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ABSTRACT

This work discusses the advantages of combining established techniques in the field
of control engineering with elements of artificial intelligence, providing a certain level
of automation and the ability to explore innovative proposals for better compliance
with design specifications. The rationale for adopting this philosophy is justified
by the complexity of certain systems, where multiple conflicting requirements must
be met for each operating point. It is almost inevitable that the original problem
must be adapted (either through simplifications or linearizations) in order to become
feasible. If on one hand the designer must define and propose structures and tech-
niques related to solving the problem, sometimes he will realize that certain choices
should be made at the expense of other alternatives that could also be explored.
In this context, a mechanism based on computational intelligence can accelerate
the development of the project and expand the horizons of research revealing new
possibilities, which is shown here in two case studies, both based on a time-variant
model of a launch vehicle, where gain-scheduling is applied with the linear quadratic
and H-infinity techniques. Since interpolation is an important factor for stability be-
cause of the varying parameters of the model, one includes the smoothing of certain
elements of the control system into the design specifications such as stability, perfor-
mance and robustness. From these two scenarios a mechanism based on intelligence,
which consists of a genetic algorithm (responsible for an evolutionary process mirro-
red from the Darwinian natural selection) and fuzzy systems (which comprises the
design specifications) searches for controllers and selects those ones that best comply
with the specifications. In the linear-quadratic case, besides the smoothing of the
controller gains, one obtains the optimization of the control system for the entire
vehicle trajectory, a fact which is not only demonstrated but also validated through
hardware- in-the-loop simulations. In the H-infinity case, the focus is more complex:
firstly, taking into account the robust aspect specifically for time-varying systems, it
is proposed in this paper a metric for assessing the impact of exponential variations
in the plant model regarding the robust stability of the control system. The metric
is simple and based on existing functions within MATLAB R©. Moreover, one adds to
the aforementioned objectives the functional duplication of the controller, allowing
to use it also as an observer, with obvious utility for detecting and isolating faults; as
the greatest interest lies in the quality of the estimation of the interpolated control-
lers in observer form during non-linear digital simulations, the smoothing is applied
to the gains used to obtain these estimates from the state vector controller, and to
the values of the closed-loop eigenvalues as well to ensure system stability at each
operating point. Finally, one of the tasks required by this technique is the choice of
the closed-loop combinatoric in order to provide the best characteristics in relation
to noise and signal error for each estimate: again the computational intelligence can
be used to select these combinations in situations where the number of poles and
thus combinations is considerably high. Therefore, the main objective of this work
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is to allow the contemplation of the possibilities arising from the synergy between
computational intelligence and control engineering, motivating these professionals
to experiment modern tools as a way to obtain better results in meeting the design
specifications.
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AUTOMAÇÃO DA SÍNTESE DE CONTROLADORES H∞ E DE
SUAS REALIZAÇÕES EM FORMA DE OBSERVADOR

RESUMO

Este trabalho pretende demonstrar as vantagens da combinação de técnicas consa-
gradas da área de engenharia de controle com elementos de inteligência computacio-
nal, proporcionando um certo nível de automação e a possibilidade de se explorar
propostas inovadoras para o melhor cumprimento de especificações de projeto. A
justificativa para a adoção desta filosofia parte do grau de complexidade de determi-
nados sistemas, onde múltiplos requisitos conflitantes precisam ser atendidos para
cada ponto de operação. É quase inevitável que o problema original deva ser adap-
tado (seja por meio de simplificações ou linearizações) de forma a tornar-se tratável.
Se por um lado o projetista deve propor e definir estruturas e técnicas ligadas à solu-
ção do problema, em alguns momentos ele perceberá que certas escolhas deverão ser
feitas em detrimento de outras alternativas que poderiam ser também exploradas.
Neste contexto, um mecanismo baseado em inteligência computacional pode agilizar
a elaboração do projeto e ampliar os horizontes de pesquisa revelando novas possi-
bilidades, o que é demonstrado aqui em dois estudos de caso, ambos baseados no
modelo variante no tempo de um veículo lançador, onde se aplica o escalonamento
de ganhos centrado nas técnicas linear-quadrática e H-infinito. Visto que a inter-
polação é um fator relevante para a estabilidade devido aos parâmetros variantes
do modelo, inclui-se a suavização de certos elementos do sistema entre as especifi-
cações de projeto ao lado dos critérios de estabilidade, desempenho e robustez. A
partir destes dois cenários um mecanismo baseado em inteligência, composto de um
algoritmo genético (responsável por um processo evolucionário espelhado na seleção
natural Darwiniana) e sistemas nebulosos (contendo as especificações do projeto)
efetua a pesquisa de controladores e seleciona os que melhor atendam aquelas espe-
cificações. No caso da técnica linear-quadrática, além da suavização dos ganhos do
controlador, obtém-se a optimização do sistema de controle para toda a trajetória
do veículo, fato que é não só demonstrado como também validado por meio de si-
mulações hardware-in-the-loop. No caso H-infinito, o enfoque é mais complexo; em
primeiro lugar, levando-se em conta o aspecto robustez especificamente para siste-
mas variantes no tempo, é proposta uma métrica neste trabalho que permite avaliar
o impacto de variações exponenciais no modelo da planta na estabilidade robusta
do sistema de controle. A métrica é simples e baseada em funções já existentes den-
tro do ambiente MATLAB R©. Por outro lado, considera-se além dos objetivos já
citados a duplicação funcional do controlador, permitindo usá-lo também como um
observador, com utilidade óbvia para detecção e isolação de falha; como o maior
interesse reside na qualidade da estimação destes controladores em forma de ob-
servador quando sujeitos a interpolação em um ambiente de simulação não-linear
digital, a suavização foi direcionada aos ganhos utilizados na obtenção das mesmas
estimações a partir do vetor de estados do controlador, além dos valores dos pólos de
malha fechada para assegurar a estabilidade do sistema em cada ponto de operação.
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Finalmente, uma das tarefas empregadas nesta técnica consiste na escolha da com-
binatória de pólos de malha fechada que proporcione as melhores características em
relação a ruído e erro para cada sinal estimado: novamente a inteligência computacio-
nal pode ser usada na busca destas combinatórias em situações em que o número de
pólos e portanto de combinações é consideravelmente elevado. Portanto, o objetivo
principal deste trabalho é permitir a contemplação das possibilidades advindas da
sinergia entre inteligência computacional e engenharia de controle, motivando estes
profissionais a experimentarem ferramentas modernas como uma forma de obterem
melhores resultados no atendimento das especificações de projeto.
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AUTOMATISATION DE LA SYNTHÈSE H-INFINIE DE
COMPENSATEURS ET DE LEURS RÉALISATIONS SOUS FORME

ESTIMATION-COMMANDE

RÉSUMÉ

Ce mémoire présente les avantages de combiner des techniques établies dans le do-
maine de l’ingénierie de contrôle avec des éléments de l’intelligence calculatoire, en
fournissant un certain niveau d’automatisation et la possibilité d’explorer des propo-
sitions innovantes pour une meilleure conformité avec les spécifications. L’adoption
de cette philosophie est justifiée par la complexité de certains systèmes, où des
multiples exigences contradictoires doivent être remplies à chaque point de fonction-
nement. Il est évident que le problème initial doit être adapté, soit par des simplifi-
cations ou des linéarisations. L’automaticien doit définir et proposer des structures
et des techniques liées à la résolution du problème. Il se rendra compte parfois
que certains choix doivent être faits au détriment d’autres solutions qui pourraient
également être explorées. Dans ce contexte, un mécanisme basé sur l’intelligence
calculatoire peut accélérer le développement du projet et élargir les horizons de la
recherche révélant de nouvelles possibilités. L’apport de ce mécanisme est évalué
sur deux études de cas, toutes deux basées sur un modèle variant dans le temps
d’un véhicule de lancement, où le séquencement de gain est appliqué aux techniques
quadratique linéaire et H-infini. L’interpolation étant un facteur important pour la
stabilité en raison des paramètres variables du modèle, on comprend le lissage de
certains éléments du système de contrôle dans les spécifications de conception telles
que la stabilité, la performance et la robustesse. De ces deux scénarios, un mécanisme
basé sur l’intelligence, qui se compose d’un algorithme génétique (responsable d’un
processus évolutif en miroir de la sélection darwinienne naturelle) et les systèmes
flous (qui comprend les spécifications de conception) est responsable de la recherche
et de la sélection des contrôleurs plus conformes aux critères. Dans le cas linéaire
quadratique, à part le lissage des gains du régulateur, on obtient l’optimisation du
système de contrôle pour toute la trajectoire du véhicule, un fait qui est évalué et
aussi validé par des simulations hardware-in-the-loop. Dans le cas H-infini, le pro-
blème est plus complexe : d’une part, en tenant compte spécifiquement de l’aspect
robuste et d’autre part pour les systèmes variants dans le temps, il est proposé dans
ce mémoire une métrique pour évaluer l’impact des variations exponentielles dans
le modèle du système concernant la stabilité robuste du système contrôlé, ce qui
est particulièrement utile pour un évènement réel qui se produit pendant le vol du
véhicule de lancement utilisé dans les études des cas analysés. La mesure est simple
et basée sur les fonctions existantes au sein du logiciel MATLAB. De plus, on ajoute
aux objectifs précités la duplication des fonctions du compensateur, permettant
de l’utiliser également en tant qu’observateur, à l’utilité évidente pour détecter et
isoler les défauts. Comme l’objectif concerne la qualité des estimés fournis par les
contrôleurs interpolés sous la forme estimation-commande lors de simulations non
linéaires, le lissage est appliqué aux gains utilisés pour obtenir ces estimations à par-
tir du vecteur d’état du contrôleur, et aux valeurs des pôles en boucle fermée pour
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assurer la stabilité du système à chaque point de fonctionnement. Enfin, l’une des
tâches requises par cette technique est le choix de la dynamique d’estimation (parmi
l’ensemble des pôles en boucle fermée), afin de fournir les meilleures estimés en pré-
sence de bruits de mesures et de divers défauts à détecter et à isoler; l’intelligence
calculatoire peut être encore utilisée pour definir cette dynamique dans des situa-
tions où le nombre de pôles, et donc des combinaisons est très élevé. En conséquence,
l’objectif principal de ce travaille est de permettre l’étude des possibilités découlant
de la synergie entre l’intelligence calculatoire et l’ingénierie de contrôle, pour que
ces professionnels considèrent ces outils modernes comme un moyen d’obtenir de
meilleurs résultats tenant en compte les spécifications.
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1 Introduction

One intends to justify in this work: (i) the “automation of automatics”, that is, the

embedding of mechanisms for the design (not in the design) of complex control sys-

tems; (ii) according to a perspective of fault tolerance, the convenience of controller

internal reorganization as an observer; (ii) a suitable robustness metrics tackling

time-varying uncertainty.

