
Computational Performance of

Carsharing Fleet-Sizing Optimization

Cristiano Martins Monteiro1, Geraldo Robson Mateus1,

Clodoveu Augusto Davis Junior1

1Department of Computer Science – UFMG

{cristianomartins,mateus,clodoveu}@dcc.ufmg.br

Abstract. Amid the expansion of shared-economy products, carsharing services

aim to offer short-term car rentals. An optimized fleet-size allocation for each

service station is important for serving as many clients as possible, maximizing

the company’s profit. This work proposes and compares the computational per-

formance of two Mixed-Integer Linear Programming formulations to support

the carsharing simulation. The performed simulations varied the number of of-

fered vehicles, and the number of clients looking for the service. Real spatial

data from the city of São Paulo, Brazil, were used on the simulations. Results

show that the formulation which does not use the Big-M method finds the global

optimal solution faster and can scale up better.

1. Introduction

Transportation plays an important role in the society by enabling people to commute

to school, work, shopping and leisure activities in their cities. Improving the access to

mobility was the subject of recent work, aiming to identify transport related social ex-

clusion (Logiodice et al., 2015), suggesting new locations for pick-up and drop-off for

public transportation (Monteiro et al., 2017), and building applications to integrate, visu-

alize, analyze data of public transportation (Alic et al., 2018).

Along with inaccessibility, issues such as discomfort, low diversity of operating

lines, low supply of buses at certain times, high transportation fares and extensive trip

length can motivate passengers to use alternative transportation means (Monteiro et al.,

2019), among which are carsharing services. Carsharing consists in offering vehicles in

a “as-needed” basis. Clients can rent cars for periods as little as some minutes, avoiding

the costs of owning a vehicle or renting it for a whole day (Machado et al., 2018).

In summary, there are three modalities of carsharing: round-trip, one-way and

free-floating. On the round-trip, the vehicle must be returned to the same station where

the rental has started. On the one-way, the vehicle can be returned to a different station.

And on the free-floating, there are no stations and the vehicles can be parked on the

streets (Machado et al., 2018). In all those carsharing modalities, and mainly on the

station-based ones, the number of available vehicles must be determined in order to avoid

unnecessary costs and to offer attractive prices (Boyacı et al., 2017; Lage et al., 2019).

Recent works use Simulation-Based Optimization (SBO) to simulate carsharing

dynamics, and to support the decision-making process (Monteiro et al., 2019). This

work proposes two Mixed-Integer Linear Programming (MILP) formulations to maxi-

mize carsharing profits. Our objective is to compare the computational performance of
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these formulations, in order to support broader and more complex analyses in the future.

Real spatial data from the city of São Paulo, Brazil, were used. An analysis of the optimal

solutions found by varying the number of simulated clients and the maximum number of

vehicles is also shown. Results present the benefits of applying a SBO for carsharing plan-

ning and indicate that the formulation without the Big-M method runs faster and scales

up better for optimizing the carsharing fleet-sizing problem.

This paper is organized in four sections. Next section discusses related work.

Section 3 explains the proposed formulations. Section 4 shows and discusses the results,

and Section 5 concludes this paper.

2. Related Work

SBO approaches enable the decision-maker to evaluate the impact of parameter changes,

being useful to support “what-if” scenario analyses (Oliveira et al., 2015; Monteiro et al.,

2019). Most of the optimization problems for carsharing are deterministic and exact,

based on MILP models, and are Mono-Objective. However, some works did not follow

this pattern, and chose to solve Multi-Objective problems, for example.

Correia and Antunes (2012) proposed a MILP model to maximize carsharing pro-

fits considering all the revenues and costs involved. The work optimizes the locations

for carsharing stations, balancing the fleet of vehicles among the stations on the one-way

modality. The authors evaluated the proposed MILP model for a case study in Lisbon,

Portugal, showing the impact of the stations’ location for different behaviour of clients.

Jorge et al. (2014) compared two methods for fixing the unbalancing of vehicles

among stations, in Lisbon, Portugal. That unbalancing happens due to different demands

of clients on the one-way modality. On the one-way, even if the number of vehicles dis-

tributed through the stations at the day’s beginning is suitable, demand peaks can quickly

occupy all vehicles from one station. In that case, other clients from that same station will

not be served, even if there are idle vehicles in other stations. The model based on mathe-

matical formulations achieved solutions with better profits, mainly while considering the

costs of relocating the vehicles.

