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Description of a physical phenomenon through differen-
tial equations presents errors involved, since the mathema-
tical model is always an approximation of reality. For an
operational prediction system, one strategy to improve the
prediction is to add some information from the real dynamics
into mathematical model. This aditional information consists
of observations on the phenomenon. However, the observa-
tional data insertion should be done carefully, for avoiding a
worse performance of the prediction.

Technical data assimilation are tools to combine data
from physical-mathematics model with observational data to
obtain a better forecast. From filtering point of view, the data
assimilation process can be represented by:
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where w® is the value of the analysis; w? is the forecast-
ing (from the mathematical model, also known as back-
ground field); K is the weight matrix; y denotes the obser-
vation; H represents the observation system; the difference
{y — H(wf)} is the innovation; and p[.] is a discrepancy
function. Another approach for solving the data assimilation
is by computing the minimum solution for the cost function:
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where C and S denote the inverse covariance matrices of the
background (in general such matrix is represented by B or )
for the data assimilation or for the control theory communi-
ties, respectively) and of the measurement errors (denoted by
R), and (u, v) expresses the internal product between vectors
u and v. For the Kalman filter (KF), the matrix K (Kalman
gain) at equation 1 is computed from a formula involving ma-
trices B and R. Variational scheme is linked to the optimiza-
tion problem with the objective function given by expression
by equation 2.

It is very difficult to estimate the background matrix B
(also called the modeling error covariance matrix). There are

many techniques to estimate this matrix: using some type of
parameterization [4], employing ensemble KF, or a Fokker-
Planck equation [2, 3]. For applying the KF [1], some lin-
earization is necessary, and the random variables are assumed
to have Gaussian distribution.

To consider a more general problem (nonlinear models
and non-Gaussian distribution) the particle filter technique
has been proposed [5]. However, this approach has a greater
computational complexity than extended KF (EKF). The lat-
ter technique has a similar complexity to the 4-dimensional
variational (4D-Var) scheme.

Recently, we have introduced a new approach based on ar-
tificial neural network (ANN) for data assimilation [4, 6, 7].
In this approach, the ANN emulates the KF. For the present
paper, it is addressed an emulation of variational method by
artificial neural networks [8]. It is important to mention that
ANN has a lower computational cost (complexity) than ex-
tended and linear KF, variational method, and particle filter,
after training. The Lorenz system under chaotic regime will
be used to illustrate the method.

The celebrated Lorenz model has been employed as a test
standard for examining the performance of data assimilation
methods. The nonlinear systems of three differential equa-
tions are:
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where 7 = m2H~2(1 + a?)xt is the non-dimensional time,
being H, a, x and t respectively layer height, thermal con-
ductivity, wave number (diameter of the Rayleigh-Bérnard
cell), and time; o, (3 and p are constant.

The results of data assimilation by neural network a com-
pared with variational technique. Figure 1 show the result of
data assimilation by artificial neural network. Figure 2 show
error; left side: error by variational method; right side: er-
ror by neural network. Aurtificial Neural Networks (ANN)
have become important tools for information processing [9].



Much research has been conducted in pursuing new neural
network models and adapting the existing ones to solve real
life problems, such as those in engineering [9]. ANN are
made of arrangements of processing elements called neu-
rons. The artificial neuron model basically consists of a lin-
ear combiner followed by an activation function, given by:
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where wy; are the connection weights, by, is a threshold pa-
rameter, x; is the input vector and y, is the output of the k¢,
neuron.

The Lorenz systems was integrated using a second or-
der Runge Kutta methods, with At = 103, with initial
condition for the Lorenz system: wy = [z yo 20]7 =
[1.508870 1.531271 25.46091]7". For training data set, 2000
data are considered. The results are also analyzed with other
data assimilation methods. Figure 3 shows the error (abso-
lute difference between the truth and the estimated) for data
observations inserted the each time-step 12.
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Figure 1 — Temporary series of the component z. (solid curve)
truth and (dash curve) estimated by artificial neural network.

Figure 2 — Graph of the errors at scale logaritmic (absolute dif-
ference between the truth and the estimated). left side: error by
variational method; right side: error by neural network.

Figure 3 (left hand side) shows the errors for KF, vari-
ational technique, and particle filter; right hand side shows
errors for ANN emulating this methods.
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Figure 3 — Graph of the errors, with observations every 12 time
steps. left side: errors by KF, particle filter, and varitional
method, respectively; right side: errors by ANN.
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