drifts errors on clock synchronization of Networked

Control Systems (NCS). To do so, it simulates a typical NCS in the TrueTime/Matlab/

Simulink environment using a FTM correction algorithm and a TDMA communication

protocol. The preliminary results suggests that: 1) the TDMA protocol is more

susceptible to errors in the initial offset than to errors in the clock drift; 2) the FTM

algorithm corrects the clock drift error better than the initial offset error; 3) In a NCS

with a TDMA protocol, a fault in the time management can turn the control laws

temporarily unstable.

1. Introduction

Control systems of satellites, aircrafts, automobiles, traffic controls, etc., are becoming

increasingly complex and/or highly integrated as defined by the SAE-ARP-4754

Standard. Such systems use, among other key technologies, computers networked via

communications devices and protocols working in real time to form Networked Control

Systems (NCS). In these systems, the time requirements should be followed strictly, with

great precision and synchronization; otherwise the controls degrade until instability. This

creates the need to work with high-precision clocks corrected by periodical algorithms to

achieve a good time management.

This paper analyzes the effects of initial offset and clock drifts errors on clock

synchronization of Networked Control Systems (NCS). To do so, it simulates a typical

NCS in the TrueTime/Matlab/Simulink environment using a Fault-Tolerant Mid-Point

(FTM) correction algorithm and a Time Division Multiple Access (TDMA)

communication protocol. In the first simulation, one of the nodes of a NCS is with an

initial offset error in its clock. The initial offset error generates an initial delay that affects

the clock synchronization with the FTM algorithm, and then, the communication and

control. In the second simulation, one of the nodes of a NCS is with a drift error in its

clock. The drift error generates a delay that affects the computing, communication and

control. The objective is to analyze: 1) how the TDMA protocol is affected by such

errors; 2) the efficiency of the FTM algorithm in correcting such errors; 3) how the NCS

is affected by such errors.

12th Brazilian Workshop on Real-Time and Embedded Systems 175

The FTM algorithm is fault tolerant: each node reads the value of the clock of the other

nodes in the network and estimates the drift of the clocks by a convergence function. In

this paper, two control loops sharing the same databus in a network were simulated.

Each control loop has a sensor, a controller and an actuator/plant. The nodes of the

control loops use the FTM algorithm to synchronize the clocks of the nodes on the

network. We used a TDMA communication protocol. The plant used is an

electrical/hydraulic actuator of second order controlled by a Proportional, Integrative,

and Derivative (PID) controller. We simulated it using the TrueTime toolbox, based on

Matlab/Simulink, and we synchronized the nodes using the FTM algorithm.

2. Clock Model

There are many models to represent a physical clock: for example, Varnum (1983)

proposed a simple stochastic model of a physical clock. In this paper, we used the

geometric model of Figure 1, where the clocks are represented by straight lines. In this

model the effects of fluctuation (jitter) will be discarded. More information about this

model can be found in Oliveira Junior (2010).

Figure 1. Geometric Clock Model.

In Figure 1, two lines are drawn, one representing the local clock 2, C
2
, and other

representing the local clock 1, C
1
. Clock 2 has an initial offset and drift in relation to

clock 1. The horizontal axis represents the time of the reference clock used to measure

the time of both clocks. The vertical axis represents the time of local clocks. The clock

model of Figure 1 is expressed by:

k

R

kkkk

R

kkkkkk btabbtaaCCtC)())(()(121212 (1)

In Equation 1, C
1
 represents clock 1 and C

2
 represents clock 2. The coefficient 'b' is the

initial offset and the coefficient 'a' represents the inclination of a straight line. Deriving

Equation 1 with respect to time, we have:

(2)

Equation 2 shows the rate of change of the difference between straight lines 2 and 1; we

can conclude that Δa is the drift of clock 2 with respect to clock 1. With the discrete

geometric model of the clock, we will set the model measures. This is given by:

1

1

1

2

1

2
1,2

kk

kk
k

bb

bb
a (3)

Time of Reference Clock [s]

T
im

e
 o

f
L

o
c
a

l
C

lo
c
k

 [
s]

Local Clock 1: C
1
 Local Clock 2: C

2

α1
α2

b2

b1

176 Proceedings

12

kkk bbb (4)

RR

k kgt (5)

R

kkkk taby 1,2 (6)

Where Equation 3 represents the measurement of drift of clock 2 with respect to clock 1,

Equation 4 represents the measurement of the instantaneous offset, Equation 5

represents the measurement of the reference clock where the g
r
 is the resolution of such

clock, and Equation 6 represents the model of discrete measures.

3. FTM Algorithm

The FTM (Fault-Tolerant Mid-Point) algorithm, also known as Welch-Lynch algorithm

provides fault tolerance for Byzantine clock synchronization of distributed systems

(Lundelius & Lynch, 1984). To ensure that all nodes have a consistent view of time, we

need to re-synchronize the clocks regularly (periodically). For this the algorithm follows

a logical sequence shown in the flowchart of Figure 2. Each node applies this sequence

with the objective of reaching a correction term. With this correction term, the deviations

caused by the drift of the clocks are adjusted so that all system clocks are within a certain

precision. In such flowchart:

Number 1 in Figure 2 indicates a loop condition. This condition means that if the local

clock time of the node is equal to the time of re-synchronization, then synchronization

has to start somewhere. Rint is the predetermined period of re-synchronization and k is its

instant. Number 2 in Figure 2 indicates where one has to read data of the databus,

meaning that the local clocks exchange information among themselves, that is, all clocks

send a broadcast with the timestamp of its own clock. Number 3 in Figure 2 indicates the

ordering of data. Each node sees only its row of the matrix with the timestamps values

forming a vector of values A. This vector is sorted in ascending order. At Number 4 of

Figure 2 the Welch-Lynch algorithm calculates the convergence function, after ordering

the data in ascending order. It discards the highest and lowest value of A; so, it is the

arithmetic mean of the highest and lowest value of the remaining elements in the vector,

according to Equation 7. Equation 8 calculates de adjustment function with the value of

the convergence function.