Many carsharing companies do not offer one-way modality, since the costs of

relocating vehicles can raise carsharing prices, making the rentals unattractive. Jorge

et al. (2015) proposed a MILP model to optimize round-trip carsharing to also offer one-

way rentals in Boston, USA. As expected, results showed that including one-way services

in a optimized way could increase the number of clients served.

Lu et al. (2017) proposed a stochastic MILP based on Benders decomposition.

The optimization was applied on data from the Boston-Cambridge area in Massachusetts,

USA, and analyzed the percentage of the fleet used, the number of vehicles, relocation

costs, and QoS (Quality of Service). The results indicated that if the client demands

are generated by pricing and strategic customer behavior instead of by natural market

penetration and user adoption, the one-way profit can decrease in comparison with round-

trip profits.

A Multi-Objective MILP formulation is proposed by Boyacı et al. (2015) to ma-

ximize user benefit and carsharing net revenue using electric vehicles. Their work was

extended in Boyacı et al. (2017) by proposing a procedure to cluster the stations in or-
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der to reduce the number of variables, and to consider the relocation problem when the

carsharing service allows reservations.

Bruglieri et al. (2018) proposed a Multi-Objective MILP formulation for the Elec-

tric Vehicle Relocation Problem for one-way carsharing in Milan, Italy. In order to ma-

ximize the profits, the authors’ formulation has three objectives: minimizing the number

of workers needed to relocate vehicles; maximizing the number of relocations; and mi-

nimizing the lengthiest relocation route performed. The computational performance and

the optimal values between approximate optimization methods and exact ones were com-

pared. Results show the benefits of using the approximate method instead of a slower

optimization method.

Monteiro et al. (2019) proposed a MILP formulation for round-trip and one-way

fleet-sizing. The formulation objective was to maximize the predicted profit. The authors

evaluated different scenarios from the city of São Paulo, Brazil, varying the number of

clients, driving distance, rental duration, two models of cost calculation and two models

of rental prices. The results showed that round-trip carsharing can overcome the profit

from the one-way mode in scenarios with higher rental durations.

This paper differs from the related work by proposing and comparing the perfor-

mance of two MILP formulations for fleet-sizing optimization of carsharing. The propo-

sed formulations are based on round-trip, and experimental results were applied on real

spatial data from the city of São Paulo. The results can be useful for carsharing companies,

conventional car-rental services, and other shared-mobility services such as bikesharing,

supporting the resources allocation. The SBO methods are described in the next section.

3. Simulation-Based Optimization

This section presents the simulation performed and the proposed formulations. Both for-

mulations have the same load of data, and therefore, generate the same global optimal

results. Figure 1 presents the location of 100 stations, randomly generated for the ex-

periments. All the generated locations are placed in a street in São Paulo. Therefore,

regions with larger total street length are more likely to receive a carsharing station. That

procedure also avoids locating stations on regions with only water, woods or no driving

access.

As detailed by Monteiro et al. (2019), the number of generated clients varies ac-

cording to the population in the district where the station is located. A São Paulo district

is the smallest official spatial unit adopted by the local government. Thus, the demand

is divided throughout the city, simulating more clients in regions with larger population.

Rental start and end times and the corresponding driving distance are generated randomly,

and both follow an uniform distribution. The set of stations and clients are only used as

input for the proposed formulations. Different data can be applied to simulate broader

case studies.

Subsection 3.1 describes the formulation based on the Big-M method. Subsec-

tion 3.2 describes the formulation without the Big-M method. The Big-M method consists

in defining big enough constants and multiply them to specific variables on the objective

function or constraints in order to assure the feasibility of some solutions (Bazaraa et al.,

2011). The formulation presented in the following subsection uses the Big-M method to

guarantee that earlier clients arriving at the stations will have priority on being served.
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Figure 1. Generated locations for the carsharing stations

3.1. Formulation with Big-M

Table 1 presents the variables used and Table 2 presents the constants used in this formula-

tion. Equation 2 presents the objective function, with the goal to maximize the difference

between total revenue and total cost, generating the profits.

Revenue and costs are calculated using models presented by Monteiro et al.

