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Abstract: This article investigates the use of a multilayer feedforward artificial neural network into a GPS 

integrated low cost inertial navigation system based on MEMS sensors. The neural network is applied as an 

alternative of integration technique, with the purpose of providing better navigation solutions, during the lack of 

information in GPS outages portions of time. An input-output neural network signals model is proposed, based 

on a set of simplified terrestrial vehicle navigation equations. Also an adaptive Kalman filter training 

methodology is tested with real navigation data. Preliminary simulated numerical results are presented, based 

on urban vehicular positioning application data trials, acquired from low cost Crossbow CD400-200 IMU and 

an Ashtech Z12 GPS receiver. 
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1   Introduction 

 
The global positioning system NAVSTAR-GPS, or simply GPS, is a one-way, almost all-weather, real-time and 

world-wide radio navigation system based on a satellite constellation. The main purpose of the system is to 

provide a signal that allows a dedicated receiver to compute accurately and in real time its position (longitude, 

latitude and altitude). The system is also usable for accurate time transfer and velocity estimation. Besides being 

globally available, GPS is portable, has low power consumption, is suitable for sensor integration and capable of 

providing accurate and low cost navigation. 

 

The need for alternative source of POS/NAV information arises because GPS does not work properly in all 

environments. The GPS receiver can suffer signal blockage, or interference, due to weather and or environment 

obstacles, which may deteriorate the overall system performance. Different solutions have been proposed to 

fulfill the lack of information during the GPS outages and the integration of GPS with inertial navigation systems 

(INS), by using stochastic parameter estimation techniques, such as Kalman filters, are frequently used.  

 

Micro-electromechanical systems (MEMS) based inertial sensors application for navigation purposes, has been 

developed due to its low price, small size, lightweight, and lower power consumption El-Sheimy and Niu (2008). 

However, low cost inertial sensors have the disadvantage of accumulating continuous errors in great extension, 

leading to poor system performance, when operating in a stand-alone mode. 

 

Alternative solutions for GPS/INS integration, based on artificial neural network (ANN), have been proposed, 

most of them for general land vehicle applications, using field data collected from tactical and navigation grade 

IMU [2,3,4,5]. ANN method does not rely on prior knowledge or dependencies such as dynamics and sensor 

error modeling or linearization, and can learn from the existing data Chiang and El-Sheimy (2008). 

 

In what follows the use of an artificial neural network scheme to integrate GPS with low cost MEMS inertial 

sensors INS, based on an adaptive ANN training Kalman filtering methodology is presented and preliminarily 

tested with urban vehicular positioning application data. Section 2 presents the inertial navigation equations 

constrained to the land vehicle type of motion. Section 3 briefly introduces the use of ANN and presents the 
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proposed Kalman filter based methodology. In section 4 the results of preliminary testing are presented. Finally 

in section 5 a few conclusions are drawn. 

 
2   Constrained inertial navigation equations 

 
Constraints on the motion of land vehicles can be defined and used to derive a reduced set of equations of 

motion. Brandt and Gardner (1998) define the following constraints: (i) direction of the vehicle’s velocity 

coincides with direction of the vehicle’s longitudinal axis; (ii) pitch and roll angles of the of the vehicle’s body 

relative to the Earth surface are small; and (iii) vehicle always remains on the Earth surface. Under these 

constraints, a set of equations of motion can be defined Brandt and Gardner (1998):  
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Where v
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 is the forward velocity, defined in the direction of movement; g is the gravity acceleration;  ,, are 

roll, pitch and yaw vehicle attitude angles; p, q, r are the gyros outputs measured angular velocities and 
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are the accelerometer outputs measured specific forces. The attitude angles can be computed as: 
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These differential equations can be further simplified for usual vehicle urban use, and will define the ANN 

input/output model: 
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3   Artificial neural networks and Kalman filter methodology 

 
A. Introduction 

 

A Multilayer of perceptrons (MLP) type of ANN is made up of layers of basic artificial neurons (perceptrons) 

connected forward and can learn nonlinear mappings (Eq. (9)) by adjustment of its synaptic weights, via a 

supervised learning process Haykin (2001). 
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The MLP training, by supervised learning, can be done by estimating the weight parameters in order to fit the 

neural network model to a set of L input-output patterns: 
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After the training process is completed, the trained MLP can be viewed and treated as a parameterized mapping 

of the input data,  tx , to neural network output  tŷ : 
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The supervised training process can be solved by minimizing, with respect to the vector of weights w, the 

following functional, given the input-output data set, a priori estimate w , and the weight matrices 
1

