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This paper considers the potential for using seasonal climate forecasts in developing an early warning

system for dengue fever epidemics in Brazil. In the first instance, a generalised linear model (GLM) is

used to select climate and other covariates which are both readily available and prove significant in

prediction of confirmed monthly dengue cases based on data collected across the whole of Brazil for the

period January 2001 to December 2008 at the microregion level (typically consisting of one large city

and several smaller municipalities). The covariates explored include temperature and precipitation data

on a 2:51� 2:51 longitude–latitude grid with time lags relevant to dengue transmission, an El Niño

Southern Oscillation index and other relevant socio-economic and environmental variables. A negative

binomial model formulation is adopted in this model selection to allow for extra-Poisson variation

(overdispersion) in the observed dengue counts caused by unknown/unobserved confounding factors

and possible correlations in these effects in both time and space. Subsequently, the selected global

model is refined in the context of the South East region of Brazil, where dengue predominates, by

reverting to a Poisson framework and explicitly modelling the overdispersion through a combination of

unstructured and spatio-temporal structured random effects. The resulting spatio-temporal hierarch-

ical model (or GLMM—generalised linear mixed model) is implemented via a Bayesian framework using

Markov Chain Monte Carlo (MCMC). Dengue predictions are found to be enhanced both spatially and

temporally when using the GLMM and the Bayesian framework allows posterior predictive

distributions for dengue cases to be derived, which can be useful for developing a dengue alert

system. Using this model, we conclude that seasonal climate forecasts could have potential value in

helping to predict dengue incidence months in advance of an epidemic in South East Brazil.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction and motivation

The early identification of an epidemic of infectious disease is
an important first step towards implementing effective interven-
tions to control the disease and reducing mortality and morbidity
in human populations (Kuhn et al., 2005). However, an epidemic
is often under way before the authorities are notified and control
measures are put in place. In this paper we assess the potential for
using seasonal climate forecasts to provide early warnings of
ll rights reserved.
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future increased and geographically specific risk of dengue fever
in Brazil.

Dengue fever and its more severe form (dengue hemorrhagic
fever) is one of the most important emerging tropical diseases at
the beginning of the 21st century in terms of morbidity and
mortality (Gubler, 2002; Guzman and Kouri, 2003). Dengue is an
acute viral disease characterised by fever, headache, muscle and
joint pains, rash, nausea, and vomiting. Dengue haemorrhagic
fever is a potentially deadly complication that in severe cases, can
cause circulatory failure. Dengue viruses are transmitted by the
bite of infected Aedes females, in particular Aedes aegypti, an urban
mosquito with widespread distribution in tropical cities (Hayden
et al., 2010). Dengue transmission is influenced by many factors,
including climate, which influences mosquito biology and inter-
actions between the mosquito vector and dengue virus (Kuno,
1995; Scott et al., 2000; Sanchez et al., 2006). Dengue is endemic
in many tropical and subtropical countries. However, epidemic
ng of climate-sensitive disease risk: Towards an early warning
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dengue transmission displays a seasonal pattern in response to
temperature and rainfall variability (Johansson et al., 2009). There
have been recent concerns of a worldwide spread of dengue fever,
as a result of climate change, that could favour an expansion of
the transmission area (Epstein, 2001; Hales et al., 2002).

In Brazil, the greatest incidence of cases occur from January to
May when the climate is warmest and most humid (Braga and
Valle, 2007). Three of the four dengue virus serotypes have spread
throughout Brazil, where reported dengue cases in the last decade
represent about 60% of dengue cases reported in the Americas as a
whole (Nogueira et al., 2007a). Dengue epidemics impact heavily
on the national health services. There is no specific treatment for
dengue, but appropriate medical care frequently saves the lives of
patients with the more serious dengue haemorrhagic fever. A
major epidemic occurred in Brazil in 2008, with 787,726 reported
cases (January to November) including 4137 cases of hemorrhagic
fever and 448 deaths.1 In Rio de Janeiro, military field hospitals
were opened during the 2008 outbreak to help to ease the
pressure on emergency rooms packed with people suffering from
dengue.2

The current monitoring system in Brazil relies on observing
dengue incidence in December/January to estimate epidemic
potential late in the austral summer. However, this does not
provide a quantitative measure or much predictive lead time. The
greater the lead time available for forecasting disease risk, the
greater the opportunity for effective disease risk intervention,
although long term predictions often involve larger errors. Myers
et al. (2000) suggested that epidemic forecasting is most useful to
health services when case numbers are predicted two to six
months ahead. This would allow time for the allocation of
resources to interventions such as preparing health care services
for increased numbers of dengue patients and educating popula-
tions to eliminate mosquito breeding sites, i.e. by regularly
emptying water that accumulates in discarded refuse, tyres and
domestic water storage containers, commonplace in urban slums/
favelas found in some areas of Brazil.