(2019). The revenue from each rental was fared as R$101 per hour plus R$0.90 per driven

kilometer, with a minimum fare of R$20. Equation 1 defines the revenue Rxs
. The cost

Cxs
is calculated as R$0.50 per driven kilometer, and cost Cs is defined as R$13 per day

and per vehicle, indicating the vehicle’s depreciation along the time of use.

Rxs
= max(20, (T end

xs
− T start

xs
)× 10 +Dxs

× 0.50) (1)

Table 1. Model Variables

Variable Description

s ∈ ❙ Carsharing station

ns Number of vehicles to be allocated in station s
xs ∈ ❳ Client willing to rent a vehicle from station s

1Brazilian currency: Reais (R$). For comparison, the exchange rate on August 13, 2019, was of R$3.96

per US dollar
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Table 2. Model Constants

Constant Description

Ps Number of parking slots in station s
Cs Cost of maintaining a vehicle

Cxi
s

Cost made by xs for using the vehicle

Rxs
Revenue obtained for serving client xs

Dxs Distance driven by xs

T start
xs

Rental start time for client xs

T end
xs

Rental end time for client xs
Ms (Big-M) Maximum number of clients that station s can serve

max
∑

xs ∈ ❳

Rxs
xs −

∑

xs ∈ ❳

Cxs
xs −

∑

s ∈ ❙

Csns (2)

Subject to:

xs ≤ ns +
∑

ut

ut∈❳:T end
ut

<T start
xs

−
∑

es
es∈❳:T end

es
<T start

xs

∀xs ∈ ❳ (3)

Msxs ≥ ns +
∑

ut

ut∈❳:T end
ut

<T start
xs

−
∑

es
es∈❳:T end

es
<T start

xs

∀xs ∈ ❳ (4)

ns ≤ Ps ∀s ∈ ❙ (5)

❳ ∈ {0, 1} (6)

ns ∈ ◆
0 (7)

Inequation 3 limits client xs to only be served if there is at least one available

vehicle. Inequation 4 ensures that client xs will be served if there is at least one available

vehicle. Inequation 5 limits the number of vehicles to be allocated in station s to the

number of existent parking spots Ps. Inequation 6 defines the client’s variables as binaries.

Finally, constraint 7 defines variables ns as positive integers including zero.

The Big-M method applied on Inequation 4 is important to balance both sides of

that inequation. If the Big-M was not used, variable xs, whose value is at most equal to

one, would also limit the inequation’s right hand side to one. The Big-M multiplying the

xs makes the left hand side have a value greater than one when variable xs is equal to one,

and makes the left hand side equal to zero when variable xs is zero.

Although this formulation is relatively short and simple, constraint 4 can reduce

the computational performance of the formulation. Next section presents an alternative

version of this formulation avoiding the use of the Big-M method.
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3.2. Formulation without Big-M

Avoiding to use the Big-M implies the need of creating additional variables and cons-

traints. Table 3 presents the variables used and Table 4 presents the constants used in this

formulation.

Table 3. Model Variables

Variable Description

s ∈ ❙ Carsharing station

vis ∈ ❱ ith vehicle that can be allocated on the station s
xi
s ∈ ❳ Client sorted by rental start (order indexed by i)

Table 4. Model Constants

Constant Description

Cs Cost of maintaining a vehicle

Cxi
s

Cost made by xi
s for using the vehicle

Rxi
s

Revenue obtained for serving client xi
s

Dxi
s

Distance driven by xi
s

T start
xi
s

Rental start time for client xi
s

T end
xi
s

Rental end time for client xi
s

The first change in the variables consists in splitting the number of allocated vehi-

cles in each station ns into several binary variables vis, one for each possible vehicle.

Therefore, one vis is defined for each parking slot at station s. Consequently, this formu-

lation represents the number of allocated vehicles in the station s by defining a number

of Ps binary variables. This change allows constraints relating the vehicle variables di-

rectly to the client variables, since now both are binaries. Those constraints are shown in

Inequation 9.

The second change consists in preprocessing the set of clients ❳ in order to select

a subset ❋ ⊆ ❳ with only the generated clients that have a chance to be served. That

preprocessing consists in leaving out of ❋ all clients that, given the flow of other clients,

cannot be served even if their stations have enough available vehicles for all their parking

slots. Therefore, the optimization avoids using Inequation 12 to “force” unfeasible clients

to be served. Since that preprocessing only implies on the case with enough available

vehicles, and the simulations were restricted for round-trip, building the set ❋ is a fast

procedure with linear time complexity in the number of clients O(|❳|).