P  and 
1

R  

Neto (1997): 
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B. Kalman filtering training method 

 

Singhal and Wu (1989) have proposed the use of the extended Kalman filtering as training algorithm, viewing 

ANN as a stochastic parameter estimation problem. Rios Neto (1997) has further explored this concept and 

proposed an algorithm that features parallel processing, in order to avoid large computational charges, and an 

adaptive state noise estimation to prevent the Kalman filtering based ANN parameter estimators from loosing the 

capacity of distributing the extraction of information to all training data. The Rios Neto (1997) proposed solution 

is implemented in this paper, adapted to an inertial navigation problem, and is summarized in what follows. 

 

The mapping from Eq. (11) can be expanded in a Taylor series, and in a typical ith iteration, a linear perturbation 

is adopted to approximate the functional given by Eq. (12): 
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Where w  is the priori estimate of w coming from the previous iteration,   is an adjustable parameter to 

guarantee the hypothesis of linear perturbation,   1t0  , and the H is defined as: 
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And, in a compact notation: 
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Then a stochastic linear estimation problem can formulated as: 
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Where R and P , respectively, are the covariance matrices of ν  and e  error vectors. A sequential Kalman filter 

solution, for the estimation problem, with L1t ,,  , is given by: 
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   t1t ww ˆ
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For the above equations, K is the Kalman gain and Q is the noise process covariance matrix. At the end of the 

each iteration, t = L. If a stopping criterion is satisfied, then the a priori values for a new data set are   Lww ˆ  

and  LPP ˆ . Otherwise a new iteration starts, with the initial conditions    L1 ww ˆ  and   01 PP  .  

 

C. Adaptive Kalman Filter solution for ANN training 

 

Due to algorithm bad numerical behavior and observation model errors, divergence may occur as a large data set 

is processed. In this situation the neural network can loose its capacity of keeping learning as new data are 

processed. Rios Neto (1997) has proposed an adaptive procedure based on a criterion of statistical consistency to 

balance a priori information priority with that of new learning information: 
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Where j = 1, …, m observations, and β is to be adjusted.  When β = 1, new information has the same value, when 

compared to that one stored in trained weights; and with 1 , but close to 1, new processed information, from 

new pattern, has more value than the stored one. 

 

Equation (25) can be considered as an observation and expanded into the following associated exact estimation 

problem Pinto and Neto (1990), to be processed with a Kalman filter algorithm: 
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Where: 
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D. Proposed ANN architecture for sensor integration 

 

The proposed ANN architecture uses a three layer feedforward, with the adaptive extended Kalman filtering 

learning algorithm. The ANN works in two modes: training mode, while GPS information is available, and 

prediction mode, during GPS outages. Selection of input/output signals takes into account the nature of vehicle 

dynamics and the possible observations from GPS. Fig. 1 shows the selected ANN: 
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Figure 1. One hidden layer ANN input/output signals 

 
The input layer signals are accelerometer and gyro measurements, and the forward velocity v

f
, at instant time t. 

The output layer signals are increments of velocity v
f
, east and north positions at instant time  tt  , where t  

is the IMU output frequency, and v
f
 can be observed from: 
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The ANN navigation solution is given by: 
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While in training mode, an error vector  VELPOS eee   is generated for supervised training: 
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During the prediction mode, the ANN increments output are added to the last GPS navigation 

solution,     n

uu

n

GPSu

n
tt ppp  , where tu denotes the last time signal before GPA outage. Also, in this mode, the 

velocity v
f
 input comes from a feedback output summation. 
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4   Simulations methodology and preliminary results 

 
A. Field test procedure 

 

Field tests were conducted in a land vehicle, for urban usage, at INPE campus, in São José dos Campos 

(23.2113
o
S, 314.1408

o
W). A low cost Crossbow CD400-200 IMU, based on MEMS technology, and an Ashtech 

Z12 GPS receiver, with single antenna, were used to acquire data. All information was post-processed to test 

proposed training algorithms and methods, by numerical simulations. To validate the proposed methods, a 

prediction error of 20 meters, in 30 seconds of simulated GPS outage, was set as the experiment goal, 

considering it acceptable for urban land vehicle navigation purposes El-Sheimy and Niu (2008). 

