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Abstract— The idea of the present paper is to study the swing-by maneuver between one of the planets of the Solar System 

and a cloud of particles. The main point considered in the present paper is to compare the results predicted by the analytical 

and the numerical approach to solve this problem. So, the results will be concentrated in figures that show the difference in 

the results obtained from both methods in several situations. A cloud of particle can be obtained when a fragmented comet 

crosses the orbit of a planet like Jupiter, Saturn, etc. For the numerical study we assumed that the restricted three-body 

problem is a good model for the system. So, the planet e Sun are in circular orbits around the center of mass and a cloud of 

particles is moving under the gravitational attraction of these two primaries. The motion is assumed to be planar for all the 

particles. For the analytical study, the dynamics is given by the “patched-conic” approximation, which means that a series of 

two-body problems are used to generate the equations that describe the problem. The main obejctive is to understand the 

change of the orbit of this cloud of particles after the close approach with the planet by both methods. It is also assumed that 

all the particles that belong to the cloud have semi-major axis a ± da and eccentricity e ± de before the close approach with 

the planet. It is desired to known those values after the close approach, as predicted by both methods. 
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1 Introduction 
The close approach between a particle and a planet 

modifies the velocity, energy and angular momentum 

of the particle with respect to the Sun. There are many 

important applications of this phenomenon in 

astronautics, like the Voyager I and II that used 

successive close encounters with the giant planets to 

make a long journey to the outer Solar System; the 

Ulysses mission that used a close approach with 

Jupiter to change its orbital plane to observe the poles 

of the Sun, etc. References [1] to [26] show some 

results of this type. 

In the present paper we study the close approach 

between a planet and a cloud of particles. It is 

assumed that the dynamical system is formed by two 

main bodies (the Sun and one planet) that are in 

circular orbits around their center of mass and a cloud 

of particles that is moving under the gravitational 

attraction of the two primaries. To study this motion, 

two different techniques are used: 1) a numerical 

study based in the numerical integrations of the 

equations of motion given by the restricted three-body 

problem and; 2) a motion described by the “patched-

conic” approximation, that is a series of two-body 

problems between that particle and the Sun, between 

the particle and the planet and then between the 

particle and the Sun again.  

 

The standard canonical system of units is used 

in both cases and it implies that the unit of 

distance is the distance between the two 

primaries and the unit of time is chosen such 

that the period of the orbit of the two 

primaries is 2π.  

The main objective is to study the change of 

the orbit of each element of this cloud of 

particles after the close approach with the 

planet. It is assumed that all the particles that 

belong to the cloud have semi-major axis a ± 

da and eccentricity e ± de before the close 

approach with the planet. It is desired to 

known those values after the close approach. 

Among the several sets of initial conditions 

that can be used to identify uniquely one 

swing-by trajectory, a modified version of the 

set used in the papers written by Broucke and 

Prado [6], [7] and [8] is used here. It is 

composed by the following three variables: 

1) Vp, the velocity of the spacecraft at 

periapse of the orbit around the secondary 

body;  

2) The angle γ, that is defined as the angle 

between the line M1-M2 (the two primaries) 

and the direction of the periapse of the 

trajectory of the spacecraft around M2;  
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3) rp, the distance from the spacecraft to the center 

of M2 in the moment of the closest approach to M2 

(periapse distance). 

 

2 Analytical Equations 

This section will briefly describe the orbital change of 

a single particle subjected to a close approach with the 

planet under the “patched-conics” model, in order to 

build a set of analytical equations to solve the problem 

of calculating the effect of the swing-by in the orbit of 

the particles. It is assumed that the particle is in orbit 

around the Sun with given semi-major axis (a) and 

eccentricity (e). The periapse distance (rp) is assumed 

to be known. The first step is to obtain the energy 

(EB) and angular momentum (CB) of the particle 

before the swing-by. They are given by: 
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Then, it is possible to calculate the magnitude of the 

velocity of the particle with respect to the Sun in the 

moment of the crossing with Jupiter’s orbit (Vi), as 

well as the true anomaly of that point (θ). They come 

from: 
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Next, it is calculated the angle between the inertial 

velocity of the particle and the velocity of Jupiter (the 

flight path angle d), as well as the magnitude of the 

velocity of the particle with respect to Jupiter in the 

moment of the approach. They are given by (assuming  

a counter-clock-wise orbit for the particle): 
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The angle β is given by: 
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Those information allow us to obtain the 

turning angle (2δ) of the particle around 

Jupiter, from: 
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The angle of approach has two values, 

depending if the particle is passing in front 

(when we call Solution 1) or behind (when we 

call Solution 2) the planet. These two values 

will be called ψ1 and ψ2. They are obtained 

from: 

 

δβπψ ++=1          (9) 

 

and 

 

δβπψ −+= 22       (10) 

 