(7)

(8)

And finally at Number 5 of Figure 2, the virtual clock fixes its value by adding their

adjustment function.

12th Brazilian Workshop on Real-Time and Embedded Systems 177

Figure 2. Flowchart of FTM Algorithm.

4. Design of Simulations

In the TrueTime/Matlab/Simulink environment, we simulated two sets of controls, i.e., a

system with two control loops connected by a common databus. The controller used was

a PID. The actuator/plant is described as continuous in time, according to the following

transfer function:

(9)

The controller and sensor nodes had logical clocks given by the virtual computer of the

TrueTime Kernel; and they used the databus to exchange data among them and from

their clocks. The actuators/plants used the databus only to receive the control data. Each

control node implemented a periodic control task and a clock synchronization task. Each

sensor node implemented a task for sending the measured data to the controller; and a

task for clock synchronization. Each actuator/plant was activated by events when the

control task arrived in the actuator by the databus. All nodes had an interruption caused

by data arrived from the databus. The model of the simulated control system is given at

Figure 3.

Figure 3. Model of the Simulated Control System.

For these simulations we used the TDMA philosophy for the communication protocols.

The communication network is configured by the TrueTime Toolbox.

178 Proceedings

5. Results

We simulated 2 control subsystems sharing the same databus with a TDMA protocol.

The sensors, actuators/plants and controllers are connected via the databus. Errors of

clock were inserted in Sensor 1. The objective was to synchronize Controller 1, Sensor

1, Controller 2 and Sensor 2 together; and to compare the cases. In these simulations we

varied: the clock drift in Figure 4; and the initial offset of node 2 (Sensor 1) in Figure 5.

The databus used a communication protocol with TDMA. The drift rate applied was 1%.

This may seem enormous in terrestrial and controlled environments. But, in this paper,

we are interested in space environments, where variations of temperature of -10 a 50

degrees, can cause drift rates of up to 1% due to the extreme sensitivity of the quartz

clock to temperature, according to Henderson et. al. (2000). In Figure 4, we observe that

the FTM algorithm efficiently synchronized the NCS. In Figure 5, the synchronization

algorithm did not correct the effects of clock and the system became temporarily

unstable. This occurred because the FTM algorithm supposes that all nodes are initially

synchronized.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Tempo de Referencia

A
m

p
lit

u
d
e

Resposta ao Degrau

y - No 1

y - No 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Tempo de Referencia

A
m

p
lit

u
d
e

Resposta ao Degrau

y - No 1

y - No 2

Figure 4. a) Step Response with 1% of drift rate. b) Step Response

Synchronized.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Tempo de Referencia

A
m

p
lit

u
d
e

Resposta ao Degrau

y - No 1

y - No 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-50

-40

-30

-20

-10

0

10

20

30

Tempo de Referencia

A
m

p
lit

u
d
e

Resposta ao Degrau

y - No 1

y - No 2

Figure 5. a) Step Response with 0.39 s initial offset. b) Step Response

Synchronized.

The temporary instability in the simulation of Figure 5 occurred because sensor 1 starts

with an initial positive offset. The virtual computer of sensor 1 identifies overdue tasks

and it begins to perform all tasks delayed. The task of sensor 1 is to measure and submit

data via the databus to the controlller. By sending the data via the TDMA databus, the

volume of tasks is much larger than the slot of transmission time of sensor 1. Thus the

tasks of a sensor will be suspended when its slot of transmission time is exceeded. This

12th Brazilian Workshop on Real-Time and Embedded Systems 179

suspension of tasks generates a large delay. Figure 6a shows the corresponding scheduler

of the TDMA communication network, where we can observe this phenomenon: in blue

we observe controller 1, in red we observe sensor 1, in green we observe controller 2

and in brown we observe sensor 2. The delay generated by the TDMA network is larger

enough that the control system reverses its phase.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

3

4

5

6

7

8

Tempo do Relógio de Referência (s)

A
m

p
lit

u
d
e Sensor 2

Controle 2

Sensor 1 - Com Deriva e Viés Inicial

Controle 1 Agendador da rede TDMA

 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Tempo de Referencia
C

o
n
tr

o
le

u - No 1

u - No 2

Figure 6. a) Scheduler of Databus Synchronized. b) Aproximation of Figure 5b.

By reversing the phase, the system becomes temporarily unstable, as shown in Figure 6b.

For sensor 1, all tasks have already been done. Due to that, until a new task of

measurement enters, the system remains unstable. When entering a new task, the system

recovers from its instability.

6. Conclusions

This work still is in progress. But the preliminary results suggests that: 1) the TDMA

protocol is more susceptible to errors in the initial offset than to errors in the clock drift;

2) the FTM algorithm corrects the clock drift error better than the initial offset error; 3)

In a NCS with a TDMA protocol, a fault in the time management can turn the control

laws temporarily unstable.

References

Henderson, W.; Kendall, D.; Robson, A. Accounting for Clock Frequency Variation in

the Analysis of Distributed Factory Control Systems. Proceedings of the 2000 IEEE

International Workshop on Factory Communication Systems, Porto, Portugal, 2000.

Kopetz, H. Real Time Systems: Design Principles for Distributed Embedded

Applications. Kluwer Academic Publishers, Holland, 1997.