1.1 Motivation and objectives

As said by Einstein, “work is 1% inspiration plus 99% transpiration”; we could

also say “999% of transpiration”, because the creative (inspirational) part tends to

simplify the original problem in order to make it feasible, given some time and cost

constraints. In control engineering, this simplification is expressed as reduced order

models for controller design, tailored formulas for industrial PID tunning, etc. . The

“transpiration deflation” is a shortcut in the process of decision-making but does not

necessarily mean the best sense from a pure technical perspective.

Now, let’s increase even more the transpiration degree - say 9999% - considering

the aerospace area, where funcionality is required not only for nominal conditions

but also for time-varying, uncertain, perturbed, noisy and even faulty ones. Further-

more, multiple operating points demand for gain-scheduled design, so that each set

of calculations must be repeated exhaustively, and ... did we mention the interpo-

lation of the resulting controllers and its implication in the system stability? Well,

an automated environment to carry all those tasks in a faster and deeper way is a

consequent thought. In other words, inflation of the transpirational parcel1 can be

achievable by means of modern tools such as computers and computational intelli-

gence (CI), subtly moving the (human) designer reasoning centreline from “assuming

that” to “what if...? ”. At this level, misconceptions and prejudice raise from part of

the scientific community unaccustomed to such ideas, revealing perhaps a hidden

taboo: machines are not suitable as real-world designers. It is not our intention to

join in the discussion, since the automation mechanism presented here is not effec-

tively designing but searching and selecting designs - we leave the subject to an

appropriate opportunity; the aim is to suggest a beneficial sinergy between design

of complex systems and CI.

1The inflation of the inspirational parcel is possible as well (though it will not be considered
in this work), e.g. the choice of a controller’s structure in place of its parameters (FLEMING;

PURSHOUSE, 2002).
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Sometimes, systems (such as aircrafts or space rockets) may be found not only

complex but also critical, that is, their malfunction or failure may result in serious

consequences. Inevitably, some sort of fault tolerance must be conceived, where

faults must be correctly detected and isolated (localised). Observers are structures

frequently adopted to provide the estimations required by the FDI (Fault Detection

and Isolation) logic. However, estimation is not an exclusive attribute of observers,

controllers can be restructured to act as such, provided that their order is compatible

with the plant one. A modern technique - the observer-based realization (OBR for

short) - is adopted in this work, where again CI fulfils the needs related to the

exploration of the closed-loop combinatoric set. Besides, OBR counteracts one of

the main disadvantages of established multi-variable design techniques: the higher

the order of the controller compared to the plant, the higher the number of variables

that can be estimated - plant state variables, disturbances, faults, etc. . Finally,

OBR is applied for the first time to linear time-varying (LTV) systems, and some

important questions arise, e.g. the preservation of the estimation quality regarding

the controller interpolation.

A further problem to be considered in this report is the robustness associated with

LTV systems: one intends to shape an exponential variation on the plant model, thus

creating a new metric which allows to study the impact due to fast variations in

some of the model transfer-function coefficients on robust stability. The new metric

was thought to be conceptually simple and compatible with the modern procedures

for robustness evaluation (popularized by MATLAB R© m-functions). Finally, one

applies the ideas presented here in two case studies based on the same launch ve-

hicle model, where a set of conflicting specifications must be achieved through CI

structures by the multi-objective evolutionary optimization.

1.2 Bibliographic review

It is not easy to compile a resumed set of bibliographic references when one deals

with two major areas at the same time: control engineering and computational

intelligence. The work here presented was born of a previous paper (BRITO et al.,

2006) where a computationally-intelligent design mechanism surpassed other three

approaches for launch vehicle control system design. The problem at that time was

limited to the gain-scheduling design of a launch vehicle pitch plane using a simple

controller composed of three gains. A step forward (RAMOS; LEITE FILHO, 2007c)

added gain smoothing - since it is also a relevant issue regarding the stability of
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linear time-varying systems - to the previous objectives (stability and performance

indexes), while keeping a genetic algorithm as the intelligence-based element to

perform the search of linear-quadratic controllers. The cost function used for fitness

evaluation was later substituted (RAMOS; LEITE FILHO, 2007a) by a fuzzy system

and the entire procedure validated through hardware-in-the-loop simulations, being

compared with the current LQ procedure, yielding interesting improvements, as the

design optimization over the full vehicle trajectory. In (MEDEIROS et al., 2005), a H∞

CI-designed controller with a variant tuning was adopted in order to reject the first

bending mode of a launch vehicle, resulting in a similar but more robust behaviour

compared with the notch filter used in a previous design.

The above mentioned works have some connection with Control System Design Au-

tomation (CSDA), because intelligent mechanisms are responsible for the creation,

search and selection of controllers. CSDA is not an established field yet but it is emer-

ging, be as complete environments covering requirements interpretation, modelling,

design and analysis (MAEKAWA; PANG, 1998), be as unifying control schemes (LI et

al., 2004), or simply as the majority of the recent approaches, proposing alternative

and attractive ways to tackle specific problems on control system design (COELLO;

VELDHUIZEN, 2007); the latter one was the motivation to combine a CI mechanism

with the observer-based realization (OBR) computation of an H∞ controller (RA-

MOS; ALAZARD, 2009b), resulting not only in the design of the controller itself but

also supporting the search of the closed-loop combinatoric set aiming on the best

estimation regarding noise and error characteristics. Finally, in this work, one consi-

ders the interpolation and sampling effects on the quality of the OBR estimations

from non-linear digital simulations as well, and verifies the robust stability for a

time-varying behaviour in the plant model by using a new metric.

1.3 Thesis outline

This thesis has three main subjects, discussed in the chapters 2-4. Chapter 2 intro-

duces CSDA and other key concepts and elements as Computational Intelligence,

Genetic Algorithms and so on; the purpose is to provide a minimum background

to the readers not familiar to such area. A CI-based mechanism is presented and

explained, and the CSDA is illustrated with a satellite model. Chapter 3 defines

the observer-based realization of a controller and briefly introduces the associated

theory, commenting on special features such as the choice of the closed-loop com-

binatoric regarding the estimation quality. Again, one presents an example of OBR
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computing for a launch vehicle controller, providing results demonstrating that fault

signals can be detected as if the controller behaves as an observer. Chapter 4 then

proposes a new robustness metric (specially suited for the case studies presented

later) according to the time-varying nature of a given plant model. Chapter 5 brings

two case studies, both based on the VLS launch vehicle model, fully illustrating

gain-scheduled CSDA for a linear-quadratic controller where the controller gains are

to be smoothed, and an H∞ controller where its OBR must also be computed and,

at the same time, again taking into account the smoothness of both the time-varying

closed-loop eigenvalues and respective OBR vectors produced from the combinatoric

chosen. Finally, the last chapter presents the main findings, contributions and the

perspectives for future research, including hardware-in-the-loop simulations with the

system produced by the full application of the CSDA over the three control planes

of manoeuvring.

1.4 Publications

The following publications directly associated with this thesis were produced:

• 11 papers presented in congresses or conferences: 6th International ESA

Conference on Guidance, Navigation and Control Systems (BRITO et al.,

2006) (co-author), 17th IFAC Symposium on Automatic Control in Aeros-

pace (RAMOS; LEITE FILHO, 2007c), 2nd European Conference for Aeros-

pace Sciences (RAMOS; LEITE FILHO, 2007b), 19th International Congress

of Mechanical Engineering (RAMOS; LEITE FILHO, 2007a), IEEE World

Congress on Computational Intelligence (RAMOS; ARAUJO, 2008), 9th In-

ternational Conference on Motion and Vibration Control (RAMOS; SOUZA,

2008), 59th International Astronautical Congress (RAMOS et al., 2008),

4th International Conference on Recent Advances in Space Technologies

(RAMOS; ALAZARD, 2009a), AIAA Guidance, Navigation, and Control

Conference (RAMOS; ALAZARD, 2009b), 10ème Congrès des Doctorants ED-

SYS (École Doctorale Systèmes) (RAMOS, 2009), and 11th Pan-American

Congress of Applied Mechanics (RAMOS; ALAZARD, 2010).

• Articles in periodicals: Journal of Aerospace Engineering, Sciences and Ap-

plications (RAMOS; SOUZA, 2011) and AIAA Journal of Guidance, Control

and Dynamics (to be submitted).
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2 Control system design automation

Concepts such as design automation and computational intelligence are probably

out of the scope for control engineers. Therefore, in this chapter one briefly presents

essential topics and elements required for building CI-based mechanisms. At first,

design automation is justified and associated work is presented. Then, some key

elements employed for building CSDA mechanisms - namely, genetic algorithms and

fuzzy systems - are defined and explained. Finally, a realistic example is provided

for enhanced comprehension.

2.1 Introduction

2.1.1 Why CSDA?, overview and survey

Aerospace engineering is viewed as one of the most complex and demanding areas

of system design and analysis, where functionality is required not only for nominal

conditions but also for time-varying, uncertain, perturbed, noisy and even faulty

ones, for multiple operating points. An automated environment to carry all those

D&A tasks is a consequent thought; control system design automation (CSDA, not

to be confused with CACSD) area becomes to emerge as a response for this need.

Some recent efforts have been done to develop CSDA environments. (LI et al.,

2004) attempted to set a unified scene for LTI schemes, by formulating va-

rious design schemes under index-based optimal design, hence transforming the

present CACSD (computer-aided control system design) into CAutoCSD (computer-

automated control system design). (MAEKAWA; PANG, 1998) presented a very com-

prehensive control system design environment for mechanics called CSDA (Control

System Design Automation), composed of a requirement interpretation block, a

modelling block, an analysis/design block, a data base/knowledge base block, and a

verification block. However, many other works combining design and CI were produ-

ced till now, see for example (COELLO; VELDHUIZEN, 2007) regarding engineering,

scientific and industrial applications.

The building blocks of CSDA come from the computational intelligence (CI) field,

which will be described later, combined with a multi-objective optimization problem

composed of decision variables, constraints, evaluation criteria and objective func-

tions, where Pareto optimal sets (trade-offs between objectives) are formed from

where potential solutions can be found. An example of the Pareto representation is
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provided by the Fig. 2.1, related with the conflicting characteristics “rise time” and

“overshoot” for a second-order underdamped system response to a unit step input.

The set of solutions comprises the Pareto-optimal set and the remaining sub-optimal

solutions, where a further improvement of objectives is always possible.