As seasonal climate forecasts predict seasonal or monthly
average temperature and precipitation (and other variables) for
the forthcoming months/season in both time and space,
they could potentially be used in a national dengue early
warning system (EWS) for Brazil to aid epidemic planning
months in advance. EWS based on seasonal climate forecasts
have been developed to predict malaria incidence, for example
in Botswana (Thomson et al., 2006), but there has been
limited progress in developing EWS for dengue fever. Therefore,
the use of seasonal climate forecasts with lead times of one month
or more within a dengue EWS is a research area in need of
exploration.

Before assessing the viability of using seasonal climate
forecasts in a dengue prediction model, a model driven by
observed climate variables with time lags relevant to dengue
transmission, issued at the same resolution as the climate
forecasts, must first be evaluated. If a significant relationship is
identified between observed climate and dengue in Brazil, the use
of forecast climate for dengue prediction purposes could be
valuable. The remainder of this paper focuses on the viability of
using observed climate variables in a spatio-temporal dengue
prediction model.

In Section 2 we outline some of the key processes involved in
dengue transmission and describe the data used in the statistical
modelling. Section 3 documents the exploratory data analysis and
1 http://portal.saude.gov.br/portal/arquivos/pdf/boletim_dengue_janeiro_no

vembro.pdf, [accessed 15 May 2010].
2 http://news.bbc.co.uk/1/hi/world/americas/7324000.stm, [accessed 15 May

2010].
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model selection process to find which monthly climate variables
and time lags are statistically significant for modelling dengue
incidence in Brazil, using a negative binomial generalised linear
model (GLM) to allow for overdispersion. In Section 4 we focus on
the South East of Brazil, where dengue predominates, and refine
the previously selected Brazilian global model by reverting to a
Poisson formulation and explicitly including spatially unstruc-
tured and spatio-temporal structured random effects via a
Bayesian framework to account for unobserved/confounding
factors. Section 5 then assesses the ability of the refined model
to issue dengue epidemic warnings for the peak dengue season in
2008 when a serious epidemic occurred. The final section
discusses future ideas for research and summarises the main
findings of the paper.
2. Dengue transmission

A number of complex factors are related to dengue transmis-
sion. In particular population growth and unplanned urbaniza-
tion, resulting in substandard housing, inadequate water,
sewerage and waste management systems, which allow mosquito
reproduction. Poverty and health inequality are behind almost all
of these factors (Gubler, 2002). Given favourable climatic
conditions for development of the dengue-carrying mosquito,
the urban environment plays a major role in determining
transmission rates. Rainfall may influence the filling of containers
out in the open (e.g. old tyres) which create potential breeding
sites for the mosquito. More importantly, the breeding of
mosquitoes depends on temperature, humidity, the mosquitoes’
life expectancy, life-long fecundity, biting activity and virus
incubation (Favier et al., 2005). Several previous studies have
examined the link between climate and dengue. In many tropical
countries, a positive association between rainfall and dengue
incidence have been documented (Li et al., 1985; Moore et al.,
1978; Gould et al., 1970). However, a significant relationship was
not found for other regions (Eamchan et al., 1989; Goth et al.,
1987; Kuno, 1995). Some authors have found that time-lagged
climate variables of up to two or three months have a statistically
significant association with dengue (Li et al., 1985; Schreiber,
2001; Wu et al., 2007). Precipitation and temperature oscillations
over large parts of Latin America and the Caribbean are strongly
influenced by changes in Pacific sea surface temperatures (SST) as
part of the El Niño Southern Oscillation (ENSO) (Glantz, 2001) and
these in turn can influence vector competence and survivorship.
Several studies have also used some index of ENSO to model
dengue (Brunkard et al., 2008; Cazelles et al., 2005; Gagnon et al.,
2001; Hales et al., 1999). Therefore, the inclusion of covariates
based on the urban environment, climate (e.g. temperature,
precipitation, Pacific SST) and their lagged effects appear to be
potentially important components of a climate informed dengue
prediction model.

Dengue fever data (counts of confirmed cases per month) from
January 2001 to December 2008 (96 months) were obtained at
municipality level (5651 municipalities) from SINAN DATASUS—an
Information System for Notifiable Diseases, established by the
Brazilian Ministry of Health.3 A network of laboratories, capable of
diagnosing dengue infections, has been implemented in all states.
The network is responsible for confirmation of cases to support
epidemiological surveillance (Nogueira et al., 2007b). However,
this network is not accessible to all municipalities. Dengue counts
were aggregated to the microregion level (558 microregions),
where a microregion typically consists of one large city and
3 http://dtr2004.saude.gov.br/sinanweb/novo/, [accessed 15 May 2010].
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Fig. 1. (a) Monthly dengue fever counts (1000 cases) for main regions of Brazil from January 2001 to December 2008. (b) Map to show main regions of Brazil. (c) Map of

total dengue cases in each microregion (558) in Brazil for period January 2001 to December 2008.
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several smaller municipalities. This alleviates problems of
misreporting due to variation in the availability of health services
and epidemiological facilities at the municipality level. Fig. 1a
shows dengue counts for this period grouped into the five main
regions of Brazil (Fig. 1b) and Fig. 1c shows the total dengue cases
in each microregion for the period January 2001–December 2008.
Dengue is most prevalent in the South East. Two major epidemics
occurred in the late austral summer of 2002 and 2008, while
considerably less dengue occurred in 2004 and 2005. There is very
little dengue in South Brazil and the North West Amazon.

