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The wildland fire is the presence of fire spreading 

uncontrolledly and burning vegetation areas. Although the 

fire is a natural disturbance and an essential factor in the 

maintenance of the diversity and stability of natural 

ecosystems, some wildland fires can usually generate 

devastating impacts. The wildland fire impacts are not 

only threatening the biological diversity, but have also 

cause large-scale human suffering and economical losses 

due mainly to pollution of the air and the belongings 

destroyed by the fire. 

The fire spreads across the landscape consuming the 

vegetation and this process can be decomposed into four 

combustion phases, the so called: pre-heating, ignition, 

combustion and extinction [1]. The fire front is the region 

of intense flaming combustion where a large quantity of 

heat released. Part of this heat released is transmitted to 

the vegetation that yet is not burning, heating it until 

reaches the ignition temperature. When the vegetation 

reaches the ignition temperature, the flames rise and the 

fire front occupies a new position ahead. The flames 

remain as the vegetation is burnt out. 

In this work is proposed a simple model for wildland 

fire dynamics under flat terrain and no-wind conditions. 

The model formulation is based on stochastic cellular 

automata and its dynamics is analyzed qualitatively and 

quantitatively. Cellular automata are models which 

assume space, state and time discrete [2]. 

The model is based on the spatially explicit 

representation and the landscape is depicted as a square 

and two-dimensional lattice L of dimensions 𝐿𝑥 × 𝐿𝑦 . 

Each cell is defined by: (1) its discrete position (𝑖, 𝑗) in 

the lattice, where 𝑖 = 1,… , 𝐿 is the column and 𝑗 =
1,… , 𝐿 is the row; (2) the finite set of internal states 

variables that describes the possible behavior of the cells 

in a given time step t which are 𝑆(𝑖,𝑗)
𝑡 ∈  ,𝐸, 𝑉, 𝐹, 𝑂- 

where: E is an empty cell, which denotes unburnable cells 

or without vegetation; V is a vegetation cell, with denote 

cells with potential to burn; F is burning cell, which 

denotes a cell whose the vegetation in its inside is 

burning; and O is burnt cell, which denote vegetation cell 

that is burned by the fire; (3) the set of finite 

neighborhood cells 𝑁(𝑖, 𝑗), where the Moore 

neighborhood, as illustrated in the Figure 1(a), represents 

the neighborhood relations in the model and comprises the 

eight cells surrounding (𝑖∗, 𝑗∗) of a central cell (𝑖, 𝑗) 
according with the definition 𝑁(𝑖, 𝑗) = *(𝑖∗, 𝑗∗): |𝑖 −
𝑖∗ | ≤ 1, |𝑗 − 𝑗∗ | ≤ 1+; (4) the transition function that 

calculate the future cell state as a function of the present 

cell state and present neighborhood cell states 𝑓: 𝑆(𝑖,𝑗)
𝑡 ×

 𝑆𝑁(𝑖,𝑗)
𝑡 → 𝑆𝑖,𝑗

𝑡+1, where the time 𝑡 is also represented by 

discrete values or time steps. Thus, the time evolution of 

the model is driven by the interaction between the cell 

states and the cell neighborhood states. Starting from a 

given configuration of cells initial states, the cellular 

automaton self-replicates the sequent cell states. The 

cellular automata model is stochastic because the state 

transition function is performed according to probabilities 

values. 

The fire spread is governed by the heat transfer from 

burning regions to non-burning regions. Thus the fire 

spread is modeled as a set of ignitions of non-burning 

regions as the burning regions persist. Stochasticity is 

used to include the heterogeneity of spatial conditions 

present in real vegetation patterns and to include random 

component in the dynamics of combustion and ignition 

process [4,5,6]. Thus, the dynamics of fire spread is 

modeled as a stochastic event with an effective fire spread 

probability S which is as a function three probabilities, 

which are: (1) the probability D, that determine the 

proportion of cells with vegetation across the lattice in the 

model initialization. Thus, for each cell, there is a 

probability D to its state is vegetation cell and the 

probability 1-D to it is empty cell; (2) the probability B, 

that models the combustion, where, in each time step, a 

burning cell has a probability B to change its state to burnt 

cell; (3) the probability I, that models the ignition, where, 

there is a probability I for the fire spreads from a burning 

cell to a neighbor vegetation cell. 