G(s) =
ω2
n

s2 + 2ζωn + ω2
n

, 0 < ζ < 1

tr =
1

ωn
√

1− ζ2
tan−1

(√
1− ζ2

−ζ

)

Mp = e
−π

(

ζ√
1−ζ2

)

Rise time (tr)

Overshoot (Mp)

Pareto-optimal set

Set of solutions

Figure 2.1 - Example of a Pareto-optimal set.

2.1.2 Computational intelligence

Artificial Intelligence (AI) and Computational Intelligence (CI) are competing fields

associated with respectively symbolic and sub-symbolic (e.g., numeric) representa-

tions aimed for building intelligent systems. AI relies on a top-down strategy, that

is, each system or ability is viewed as a black-box where its content is not primarily

important; by the other side, CI is built from small components (as the GA chromo-

somes) without having a priori conception of the final system. There is low agreement

on the definitions of AI and CI, but a major consensus about an overlapping nature

between them; see (KONAR, 2005), (RUDAS; FODOR, 2008) and (CRAENEN; EIBEN,

2002) for terminology and discussions about it.

CI area is composed of many sub-areas (see the Fig. 2.2) such as Granular Computing

(Fuzzy Systems (FS) included), Neuro-computing (Neural networks (NN) included)

and Evolutionary Computation (EC, genetic algorithms (GA) included) to name

the most known, along with hybrid versions of them, as well. CI presented a boost

during the 90’s, driven by an increasing interest of engineers, economists, and many
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Evolutionary Computing (EC) = {Genetic Algorithms (GA), Genetic Programming (GP),
Evol. Programming (EP), Evol. Strategies (ES), Differential Evolution (DE)}

Neuro-computing (NC) = Artificial Neural Networks (ANN) with {Superv. Learning (SL),
Unsupervised Learning (UL), Hybrid Learning (HL) and Reinforcement Learning (RL)}

Granular Comp. (GC) = {Fuzzy Systems (FS), Probab. Reasoning (PR), Rough Sets (RS)}
Swarm Intelligence (SI) = {Particle Swarm (PS), Nature Inspired (NI), Ant Colony (AC)}

Artificial Life (AL)

Figure 2.2 - Block diagram of the computational intelligence field.
Source: adapted from (KONAR, 2005).
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other professionals to apply these promising tools in their specific fields, aiming for

problem solving automation and fast evaluation of possible solutions. In the Control

Engineering area, CI provided the combination of classical and modern techniques

(FLEMING; PURSHOUSE, 2002) for system identification and modelling, (sometimes

unnecessary (TAN; LI, 2001)), design, and optimization. Off-line methods currently

are the majority of the applications, reflecting their computational cost and time.

However, it is only a matter of time for on-line cases to gain space, since hardware is

in continuous progress (SPECTOR, 2004). Concerning the aerospace area, CI elements

were applied to the control system design of launch vehicles (including the Space

Shuttle), aircrafts, missiles and satellites; see references in (RAMOS; ARAUJO, 2008).

Specifically, genetic algorithms (GAs) are the preferred EC branch for control en-

gineers ((WANG et al., 2003), (FONSECA, 1995)). The tasks required to implement

EC are: (i) the choice (or creation) of a convenient approach which best fits the

proposed problem; (ii) the development of an (multi-) objective or cost function;

(iii) the tuning of the evolutionary operators in order to achieve fast convergence

speed while avoiding local optima. The objective function used for fitness evaluation

is generally built with specification charts (and possibly other variables of inter-

est (RAMOS; LEITE FILHO, 2007c)), whose indexes are translated by mathematical

formulae or other type of mapping into a single scalar cost, which is assigned to

each individual composing the generations. The tuning of the evolutionary opera-

tors (e.g., mutation rate) is a tricky and complex task, and can itself be subject

to evolution, yet most applications are manually adjusted. In the former case, the

operators are enclosed into each individual genotype, together with the parameters

used to guide the search mechanism.

Two important elements are used in this work, namely GA and FS; thus, one presents

them with more details.

2.1.3 Genetic algorithms

One of the most recognized pioneers in genetic algorithms is Bremermann (FOGEL;

ANDERSON, 2000), who originally proposed them as general models of adaptive pro-

cesses (although posteriorly applied popularly as optimization and search tools).

GAs are basically the representation of the Darwinian theory of the life evolution

on virtual populations or sets of individuals. Each individual is composed of chro-

mosomes, which refer to independent entities forming the full system. By your turn,
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each chromosome is characterized by a set of genes. For example, the three-axis

control system of a launch vehicle could be devised as three chromosomes (each one

representing the controller of the respective plane of manoeuvring), with 3 genes per

chromosome (proportional, derivative and integral gains of each controller).

Replacement

Population

Initial
generation

Crossover

Mutation

decoding

Chromosomes

evaluation

ProblemElite

Current generation

Problem input data

Fitness scores

Selected
parents

Parents and children

New generation

GENETIC OPERATIONS

Selection

Figure 2.3 - Basic operation cycle of a genetic algorithm.

The GA operation cycle (Fig. 2.3) is composed basically of the following actions:

• Selection. A new set of individuals is formed with clones multiplicity

proportional to the respective ratings of the individuals of the previous ge-

neration: the higher the rating of a given individual, the more the number

of its clones. A popular method is known as roulette wheel, where indivi-

duals are selected based on their ratings. NOTE: the fitness evaluation is

not included in the genetic operations.

• Crossover. Part of the new set is combined randomly in pairs by exchan-

ging random segments of genes.

• Mutation. Part of the new set has some of their individuals mutated,
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that is, random genes of random individuals are changed with a given

probability.

• Elite insertion. The individual of the original set with the best rating

is preserved in the new set; that is necessary due to the mutation and

crossover actions.

• Population replacement. The original generation is replaced by the new

one, or a new one is created when there is no previous one.

2.1.4 Fuzzy systems

In 1965, Lofti Zadeh defined fuzzy sets as “a class of objects with a continuum

of grades of membership” (ZADEH, 1965), opposing the usual mathematical sense

(e.g., the sets “real numbers greater than one” and “real numbers MUCH greater

than one”). A fuzzy system (Fig. 2.4) is a non-linear mapping of an input vector

into a scalar output (MENDEL, 1995)1:

Defuzzifier

Rules

Inference

FuzzifierCrisp

inputs

Crisp
output

Fuzzy logic system

Fuzzy input sets Fuzzy output sets

Figure 2.4 - Diagram of a Fuzzy System.
Source: (MENDEL, 1995).

• The mapping is composed of rules - expert knowledge or extracted from

numerical data; it is defined as logic expressions such as IF-THEN state-

ments (e.g., “IF settling time IS too slow OR gain margin IS small, THEN

design IS poor ” and “IF settling time IS NOT too slow AND gain margin

1Refer to (MATHWORKS, 2010) for a lengthy and more didactic explanation of these concepts.
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IS NOT small, THEN design IS good ”; see also the graphical interpretation

in the Fig. 2.5) .

• Linguistic variables deal with linguistic values which are words in a natural

or artificial language rather than numbers. The combination of a linguis-

tic variable and a linguistic value (such as “settling time IS too slow ” in

the previous example) is called antecedent or premise when is part of the

IF section; if it is part of the THEN section, it is called consequent or

conclusion.

• Fuzzifiers / defuzzifiers - interfaces (composed of membership functions)

that relate the degree of the membership between input and output crisp

data and the fuzzy sets.

• A crisp set is a subset of another set, whose elements uniquely belong or not

to that set, while for a fuzzy set, its elements have a degree of membership

with the set to which it belongs. For example, “object” may or may not

belong to “fruits”, while “liquid” may have infinite degrees of membership

with “temperature” (cold, hot, etc.).

• Inference mechanism - maps fuzzy sets into fuzzy sets, handling the way the

rules are combined; the most known are (GALICHET et al., 2008) Mamdani-

type (more intuitive; large acceptance in the scientific community; well

suited to human input) and Sugeno-type (computationally efficient; gua-

ranteed continuity of the output surface; well suited to mathematical ana-

lysis; works well with linear, optimization and adaptive techniques).

2.1.5 Understanding a CI-based mechanism

An example of a CI-based mechanism used for CSDA is shown in the Fig. 2.6. The

single chromosome is the controller, the genes are controller gains or weights of the

linear-quadratic or H∞ techniques. First, a GA generates, combines and mutates

the individuals, reinserting the best fitted one (the elite) of the last generation in

the current one. The indexes (stability, performance, etc.) are extracted from each

individual and evaluated with a cost function; according to the results, the GA

chooses a new elite and the process continues until a stop criterion is met.
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Figure 2.5 - Example of a FS surface.
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Figure 2.6 - Example of a CI-based mechanism used for CSDA.
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2.2 Example: CSDA of a satellite controller

This example (RAMOS; SOUZA, 2008) employs CSDA in order to obtain controllers

according to four techniques, for a satellite with appendages model.

2.2.1 Satellite model and control system

The linear model of a satellite with appendages and reaction wheel (SOUZA, 2006)

is given by the Eq. 2.1, where (see the Fig. 2.7): L is the appendage length; m is

the appendage mass; J0 is the inertia moment of the rigid body related to its mass

centre; JR is the inertia moment of the reaction wheel related to its mass centre; JP
is the inertia moment of the appendage related to its mass centre; J = J0+JR+JP ;

K is the elastic constant of the appendages; Kd is the mechanic dissipation constant

of the appendages; {X, Y, Z} and {XS, YS, ZS} are the main and satellite reference

axes; δ(t) is the elastic displacement of the appendages related to the YS axis; ψ(t)

is the satellite yaw angle; α(t) is the angular displacement of the reaction wheel

related to the YS axis; τ(t) is the torque applied to the reaction wheel.

NOTE: the disturbance input in the original set of equations was not considered.

ψ̈(t) = β−1
[
2LKd δ̇(t) + 2LKδ(t)− τ(t)

]
where β = (J − JR − 2L2m)

δ̈(t) = β−1
[
Lτ(t)−Kdm

−1 (J − JR) δ̇(t)−Km−1 (J − JR) δ(t)
]

α̈(t) = β−1
[
(J − 2L2m) J−1

R τ(t)− 2LKd δ̇(t)− 2LKδ(t)
]

(2.1)

ψ

J0

JP , m

JR

L

δ

XS

ZS

YS

α̇

Figure 2.7 - Satellite description.
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The Eq. 2.1 is a linearly dependent set; thus, only the first two sub-equations (ψ̈

and δ̈) are considered in the design - the last one is useful to obtain the α output.

The state space description of the satellite model is presented in the Eq. 2.2.