National cartographic data such as altitude and biome were
obtained from the Brazilian Institute for Geography and Statistics
(IBGE).4 Census data at the microregion level such as population,
percentage of urban population and the percentage of households
with a water supply provided by a network, refuse collection and
at least one bathroom, was obtained from an aggregated database
SIDRA maintained by IBGE. Each microregion belongs to an
administrative main region (1. North, 2. North East, 3. South, 4.
South East, 5. Central West) and a biome (1. Amazon Rainforest, 2.
Caatinga, 3. Cerrado, 4. Atlantic Rainforest, 5. Pampa, 6. Pantanal).
A spatial variable named zone was defined according to the six
biomes but by also subdividing the Atlantic Rainforest biome into
three areas (North, South East and South) according to different
climatic regimes. For example, south of the Tropic of Capricorn
(23.51S) the climate is more temperate and humid, while in the
North East portion of the Atlantic Rainforest the climate is
relatively warmer. Therefore, eight zones are defined for which
climatic, geographical and ecological conditions are approxi-
mately homogeneous. In a modelling context, zone is treated as
a categorical variable, or factor. Fig. 2 shows the spatial
distribution of altitude and urban population in Brazil and the
location of the geographical zones (Figs. 2a–c). Figs. 2d–f illustrate
the relationship between these covariates and standardised
morbidity ratio (SMR) for the given time period where, for a
microregion i, the SMR is defined as the ratio of observed (yi) to
expected (ei) dengue cases in the time period. The expected cases
ei in each microregion are calculated as the population at risk (pi)
multiplied by the global dengue detection rate over the whole of
Brazil for the time period ðei ¼ pi �

P
yi=
P

piÞ. Altitude has a
statistically significant negative relationship with dengue SMR (as
altitude increases, dengue counts decrease) and percentage of
urban population had a statistically significant positive
relationship, given a microregion with excess risk of dengue
fever ðSMR41Þ, as urban areas are ideal environments for
4 http://www.sidra.ibge.gov.br/, [accessed 15 May 2010].
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mosquitoes and many people living in close proximity create a
human virus reservoir.

Fig. 3 illustrates that dengue has a strong annual cycle which
differs between geographical zones. The spatially varying dengue
annual cycle is included in the model specified in Section 3, as an
interaction between the categorical variables zone and month. As
only part of the cycle may be attributable to climatic conditions,
the inclusion of this interaction could account for other
confounding variables, such as seasonal population movements,
leading to differences in the annual cycle across zones.

Observed gridded (2:53
� 2:53 latitude–longitude grid) monthly

mean precipitation data was obtained from the Global Precipita-
tion Climatology Project (GPCP) (Adler et al., 2003). Reanalysis
monthly mean surface air temperature data was obtained from
the NCAR/NCEP Reanalysis (Kalnay et al., 1996). These climatic
variables are referred to as ‘observed’ climate for the remainder of
the text. Niño 3.4 is an index used to measure the strength of El
Niño and La Niña events (Barnston et al., 1997) and is defined as
the departure in monthly sea surface temperature from its long-
term mean averaged over the region (1201W–1701W and
51S–51N). A positive (negative) index indicates El Niño (La Niña)
conditions. A time series of the monthly Niño 3.4 index was
obtained from NOAA Climate Prediction Center.5

Microregion and gridded data were combined by assigning a
grid point to each microregion on the basis that the microregion is
contained within the grid square (see Fig. 4).
3. Model selection using a generalised linear model

Poisson models are widely used in the analysis of count data.
However, it is well established that observed count data, e.g.
disease cases, often display substantial extra-Poisson variation, or
overdispersion (Lawless, 1987). Overdispersion was evident in
this dengue dataset. Fitting a Poisson generalised linear model
(GLM) involving the full set of explanatory variables described
earlier results in a residual deviance more than a hundred times
larger than the residual degrees of freedom, implying that as the
mean dengue count increases, the variance increases at a much
greater rate. In Section 4 we will consider making explicit
allowance for this overdispersion within the Poisson framework
via the inclusion of appropriate random effects, but for model
selection purposes within this section we accommodate over-
dispersion implicitly by using the negative binomial distribution
5 http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices, [accessed 15 May

2010].
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Fig. 2. Upper panel: spatial distribution of (a) altitude, (b) urban population, (c) zones in Brazil. Lower panel: scatter plot and loess curve to show relationship between

dengue SMR and (d) altitude, (e) percentage of urban population, (f) Boxplots to show distribution of dengue SMR in each zone. Note logarithmic y axes.