Equation 8 presents the objective function, whose rationale was kept the same as

in Equation 2. Constraint 9 ensures that the first clients on station s will be served by

the allocated vehicles in that station. Constraint 10 limits client xs to be served only if

there is at least one vehicle available. Constraint 11 ensures beforehand that all clients

that have no chance to be served will not be served. Constraint 12 guarantees that the

vehicle returned by some client will be used to serve the next client from the same station.

Constraint 13 defines the client variables as binaries. Finally, constraint 14 defines the

vehicle variables as binaries.
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max
∑

xi
s ∈ ❋

Rxi
s
xi
s −

∑

xi
s ∈ ❋

Cxi
s
xi
s −

∑

s ∈ ❙

Cs

∑

vjs∈❱

vjs (8)

Subject to:

vis ≤ xi
s ∀vis ∈ ❱ (9)

xi
s ≤

∑

vjs∈❱:j≤i

vjs +
∑

uk
t

uk
t ∈❳:T end

uk
t

<T start

xis

−
∑

els
els∈❳:T end

els
<T start

xis

∀xi
s ∈ ❋ (10)

∑

xi
s /∈ ❋

xi
s = 0 (11)

∑

uk
s ∈ ❢:T

start

x
i−1
s

<T end

uks
≤T start

xis

uk
s ≤ xi

s +
∑

els ∈ ❋:l−i≤|❢|

els ∀xi
s ∈ ❋, ∀❢ ⊂ ❋ (12)

❋ ⊆ ❳ ∈ {0, 1} (13)

❱ ∈ {0, 1} (14)

The simulations were performed on a Mac mini Server (Late 2012) with S.O.

macOS Mojave 10.14.6, processor Intel Core i7 2.3 GHz, and RAM of 16 GB. The models

were implemented using Python 3.7, with the wrapper PuLP2 version 1.6.0 and the solver

CBC3 version 2.10.0. Both formulations were experimentally run using the previously

described data for the city of São Paulo. Next section presents the experimental results.

4. Results

This section presents the experimental results of run time and number of served clients,

number of vehicles needed and profits that a carsharing company would earn. The eva-

luated scenarios have 1,000, 2,000, 4,000, 8,000, 16,000, 32,000 and 64,000 clients. The

maximum number of vehicles and parking slots simulated were 1,000 and 5,000.

Figure 2 presents boxplots of the optimization run times for all scenarios. A ma-

ximum time limit of 30 minutes per run was set. Each boxplot represents 40 runs for each

evaluated scenario. The axis “Time (seconds)” is shown in logarithmic scale to make the

visual comparison easier. Boxplots in red were simulated using the proposed formulation

with Big-M and with at maximum 1,000 vehicles. Boxplots in blue and green use the

proposed formulation without the Big-M method; blue shows results for a fleet of 1,000

vehicles, and green corresponds to 5,000 vehicles available.

2https://pythonhosted.org/PuLP/
3https://projects.coin-or.org/Cbc
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Figure 2. Time spent by the evaluated formulations

Even in the logarithmic scale, the boxes representing 50% of the data (between the

first quartile, Q1, and the third quartile, Q3) can not be seen in Figure 2 for the blue and

green boxplots. However, the red boxplots (regarding the formulations with the Big-M

method) usually showed that variation more clearly. That pattern indicates that run times

vary more widely in the formulation with Big-M. That higher variation can be veerified in

Tables 5 and 6. Besides, the simulations with Big-M and 8,000 clients exceeded the time

limit of 30 minutes in some runs. All scenarios with Big-M and more than 8,000 clients

also exceeded that time limit. In those cases, the solution obtained is not guaranteed to be

the optimal.

All the scenarios using the formulation without Big-M (blue and green boxplots)

were solved with optimality guarantee. None of the boxplots evaluated overlap. There-

fore, there is statistically significant difference between the run time of all the scenarios

evaluated (Krzywinski and Altman, 2014). Thus, it can be asserted that the formulation

without Big-M achieves faster run times than the formulation with Big-M. Besides, star-

ting from 2,000 clients, the formulation without Big-M but with 5,000 vehicles is even

faster than the formulation with Big-M but only with 1,000 vehicles.