Lundelius, J.; Lynch, N. A New Fault-Tolerant Algorithm for Clock Synchronization.

Proceedings of the third annual ACM Symposium on Principles of Distributed

Computing, Vancouver, Canada, 1984.

Oliveira Junior, E. M. Study of FTM, FTA and Kalman Filter (KF) Algorithms for the

Clock Synchronization and their Influences on a Control System. 2010. 457 p.

Dissertation – INPE, São José dos Campos, Brazil, 2010.

Varnum, F. B. Kalman Filtering with a Two-State Clock Model. Proceedings of the 15th

Annual Precise Time and Time Interval (PTTI) Application and Planning Meeting,

Meeting, Washignton, USA, 1983.

180 Proceedings

Analysis, Design and Simulation of a Reconfigurable
Control Architecture for the Contingency Mode of the

Multimission Platform

Jairo C. Amaral1, Marcelo L. de O. e Souza1

1Division of Space Mechanics and Control – National Institute for Space Resarch
(INPE)

Av. dos Astronautas, 1.758 Jd. Granja – São José dos Campos – SP – Brazil
jairo.amaral@dem.inpe.br, marcelo@dem.inpe.br

Abstract. Currently, Reconfigurable Control Systems (RCS) are becoming
more and more widespread and studied in the aerospace community. This
work presents the analysis, design and simulation of reconfigurable control
architecture for the Contingency Mode of the Multimission Platform (MMP), a
generic service module currently under design at INPE. Its embedded real
time control system can be switched among nine main Modes of Operation,
according to ground commands or information (mainly alarms) coming from
the control system. The implementation follows the specifications when they
were found; when specifications could not be found, they were designed ad
hoc. The tests are based in simulations with the MATRIXx/SystemBuild
software. They focus mainly on the worst cases that the satellite is supposed to
endure in its mission; this can be during modes, or during transitions between
modes and submodes.

1. Introduction

Control systems of satellites, aircrafts, automobiles, traffic controls, etc., are becoming
increasingly complex and/or highly integrated due to their use of computers networked
via communication devices and protocols working in real time. In these systems, the
reconfiguration of control modes and law are increasingly being used, to meet diverse
phases of the mission or even faulty operations. This should happen smoothly, with fast
and minimum transients and stable and precise steady states; otherwise the controls
could enter strange modes, degrade performance and even reach instability.

This work presents the analysis, design and simulation of the reconfigurable control
architecture for the Contingency Mode of the Multimission Platform (MMP). The MMP
is a generic service module currently under design at INPE. Its embedded real time
control system can be switched among nine main Modes of Operation and other
submodes, according to ground commands or information (mainly alarms) coming from
the control system. The MMP can aquire one and three axes stabilization in generic
attitudes, with actuators including magnetotorquers, thrusters and reaction wheels.

The implementation followed the specifications when they were found; when
specifications could not be found, they were designed ad hoc. The MMP enters in the
Contingency Mode right after the launcher separation, or if there is an emergency,
according to the following sequence: it stops any rotation using magnetotorquers; opens

12th Brazilian Workshop on Real-Time and Embedded Systems 181

the solar pannels, if it is not done yet; points them to the Sun using propulsors; and
acquires gyroscopic rigidity using reaction wheels. If the stopping with magnetotorquers
is not achieved in a predetermined time, the MMP will enter in a submode for trying to
achieve it with propulsors. As there is propulsor control for only two axes, it will also
wait for the best moment to make a maneuver.

1.1 State of Art Comparison

Currently, Reconfigurable Control Systems (RCS) are becoming more and more
widespread and studied in the aerospace community. Examples related to our work are:

The Oersted [Boegh and Blanke,1997] is a Dannish microsatellite of aproximatelly 60
kg launched in 1997. Its main objective is to collect measures of Earth`s magnetic field
and high energy particles in this vicinity. Being small and low costing, it was not
possible to deal with failures adding redundancies, so the integrity of the attitude control
needed to be waranted by an automous supervising system. The Oersted`s architecture
needed to accommodate the implementation of many functions, and they were
implemented in a supervisory structure of three levels: an inferior with I/O of the control
net, a second level with algorithms for detection and acocomodaton of faults, and a third
level with supervisory logic. The many control modes are consideed separately, while
the supervisory level needs to choose the correct mode for each situation.

The Open Control Plataform [Wills et al. 2000] is an open software architecture
developed at Georgia Tech for distributed, reconfigurable, hierarchical control systems.
Complex control systems for autonomous vehicles require components that are often
supported on different types of hardware platforms and operating systems. They must
often interact in a distributed environment, and at the same time, the configuration and
integration must be flexible enough to allow rapid online adaptation to react to
unpredictable events. The specifc drive of this project was to support the autonomous
control of unmanned vehicles with capacity of vertical take off and landing (helicopter).

1.2 Operation Modes

Due to the diversity of conditions that the MMP will face during its entire life, there is a
separation in many Operational Modes, where each mode is defined by the environment
and conditions in which the satellite will be. Those modes are shown in Figure 1, and
are divided in two major groups, defined by the environment where the satellite is:

Ground Modes:

• Off Mode (OFM). In this mode, all the equipments are shut off (with
disconnected batteries). This mode is to storage and transport.

• Integration and Test Mode (ITM). This mode is used during the assembly and
integration tests, or in the launch platform. During the assembly and integration,
all the tests are done, while at the launch platform, only the tests of functional
verification will be done.

Flight Modes:

• Start Mode (STM). This mode can be used on the ground, during the flight
phase, and at any time during the useful life of the satellite.

182 Proceedings

• Contingency Mode (COM). The objective of this mode is to automatically take
the satellite and its payload from STM to a safe mode after the launcher
separation, or in case of an anomaly.