Fig. 3. Annual cycle of dengue for 8 zones in Brazil, calculated for period January 2001 to December 2008. (a) Amazon rainforest; (b) Caatinga; (c) Cerrado; (d) North East

Atlantic rainforest; (e) Pampa; (f) Pantanal; (g) South East Atlantic rainforest and (h) South Atlantic rainforest.
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for the observed counts, viz:

f ðy;m,yÞ ¼
GðyþyÞ
GðyÞy!

myyy

ðmþyÞyþy
,

with mean m, scale parameter y and variance function
VðmÞ ¼ mþm2=y. The log-link gðmiÞ ¼ logmi is utilised to allow
comparison of point estimates to a Poisson model.

In order to select which explanatory variables are important
for modelling dengue counts in Brazil for the 96 month time
Please cite this article as: Lowe, R., et al., Spatio-temporal modelli
system for dengue in Brazil. Computers and Geosciences (2010), do
period (January 2001–December 2008), the negative binomial
GLM described above was fitted using the MASS package
(Venables and Ripley, 2002) in R (R Development Core Team,
2008), starting with a maximal model based on all of the
covariates described in the previous section, i.e. spatial covariates
related to the urban environment, altitude, the annual cycle and
interactions with geographical zone, observed climate variables
with associated time lags (0–3 months) and the Niño 3.4 index
with time lags of up to 6 months. Exploratory analyses were then
carried out using different subsets of variables to select an
ng of climate-sensitive disease risk: Towards an early warning
i:10.1016/j.cageo.2010.01.008

dx.doi.org/10.1016/j.cageo.2010.01.008


Fig. 4. Map to show centroids of microregions in Brazil (circles) and 2:51� 2:51

climate grid (squares). Box indicates approximate location of South East region for

which GLMM is developed.

Table 1
Parameter estimates for climate covariates.

Observed climate Coefficient estimate Standard error Prob4 jzj

Precipitation lag 1 0.018 0.0037 5.12�10�4

Precipitation lag 2 0.022 0.0036 6.45�10�11

Temperature lag 1 0.091 0.0093 2�10�16

Temperature lag 2 0.161 0.0093 2�10�16

Niño 3.4 lag 6 �0.204 0.0119 2�10�16
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appropriate prediction model (e.g. examining model fit with and
without climate information and with different interactions).
These analyses were assisted by the use of stepwise model
selection algorithms based on the Akaike information criterion
(AIC), which not only rewards goodness of fit, but also includes a
penalty that discourages overfitting. The final most parsimonious
model which emerged from the investigation is as follows:

yit �NegBinðmit ,yÞ

logðmitÞ ¼ logðeiÞþaþ
X

j

bjxjitþ
X

j

gjwjiþ
X

j

djzjit ,

where yit is dengue count for microregion i¼1,y,558 and time
t¼1,y,96, mit is the corresponding mean dengue count and y is
the scale parameter. The expected cases ei¼pir are treated as an
offset in the model based on the population pi in microregion i and
the overall average dengue rate per month r. The variables xjit

represent the selected climate influences: precipitation one
month previous (j¼1), precipitation two months previous (j¼2),
temperature one month previous (j¼3), temperature two months
previous (j¼4) and Niño 3.4 six months previous (j¼5). The
variables wji are: altitude (j¼1) and percentage of urban
population (j¼2). Finally, zjit is a series of factors reflecting zone,
month and interaction between zone and month.

All covariate coefficients were found to be significantly
different from zero at p¼0.001 level. The estimated parameters
and standard errors for the climate variables included in the final
model are listed in Table 1. Precipitation and temperature with
time lags of 1 and 2 months were found to be the most
statistically significant and are positively related to dengue. This
may be the result of warm/humid conditions promoting mosquito
development and rain water filling discarded containers outdoors
to create mosquito breeding sites. Therefore, an epidemic could
be more likely if the temperature and/or precipitation in the
preceding months are above average. The Niño 3.4 index is
negatively related to dengue. This is because the major dengue
epidemics in 2002 and 2008, in particular, were preceded by
negative SST anomalies in the Niño 3.4 region. The scale
parameter y was estimated to be 0.32 with standard error
0.002, confirming a mean variance relationship considerably
different from that of the Poisson (equal mean and variance),
Please cite this article as: Lowe, R., et al., Spatio-temporal modelli
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hence justifying the use of a negative binomial rather than a
Poisson GLM for model selection purposes.