ẋ(t) = Ax(t) +Bτ(t), y(t) = Cx(t) +Dτ(t), x(t) =
[
ψ(t) δ(t) ψ̇(t) δ̇(t)

]T

A =




0 0 1 0

0 0 0 1

0 2LKβ−1 0 2LKd β
−1

0 −Kη 0 −Kd η



,B =




0

0

−β−1

Lβ−1



,

C,D,

η = (J − JR)m
−1β−1

(2.2)

The control system of the satellite is depicted in the Fig. 2.8, where the sizes and

contents of the measurement vector γ (reflecting the matrices C and D of the Eq.

2.2), reference input γref and controller input uc depend on the chosen controller.

γref
τ

−

γ∑ γ̃ = uc
G(s)K(s)

Figure 2.8 - Attitude control system of the satellite.

K(s) will be assigned each of the four controllers given below:

• A proportional-derivative (PD) control law (SOUZA, 2006) is defined by

the Eq. 2.3, where xc(t) = xc(t), Ac = 0, Bc = 0, Cc = 1 and Dc = K =

[KP KD].

γ(t) =
[
ψ(t) ψ̇(t)

]T
, γref (t) = [ψref (t) 0]T ,

ẋc(t) = Ac xc(t) +Bc uc(t), τ(t) = Cc xc(t) +Dcuc(t)
(2.3)

• A double-input-single-output (DISO) controller with first order transfer

functions a/(s+ b) and c/(s+ b) between inputs and output is defined by

the Eq. 2.4.
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γ(t) =
[
ψ(t) ψ̇(t)

]T
, γref (t) = [ψref (t) 0]T ,

ẋc(t) = −b xc(t) + [a c]uc(t), τ(t) = xc(t) + 0 uc(t)
(2.4)

• A full-state LQ controller is given by the Eq. 2.5, where K = K1x4.

NOTES:

a) The controller K is calculated upon the state-space matrices A and

B of the Eq. 2.2 and the weighting values Q and R.

b) For the sake of simplicity, the existence of an observer to reconstruct

the full state is not considered here.

γ(t) =
[
ψ(t) δ(t) ψ̇(t) δ̇(t)

]T
, γref (t) = [ψref (t) 0]T ,

ẋc(t) = 0 xc(t) + 0 uc(t), τ(t) = xc(t) +Kuc(t)
(2.5)

• An H2 controller is given by the Eq. 2.3 and matrices Ac, Bc, Cc and Dc.

The controller is built from the general standard model of the satellite

control system (Fig. 2.9); the augmented plant P contains the external

disturbances wτ and wy at the plant input and outputs respectively, and

the weighting values ky = diag(kψ, kr) (amplitude of the output vector y),

kτ (amplitude of the actuation signal τ) and kw (amount of the disturbance

at the plant input). G is the transfer function matrix of the satellite model,

which can be obtained from the Eq. 2.2, where matrices C and D are chosen

so that y =
[
ψ ψ̇

]T
; also note that r , ψ̇.

P

–
y γτ

zτ

K

G

kw
wτ

zy = [zψ zr]
Tky

wy = [wψ wr]
T

kτ

∑ ∑

Figure 2.9 - Satellite general standard model.
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The mathematical description of the general standard model is given by

the Eq. 2.6.




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

zψ(t)

zr(t)

zτ (t)

γψ(t)

γr(t)




=




0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 k1 k2 0 0 kw 1

−kψK −kψKd −kψm 0 0 0 0 0

0 −krK −krKd −krm 0 0 0 0

0 0 0 0 0 0 0 kτ

K Kd m 0 1 0 0 0

0 K Kd m 0 1 0 0







x1(t)

x2(t)

x3(t)

x4(t)

wψ(t)

wr(t)

wτ (t)

τ(t)




k1 = −Kdm
−1β−1(J − JR), k2 = −Km−1β−1(J − JR)

(2.6)

2.2.2 The CI-based design mechanism

The CI mechanism was already seen in the Fig. 2.6. Performance indexes (rise and

settling time, overshoot, and amplitude of the actuation signal τ(t)) are obtained

from the unit step response of the control systems formed with each individual (Fig.

2.8), and evaluated with a cost function implemented with a fuzzy system where

those specifications are stored.

2.2.2.1 GA characteristics

The main characteristics of the GA are: 10 binary bits per gene of each individual2;

10 individuals per generation; mutation rate of 10%. Each run has a minimum of

5 and a maximum of 20 generations. In order to assure high population diversity,

for each new run and depending on the rating, part of the population is recreated

randomly. Each run is finished by a stop criterion (supplied by the ratings of the

generations) and is followed by a new run; this batch of runs also terminates if

the collective rating meets that same criterion. The stop criterion is based on the

standard deviation of the last n ratings (< 0.1%). The roulette wheel is used for

reproduction based on the logarithmic function log10(rating−min.rating+1). Only

2The PD controller is composed of two gains K1 = a1/a2 and K2 = b1/b2 or 4 genes, so 40
binary bits are required for each individual.
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the first bit (most significative) of each gene is not used for mutation operations.

The fitness function is a fuzzy system, as will be seen next.

2.2.2.2 FS characteristics

The FS is Mamdani-type, where the linguistic input variables are the performance

indexes (rise and settling time, overshoot, and amplitude of the actuation signal

τ(t)) and the linguistic output variable is Rating. The linguistic values are expressed

as: (i) a Gaussian function fG, given by the pair 〈σ, c〉 according to the Eq. 2.7a; (ii)

a z-polynomial function fZ , given by the pair 〈a, b〉 according to the Eq. 2.7c; (iii)

a triangular function fT , given by the triple 〈a, b, c〉 according to the Eq. 2.7b. The

FS premises (Fig. 2.10) and respective universes of discourse are defined as follows:

• The linguistic variable tr is associated with the rise time of the control

system step response, where its universe of discourse is [0, 600] [s]. The

linguistic value {small} is defined as fG(x; 200, 0).

• The linguistic variable ts is associated with the settling time of the control

system step response, where its universe of discourse is [0, 600] [s]. The

linguistic value {large} is defined as fG(x; 200, 600).

• The linguistic variable Mp is associated with the overshoot size of the

control system step response, where its universe of discourse is [0, 100] [%].

The linguistic value {satisfactory} is defined as fZ(x; 20, 50).

• The linguistic variable umax is associated with the maximum actuation

signal of the control system step response, where its universe of discourse

is [0, 2] [Nm]. The linguistic value {small} is defined as fG(x; 0.5, 0).

• The linguistic variable Rating is associated with the total score, where

its universe of discourse is [-100, 100]. The linguistic values {bad, regular,

good} are defined respectively as fT (x;−100,−100, 20), fT (x;−40, 0, 40)

and fT (x;−20, 100, 100).
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Figure 2.10 - Fuzzy system premises of the satellite CSDA example.

fG(x; σ, c) = e





−(x− c)2

2 σ2





(2.7a)

fT (x; a, b, c) = max

(
min

(
x− a

b− a
,
c− x

c− b

)
, 0

)
(2.7b)

fZ(x; a, b) =





1, x ≤ a

1− 2 [(x− a)/(b− a)]2 , a < x ≤ (a+ b)/2

2 [(b− x)/(b− a)]2 , (a+ b)/2 < x ≤ b

0, x > b

(2.7c)

The fuzzy system rules are given by the Eq. 2.8.
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R1: IF (ts IS large) OR (umax IS NOT small) THEN (Rating IS bad)

R2: IF (tr IS NOT small) AND (ts IS NOT large)AND (Mp IS NOT satisfactory)

AND (umax IS small) THEN (Rating IS regular)

R3: IF (tr IS small) AND (ts IS NOT large)AND (Mp IS satisfactory)

AND (umax IS small) THEN (Rating IS good)
(2.8)

Regarding the controller candidates, when the resulting control system is unstable

the candidate is immediately assigned the worst rating, thus avoiding time wasting

to calculate the step response and fuzzy system cost.

2.2.3 Design comparison

For comparison purposes, the hypothetical case FireSat (LARSON; WERTZ, 1992)

is useful to devise the requirements associated with a satellite with appendages,

where its mission is Earth-looking, except one optional manoeuvre per month to a

chosen target, when it must rotate up to 30o in less than 10 minutes. The actuation

element is a reaction wheel; its choice is dependent of the maximum amplitude on

the actuation signal required by the designed controller. Commercial models are

available with torque output ranges of 0.01-1.0 [Nm], influencing weight (2-20 [kg])

and power consumption (10-110 [W]); therefore, the smaller the required actuation

torque, the most attractive the controller.
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Table 2.1 - Comparison between the four automated designs.

Tech.
Genes Design Controller tr [s] ts [s] Mp [%] Ac [Nm] Rating

(a/b) Time [s] (max.)

PD {K1, K2} 195 − [0.4050 27.4048] 103.8 156.4 2 0.210 47.1

DISO {a, b, c} 143 −




0.1675

s+ 0.4185
11.3856

s+ 0.4185




T

108.5 143.9 2 0.177 48.6

LQ {Q11, · · · , Q44, R} 123 −




0.5477
0.0500
30.8491
2.2371




T

86.0 211.3 3 0.289 38.2

H2
{kψ, kr, kw, kτ}

{m} = multiplier
181




3∑

i=0

ais
i

4∑

i=0

bis
i

3∑

i=0

cis
i

4∑

i=0

bis
i




126.5 191.5 2 0.238 41.2
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Table 2.1 presents the results of the design automation based on the four control-

lers. The numerical data of the model (SOUZA, 2006) is: J0 = 720[kg m2], JP =

40[kg m2], K = 320[kg rad2/s2], Kd = 0.48[kg rad2/s], L =
√
2[m], e m = 20[kg].

NOTES: (i) the number of genes is different for each technique, where PD has the

smallest one (4), LQ and H2 the biggest ones (10); (ii) PD and DISO do not require

gain calculation (differently from LQ and H2 techniques), but only the transfor-

mation from binary digits to decimal values; (iii) PD and LQ techniques produce

scalar controllers, whilst DISO produces first order ones and H2 fourth order ones

(both strictly proper); (iv) the design was run five times for each technique, and

those results with the best ratings were chosen; (v) description of the computing

environment: MATLAB v. 7.1 (Release 14), running on AMD SEMPRON 2800+

processor (core speed 1596 [MHz]) and 1 [GByte] of RAM memory (bus speed of

199.6 [MHz]).

It can be seen that all results comply with FireSat specifications, that is, the settling

time ts is always under 10 minutes (even adding it to the design time, allowing on-

line use), and the maximum actuation signal is well below 1 [Nm]; furthermore, the

overshoot is negligible.