• Fine Navigation Mode (FNM). This mode is used to acquisition of attitude,
position and time in a precise way to allow the transition from the COM to the
nominal mode.

• Nominal Mode (NOM). This is the operational mode of the satellite, where the
payload can perform its objectives. In this mode the wheel desaturation with
magnetic actuators also happens.

• Wheel Desaturation Mode with Thrusters (WDM). In this mode the reaction
wheel desaturation is done by the action of thrusters. This proceeding aims to
reduce the angular speed of the wheels back to nominal levels of operation.

• Orbit Correction Mode (OCM). It is used to execute orbital maneuvers on the
orbital plane, or from it.

• Orbit Correction Mode Backup (OCMB). If one of the thrusters fails, the orbital
maneuvers will be executed with only two of the symmetric thrusters, to
minimize the disturbing torques.

Figure 1. Transition logic of the operation modes of the MMP.

 Source: INPE (2001).

2. Implementation

According to the specifications, the Contingency Mode is charged of executing a stop
with magnetotorquers and the solar pointing in two axes. It may be accessed normally
by the Start Mode, and by any other mode in case of an alarm.

12th Brazilian Workshop on Real-Time and Embedded Systems 183

We could not find in the available literature about the MMP a control law for the
magnetotorquers in the Contingency Mode. Thus we choose a control law derived from
the work of [Prudêncio, 2000] for the satellite SACI-1, which in its turn, is based in the
work of [Shigehara, 1972] and is analogous to the same law used in the dessaturation.
As there is no need of a specific pointing, all the magnetotorquers use a version of this
control policy for reduction of rotation velocity. If the magnetotorquers cannot stop the
satellite in a specified time, it enters in a submode for trying a stop with thrusters. In any
case, when the satellite accquires an angular speed under 0.2 degrees/second, it will
open its pannels and execute a fine stop with reaction wheels.

A law for the solar pointing was not found in the available literature about the MMP.
Therefore, the law adopted was for two separated rotations: the first around the y-axis,
and the second around the x-axis. Each one is a bang-bang control law.

The control signal is converted in polar coordinates, so that the poles would be in the y
axis and the vector z would be between (0, π/2) rad. It activates the propulsors of the y
axis so that the rotation of the satellite would be reduced to zero. The point where the
torque direction is reversed is obtained by the Torricelli equation. As the Sun has a slow
aparent movement, and the pointing does not need to be very precise, the signal which
indicates the angular speed comes from the inertial unit in this model.

The transition between modes and submodes are controlled by a state machine, which
enables different control laws accordingly. It is fed with sensors and outputs from other
control blocks.

Figure 2. Block diagram of the detumbling (left); and block diagram of an axis alignment

with thrusters (right).

3. Tests

The tests are based in simulations with the MATRIXx/SystemBuild software, from
National Instruments, which supports developers with tools to model, analyse and test a
control system. Their general objective is to check if the MMP satisfies the design
requirements, but our main interest is to check the stability during the transition of
control laws from modes and submodes.

Magnetic stop Thruster stop

Open pannels

Wheel stop

No stop in predetermined time

START

NEGATIVE POSITIVE

POSITIVE NEGATIVE

END

positive error
signal

Negative error
signal

Error signal
change

Torricelli’s
equation

Stop detected

start

Under 0.2 degrees/s

184 Proceedings

Even if each mode of operation has a stable control law, this conclusion cannot be
extended for the resulting system when the subsystems are not linear. This is known as
the Problem of Hyperstability, and might turn the validation of reconfigurable control
systems extremely difficult. There are analytical approaches for such, but their practical
applications are limited. As an alternative, we focused in numerical simulations of the
worst cases which the satellite is supposed to endure in its mission; it might be during
modes of operation or during their transitions. If the results are satisfactory, it will be
reasonable to conclude that they will do so in the other cases.

The plant includes simulations such as orbit propagation, air drag, and variations in
inertia moment, and it was reused from [Amaral 2008]. We expect to show that the
MMP is able to satisfy the official requirements found and the ad hoc requirements.

4. Results

The two example cases considered a circular orbit with 7000 km of radius and 45
degrees of inclination.

Figure 3 shows the module of the angular speed being reduced by the magnetotorquers
from 1.7 degrees/s to under 0.2 degrees/s. This was achieved in aproximately 2 hours.

Time

6000400020000 8000

m
od

 v
el

oc
id

ad
e

de
 ro

ta
ca

o

3.5

3

2.5

2

1.5

1

0.5

0

4

Figure 3. Module of angular speed during magnetic stop.

Figure 4 shows the same scenario, but focuses in the solar pointing stage. After the stop,
the thrusters are activated, one axis at a time, for executing two rotations towards the
Sun. Then the satellite acquires gyroscopic rigidity using a reaction wheel.

These two examples transit through all the submodes detailed in each diagram of Figure
2. Transits like the magnetic stop, pannels oppening and reaction wheel stop were not
much noticeable in the angular speed in Figure 3 [6000 s – 7500 s]; but the inversion of
thrusters’ control signal are clearly seen as the two spikes in Figure 4 [7450 s -7550 s].

12th Brazilian Workshop on Real-Time and Embedded Systems 185

m
od

 v
el

oc
id

ad
e

de
 ro

ta
ca

o 3.5

3

2.5

2

1.5

1

0.5

0

4

ER
RO

 p
si

 s
ol

0.6

0.4

0.2

0

-0.2

0.8

Time

765076007550750074507400 7700

ER
RO

 th
et

a
so

l

1

0.8

0.6

0.4

0.2

0

-0.2

1.2

Figure 4. Module of angular speed and errors of solar pointing.