One important aspect of such a model to a public health
decision maker is its ability to predict dengue during the peak
dengue season from February–April (FMA). In Fig. 5, scatter plots
with fitted loess curves show the relationship between observed
and predicted dengue using the GLM model for the FMA season
2001–2008 for Brazil (Fig. 5a) and the South East region where
dengue predominates (Fig. 5b). Although the model clearly fails to
capture much of the variability in dengue counts in this season,
there is an overall positive association between observed and
predicted counts at both the national and regional level. The
influence of the climate variables in the model predictions is
demonstrated in Fig. 6a, which shows the time series of total
observed dengue cases for the FMA season, predicted dengue
using a GLM without any climate information (dotted line) and
with climate information (dashed line). The climate variables are
the only source of temporal information in the model. Therefore,
by not including them the same prediction is produced for every
month/season of each year. By including climate information,
some of the temporal variability is captured albeit with limited
skill. Fig. 6c illustrates how the GLM predicts dengue for the FMA
season in 2008. In some areas, the predicted dengue level
corresponds to the observed level, for example, in coastal
margins of the South East region (see Fig. 6b). However, low
levels of dengue are overestimated in the South and the model
fails to reproduce the variability in dengue cases across the
Amazon. When we focus at the region level (South East) and
microregion level (Rio de Janeiro) for which dengue early
warnings would be most useful, time series of dengue for the
FMA season 2001–2008 show that the climate informed GLM fails
to reproduce the dengue epidemic in 2002 and the increase in
dengue from 2006–2007 (Fig. 7a and b).

This GLM clearly fails to capture much of the temporal
variability in dengue counts, which may be attributable to factors
such as population immunity to the dominant circulating
serotype or specific health interventions and vector control
measures. However, information regarding these aspects of the
disease system are not readily available. Therefore, the use of
unstructured random effects may be valuable to allow for
unobserved latent structures in the model (McCulloch and Searle,
2001), for example, to capture the impact of unknown/unob-
served confounding factors, such as the introduction of a new
dengue serotype in a certain area of Brazil. Also, by using a GLM
independence is assumed in both time and space and neither of
these assumptions may be valid. There could be strong temporal
correlation effects within some areas and there could also be
spatial clustering effects in neighbouring microregions. To allow
for such latent effects and correlation structures, the GLM is
refined in the next section by reverting to a Poisson framework
but using a generalised linear mixed model (GLMM) which
includes spatially unstructured and spatio-temporal structured
random effects in the linear predictor. This explicitly models the
extra-Poisson variation or overdispersion previously allowed for
using the negative binomial.
ng of climate-sensitive disease risk: Towards an early warning
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Fig. 5. Scatter plot and loess curve (solid line) to show observed and predicted dengue fever, using GLM model for 3 month season FMA 2001–2008 for (a) Brazil and

(b) South East region.

Fig. 6. (a) Time series of total observed dengue (solid line), GLM predicted dengue with climate (dashed line) and GLM predicted dengue without climate (dotted line) for

FMA season 2001–2008 in Brazil, maps to show sum of (b) observed and (c) predicted dengue cases for microregions of Brazil, FMA season 2008. Categories defined by

quintiles of observed dengue for FMA season 2008.

R. Lowe et al. / Computers & Geosciences ] (]]]]) ]]]–]]]6
We focus our analysis on the South East region of Brazil (see
Fig. 1a) where dengue is most prevalent and there are a large
number of densely populated urban centres, which could benefit
from a climate informed dengue EWS. This is also the region
where the previously reported GLM predictions did appear to
capture some of the observed spatial variability in dengue counts
(see Fig. 6c).
4. Development of a generalised linear mixed model

As described above, we now focus on the 160 microregions in
South East Brazil and return to a Poisson model for the dengue
count data to develop a GLMM that includes random effects in the
linear predictor. One approach to fitting such a model is to use a
Bayesian framework. Markov Chain Monte Carlo (MCMC) meth-
ods make Bayesian modelling of complex situations involving
many parameters a practical feasibility (see Gilks et al., 1996;
Brooks, 1998 for more details). One further advantage of the
Bayesian approach is that the associated MCMC sampling yields
Please cite this article as: Lowe, R., et al., Spatio-temporal modelli
system for dengue in Brazil. Computers and Geosciences (2010), do
full posterior predictive distributions which automatically incor-
porate all components of variance at the different levels in the
model. A full assessment of prediction uncertainty is therefore
more easily obtained with Bayesian estimation than with the
more traditional maximum likelihood approach.

The inclusion of random effects introduces an extra source of
variability (a latent effect) into the model to capture the impact of
unknown/unobserved confounding factors. For example, serotype
introduction, which can vary spatially and temporally. Unstruc-
tured random effects can help account for overdispersion in the
distribution of dengue counts yi. However, this does not allow for
explicit spatial dependence between yi. This dependence can be
included by adding a spatially structured random effect. A typical
choice for a spatially structured prior is a conditional intrinsic
Gaussian autoregressive model (CAR) (see Besag et al., 1995);

nijnja i �N

P
ja iaijnjP

ja iaij
,

s2
nP

ja iaij

 !
,

where aij are adjacency weights for the microregions, here taken
to be simple binary values: aij¼1 if microregion i has a common
ng of climate-sensitive disease risk: Towards an early warning
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Fig. 7. Time series of total observed dengue (solid line), GLM predicted dengue with climate (dashed line) and GLM predicted dengue without climate (dotted line) for FMA

season 2001–2008 for (a) South East (region level) and (b) Rio de Janeiro (microregion level).
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boundary with microregion j, aij¼0 otherwise. The hyperpara-
meter sn controls the strength of the local spatial dependence. As
the CAR is improper, a ‘sum to zero’ constraint is applied to ni and
it is then advisable to take a uniform flat prior for the intercept a
(see model specification below).