Despite the PD technique being the most promissory due to the fewer genes (resul-

ting in a smaller search set), it ranked second, yet the first place (DISO) shares the

same condition; one questions if the inferior ratings associated with the other two

techniques are explained by the higher number of genes or by the techniques them-

selves. It is important to note that the design specifications do not include stability

margins nor robustness, but LQ and H2 techniques embed somewhat these factors,

contrary to the other two; therefore, even admitting that the DISO technique pre-

sented the best results regarding the most important requirements, namely ts and

umax, and possessing a simple structure (first-order transfer functions), it must be

stressed that additional analysis is required to gather confidence on such technique.

The LQ technique presented the best design and rise times, but scored last to the

other indexes. However, most batch runs presented low variation on design times (63

- 123 [s]) and ratings (36.2 - 38.2), and a good LQ controller could be chosen even

in the first run, taking around 6 seconds (already considering code initialization);

by the other side, this work does not intend to suggest any solution to the proposed

problem but rather illustrate the CI embedding in the design.
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2.3 Conclusion

CSD is not a pure creative process, it may (and generally does) rely on repetitive

and exploratory tasks as well. As machines are best suited to such tasks, CSDA is

appealing to human designers. In order to achieve automation, CI-based mechanisms

must be built; in this chapter, an ad-hoc one was presented, composed of a genetic

algorithm to explore the search space, and a fuzzy system to store the design speci-

fications. A simple CSD problem based on a satellite model was stated in order to

demonstrate the possibilities of such mechanism. However, in order to justify CSDA

even more, one intends to increase the design complexity far beyond, by considering

the observer-based realization (OBR) of a given controller, which is introduced in

the next chapter.
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3 The observer-based realization of a controller

In this section, one presents the Observer-Based Realization (OBR) technique and

how CI can be used for closed-loop combinatorics search. It will be shown that

most controllers may be represented by three distinct dynamics, namely estimation,

feedback and Youla ones. In such sense, the real physical variables of the plant (on

which the controller OBR relies) can be estimated, together with other variables of

interest such as disturbances, faults, etc. . However, the closed-loop combinatoric

must be appropriately chosen, so that the quality of estimation (i.e. noise and error

characteristics of the estimated variable) is the best one. Such special combinatoric

is not always easy to find according to the number of c.l.-poles and estimations;

thus, CSDA is again an appealing resource for its search.

3.1 Introduction

For aerospace applications, control system design is not only a matter of satisfying

important requirements such as stability, performance, robustness to parameter va-

riations and external disturbances, and so on, but there are also practical issues (as

on-board implementation) which draw the attention of the control engineer; it would

not be surprising if complexity, flexibility, and memory storage could influence and

even decide the choice between rivalling structures. In such aspect, linear quadratic

or PID controllers, which rely on single sets of scalar gains, would be preferable to

H∞ controllers, the latter ones typically possessing the same order than the plant

model used for design (normally a simplified version of a even more complex valida-

tion model). By the other side, one may argue if and what additional features and

benefits can be uncovered when using these larger realizations. Fortunately, as wrote

by (LUENBERGER, 1971), “almost any system is an observer”; it can be shown that a

given controller may have an observer-based realization, as demonstrated by the de-

terministic separation principle (SCHUMACHER, 1980). By that principle, controller

states can be made to correspond to the plant states; in other words, the controller

is also an observer and provides the estimates of the plant state vector, and maybe

other desired estimates as external disturbances and faults, thus supplying additio-

nal elements which could be employed for fault tolerance, for example. One briefly

presents now a new technique which allows to redesign a given controller into its

observer-based form, without changing the controller dynamics.
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3.2 OBR theory

In this section, one presents the resumed procedure ((ALAZARD et al., 1999), (ALA-

ZARD; APKARIAN, 1999)) to compute the observer-based realization of a given

controller (that is: the state feedback gain Kc, the state estimator gain Kf and

the Youla parameter Q).

3.2.1 Observer-based structure with Youla parameter

The general block diagram of the closed-loop system involving an observer-based

controller is shown in the Fig. 3.1, which corresponds to the Youla parametrization

of all stabilizing controllers built under the LQG structure; from this representation,

the separation principle between estimation and control is straightforward. Accor-

ding to (ALAZARD et al., 1999), the principle of Youla parametrization is based on the

fact that the closed-loop transfer function between the input e and the inovation

ǫy = y −C x̂ is null (LUENBERGER, 1971). Consequently, changes in Q(s) imply

variations on the equivalent controller but do not affect the c.-l. t. f. .

NOTES:

a) The order n corresponds, at first, to the plant model G(s) of order nP and

state-space matrices AP, BP and CP, but it is later extended to the on-

board model GO(s) of order nO and state-space matrices AO, BO and CO.

b) At first, the inputs ud (representing external disturbances and actuator

misalignments or faults) and yd (representing sensor bias or faults) seen

in the Fig. 3.1 are not considered, so that BP = BPu and CP = CPy.

c) One must recall the following definitions: (i) eigenvalues are the set of solu-

tions λi to the characteristic equation |A− λI| = 0 associated with a given

matrix A; (ii) poles are the subset of λi composed solely of controllable

and observable eigenvalues.

Consider the Eq. 3.1, respectively the state-space realization {AP, BP, CP} (or

{A, B, C} in the following discussion) of the stabilizable and detectable nthP order

(or nth order in the following discussion) plant model G(s) (ni inputs and nm mea-

surements), and the minimal state-space realization of the respective stabilizing nthK
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Figure 3.1 - Observer-based structure using Youla parametrization.

order controller K(s):

[
ẋ

y

]
=

[
A B

C 0

][
x

u

]
(a),

[
ẋK

u

][
AK BK

CK DK

][
xK

y

]
(b). (3.1)

The key idea is to express the controller as a Luenberger observer with a state

vector z = Tx and thus, we will denote xK = ẑ = T̂x = Tx̂. It can be shown (ALA-

ZARD et al., 1999) that T is the solution to the generalized non-symmetric Riccati

Eq. (3.2):

[−T I]

Acl︷ ︸︸ ︷[
A+BDKC BCK

BKC AK

][
I

T

]
= 0. (3.2)

The characteristic matrix Acl associated with the Riccati Eq. (3.2) is nothing else

than the closed-loop (c.-l.) dynamic matrix built on the state vector [xT xK
T ]T .

Such a Riccati equation can then be solved in T ∈ R
nk×n by standard subspace

decomposition techniques, that is :

• computing an invariant subspace associated with the set of n eigenvalues

spec(Γn) (where spec(A) is the set of eigenvalues of the matrix A), cho-

sen among n + nK eigenvalues in spec(Acl), that is, Acl

[
U1

T U2
T
]T

=
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[
U1

T U2
T
]T

Γn, where U1 ∈ R
n×n and U2 ∈ R

nK×n. Such subspaces are

easily computed using Schur decompositions of Acl.

• computing the solution T = U2 U1
−1.

3.2.2 Controller order

One can find three possible cases:

• Full-order controller (nK = n) : one can compute a state feedback gain

Kc = −CK T−DK C, a state estimation gain Kf = T−1BK −B DK and

a static Youla parameter Q(s) = DK such that the observer-based struc-

ture fitted with the Youla parameter (Fig. 3.1) is equivalent to the initial

controller form according to its input-output behaviour.

• Augmented-order controller (nK > n) : the Youla parameter becomes a

dynamic transfer of order n− nK .

• Reduced-order controller (nK < n) : in this case, the LQG structure shown

in the Fig. 3.1 is no longer valid. However, if nK ≥ n−nm (nm stands for the

number of plant measurements), one can built a reduced-order estimator

with a static Youla parameter, involving an estimate x̂ = H1ẑ+H2 y

by a linear function of the controller state ẑ and the plant output y, with

the constraint H1 T+H2 C = In. Otherwise, if nK < n − nm, a model

reduction is required to built a (partial) state-observer realization.

One can define a general expression x̂ = H1ẑ+H2 y for computing the estimates

for all the three cases, where H2 = 0 and H1 = T−1 when nk ≥ n.

3.2.3 Closed-loop combinatoric set

The separation principle of the observer based realization allows to state that :

• The c.-l. eigenvalues can be separated into c.-l. state-feedback eigenvalues

(spec(A−BKc)), c.-l. state-estimator eigenvalues (spec(A−KfC)) and

the Youla parameter eigenvalues (spec(AQ)).

• The c.-l. state-estimator eigenvalues and the Youla parameter eigenvalues

are uncontrollable by e.

26



• The c.-l. state-feedback eigenvalues and the Youla parameter eigenva-

lues are unobservable from εy. The transfer function from e to εy always

vanishes.

Note that there is a combinatoric set of solutions according to the choice of n auto-

conjugate eigenvalues among n+nK c.-l. eigenvalues. The range of solutions can be

reduced according to the following considerations :

• A set of auto-conjugated eigenvalues1 must be chosen in order to find a

real parametrization.

• Uncontrollable eigenvalues and unobservable eigenvalues must be selected

to the state-feedback and the state-estimation dynamics respectively.

• The state-estimation dynamics (spec(A−KfC)) is usually chosen faster

than the state-feedback dynamics (spec(A−BKc)).

3.2.4 Complementary topics

On-board model. The initial plant model G(s) can be further extended as an on-

board model. The nthO order on-board model composed by the state-space matrices

AO,BO and CO is required in the computation of the observer form and is built

upon the original plant model where other variables of interest (such as disturbances

and faults, represented by the variables ud and yd in the Fig. 3.1) may also be

included as states to be estimated. Therefore, n is replaced by nO and {A, B, C} by

{AO, BO, CO} in the previous discussion. For example, on considering the original

plant model (Eq. 3.1(a)) and a bias term yb associated with a single output, the

correspondent on-board model could be given by the Eq. (3.3).




ẋ

ẏb

y


 =




AP 0 BP

0 λy 0

CP 1 0







x

yb

u


 =

[
AO BO

CO 0

]


x

yb

u


 (3.3)

Balanced realizations. To prevent numerical problems when solving in T the

Riccati Eq. 3.2 required to compute the OBR, it is recommended to balance both

1If λ is a set of auto-conjugated values, then λ = λ̄.
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realizations: the on-board model GO and the original controller K. If x̆ denotes the

state vector of the on-board model as a balanced realization and M the transforma-

tion with initial meaningful state x (i.e. x̆ = M x), then the application of the OBR

theory will provide an observed-based realization K̆f and K̆c involving the balanced

state vector ̂̆x. Then, it is possible to keep the original meaningful state-space ma-

trices and states by recalculating the state feedback and the state estimator gains

such that Kc = K̆c M and Kf = M−1 K̆f .

Exact controller dynamics. It is obvious from the computation of the gains

Kc, Kf and Q (when nK ≥ n), that the resultant controller obtained from the

observer-based realization (darker area in the Fig. 3.1) may have not the same

dynamics of the original controller, due to numerical inaccuracy. However, the esti-

mations can be obtained by computing T−1 xK while keeping the existent controller

(as it was done using H1 and H2 matrices when nK < n).