5. Conclusions and Future Objectives

The results until now show that the implementation satisfies the project requirements.
For low inclinations of orbit, the detumbling with magnetotorquers loose effectivity and
fails to stop in the predetermined time, but the submode with thrusters was able to force
a stop. Besides, the solar pointing submode worked well even when the initial position
was opposite to the Sun. We expect to estimate in what kind of orbits, and in what
rotation axis, the magnetotorquers can stop the rotation in a given time. We also expect
to identify what situations could delay or prevent a solar pointing after the stop. Later,
we intend to investigate other transients in the control system caused by the switching
between modes of operation.

References

AMARAL, J. C. Análise, Projeto e Simulação de uma Arquitetura de Controle
Reconfigurável para a Plataforma MultiMissão. Dissertação (Mestrado em ETE/CMC)
— Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2008.

BØGH, S. A., BLANKE, M. Fault-Tolerant Control — A Case Study of the Ørsted
Satellite, Compenhagen, DEN, 1997.

INPE. A822000-DPK-01/D5a – Multimission Platform Data Package for System
Requirements Review (SRR). 2001. São José dos Campos – SP.

PRUDENCIO, S. V. Simulação Digital em Tempo Real de um Sistema de Controle de
Atitude Magnético Autônomo de um Satélite. Dissertação (Mestrado em ETE/CMC) —
Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2000.

SHIGEHARA, M. Geomagnetic Attitude Control of an Axisymmetric Spinning
Satellite. Journal of Spacecraft and Rockets, 9(6):391-398, 1972.

WILLS, L; SANDER, S; KANNAN, S; KAHN, A; PRASAD J V R; SCHRAGE, D. An
Open Control Platform for Reconfigurable, Distribute, Hierarchical Control Systems. —
Proceedings of the Digital Avionics Systems Conference, Philadelphia, PA, October
2000.

186 Proceedings

Preliminary Results of Global Time Petri Net Analysis Applied
to Embedded Software Prototyping

Leticia Mara Peres1, Eduardo Todt1, Luis Allan Kunzle1

1Computer Science Department, UFPR, Curitiba, Brazil

lmperes@inf.ufpr.br,todt@inf.ufpr.br,kunzle@inf.ufpr.br

Abstract. We propose in this paper an approach based on Time Petri Nets (TPN)
to analyze time aspects and to schedule embedded software during the prototyp-
ing activities. Firstly, a TPN that represents the interaction between system
tasks is modeled using Petri net design patterns. Secondly, a class graph is built
with the Global Time Method (GTM) and interval algebra operations. Finally,
firing sequences on GTM graph is found. The firing sequences represent be-
havior itineraries of software, and their global time based on cyclic scheduling,
fixed priority and earliest deadline first scheduling policies. The example shows
simple and precise time analysis of behavior itineraries which use a powerful
theory based on interval algebra, different of conventional models.

1. Introduction

Real time embedded systems are constrained about functionalities and resources. In these
systems, time constraints are so important as functional constraints.

Petri nets (PN) and their algebraic properties are used to model and to analyze
systems involving parallelism, concurrency and synchronization. Several extensions of
the basic formalism have been proposed to increase their power of modeling. In this
work we are interested in Time Petri nets (TPN), where quantitative time restrictions can
be considered [1]. The classic technique of analysis is based in an enumerative method
to generate the reachable state space of a TPN [2]. This method finds the relative time
interval which the system remains in each state, being therefore efficient to verify net
properties and to analyze time constraints relative to a given class. This method itself does
not present global time information of the net behavior since its initial marking. In order to
obtain more accurate results, Dill [3] describes data structures Difference Bounds Matrix
(DBM) and proposes a method for using delay information in state graph verification
of finite state concurrent systems. These structures have been used in association with
model checking and timed automata approaches [4], [5], [6]. We propose a global time
alternative method based on interval algebra.

TPN are used in different applications of embedded system verification, schedul-
ing and synthesis methods. Cortes et al. [4] define a method of embedded software mod-
eling and verification using PRES+, a type of TPN. Lime and Roux [5] propose SETPN
to model real-time systems, especially embedded systems. They present a set of PN de-
sign patterns to model tasks with preemptive scheduling. In [6], Lime and Roux use their
scheduling TPN design patterns of [5] to model tasks and deal with Fixed Priority and
Earliest Deadline First policies.

12th Brazilian Workshop on Real-Time and Embedded Systems 187

We present in this paper the Global Time Method (GTM) which is anapproach to
generate a new type of class graph for TPN. This method finds relative and global time
information about the current state of the net. The global time information is correct for
both limits of time interval of any class, even when the net represents concurrency among
events [7]. The remainder of this paper is organized as follows. The Section 2 defines
basic concepts of interval operations, TPN and class graph. Section 3 establishes the
class graph based on GTM, and presents an example of application. Section 4 presents
an application of GTM on the context of embedded software scheduling, while Section 5
concludes the article.

2. Basic Concepts
Let two rational numbers,a andb, such thata ≤ b. We denote[a, b] as the set{x ∈ R :
a ≤ x ≤ b}, defined as closed interval froma to b. An interval [c, d] is denoted as not
proper whend < c, with c andd rationals. Given the intervals[a, b] and[c, d], proper or
not proper, we define the following operations:[a, b]+[c, d] = [a+c, b+d]; [a, b]−[c, d] =
[max{0, a − d}, max{0, b − c}]; [a, b] ⊖ [c, d] = [max{0, a − c}, max{0, b − d}]. The
interval subtraction⊖ is used to adjust time coefficients which can be represented by not
proper time intervals.