Models to predict vector-borne disease may include an
autoregressive time series component (e.g. Gomez-Elipe et al.,
2007), based on the idea that the current value of the time series
yit can be explained as a function of past values. Accordingly, a
first order autoregressive temporal effect ot was included in the
model, where t is calendar month and o1 (August) is set equal to
zero in the model specification to avoid identifiability problems.

Therefore, the spatio-temporal GLMM adopted is given by

yit � PoisðmitÞ

logðmitÞ ¼ logðeiÞþaþ
X

j

bjxjitþ
X

j

gjwjiþfiþniþot

a�Uð�1,þ1Þ

fi �Nð0,s2
fÞ

ni � CARðs2
n Þ

o1 ¼ 0; ot �Nðot�1,s2
oÞ, t¼ 2, . . . ,12:

Independent diffuse Gaussian priors (mean 0, precision 1 �10�6)
were taken for bj (j¼1,y,5) and gj (j¼1,2), whilst independent
gamma hyperpriors with equal shape and inverse scale parameter
(0.01) were used for the precisions ðtf ¼ 1=s2

f,tn ¼ 1=s2
n ,to ¼

1=s2
oÞ of the priors for the spatially unstructured fi and spatially

structured ni random effects, (i¼1,y,160), and the temporally
autocorrelated random effects ot (t¼2,y,12).

This model was fitted with WinBUGS software (Lunn et al.,
2000), using two parallel MCMC chains, each of length 25,000
with a burn-in of 20,000 and thinning of 10 to obtain samples
from Pða,b,c,/,m,x,tf,tn,tojyÞ. As mentioned earlier, the expla-
natory variables xjit (j¼1,y,5) and wji (j¼1,2) are as before.
However, all covariates are now standardised to zero mean and
unit variance to aid convergence. This model is fit at the region
level, therefore, the zone factor is omitted as there is little
Please cite this article as: Lowe, R., et al., Spatio-temporal modelli
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variation in zone type in the South East region, and any
geographic differences between microregions are captured by
the spatial random effects. Satisfactory convergence was con-
firmed using a range of standard criteria (Gelman et al., 2004).
Posterior distributions for each parameter associated with the
climate covariates in the model are given in Fig. 8 (with posterior
means in parentheses). The climate parameters are all signifi-
cantly different from zero and the sign of the association between
dengue and each climate variable is consistent with the results
from the GLM fit (Table 1).

A posterior predictive distribution can be obtained for each
microregion by drawing random samples from a Poisson
distribution with mean equal to the MCMC samples from the
model fit. The mean of the posterior predictive distribution for all
microregions in the South-East region were obtained for the peak
dengue season FMA. In Fig. 9 a scatter plot with fitted loess curve
shows the relationship between observed and predicted dengue
using the GLMM model for the FMA season 2001–2008. When
compared to predicted values from the GLM (see Fig. 5b), the loess
curve has shifted towards the 451 line and more of the variability
in dengue cases has been captured by the prediction model.
Fig. 10 illustrates the spatial distribution of observed (Fig. 10a)
and predicted dengue for FMA season 2008 using both the GLM
(Fig. 10b) and GLMM (Fig. 10c). While the GLM predicted medium
levels of dengue across much of the region, the GLMM captures
more of the observed variation. When compared with Fig. 7,
Fig. 11 shows how the addition of random effects to the model has
improved dengue predictions for both the South East as a whole
(Fig. 11a) and for the microregion Rio de Janeiro (Fig. 11b),
particularly for the 2008 epidemic.
5. Probabilistic epidemic prediction

The specified Bayesian hierarchical model can also be used to
predict the probability of dengue exceeding a pre-defined
epidemic threshold in each microregion. As the GLMM here
provides a posterior predictive distribution for each microregion
(rather than a point estimate), the probability of exceeding an
epidemic threshold can be calculated and the decision to trigger
an alert can be based on the probability of exceeding the
ng of climate-sensitive disease risk: Towards an early warning
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Fig. 8. Kernel density estimates for marginal posterior distributions of parameters b1 , . . . ,b5 (posterior means in parentheses) associated with climate variables:

(a) precipitation lag 1, (b) precipitation lag 2, (c) temperature lag 1, (d) temperature lag 2 and (e) Niño 3.4 index lag 6 for South East Brazil.

Fig. 9. Scatter plot and loess curve (solid line) to show observed and predicted

dengue fever using GLMM for 3 month season FMA 2001–2008 for South East

Brazil.
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threshold being greater than a specified alert level, (e.g.
probability of exceedance Z90%). Many epidemic detection
algorithms have been investigated to detect epidemics (Cullen
et al., 1984; Hay et al., 2002; Teklehaimanot et al., 2004). As an
Please cite this article as: Lowe, R., et al., Spatio-temporal modelli
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example, we consider the event of dengue exceeding an epidemic
threshold of the mean plus one standard deviation for each
microregion in South East Brazil in FMA 2008. The epidemic
threshold is based on the dengue counts in the FMA season for the
previous seven years (FMA 2001–2007). We can assess the ability
of the GLMM to predict ‘dengue epidemics’ across South East
Brazil during the FMA season in 2008 using a contingency table
(see Table 2). Observed dengue counts for the 3-month season
were compared with model predictions where the probability of
an epidemic exceeded an alert threshold chosen to be 90%.