Tables 5 and 6 present the basic statistics for the simulations. In both tables, the

symbol Ms indicates results regarding the formulation with Big-M, and the symbol ❋

indicates results from the formulation without Big-M. As shown by Table 5, the standard

deviation for the scenarios with 4,000 and 8,000 clients raised quickly, when compared
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Table 5. Time Spent by Running the Optimization for Low Demand (seconds)

Number of Clients

1,000 2,000 4,000 8,000

Measures Ms ❋ Ms ❋ Ms ❋ Ms ❋

Minimum 0.87 0.53 7.95 1.02 92.84 1.94 574.96 4.24

Q1 0.88 0.54 7.99 1.02 99.60 1.96 665.10 4.27

Median 0.88 0.54 8.00 1.03 111.90 1.97 742.23 4.29

Mean 0.91 0.57 8.02 1.04 138.45 1.99 905.03 4.32

Q3 0.89 0.55 8.03 1.04 126.90 1.98 868.45 4.31

Maximum 1.18 1.07 8.45 1.28 568.70 2.20 2212.52 5.29

Standard Deviation 0.08 0.10 0.08 0.04 88.40 0.06 446.04 0.16

Table 6. Time Spent by Running the Optimization for High Demand (seconds)

Number of Clients

16,000 32,000 64,000

Measures Ms ❋ Ms ❋ Ms ❋

Minimum 2055.03 12.90 2153.38 47.48 2124.38 188.99

Q1 2141.20 13.00 2226.37 47.71 2207.79 189.74

Median 2146.41 13.05 2511.32 47.79 2519.39 190.40

Mean 2144.21 13.12 2433.02 47.93 2489.02 190.76

Q3 2152.84 13.10 2538.97 48.03 2599.07 191.55

Maximum 2186.84 14.14 2661.79 49.22 2735.89 196.31

Standard Deviation 22.71 0.29 150.40 0.43 189.35 1.40

to the standard deviation from other scenarios. That difference was strongly reduced in

Table 6, probably due to the time limit imposed.

Table 7 compares the run times of the scenario with 5,000 vehicles (green box-

plots), to the run times from the scenario with 1,000 vehicles and also without the use

of Big-M (blue boxplots). Since 5,000 vehicles is 5 times 1,000 vehicles, it was expec-

ted that the rate of run time would be about 5 times longer. That proportional response

can be observed up to the scenario with 8,000 clients. After that, the optimization with

up to 5,000 vehicles started not to be so much slower than the optimization with up to

1,000 vehicles. One hypothesis for that pattern is that the constraint presented by Equa-

tion 11 make those scenarios faster by not even letting the unfeasible clients (xi
s /∈ ❋) be

considered to be served along the optimization.

Tables 8 and 9 compare the optimal solutions found. The numbers of served cli-

ents, earned profits and used vehicles used tended to increase together in similar rates

through the scenarios. However, that increase seemed to saturate in the scenarios with

high demand of clients. Up to scenario with 8,000 clients, as the demand doubled, the

percentage of increase more than doubled. But starting from demand of 16,000 clients, as

the demand doubles, the percentage of increase did not change significantly. That satura-

tion indicates that is needed more than 5,000 vehicles and parking slots for significantly
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Table 7. Time Comparison Varying to 5,000 Vehicles (seconds and proportion)

Number of Clients

1,000 2,000 4,000 8,000 16,000 32,000 64,000

Stats. Time Rate Time Rate Time Rate Time Rate Time Rate Time Rate Time Rate

Min. 2.82 5.28 4.87 4.79 11.61 6.00 21.57 5.09 39.19 3.04 83.46 1.76 234.89 1.24

Q1 2.84 5.27 4.89 4.78 11.66 5.96 21.66 5.07 39.30 3.02 83.79 1.76 235.95 1.24

Median 2.85 5.24 4.91 4.77 11.69 5.95 21.70 5.06 39.40 3.02 84.15 1.76 236.56 1.24