Reference inputs. When dealing with reference inputs in the control system, the

controller structure to be used is shown in the Eq. 3.4; such arrangement is adopted

for adapting the non-linear digital simulation code used in the case study no. 2

(chapter 5) in order to replace the original linear-quadratic controller by an OBR

H∞ one.

{
˙̂z = AK ẑ+BK y +T BO Kc xref

u = CK ẑ+DK y +Kc xref

with Kc = −CK T−DK CO. (3.4)

Combinatoric of combinatorics. Given the estimations comprised by the on-

board model, the best combinatoric for all of them at the same time may not exist,

that is, a single closed-loop eigenvalues distribution between the three dynamics

(state-estimation, state-feedback and Youla) which produces the best estimations

for all estimated variables according to noise and error criteria. It is advisable that a

search be made in order to find the best combinatoric individually for each estima-

tion; for example, assuming that nK ≤ n and two estimations α̂ = Hα1 ẑ +Hα2 y

and b̂q = Hq1 ẑ+Hq2 y, then we could compute independent matrices Hαi and Hqi

to each estimated variable respectively.

Persistent excitation. Observers are subject to certain requirements related to

system identification theory such as persistent excitation, that is (in a general sense),

in order to obtain good estimations, the system input signals have to be rich enough
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over the range of the signal or parameter to be estimated. For aerospace systems,

one can consider as sources of excitation the time-varying nature of the model, the

bending and torsional modes, the external disturbances (e.g. wind gust), attitude

references, controller interpolation, sampling, quantization and sensor noise. In the

two case studies presented in this work, all these sources are present, and one pri-

marily assumes (due to time restrictions) that the excitation is persistent; available

mathematical expressions (TAO, 2003) used to determine if a given excitation is

persistent will be considered for future research.

3.3 CI-based combinatoric search and selection

One wants to show in this work the beneficial synergy of CI and control system de-

sign. Now, it is possible to justify even more such synergy by considering the search

of the combinatorics associated with the OBR technique: the n + nK closed-loop

eigenvalues must be divided among three dynamics, so that each combination is

evaluated according to noise and error criteria. For example, k real closed-loop poles

(that is, all eigenvalues but the uncontrollable and observable ones) yield 2k − d

combinations (assuming n = nK , that is, static Youla parameter - no poles assi-

gned to it), where d is the number of discarded combinations (when the number of

c.l.-poles allocated to the state-feedback, state-feedback or Youla dynamics are inap-

propriate). Depending on the effective number of combinations, a CI-based method

would be advisable for that search.

3.4 Example: OBR of a launch vehicle controller

This example (RAMOS; ALAZARD, 2009b) illustrates, for a launch vehicle control

system, the construction of an on-board model embedding the estimation of the

angle-of-attack, and the choice of the best closed-loop combinatoric based on noise

and error criteria applied to the estimations.

3.4.1 Design technique and models

The H∞ General Standard Model (GSM) shown in the Figure 3.2 (where k•• are
scalar weightings) is used in the computation of the H∞ controller to be posteriorly
converted into its observer form. It is built upon the full pitch plane decoupled
dynamics (GL or equation (3.5), comprising the rigid body and the first two bending
modes) of the Brazilian launch vehicle VLS, obtained from its non-linear set of
equations (see Appendix A). The model GL is associated with a vector of state
variables which has physical meaning as well.
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Figure 3.2 - H∞ general standard model of the VLS launch vehicle.




ẇ

q̇

θ̇

θ̇B11

θ̇B12

θ̇B21

θ̇B22




≈




− Z̄α

Ū
A12 A13 0 0 0 0

M̄α

Ū
−M̄q 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 −ω̄2
B,1 A55 0 0

0 0 0 0 0 0 1

0 0 0 0 0 −ω̄2
B,2 A77


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


w

q

θ

θB11

θB12

θB21

θB22




+




Z̄βz

−M̄βz

0

0

KB,1

0

KB,2




βz +




Z̄α

Ū

− M̄α

Ū

0

0

0

0

0


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wv

[
qF

θF

]
=

[
0 1 0 0 1 0 1

0 0 1 1 0 1 0

]




w

q

θ

θB11

θB12

θB21

θB22




+

[
0

0

]
βz +

[
0

0

]
wv

(3.5)

where: A12 = (2 ¯̇m x̄e)/m̄ + Ū , A13 = −ḡ cos(θ̄), A55 = −2ζB,1 ω̄B,1 and

A77 = −2ζB,2 ω̄B,2, associated with the parameters (shown with a top bar, as ḡ)

and variables identified in the Appendix A.

The following transfer functions are considered:
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a) Gθβ and Gθd are the transfer functions of the pitch plane decoupled model

with respect to the control input βz and disturbance input wv, given by

the equations:

Gθβ(s) =
−M̄βzs+

1
Ū

(
M̄αZ̄βz − Z̄αM̄βz

)

s3 +
(
Z̄α

Ū
+ M̄q

)
s2 +

[
Z̄αM̄q

Ū
− M̄α

(
2 ¯̇mx̄e
m̄Ū

+ 1
)]
s+ M̄αḡ cos(θ̄)

Ū

(3.6)

Gθd(s) =
−M̄α

Ū
s

s3 +
(
Z̄α

Ū
+ M̄q

)
s2 +

[
Z̄αM̄q

Ū
− M̄α

(
2 ¯̇mx̄e
m̄Ū

+ 1
)]
s+ M̄αḡ cos(θ̄)

Ū

(3.7)

b) GB1 and GB2 are the transfer functions of the 1st and 2nd bending modes,

given by the equation:

GBi(s) =
K̄Fi

s2 + 2 ζM ω̄B,i s+ ω̄2
B,i

, i = 1, 2 (3.8)

c) Geθ is the transfer function representing the (approximated) integral of the

error signal kwθ wθ − θ:

Geθ(s) =
1

s+ ǫeθ
(3.9)

This transfer function behaves approximately as an integrator and is re-

quired to reduce the steady-state error to a step function at input wθ (or

otherwise reference input θref ). The parameter ǫeθ is necessary to comply

with the properties required by the GSP.

The GSM depicted in the Figure 3.2 is of 8th order (seven from the model GL(s) plus

one due to the weight Geθ(s)), thus producing an 8th order controller. The various

weights k•• on exogenous inputs (w’s) and outputs (z’s) allows to satisfy the main

specifications required for the attitude control loop: rise time - tr, settling time - ts,

overshoot - Mp, maximum amplitude of the control signal - umax, gain margin - mg

and phase margin - mp. The tuning of the weights to meet good trade-off between

these specifications is left to a CI-based mechanism.

3.4.2 On-board model

In our application the nominal model GL (equation 3.5) is of 7th order with 2

measurements (nm = 2), and the controller at the end of the CI design is of 8th
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order. That means one can add up to three extra states in the on-board model

(n = nK + nm = 8 + 2 = 10). In this example, only the full order controller case is

considered (nK = n); thus, a single extra state will be added in the on-board model

to take into account a first order wind model for disturbance estimation.

Let us denote the nominal 7th order model GL in the following way:

[
ẋL

y

]
=

[
AL B1L B2L

CL D1L D2L

]


xL

d

u


 (3.10)

with: xL = [w, q, θ, θB11, θB12, θB21, θB22]
T the state vector, y = [qF , θF ]

T

the output, d = wv the external disturbance (wind) and u = βz the control signal

(thruster deflection).

The on-board model GO(s), which will be used to compute the OBR of the 8th order

H∞ controller, is presented in the Eq. 3.11.




ẋL

ḋ

y


 =




AL B1L B2L

0 λ 0

CL D1L D2L







xL

d

u


 , i.e.:

[
ẋO

yO

]
=

[
AO BO

CO DO

][
xO

u

]

(3.11)

3.4.3 Choice of the disturbance estimation dynamics

The realistic wind profile wv used in the simulation is depicted in the Figure 3.4.

The steady state of wv cannot be observed, according to the transfer function Gθd

(Eq. 3.7, there is a zero at s = 0). By the other side, if one replaces the state variable

w in the equation 3.5 by the expression Ūα + wv (where α is the angle-of-attack),

then one realises that the steady state of wv has no effect on α, θ and q (equation
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3.12), only its time derivative.



α̇

q̇

θ̇


 =




− Z̄α
Ū

A12

Ū

A13

Ū
M̄α −M̄q 0

0 1 0






α

q

θ




+




Z̄βz
Ū

−M̄βz

0


 βz +




− 1

Ū
0

0


 ẇv (3.12)

Therefore, these variables can be observed even if the steady state of the disturbance

is not observable (clearly, ŵ alone is not reliable at this level of the attitude control

loop due to the unobservable effect of the disturbance wv, but could be observed at

the level of the guidance loop taking into account other measurements). Assigning

λ = 0 means to follow a constant steady state of the disturbance wv, which is not

only unobservable, as noted before, but also uncontrollable. Therefore, this choice

is prohibited as the resulting on-board model would have an unobservable and un-

controllable eigenvalue and it would not possible to affect it to the state-feedback

dynamics and the state-estimator dynamics at the same time; as λ 6= 0, one chooses

λ = −1. Furthermore, it is worth to estimate the angle-of-attack α̂ = (ŵ− ŵv) Ū
−1

from the state variables of the on-board model2.

3.4.4 Observer-based realization

According to the distribution of the 16 closed-loop eigenvalues between the 8 eigen-

values for the state feedback dynamics and the 8 eigenvalues for the state estimation

dynamics, two options are considered:

• for option “B” (table 3.2), the 8 closed-loop eigenvalues which are closest, in

the complex plane, to the 8 eigenvalues of the open-loop on-board model

are allocated to the state feedback dynamics. Thus the state estimation

dynamics is very fast.

• for option “A” (table 3.1), the eigenvalue at −1.1197 is allocated to the

state estimation dynamics instead of the eigenvalue located at −27.9539

(now allocated to the state-feedback dynamics).

2Notice that α̂ is not included in the on-board model.
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Table 3.1 - Closed-loop distribution, option “A”.

Eigenvalues ∈ spec(A−B Kc) ∈ spec(A−Kf C)
−0.0833 *
−0.0922 *
−1.0000 *
−1.1197 *
−1.6765 *
−5.3022 *
−5.8861 *
−27.9539 *

−4.3150± 80.7212i *
−5.4127± 29.6802i *
−44.9965± 15.3888i *
−81.796e± 105.17i *

Table 3.2 - Closed-loop distribution, option “B”.