A Time Petri net (TPN) is a tupleTPN = (P, T, Pre, Post, M0, I) [8], where:
• P is a finite set of places,p ∈ P ,
• T is a finite set of transitions,t ∈ T ,
• Pre is an input application such asPre : (P × T) → N,
• Post is an output application such asPost : (P × T) → N,
• M0 is the initial marking, and
• I : T → (Q+ × (Q+ ∪ {∞})) such as(t, e(t)) ∈ I ande(t) = [a, b], wherea and

b are positive rational numbers.

A marking is an assignment of marks to places of the net. The marking of a
placep ∈ P is denotedM(p). A TPN has one static time intervale(t) = [a, b], with
a ≤ b, associated to each transitiont ∈ T . The limitsa andb represent, respectively, the
earliest and the latest possible firing time of transitiont, counted from the instant when
t is enabled (∀p, M(p) ≥ Pre(p, t)). Whent fires in a markingMk−1 a new marking of
the net is given by markingMk = Mk−1 + Post(t) − Pre(t) (ck−1[tf > ck).

A state classck = (Mk, Wk), whereMk is the current marking of the TPN ob-
tained by the firing of a transitiont. Wk is the set of time information for this class. A
transitiont, enabled in a classck, is apersistenttransition inck if t was enabled in a class
ck−1 andt did not fired inck−1. A transitiont, enabled inck, is newly enabledif t was not
enabled in classck−1 or, the firing oft originated the classck and it was re-enabled inck.

The state class graph is a directed graph where each node is a state class and each
arch is labeled with one transition. The root node of class graph is the start classck with
levelk = 0 and has the initial markingM0 of TPN.

3. Global time method (GTM)
The information setWk of classck has two types of time information: relative and global.
The relative time information is the accumulated time for each transition since its en-
abling in classck. Global time information refers to the accumulated time since the initial
marking (classc0).

188 Proceedings

Let rk(ti) a relative time interval of a transitionti calculated in a classck such that
ck−1[tf > ck, and defined as:

rk(ti) =

{

e(ti) if ti is newly enabledin ck

rk−1(ti) − rk−1(tf) if ti is persistentin ck

The relative time intervalrk(ti) of each enabled transitionti of a classck is used
to identify which ones are fireable. A transitiontf with rk(tf) = [af , bf] is fireable inck

if, and only if, tf is enabled inck and there is not another transitionti with rk(ti) = [ai, bi]
enabled inck such thatbi < af .

The persistence adjustment coefficientack(ti) of an enabled transitionti in a class
ck such thatck−1[tf > ck, is defined as:

ack(ti) =



























rk−1(ti) ⊖ rk−1(tf) if ti andtf are both newly enabled inck−1

ack−1(ti) ⊖ rk−1(tf) if ti is persistent andtf is newly enabled both inck−1

rk−1(ti) ⊖ ack−1(tf) if ti is newly enabled andtf is persistent both inck−1

ack−1(ti) ⊖ ack−1(tf) if ti andtf are both persistent inck−1

The persistence adjustment coefficientack(ti) prevents the increase of imprecision
to computing the global time.

The global time intervalgk(ti) of a fireable transitionti in a classck such that
ck−1[tf > ck is:

gk(ti) =















e(ti) if k = 0, i.e. if is the initial class

gk−1(tf) + rk(ti) if k 6= 0 andti is newly enabled inck

gk−1(tf) + ack(ti) if k 6= 0 andti is persistent inck

The global time intervalgk(ti) is counted from the initial marking until the firing
instant ofti in classck.

Let tf be the fired transition in a classck such thatck[tf > ck+1. The up-
per bound of global time intervalgk(tf) = [af , y] of fired transitiontf , must be ad-
justed by the lowest upper bound of intervals calculated to allti in classck, where
y = min{bi | gk(ti) = [ai, bi], ∀ti fireable inck}.

The successive firing of two or more transitions in a TPN from any classck to any
other classck+n, also called firing sequence, is represented byck[s > ck+n. The global
time of a firing sequences of c0[s > ck is the resulting of global time intervalgk−1(tf),
beingtf the last transition fired to reach classck, that is,ck−1[tf > ck.

The class graph can express the staying time in each class, i.e., how long the
system remains in the state represented by the class. The staying time of a net in a certain
reachable classck is given by: ik = [x, y], wherex = min{ai | rk(ti) = [ai, bi]} and
y = min{bi | rk(ti) = [ai, bi]}, ∀ti fireable inck.

4. Application

We based the application of GTM on the work of Lime and Roux, 2009 [6]. It defines a
special TPN with scheduling layer and, among other things, allows to map each place of

12th Brazilian Workshop on Real-Time and Embedded Systems 189

the net to a task. We propose to use parts of this layer to model TPN according design
patterns of work of Lime and Roux, 2003 [5], associating tasks to transitions and places
of the net. Then, we generate the GTM state class graph and analyze firing sequences that
satisfies “Earliest Deadline First” and “Fixed Priority” scheduling policies.

Let, according [6]:

• τ ∈ Tasks, being Tasksthe set of tasks of the system, where there is no task
migration between processors.

• Sched:Procs7→ {FP,EDF} the function that maps a processor to a scheduling
policy, being FP “Fixed Priority” and EDF “Earliest Deadline First” ;

• Π: Tasks7→ Procsthe function that maps a task to its processor;
• ̟: Tasks 7→ N, for Sched(Π(τ)) = FP , gives the priority of the task on the

processor;
• δ: Tasks7→ (Q+ × (Q+ ∪ {∞})), for Sched(Π(τ)) = EDF , gives the deadline

interval of the task on relative to its activation time.