The correspondent variations in energy and 

angular momentum are obtained from the 

equation  
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By adding those quantities to the initial values 

we get the values after the swing-by. Finally, 

to obtain the semi-major axis and the 

eccentricity after the swing-by it is possible to 

use the equations  
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3 �umerical Algorithm 

For the numerical simulations, the equations of motion 

for the spacecraft are assumed to be the ones given by 

the three-dimensional restricted circular three-body 

problem. The standard dimensionless canonical 

system of units is used, which implies that: the unit of 

distance is the distance between M1 and M2; the mean 

angular velocity (ω) of the motion of M1 and M2 is 

assumed to be one; the mass of the smaller primary 

(M2) is given by µ = ( )212 mmm +  (where m1 and 

m2 are the real masses of M1 and M2, respectively) 

and the mass of M2 is (1-µ); the unit of time is 

defined such that the period of the motion of the two 

primaries is 2π and the gravitational constant is one.

  

There are several systems of reference that can be 

used to describe the three-dimensional restricted 

three-body problem [8]. In this paper the rotating 

system is used. 

In the rotating system of reference, the origin is the 

center of mass of the two massive primaries. The 

horizontal axis (x) is the line that connects the two 

primaries at any time. It rotates with a variable 

angular velocity in a such way that the two massive 

primaries are always on this axis. The vertical axis (y) 

is perpendicular to the (x) axis. In this system, the 

positions of the primaries are: x1 = −µ , x2 1= − µ , 

y y1 2 0= = . 

In this system, the equations of motion for the 

massless particle are [27]: 
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where r1 and r2 are the distances from M1 and M2. 

 

A numerical algorithm to solve the problem has the 

following steps: 

 

1) Arbitrary values for the three parameters rp, Vp, α, 

β and γ are given;     

2) With these values the initial conditions in 

the rotating system are computed. The initial 

position is the point (Xi, Yi, Zi) and the 

initial velocity is (VXi, VYi, VZi), given by 

equations: Position: 

αβ coscospi rx =        

αβ sinry pi cos=                                  

βsinrz pi =                                    

Velocity:  

αγαβγ sinVsinsinVV ppxi coscos −−=   

αγαβγ coscosppyi VsinsinsinVV +−=  

γβ= sincosVV pzi     

3) With these initial conditions, the equations 

of motion are integrated forward in time until 

the distance between M2 and the spacecraft is 

larger than a specified limit d. At this point 

the numerical integration is stopped and the 

energy (E+) and the angular momentum (C+) 

after the encounter are calculated; 

4) Then, the particle goes back to its initial 

conditions at the point P, and the equations of 

motion are integrated backward in time, until 

the distance d is reached again. Then the 

energy (E-) and the angular momentum (C-) 

before the encounter are calculated. The 

criteria to stop numerical integration is the 

distance between the spacecraft and M2. 

When this distance reaches the value d = 0.5 

(half of the semimajor axis of the two 

primaries) the numerical integration is 

stopped. With this algorithm available, the 

given initial conditions (values of rp, vp, α, β, 

γ) are varied in any desired range and the 

effects of the close approach in the orbit of the 

spacecraft are studied.    

 

4 Results 

Both algorithm just described can now be 

applied to a cloud of particles passing close to 

a planet like Jupiter. The idea is to simulate a 

cloud of particles that have orbital elements 

given by: a ± da and e ± de. The goal is to 

map this cloud of particles to obtain the new 

distribution of semi-major axis and 

eccentricities after the swing-by using both 

algorithms and then to plot the differences 

between the two models, expressed by a 

percentage of the difference.  
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For the simulations, we used case da = de = 0.001, rp = 

1.5 RJ. Figures 1 to 4 show the results. It was assumed 

that a satellite explodes when passing by the periapsis 

in a given position. In those examples, this position is 

given by α = 30°, β = 45°. Then, a reference value was 

used for the direction of the velocity: γ = 60°. The 

velocity at periapsis was assumed to be vp = 4.0, 

expressed in canonical units. The vertical axis shows 

the difference between the results obtained between the 

two models considered, as a percentage difference. The 

horizontal axis shows the value of γ, in radians.    
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Fig. 1 – Differences for the Variation in Inclination 

(%) for rp = 1.5 r
J
 and vp = 4.0. 
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Fig. 2 – Differences for the Variation in Velocity (%) 

for rp = 1.5 r
J
 and vp = 4.0. 
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Fig. 3 – Differences for the Variation in 

Angular momentum (%) for rp = 1.5 r
J
 

and vp = 4.0. 
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Fig. 4 – Differences for the Variation in 

Energy (%) for rp = 1.5 r
J
 and vp = 4.0. 

 

 

5 Conclusions 

The figures above allow us to get some 

conclusions. It shows that the analytical 

method is very good and accurate. The 

errors are always limited to a maximum of 

1%. So, for any practical purpose, it is 

possible to use the analytical method as a 

very good approximation, that can be 

verified later by the numerical method. 
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