 

B. Methods of training 

 

In order to explore the adaptive Kalman filtering training algorithm, methods of dealing with data patterns are 

revised and some modifications are proposed. For all cases, an MLP was used with a 20 neurons hidden layer, 

with sigmoidal activation functions; and 40 iterations, or epochs, as a stopping criterion. 
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First method is the simplest one. Data from IMU and GPS, when available, are processed and stored sequentially 

in time, into data sets, or windows of data, of some size. When each data set is completed, a training procedure 

starts, with initial weights obtained by random initializations of small values [-0.5, 0.5]. The resulting weights 

are stored as the best solution, if GPS outages occur, while a new data set is being completed. 

 

Second method is the same of first, with one modification. After the first data set has being trained, the next 

training procedures have initial weights obtained from previous stored solution Chiang et al.(2004). The 

resulting weights are stored. 

 

Third method is the same of second, with the following proposed modification: after the first data set training, 

the stored weights are updated by filtering pattern-by-pattern new data, while a new data set is being completed. 

It is a tentative to bring the previous weight solution as close as possible to a GPS outage, since it can occur far 

from the previous training procedure. 

 

Fourth method the following: after the first data set training is completed, the stored weights are only updated by 

filtering pattern-by-pattern new data, during some determined time interval, or until a GPS outage starts, when 

the resulting updated weights are used. The process is resumed after the GPS outage, or after the time interval, 

when a new data set is completed. 

 

C. Simulation and preliminary results 

 

For the first experiment, the vehicle was in static position. Information from GPS and IMU are shown in Fig. 2 

and 3. The position errors for GPS outages, starting at t = 115[s] and t = 165[s], are shown in Fig. 4 and Fig. 5, 

where methods 1 to 4 were described in section B. During the 45 seconds simulated GPS outages, the vehicle 

prediction position error, with respect to north and east GPS information, is given by: 
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Figure 2. IMU output for first experiment 
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Figure 3. Forward velocity for first experiment 

 
It should be noted that, for the first experiment, simulation starts around t = 50[s]. Since data set length is 20[s], 

method 4 starts to filtering individual training data pairs around t = 70[s], after the first data set is completed. 

Then, the total filtering time, until the GPS simulated outages, is about 45[s] and 95[s], respectively. For 

methods 1 to 3, completed data set were trained two more time, until first outage, and four more times until 

second outage, when compared to method 4, with one data set training completed. 

 

 
 

Figure 4. Prediction error for GPS outage at t = 105[s] 
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Figure 5. Prediction error for GPS outage at t = 155[s] 

 
In the second experiment, the vehicle is in movement. Information from GPS and IMU are shown in Fig. 6 and 

7. The position errors for GPS outages, starting at t = 715[s] and t = 765[s], are shown in Fig. 8 and Fig. 9. 

 

 
 

Figure 6. IMU output for second experiment 
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Figure 7. Forward velocity for second experiment 

 

 

 
 

Figure 8. Prediction error for GPS outage at t = 705[s] 
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Figure 9. Prediction error for GPS outage at t = 755[s] 

 
Again, it should be noted that, for the second experiment, simulation starts around t = 630[s]. Since data set 

length is 20[s], method 4 starts to filtering individual training data pairs around t = 650[s], after the first data set 

is completed. Then, the total filtering time, until the GPS simulated outages, is about 65[s] and 115[s], 

respectively. For methods 1 to 3, completed data set were trained three more times, until first outage, and five 

more times until second outage, when compared to method 4, with one data set training completed. 

 
5   Conclusions 

 
Methods of training ANN, with an adaptive Kalman filtering algorithm, were tested with real navigation data, 

during GPS simulated outages. The proposed method, with capacity to continually extract information, by 

filtering individual pattern-by-pattern of training data, explored the possibility of updating the previously trained 

weights, during a defined time interval, giving to the neural network aided navigation system some real time 

training capacity. This is an important issue when using low cost IMU, based on MEMS sensors, since its noise 

characteristics may vary from one run to other, leading to large start-up errors. Hence, offline training may not 

be useful to modeling the vehicle dynamics based on previous runs. 

 

The Kalman adaptive solution, proposed to give some balance between the priori information and new learning 

information, aids the neural network to preserve some previous knowledge, acting as a time fading memory. 

 

Simulated results, with different vehicle dynamic situations, suggest that the proposed fourth method has 

positions errors of same order, when compared to other methods and achieves the position target error, of 20 

meters in 30 seconds of simulated GPS outage. 
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