Mean 2.87 5.01 4.92 4.74 11.74 5.92 21.79 5.04 39.53 3.01 84.31 1.76 237.70 1.25

Q3 2.87 5.20 4.94 4.75 11.73 5.92 21.75 5.05 39.51 3.02 84.62 1.76 237.46 1.24

Max. 2.99 2.79 5.08 3.96 12.61 5.72 22.98 4.34 40.87 2.89 87.94 1.79 256.58 1.31

SD 0.04 0.04 0.04 0.03 0.20 0.09 0.30 0.06 0.37 0.03 0.85 0.02 4.24 0.02

Table 8. Optimal Solutions for Low Demand

Number of Clients 1,000 2,000 4,000 8,000

Number of Vehicles 1,000 5,000 1,000 5,000 1,000 5,000 1,000 5,000

Clients 931 1,000 1,518 2,000 2,053 3,912 2,388 6,883

Increase in Clients 7.41% 31.75% 90.55% 188.23%

Profit (R$) 79,308 84,661 133,877 172,360 182,993 338,187 217,231 605,970

Increase in Profits 6.75% 28.75% 84.81% 178.95%

Vehicles 543 600 779 1,093 907 1,971 972 3,251

Increase in Vehicles 10.50% 40.31% 117.31% 234.47%

Table 9. Optimal Solutions for High Demand

Number of Clients 16,000 32,000 64,000

Number of Vehicles 1,000 5,000 1,000 5,000 1,000 5,000

Clients 2,596 9,972 2,664 11,812 2,729 12,897

Increase in Clients 284.13% 343.39% 372.59%

Profit (R$) 237,779 886,743 248,519 1,067,651 254,744 1,189,949

Increase in Profits 272.93% 329.61% 367.12%

Vehicles 987 4,205 989 4,685 999 4,915

Increase in Vehicles 326.04% 373.71% 391.99%

raising profits and increasing the number of served clients when demand is at least 16,000

clients.

Simulating different carsharing modalities, such as one-way and free-floating

would probably outcome different points of saturation. That difference will also hap-

pen when including the vehicle relocation tasks, and considering electric vehicles with

constraints of time waiting until batteries be charged enough. The proposed formulations

can be adapted for those wider and more complex scenarios, being able to also simu-

lated and optimize the carsharing fleet-size in a computationally feasible run time. The

following section presents the conclusion.
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5. Conclusion

Carsharing services, together with other shared mobility products, are consistently chan-

ging the way people move in the city. The provision of better and cheaper products are

enabling those services to emerge by benefiting more people with each passing day. In

order to keep providing good services for low prices, tasks such as simulation and opti-

mization must become routine for mobility enhancement companies.

Therefore, the development of computationally efficient methods for carsharing

optimization is needed to simulate even bigger demand scenarios. This work proposed

and compared two Mixed-Integer Linear Programming formulations for carsharing vehi-

cle fleet-sizing in São Paulo, Brazil. Analysis of run time and of the optimal solutions

were presented, varying the number of clients simulated and the maximum number of

available vehicles and parking slots. The formulation without the Big-M method was

shown to be faster and with more stable run times than the formulation using the Big-M.

According with the optimal solutions found, the number of served clients, earned

profits and used vehicles started to saturate with demand of 16,000 clients per day. That

saturation indicates that is needed more than 5,000 vehicles and parking slots for signifi-

cantly increasing the number of served clients, and consequently, raising the company’s

profits. However, it is possible that only offering the round-trip modality does not attract

a high demand of clients all days, making the carsharing company to also offer less res-

trict modalities. Wider and more more complex scenarios regarding different carsharing

modalities would probably outcome different saturation points. Those simulations could

also be performed in a computationally feasible run time using, as basis, the proposed

formulation without Big-M.

As future work, we suggest to evaluate the impact of the blocks of constraints in

the run times and memory needed through different scenarios. Another future work con-

sists in proposing formulations based on electric vehicles and their use dynamics, which

require longer times to charge the batteries. Also, the impact of time for charging bat-

teries could be evaluated for carsharing services that are not station-based, such as the

free-floating modality. In those cases, charging batteries can become an issue since cli-

ents can finish their rentals in places without a charging spot, not recharging the vehicle

for the next client. Finally, we suggest, as future work, to evaluate even bigger scenarios

(maybe using distributed computing), also regarding the one-way and free-floating mo-

dalities with vehicles relocation task, and considering the client’s walking tolerance as a

variable while looking for an available vehicle or charging spot.
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