Eigenvalues ∈ spec(A−B Kc) ∈ spec(A−Kf C)
−0.0833 *
−0.0922 *
−1.0000 *
−1.1197 *
−1.6765 *
−5.3022 *
−5.8861 *
−27.9539 *

−4.3150± 80.7212i *
−5.4127± 29.6802i *
−44.9965± 15.3888i *
−81.796e± 105.17i *
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Figure 3.3 - Simulation schema comprising the attack angle estimate α̂.

3.4.5 Simulations results

The general simulation schema is depicted in the Figure 3.3. The simulation mo-

del of the launch vehicle includes actuator dynamics, anti-aliasing filter on both

measurements and various disturbing signals:

• an external disturbance given by a wind profile (Figure 3.4) is always

applied to the input wv throughout the examples seen in this section,

• measurement noises can be also taken into account on measurements of

pitch attitude θ and rate q, respectively.

a) Estimation of the state variables without measurement noise. The Figure

3.5 shows the time histories of the state variables when the only excitation
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Figure 3.4 - Wind profile used as an external disturbance at the input wv of the model.

on the closed-loop system is the external disturbance (i.e., wind profile

only, no noise). One can see that most graphs present superimposition of

the real and the estimated signals except the linear velocity w as it was

mentioned in section 3.4.3. It can be also noticed that the angle-of-attack

estimation is better using option “B”; estimation errors α − αhat plotted

in the Figure 3.7 confirm this result: this is the direct consequence of the

state-estimation dynamics which is faster for option “B” than option “A”.

b) Estimation of the state variables with measurement noise. When measure-

ment noises are taken into account (Figure 3.6) the state estimation provi-

ded by option “B” is too much noisy while the angle-of-attack estimation is

quite good using option “A” (see also the Figure 3.8). It can be also noticed

in the Figure 3.6 that the measurement noise on θ is filtered using option

“A” and so, θhat is a better estimate of θ than the direct measurement θm
(it is not the case for q where the green and grey plots are superposed).

3.4.6 Response to parameter variation

The mission profile of the VLS assumes ideally a previously known trajectory and

the respective model parameters as functions of the flight time. However, in practice

some variation due to the real thrust force supplied by the solid-propellant engines

related to the nominal levels is admissible. Therefore, it is worth to evaluate the

control system with the nominal controller and plant models corresponding to dif-

ferent instants of flight around the linearisation point: the results are presented in
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Figure 3.5 - Variables w, q, θ and α: comparison between real (black) and estimated
(green) ones for options “A” (left) and “B” (right).
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the Figure 3.9 (option“A”- without noise measurements). It can be noticed that the

controller is robust to these parametric variations (it is always stable) and the mo-

nitoring of the angle-of-attack is quite representative in spite of parametric errors in

the on-board model.

3.5 Conclusion

It was shown that, for order-compatible models of plant and controller, an observer-

based realization of the latter one can be found, where a specific closed-loop com-

binatoric must be selected accordingly. Besides, the respective on-board model may

include not only the plant variables but another ones such as disturbances and faults

to be estimated. The presented technique was proven successful when applied to an

attitude control system based on a launch vehicle model, where its attack angle

was estimated. For the same case, parametric variation of the vehicle model implied

proportional degradation of the same estimation but in an reasonable way; at the

same time, the OBR controller is robust to these variations (it is always stable).

However, sometimes it must be robust also to the time-varying nature of the plant.
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While that can be achieved by designing “smooth” gain-scheduled controllers, one

will propose a special metric in the next chapter that allows to µ-analyse a given

closed-loop system where some of this state-space elements have an exponential-like

time behaviour.
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4 New robustness metric for LTV systems

This chapter presents a new metric for robustness evaluation taking into account a

specific time-varying behaviour of the plant, relying on the insertion of an unstable

initial condition in the original LTI model as an additional input. The purpose of

such adaptation is to allow for µ-analysis, a popular technique available in the robust

control area. A simple example illustrates the effectiveness of the approach.

4.1 Introduction

In this work, one intends to design robust controllers according a gain-scheduled

approach. As the stability analysis is not performed in the same way for LTI and

LTV systems, it is advisable to consider some form of robust stability evaluation

taking into account such time-variation, which is proposed now with a new metric.

4.1.1 Brief history of robust control and general overview

We start with the following definitions:

Definition 4.1.1. “The model of a system is a set of mathematic relationships

describing the real system in a reasonable degree.” (Adapted from (FRANKLIN et al.,

1994)).

Definition 4.1.2. “A control system is robust if it is insensitive to differences bet-

ween the actual system and the model of the system which was used to design the

controller.” (SKOGESTAD; POSTLETHWAITE, 2005).

The Robust Control history can be divided in three periods (see the Fig. 4.1):

• Classic, starting with the studies of H. S. Black proposing feedback in

the design of a precise vacuum-tube system, given significant plant uncer-

tainties, followed by H. Nyquist (stability), H. W. Bode and I. Horowitz

(differential sensitivity).

• State variable, with the contributions of K. E. Kalman (controllability,

observabillity, Kalman filtering), J. B. Cruz Jr. and W. R. Perkins (system

sensitivity).

• Modern Robust Control, represented by two publications (IEEE Transac-

tions on Automatic Control and IEE Proceedings) presenting the state-of-

the-art of the multivariable systems theory, concepts such as singular va-
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Figure 4.1 - Development of the robust control area.

Source: based on (DORATO, 1987).
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lues, Nyquist stability criterion, Youla parametrization, new approachs of

the H2 and H∞ norms, and synthesis techniques of robustly stable Single-

Input-Single-Output (SISO) and Multiple-Input-Multiple-Output (MIMO)

controllers (posteriorly, other techniques emerged, such as the Qualitative

Feedback Theory (QFT), the Robust Stochastic Theory, the Robust Lya-

punov Theory and the Linear Quadratic Gaussian - Loop Transfer Reco-

very (LQG/LTR)).

Σ
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e2 w2

(B) (C)

K
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yu
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r e u

(A)

−
Σ

Σ n
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d

Figure 4.2 - Block diagrams used for control system analysis.

The modern robust control put more focus on MIMO systems, because they must

be normally designed and analysed differently of SISO ones; that was the reason for

the creation of the singular value concept and the internal stability condition (see

Fig. (4.2, B)), which depends on if the matrix

[
I −K

−P I

]−1

is stable or not. An

important factor in MIMO problems are the plant’s uncertainties, which can affect

stability and performance more than in the SISO case (see examples in (SKOGESTAD;

POSTLETHWAITE, 2005)); thus, the concepts “nominal stability”, “robust stability”,

“nominal performance” and “robust performance” were coined. Robustness analysis is

achieved primarly by means of two of the twelve point-to-point functions associated
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with the Fig. (4.2, A), named sensitivity (S = (I + PK)−1, from d to y) and

complementary sensitivity (T = (I +PK)−1PK, from r to y). Furthermore, the so-

called general standard problem (Fig. 4.2, C), associated with the linear fractional

transformation (LFT) and the Youla parametrization, served as the base for the

development of many techniques in the robust control area, such as the syntheses

µ, H2 and H∞, including mixed approaches.

Until now we implicitly assumed linear time-invariant (LTI) systems. By the other

side, stable frozen versions of LTV systems may exhibit unstable behaviour when

subject to real conditions (ROSENBROCK, 1963), except for slow variations of their

parameters; that was the question which led many authors to propose stability

bounds regarding the rate of the variation, normally based on Lyapunov functions

and frozen system configurations (MULLHAUPT et al., 2007). An example of this type

of problem is found in the aerospace area, for the attitude control system design

of launch vehicles (CLÉMENT; MAUFFREY, 2005), associated with gain scheduling,

where the controller interpolation must obey a given criterion. A survey of both

gain-scheduling and interpolation schemes is presented by (LEITH; LEITHEAD, 2000)

and (PELLANDA; APKARIAN, 2002), where one can verify that the popular way is

to interpolate the controller state-space matrices or transfer functions, assuming

that the rate of variation of the elements of the controller and plant realizations is

sufficiently slow. For observer-based realizations, interpolation of the gains Kc, Kf

and Q (state-feedback, state-estimation and Youla parameter) is also suggested.

4.1.2 µ-analysis

Let us consider a system composed of a controller K, a plant P and

its associated structured uncertainty ∆ = diag {∆i} , σ̄(∆) ≤ 1. One

can obtain an M∆-structure (useful for robust stability analysis) by ap-

plying the lower linear fractional transformation on P and K to produce

N, where N = Fℓ(P,K) , P11 +P12K(I−P22K)−1P21 and M = N11.

w

u∆

⇒ ⇒ M = N11

∆
y∆u∆

zN

∆
y∆

K

w z

uv

P

∆

u∆ y∆
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Then, a system is robustly stable if µ∆(M) < 1, where µ∆ is the structured singular

value, given by:

µ∆(M) ,
1

min {km|det(I− kmM∆) = 0,∆ structured, σ̄(∆) ≤ 1}

The smaller the value of µ∆(M) the better, that is, a larger perturbation is required

to make the system loose stability.

Here, one intends to propose a simple approach based on an exponential behaviour

of one or some of the coefficients of the plant model, and then computing the robust

stability tolerances using µ-analysis. µ-analysis is one of the most known techniques

available today for robustness evaluation, being part of the Robust Control toolbox

of the MATLAB R©ambient (BALAS et al., 2004); the next sections provide a deeper

understanding on the proposed metric.

4.2 New metric for exponential uncertainty

In order to perform the µ-analysis, one must have a convenient description of the

system to be evaluated. As the direct inclusion of time-varying coefficients into the

state-space matrices is not possible, one will consider a different approach.

4.2.1 Invariant x time-varying systems

Suppose for instance the LTV system described by the Eq. 4.1:

ẋ(t) =

[
−1 ekt

0 −1

]
x(t) = A(t) x(t) (4.1)

The associated eigenvalues are {−1,−1}; however, that system is stable only if

k ≤ 1, according to the respective state transition matrix1:

1Note that A(t) and
∫ t
t0
A(τ)dτ commute.
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x(t) = Φ(t, t0) x(t0), Φ(t, t0) =





[
e−(t−t0) k−1

(
ek t − ek t0

)
e−(t−t0)

0 e−(t−t0)

]
, k ∈ ℜ, k 6= 0

or otherwise

[
e−(t−t0) (t− t0) e

−(t−t0)

0 e−(t−t0)

]

(4.2)

Replacing the exponential function by tk, the system is stable for all k. Furthermore,

modifying slightly the original system, one can show that bounded external signals

can also change the destabilizing point. After Laplace transforming the Eq. 4.3

(where uh(t) is the Heaviside function or unit step function), the new system is

found unstable for k > 0. Once again replacing the exponential function by tk leads

the system to be marginally stable.