In order to map each place of the TPN to a task, we use the functionγ : P 7→
Tasks∪{φ}, whereφ denotes that the place is not mapped to any real task. We, as in
[6], assume that for each transition, there is at most one placep such thatp ∈ Pre(t)
andγ(p) 6= φ. If ∀p ∈ Pre(t), γ(p) = φ, thent is not bound to any real task and we
say that it ispart of φ (denoted byγ(t) = φ). Otherwise, for each transition t, we say
that t is part of the taskτ , and we denote itt ∈ τ if one of its input places is mapped to
τ : t ∈ τ ⇔ ∃p ∈ Pre(t), s.t.γ(p) = τ . So,γ(t) is the task s.t.t ∈ τ .

As in [6], each taskτ is thus modeled by a subnet of the TPN composed of places
mapped toτ by γ and of transitions with static time, which are parts ofτ . As in [6]
we assume that at most one instance of each task is active at a given instant, which is
expressed by the restriction that at most one place mapped toτ by γ is marked at a given
instant. LetB(τ) be the set of transitions whichstart the taskτ and similarly, letE(τ)
be the set of transitions which terminateτ . These two sets are user-defined as part of the
modeling phase. After TPN was modeled, we propose generate a GTM state class graph,
as presented at section 3. The definitions of scheduling layer reflect on TPN and on each
scheduling policy.

The mapping between scheduling policies and GTM graph defines a criterion for
path enumeration on GTM state class graph, where the path is the firing sequence, satisfy-
ing some scheduling policy. We have established criteria for “Earliest Deadline First” and
“Fixed Priority” scheduling policies. ForSched:Procs7→ {CE}, where CE is “Cyclic Ex-
ecutive”, the TPN model represents only one task which is typically realized as an infinite
loop in main(). BecauseCE has not a specific criterion in order to satisfy, this policy is
achieved only by modeling TPN and it is not necessary formalize this function in relation
to GTM state class graph enumeration.

Fixed Priority (Sched(Π(γ(t))) = FP): After class graph building, each transi-
tion ti has a priority of the task on the processor associated to it (̟(ti)). Then, the function
̟: Tasks7→ N guides the firing sequence enumeration. We choose the fireable transition
which has the higher priority. At the end of this enumeration, we already have the total
time for a firing sequence according GTM. In the case of tasks with the same priority at
some point, one of these criterion can guide the firing sequence enumeration between the
processes with the same priority: a FIFO choice; an earliest deadline first considering the

190 Proceedings

[3,5]

p4

p3
1 2

p1

[2,3] [1,4]

p2

[1,2]

t1 t3

t4t2

ττ

Figure 1. TPN of two tasks on one processor, from [5]

t4
t1

t3

t2

t3

t1

t3

t2

t2

t4

t4

t4

t2

C0_0, g=(0,0)

C2_3, g=(3,5)

t3)r=(0,1),g=(3,7)

C2_4, g=(3,5)

t2)r=(0,2),g=(3,5)

t4)r=(3,5),g=(0,0)

C2_5, g=(3,6)

t2)r=(1,2),g=(4,8)

t4)r=(1,5),g=(4,8)t4)r=(3,5),g=(0,0)

t1)r=(0,2),g=(3,6)

C1_2, g=(1,3)

t3)r=(0,2),g=(3,5)

t2)r=(1,2),g=(3,5)

C1_1, g=(2,3)

t3)r=(1,4),g=(1,3)

C3_6, g=(3,7)

t4)r=(3,5),g=(6,12)

C3_7, g=(3,5)

t4)r=(1,5),g=(6,10)

C3_8, g=(4,8)

t4)r=(0,4),g=(4,8)

C3_9, g=(4,8)

t2)r=(0,1),g=(4,8)
C4_13, g=(4,8)

C4_12, g=(4,8)

C4_11, g=(6,10)

C4_10, g=(6,12)

t1)r=(2,3),g=(2,3)

Figure 2. Class graph of TPN representing two tasks on one processor, of Fig. 1

static timee(ti) for each transitionti, as we present in the following section; and a random
choice.

Earliest Deadline First (Sched(Π(γ(t))) = EDF): Another type of firing se-
quence can be enumerated on class graph, using the Earliest Deadline First scheduling
policy. Then, the functionδ: Tasks7→ (Q+ × (Q+ ∪ {∞})) guides this enumeration.
Our criterion is to choose the transition which has the lower deadline given byδ(τ) as
following. Let δ(τ) of a transitionti calculated in a classck such thatck−1[tf > ck, and
defined as:δ(τ) = LFT (rk(ti)). The latest firing time (LFT) of the timerk(ti) for each
transitionti is the guide for firing sequence enumeration. As the FP policy, at the end of
enumeration already has the total time for a firing sequence.

Considering the TPN of Figure 1. The taskτ1 has priority̟ = 1 and one pre-
emption point. The taskτ2 has also one preemption point, but priority̟ = 2. Then,
̟(t1) = 1, ̟(t2) = 1, ̟(t3) = 2 and̟(t4) = 2. The TPN class graph according GTM
is presented in the Figure 2. ForSched(Π(τ)) = FP , the firing sequence is:t3, t1, t4, t2.
It is interesting to note thatt1 is the only one fireable in the classC2 5 (class C, at level
2, with unique identification 5), event4 being enable andt3 being in the same task that
t4; t4 executes aftert1 becauset4 has highest priority. The global time of this sequence
is g4 13 = [4, 5]. ForSched(Π(τ)) = EDF , the firing sequence can bet1, t2, t3, t4, with
global timeg4 10 = [6, 9], or t1, t3, t2, t4, with global timeg4 11 = [5, 9].