The contingency table provides information on the overall
predictive skill of the warning system. The proportion correct,
defined as the proportion of the 160 microregions for which the
prediction correctly anticipated the subsequent epidemic or non-
epidemic (a+d/a+b+c+d), was 83%. The hit rate (the proportion of
epidemics that were correctly predicted a/a+c) was 60%. Con-
versely, the false alarm rate (the proportion of epidemics that
were predicted but did not occur b/b+d) was 8%.

Fig. 12 shows the posterior predictive distribution for the FMA
season 2008 for the microregion Linhares, found on the coastal
region of Espı́rito Santo. Here, the probability of exceeding the
epidemic threshold was found to be Z90%, based on the
epidemic threshold of mean plus one standard deviation derived
from the distribution of dengue for the season FMA 2001–2007.
A successful epidemic alert would have been issued for this
microregion using the GLMM with the given epidemic threshold
and alert level. By lowering the alert level below 90% the hit rate
for the region increases but so does the false alarm rate. In
practice, the choice of epidemic threshold and alert level should
be selected by decision makers based on expert opinion and
available resources.
ng of climate-sensitive disease risk: Towards an early warning
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Fig. 10. Maps to show (a) observed dengue, (b) predicted dengue using GLM model and (c) predicted dengue using GLMM model for South East, FMA season 2008.

Categories defined by quintiles of observed dengue for FMA season 2008.

Fig. 11. Time series of total observed dengue (solid line) and predicted dengue using GLMM (dashed line) for FMA season 2001–2008 for (a) South East (region level) and

(b) Rio de Janeiro (microregion level).

Table 2
Contingency table for observed dengue exceeding epidemic threshold (mean plus

one standard deviation) and probability of predicted dengue exceeding alert

threshold ðZ90%Þ for the 160 microregions.

Observed

Yes No Total

Predicted probability Z90%

Yes a¼29 b¼9 38

No c¼19 d¼103 122

Total 48 112 160
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6. Discussion and conclusion

The preliminary modelling results in this paper indicate that
climatic covariates play a statistically significant role in the
transmission of dengue fever. Although climate information alone
does not account for a large proportion of the overall variation in
dengue cases in Brazil, spatio-temporal climate information with
Please cite this article as: Lowe, R., et al., Spatio-temporal modelli
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the addition of spatio-temporal random effects do account for
some of this variability, particularly for the 2008 peak dengue
season, when a serious epidemic occurred. Therefore, the inclu-
sion of seasonal climate forecasts in a dengue EWS for Brazil is
worth investigating. The next step would be to assess the
predictive validity of the model when replacing ‘observed’ with
‘hindcast’ (i.e. retrospective forecasts made for a historical period
in pseudo-operational mode) climate variables. ‘Hindcast’ pre-
cipitation, temperature and Niño 3.4 data are available from
forecasting systems such as the UK Met Office seasonal forecast-
ing system (Graham et al., 2005) and the European Centre for
Medium Range Forecasts (ECMWF) System 3 (Anderson et al.,
2007). These systems typically produce ensemble predictions
with lead times up to 6 months. By replacing ‘observed’ with
‘hindcast’ climate variables in the above GLMM, a dengue
prediction could be made 5 months ahead of the dengue season
of interest. For example, to predict dengue incidence for March
2010, the model could be run in October 2009 using the observed
Niño 3.4 index for September 2009 (6 month lag), and precipita-
tion and temperature forecasts for January and February 2010
issued in October 2009. The reliability of a climate-based EWS will
depend on the skill of the forecasting system or multi-model
ng of climate-sensitive disease risk: Towards an early warning
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Fig. 12. Kernel density estimate for posterior predictive distribution of dengue,

FMA 2008 for Linhares (19.41S, 40.11W), a microregion in Espı́rito Santo. Dashed

vertical line indicates epidemic threshold of mean plus one standard deviation

based on FMA 2001–2007. Solid vertical line indicates observed dengue count in

FMA 2008.
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combined and calibrated system such as EUROBRISA (Coelho
et al., 2006), in predicting seasonal climate conditions for the
region of interest.