The transition functions between the states are 

performed according to these probabilities values. The cell 

state transition diagram is showed in the Figure 1(b). An 

empty cell is unchangeable and always remains in this 

state. The fire spread is considered a diffusion contagious 

process and the fire can spreads only from a burning cell 

to a neighbor vegetation cell. Thus, the transition V→ F is 

conditioned for a vegetation cell that has at least one 

burning cell neighbor. Given two neighbors cells, one 

burning cell and the other a vegetation cell, in each time 

step, there is a probability I for the burning cell ignites the 

neighbor vegetation cell. Once ignited, in each time step, 



there is a probability B for the burning cell remain 

burning, otherwise its state changes to burnt cell, which is 

the transition F→ O. 

 

 
 

(a) Moore 

neighborhood 
(b) Cell state transition diagram 

Figure 1 – (a) The Moore neighborhood comprises eight cells 

(yellow cells) which surround the central cell (black cells). 

(b) In the cell state transition diagram, arrows indicate the 

state transitions paths. The double arrow indicates that the 

transition depends on the neighbor cell state. The round 

dashed arrows indicate that the state transitions are 

conditioned by the values of other probabilities. 

 

The fire spreads along the lattice following a 

pathway of interconnected cells which varies as a function 

of the effective probability 𝑆. Studies in percolation 

theory corroborate that there is a critical value 𝑆∗, called 

percolation threshold, so that when 𝑆 >  𝑆∗ always there 

is this pathway for the fire spreads from a starting cell to 

some other point inside the lattice [3]. The main question 

here is how to characterize the probability 𝑆 in the model.  

The existence of the percolation threshold and the 

consequent description of the critical line as a function of 

the probabilities 𝐷, 𝐵 and 𝐼 are investigated using MCS. 

A set of 𝑁 MCS are performed using identical lattices and 

different values of 𝐷, 𝐵 and 𝐼. The fire starts at the left 

border of the lattices and during the 𝑁 simulations is 

computed the number of times that the fire reaches the 

right border of the lattice. If the fire propagates from one 

side to the other then the fire percolate the lattice. Thus, 

the approximation of 𝑆, denoted by 〈𝑆〉, is calculated as: 

〈𝑆〉 =
1

𝑁
∑𝐶𝑗

𝑁

𝑗=1

,                                          (1) 

where 𝐶𝑗 = 1 if the fire percolate the lattice and 𝐶𝑗 = 0 

otherwise. The Figure 2 characterizes the values of 〈𝑆〉 for 

different values of 𝐷 varying the values of 𝐵 and 𝐼. For 

each set of parameters values a set of 𝑁 = 1000 MCS are 

carried out using one lattice of size 52 × 52. The color 

map displays values varying from 〈𝑆〉 = 0 (black) to 

〈𝑆〉 = 1 (white). If 〈𝑆〉 = 0 the fire not percolates the 

lattice, in other words, the fore extinction regime 

predominates. Otherwise, if 〈𝑆〉 = 1, the fire propagation 

regime predominates and the fire spreads incessantly 

across the lattice. The Figs. 4(a)-(f) indicate the existence 

of a critical line that define a partition on the model 

parameter space and separates the set of parameters for 

which a fire can propagate from those for which it cannot. 

The curve position changes as a function of 𝐷. The Figs. 

4(a)-4(f) characterizes this critical line in different values 

of 𝐷. 

Although the model formulation include only fire 

spread dynamics under flat terrain and no-wind 

conditions, the qualitative and quantitative analysis 

performed in this paper indicate that this model 

constitutes a qualitative framework for wildland fire 

spread dynamics simulation. However, for further 

ecological applications of this model, the relation of the 

model parameters with meteorological, vegetation and 

topographical factors remain to be quantitatively 

established.  

 

  
(a) 𝐷 =  0 2 (b) 𝐷 =  0   

  
(c) 𝐷 =  0 5 (d) 𝐷 =  0   

  
(e) 𝐷 =  0   (f) 𝐷 =  1 0 

Figure 2 – Values of 〈𝑺〉 for different values of 𝑫 varying the 

values of 𝑩 and 𝑰. A total of 𝑵 = 𝟏𝟎𝟎𝟎 Monte-Carlo 

simulations are carried out for each set of values 𝑫, 𝑩 and 𝑰 
using a lattice of size 𝟓𝟐 × 𝟓𝟐. 
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