5. Conclusions

GTM avoids the imprecision increase in time information when analyzing transition firing
sequences which represents the time interval of system behavior itineraries. This happens

12th Brazilian Workshop on Real-Time and Embedded Systems 191

when the modeled system presents many concurrent or persistent transitions. Also, GTM
state classes describe intervals in both global, based on the simulation beginning, and
relative, based on the class entry moment, time information. This increases the analysis
power of our approach.

The essence our approach is to verifiy scheduling scenarios generated using GTM
from TPN modeled using design patterns. This design patterns represent a set of tasks
and their interactions as proposed by [5] and can be tasks on one processor, cyclic tasks
synchronizedvia a semaphore, semaphore for mutual exclusion and CAN bus access.

The main contribution of our work is to apply the global time method to real-time
software based on tasks with fixed priority and earliest deadline first. The main limitation
of the proposed approach is the endless enumeration of classes in cyclic nets, according
to the indefinite increase the global time. For the application in the context of prototyping
this problem is currently treated by limiting the number of execution cycles of tasks,
reflected by the class levels during the generation of graph. Even with this limitation
the analysis is still useful as corresponds to the repetition of the initial critical instant for
real-time systems based on cyclic tasks.

References
[1] P. Merlin, “A study of recoverability of computer systems,” Ph.D. dissertation, University

of California IRVINE, 1974.

[2] B. Berthomieu and M. Menasche, “A state enumeration approach for analyzing time petri
nets,” in3rd European Workshop on Applications and Theory of Petri Nets, Varenna,
Italy, sep 1982.

[3] D. L. Dill, “Timing assumptions and verification of finite-state concurrent systems,” in
Proceedings of the International Workshop on Automatic Verification Methods for
Finite State Systems. London, UK: Springer-Verlag, 1990, pp. 197–212.

[4] L. A. Cortés, P. Eles, and Z. Peng, “Verification of embedded systems using a Petri net
based representation,” inISSS ’00: Proceedings of the 13th international symposium
on System synthesis. Washington, DC, USA: IEEE Computer Society, 2000, pp.
149–155.

[5] D. Lime and O. H. Roux, “Expressiveness and analysis of scheduling extended time
Petrinets,” in5th IFAC Int. Conf. on Fieldbus Systems and Applications,(FET’03).
Aveiro, Portugal: Elsevier Science, Jul. 2003, pp. 193–202.

[6] ——, “Formal verification of real-time systems with preemptive scheduling,”Journal of
Real-Time Systems, vol. 41, no. 2, pp. 118–151, 2009.

[7] E. A. Lima, R. Lüders, and L. A. Künzle, “Uma abordagem intervalar para a
caracterização de intervalos de disparo em redes de petri temporais,”SBA. So-
ciedade Brasileira de Autoḿatica, vol. 19, no. 4, p. 379, 2008, in Portuguese,
http://dx.doi.org/10.1590/S0103-17592008000400002.

[8] B. Berthomieu and M. Diaz, “Modeling and verification of time dependent systems using
petri nets,”IEEE Transactions on Software Engineering, vol. 17, no. 3, pp. 259–273,
March 1991.

192 Proceedings

Author Index

A
Alimenti, O. ... 89
Allgayer, R. S. 77,157
Amaral, J. C. 181
Araújo, B. G. D. 137
Assis, F. ... 111
Awan, M. A. 169

B
Balbinot, J. ... 157
Barreto, L. P. 151
Barreto, R. S. 27
Becker, L. B. 101
Botelho, S. S. 163
Brade, T. .. 3
Brandão, G. B. 137

C
Camada, M. 111
Cavalcante, A..................................... 157
Cavalcante, S. V. 131

E
Espíndola, D. 163

F
Ferreira, A. M. 77
de Freitas, E. P. 77
Friedrich, G. ... 89

G
Góes, R. E. D. 63
Guerreiro, A. M. G. 137

H
Heimfarth, T. 77
Henriques, R. V. 163

J
Junior, E. M. O. 175

K
Kaiser, J. ... 3,51
Kunzle, L. A. 187

L
Lange, R. .. 145
Larsson, T. ... 77
Leite, C. R. M. 137
Linhares, R. R. 63
Loques, O. .. 39

M
Melo, G. A. F. B. 131
Montez, C... 111
Müller, I. .. 157

O
Oliveira, C. ... 39
de Oliveira, R. S. 145,151

P
Pereira, C. E. 15,77,125,157,163
Peres, L. M. .. 187
Perozzo, R. F. 15,125
Petrucci, V. .. 39
Petters, S. M. 169

R
Reggiani, G. ... 89
Renaux, D. P. B. 63
Roqueiro, N. 145

S
Schulze, M. 3,51
Silva, Í. C. de M. 151
Sobral, M. M. 101
Souza, M. L. O. 175,181
Steup, C. ... 51

T
Todt, E. .. 187

V
Valentim, R. A. M. 137
Valentin, E. B....................................... 27

W
Wagner, F. R. 77

Z
Zug, S. .. 3

12th Brazilian Workshop on Real-Time and Embedded Systems 193

	Initial pages

	Index

	Technical Sessions

	TS1

	st01_01_wtr
	st01_02_wtr

	TS2

	st02_01_wtr
	st02_02_wtr

	TS3

	st03_01_wtr
	st03_02_wtr

	TS4

	st04_01_wtr
	st04_02_wtr
	st04_03_wtr
	st04_04_wtr

	WiP

	stWiP_01_wtr
	stWiP_02_wtr
	stWiP_03_wtr
	stWiP_04_wtr
	stWiP_05_wtr
	stWiP_06_wtr
	stWiP_07_wtr
	stWiP_08_wtr
	stWiP_09_wtr
	stWiP_10_wtr
	stWiP_11_wtr

	Author Index