Previous sections have highlighted the potential for incorpor-
ating climate information into a spatio-temporal EWS for dengue
in Brazil. However, before implementing such an operational
system several technical issues need to be considered. For
example, the definition of epidemic thresholds by public health
decision makers. Thresholds should be designed to minimise false
alarms and false negatives (i.e. failing to predict that an epidemic
will occur) and should correspond with the epidemic response
capabilities in specific locations. The spatial scale of the system
affects the type of response activity that could be implemented.
For example, at the microregion level interventions such as health
care provisions may be possible. However, vector-control efforts
may be more difficult to target. Predictive output from an EWS
needs to be continuously monitored and evaluated over time and
models should be refitted as new dengue/climate data becomes
available. Spatial demographic data from the census (and interim
projections) should also be updated when necessary. In order to
issue the most reliable epidemic predictions forecast climate
should be replaced with observed climate as time progresses
towards the peak epidemic season, so that updated epidemic
alerts can be re-issued to public health decision makers. However,
time delays in obtaining and collating real-time information for
both confirmed dengue cases from SINAN and climate forecasts
and observations could hinder the ability to provide warnings far
enough in advance. Another important consideration is the
dissemination and visualisation of early warnings of increased
level of dengue risk. It is vital to train public health decision
makers on how to interpret and use dengue risk forecasts,
including awareness about forecast limitations to avoid misinter-
pretation and/or over interpretation.

Developing a climate-based EWS for dengue using climate and
disease information over such short time periods remains a major
challenge. During the study period, the Niño 3.4 index strongly
influences the temporal signal of predicted dengue. From June
2007, a moderate La Niña event developed, which strengthened in
early 2008. Was the dengue epidemic in 2008 influenced by this
La Niña event or was this a coincidence? ENSO may play a role in
Please cite this article as: Lowe, R., et al., Spatio-temporal modelli
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synchronizing epidemics, however, periods between epidemics
may also be a function of herd immunity from previous epi-
demics, and these two cycles (ENSO and herd immunity) may
have coincided during the 2001–2008 study period. Further inves-
tigation is needed to understand temperature and precipitation
patterns associated with warm phase and cold phase ENSO for
this region in Brazil and to consider the possibility of a non-linear
relationship between precipitation/temperature and dengue. The
model parameterisation would benefit from the inclusion of one
or more past epidemics to address these problems.

Despite this, it is hoped that this spatio-temporal dengue
prediction model is a step towards the development of a useful
decision making tool for the Brazilian health services. Such spatio-
temporal models offer an opportunity to balance global climate
variables and local responses, e.g. the influence of ENSO on
dengue incidence is likely to occur unequally across the region
due to particular socio-economic local conditions. Another
advantage of the GLMM is the ability to address specific public
health issues in terms of probabilities. This model could be
extended to other regions in the world where climate-sensitive
infectious diseases (e.g. cholera, malaria, leptospirosis, plague)
present a burden to public health infrastructure, particularly in
developing countries.
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Nogueira, R.M.R., da Araújo, J.M.G., Schatzmayr, H.G., 2007b. Aspects of dengue
virus infections in Brazil 1986–2007. Virus Reviews and Research 12, 1–17.

R Development Core Team, 2008. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-
900051-07-0. URL /http://www.R-project.orgS.

Sanchez, L., Vanlerberghe, V., Alfonso, L., Marquetti, M., Guzman, M., Bisset, J., van
der Stuyft, P., 2006. Aedes aegypti larval indices and risk for dengue epidemics.
Emerging Infectious Diseases 12 (5), 800–806.

Schreiber, K., 2001. An investigation of relationships between climate and dengue
using a water budgeting technique. International Journal of Biometeorology
45, 81–89.

Scott, T., Amerasinghe, P., Morrison, A., Lorenz, L., Clark, G., Strickman, D.,
Kittayapong, P., Edman, J., 2000. Longitudinal studies of Aedes aegypti
(Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency.
Journal of Medical Entomology 37 (1), 89–101.

Teklehaimanot, H.D., Schwatrz, J., Teklehaimanot, A., Lipsitch, M., 2004. Alert
threshold algorithms and malaria epidemic detection. Emerging Infectious
Diseases 10 (7), 1220–1226.

Thomson, M., Doblas-Reyes, F., Mason, S., Hagedorn, R., Connor, S., Phindela, T.,
Morse, A., Palmer, T., 2006. Malaria early warnings based on seasonal
climate forecasts from multi-model ensembles. Nature 439 (7076),
576–579.

Venables, W.N., Ripley, B.D., 2002. Modern applied statistics with S. Springer, New
York, NY 495pp.

Wu, P., Guo, H., Lung, S., Lin, C., Su, H., 2007. Weather as an effective predictor for
occurrence of dengue fever in Taiwan. Acta Tropica 103 (1), 50–57.
ng of climate-sensitive disease risk: Towards an early warning
i:10.1016/j.cageo.2010.01.008

10.1007/s10393-010-0288-z
http://www.researchgate.net/journal/1612-9210_EcoHealth
http://www.researchgate.net/journal/1612-9210_EcoHealth
dx.doi.org/10.1371/journal.pmed.1000168
http://www.R-project.org
dx.doi.org/10.1016/j.cageo.2010.01.008

	Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil
	Introduction and motivation
	Dengue transmission
	Model selection using a generalised linear model
	Development of a generalised linear mixed model
	Probabilistic epidemic prediction
	Discussion and conclusion
	Acknowledgments
	References