ẋ(t) =

[
−1 ekt

0 −1

]
x(t) +

[
0

1

]
uh(t) (4.3)

4.2.2 Time-varying systems and Laplace transformation

Consider now the system presented in the Eq. 4.4:

[
ẋ1(t)

ẋ2(t)

]
=

[
a11 a12 e

kt

a21 a22

][
x1(t)

x2(t)

]
(4.4)

After Laplace transforming and equation solving, one finds

X1(s) = (s− a11)
−1
{
x1(0) + a12 (s− k − a22)

−1 [x2(0) + a21X1(s− k)]
}

(4.5)

The unstable condition found in the system given by the previous Eq. 4.1 is confirmed

by the pole (s − k − a22), and is associated with both the initial condition x2(0)

and the shifted function X1(s − k). One will concentrate on the former in order to

modify the original system by transforming the effect of the initial condition into an

additional input, as shown in the Eq. 4.6, since x2(0) cannot compose directly the
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model used for µ-analysis.

[
ẋ1(t)

ẋ2(t)

]
=

[
a11 a12 e

kt

a21 a22

][
x1(t)

x2(t)

]
+

[
0

e−kt

]
α(t) (4.6)

With x2(0) = 0, one arrives at the same Eq. 4.5 with x2(0) replaced by α(s). One

may include the term (s − k − a22)
−1 α(s) in the LTI form of the Eq. 4.4 (k = 0)

by redefining α(s) = (s − a22)(s − k − a22)
−1U0(s), so that the original pole is

replaced by the unstable one, producing the desired effect observed in the time-

varying model due to the initial condition x2(0). However, note that the effect of the

shifted function X1(s−k) is not present in the LTI-adapted system; thus, the results

obtained with this approach are preliminary in the sense that the bound on k of

the exponentially-varying function ekt obtained with µ-analysis of the LTI-adapted

system is not necessarily minimum.

4.2.3 Required procedure for the new metric

Suppose a given system where two of your state variables {xi, xj} (with x =

[x1 x2 · · · xm]) are expressed according with the Eq. 4.7.

{
ẋi = ai1 x1 + ai2 x2 + · · ·+ aij xj + · · ·+ aim xm

ẋj = aj1 x1 + aj2 x2 + · · ·+ ajj xj + · · ·+ ajm xm
(4.7)

One knows that the element aij is time-varying, where its rate of variation can be

approximated to an exponential function ekt. In order to include this behaviour

in the original system, one adds an extra state xm+1 and an extra input u0 and

modifies the original state xj, arriving at the transformed system shown in the Eq.

4.8, which reflects the replacement of the initial condition xj(0) by the expression

α(s) = (s− ajj)(s− k − ajj)
−1 U0(s).

{
ẋj = aj1 x1 + aj2 x2 + · · ·+ ajj xj + · · ·+ xm+1 + u0

ẋm+1 = (k + ajj) xm+1 + k u0
(4.8)

4.2.4 Example: LTV system

Applying the procedure to the LTV system given by the Eq. 4.1, and using the

MATLAB R© script shown below, one finds that the tolerance for the uncertain para-

meter k is 50% of its bound (=2), which confirms the previous results. Furthermore,
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Figure 4.3 - Singular values representing a LTV system with A(1, 2) = ekt, k =
[0.0, 0.1, · · · 1.0].

the Fig. 4.3 presents 11 curves of the singular values found with k = [0.0, 0.1, ...1.0],

where the red line corresponds to the limit case of stability.

k_unc = ultidyn(’k’,[1 1],’Bound’,2);

A_unc = [-1 1 0;0 -1 1;0 0 (k_unc-1)]; B_unc=[0 ;1; k_unc];

Gp_unc = uss(A_unc,B_unc,C,0);

[stabmarg,destabunc,report,info] = robuststab(Gp_unc);

Uncertain System is NOT robustly stable to modeled uncertainty.

– It can tolerate up to 50% of modeled uncertainty.

– A destabilizing combination of 50% the modeled uncertainty exists, ...

– Sensitivity with respect to uncertain element ... ’k’ is 100%. Increasing ’k’ by 25% leads to a 25%

decrease in the margin.
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4.3 Conclusion

As LTV systems are harder to evaluate regarding robust stability issues (as one

saw with state transition matrix computations for a simple model), one aimed here

to consider the time variation of the system coefficients as dynamic uncertainties

embodied partially as additional inputs, allowing to use µ-analysis. This approach

will act as a complimentary validation for the smoothing action provided by the

CSDA mechanism adopted in the next chapter, where two case studies based on the

same CSD problem will be settled and evaluated.
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5 Case studies: CSDA of the VLS launch vehicle control system

In this chapter, one defines two case studies based on the same model (VLS launch

vehicle) to which CSDA is to be employed. The first one keeps the original linear-

quadratic controller while replaces the frozen-poles strategy by a smoothing optimi-

zation of all gain-scheduled controllers. The second one replaces the LQ controller

by an H∞ one, and at the same time finds its OBR vectors used to estimate a bias on

the roll angular-velocity output. Improvements supplied by the CSDA mechanism

compared to its CSD counterpart are presented for both cases.

5.1 Introduction

The current design technique employed for VLS launch vehicle controller compu-

tation is the linear-quadratic one. One intends to (i) combine CI with the current

design procedure (thus yielding CSDA) in order to optimize the complete trajectory

and not only a single instant, and (ii) repeat CSDA replacing the linear-quadratic

controller by an OBR H∞ one. In both cases, one considers interpolation constraints.

5.1.1 Overview of the Brazilian space mission

The VLS-1 satellite launch vehicle was first mentioned in 1979, enclosed in the Com-

plete Brazilian Space Mission (Portuguese acronym MECB), and its development

started in 1989. Three flight models were built since then; two of them were launched

(V01 in 1997 and V02 in 1999), but failures prevented full mission accomplishment.

On August 22, 2003, an accident with casualties occurred with the vehicle on the

launch pad, and led to an extensive revision of the project, with the cooperation

of a Russian institution. A technological model (based on the VLS-1 conception) is

expected to be developed and launched from a new launch pad in 2012.

The research and development activities related to the MECB are mainly conducted

at the Instituto de Aeronáutica e Espaço (IAE) laboratories in São José dos Campos

(Brazil), which works “ (...) in fundamental areas of the aerospace field including

materials, propulsion, aerodynamics, guidance, control, meteorology, telemetry, sen-

sors, on board software and acoustics.” (see folder in the Fig. 5.1). Internationally,

IAE is the provider of VSB-30 sounding rockets used by the Germany’s national

Texus sounding-rocket programme (SEIBERT, 2006).
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Figure 5.1 - Mission, projects and activities conducted at the Instituto de Aeronáutica e Espaço (IAE).
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Figure 5.2 - VLS launch vehicle.

The VLS-1 vehicle (Fig. 5.2) has the following main characteristics (approximated

values):

• Physical. Mass = 50 ton, height = 19m, 4 stages (solid propellant), 1st

stage composed of 4 boosters.

• Mission. Circular orbit insertion capability: (i) 100-380 [kg], equatorial

orbit (200-1200 [km]), and (ii) 75-275 [kg], polar orbit (200-1000 [km]).

More details can be found in (LEITE FILHO; CARRIJO, 1999).

For the real flights of the models V01 and V02, the attitude controller performance

was acceptable. However, further efforts are currently being carried to reduce the

amplitude of the actuation signal driving the movable nozzle actuators, to minimize

the effects of a non-linear phenomenon known as limit-cycle, also associated with the

actuators and to lessen the influence of the bending modes on the launcher stability.

The design procedure of the attitude control system by movable nozzles regarding the

pitch and yaw planes associates gain scheduling with a linear quadratic optimization

(Riccati equation) of the control effort, attitude angle and its derivative, and angle
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error integral, producing a proportional-integral plus velocity feedback controller.

The procedure is given below, according (RAMOS et al., 2003) and (RAMOS et al.,

2005):

• The design is based on a particular instant td of the vehicle trajectory

simulation when the aerodynamic load is maximal.

• The linear quadratic optimization, based on a simplified version of the

control system (2nd order plant plus controller), calculated at td, produces

a closed loop transfer function, from which the poles are identified.

• The controller gains for each of the remaining instants are calculated based

on the respective closed loop transfer functions, maintaining the frozen

poles identified in the previous step.

It is important to observe that, despite the linear quadratic technique being em-

ployed in the design, only a particular instant is optimized. The remaining ones just

mirror the poles of the original closed loop transfer function, but are not optimized.

Therefore, the interpolation strategy is based on frozen closed-loop poles (although

is popularly based on controller smoothing). For the control system analysis, the

specifications to be met are mainly related to stability and performance, regarding

a linear detailed system composed of a 3rd order plant, 2 bending modes, actuator,

notch filter (for rejection of the 1st bending mode) and controller. Scenarios are de-

fined where engine configuration, bending mode frequency tolerances and synthetic

wind profiles are also considered.

Additionally, non-linear digital simulations are performed in order to verify stability

under parameter variation, taking into account:

• A launch vehicle model with six degrees of freedom.

• Discrete implementations of the designed controllers.

• Movable nozzles actuators’ saturation and delay effects.

• Roll controller parameters for Roll Control System (RCS) of the 2nd and

3rd stages.

• Asymmetries and misalignments of the movable nozzles.
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Figure 5.3 - Elements of the VLS hardware-in-the-loop simulation complex.

1© Contraves-Goerz three-axis motion controller; 2© vehicle dynamics simulator
PC; 3© on-board computer; 4© + 5© interface of the on-board inertial measurement
sensors; 6© set of movable nozzle and pitch+yaw actuators used for the 2nd and 3rd

stages; 7© 1st stage actuators; 8© Contraves-Goerz three-axis table.

• A/Ds and D/As characteristics for navigation sensors signal acquisition by

the on-board computer.

• True trajectory profiles, controllers and external disturbances (synthetic

wind gust).

The final step comprises hardware-in-the-loop simulations, described by (LEITE

FILHO; CARRIJO, 1997) (Fig. 5.3), divided in four phases (“A”, “B”, “C”, “D”), where

phase “A” is essentially equivalent to the non-linear digital simulation (no hardware).
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5.1.2 Cases studied

The Table 5.1 presents a summary of the two case studies associated with gain-

scheduling (GS) to be presented from now on. The first one (RAMOS; LEITE FILHO,

2007a) keeps the original linear-quadratic controller of the VLS launch vehicle and

extends the optimization to the complete trajectory. The second one replaces the

original controller by a H∞ one and searches for its observer-based realization. In

both cases, the interpolation issue is addressed by smoothing the gains of the control-

ler, the eigenvalues of the closed-loop transfer functions or the vectors required to

compute the estimations.

Table 5.1 - Case studies characterization of the VLS launch vehicle CSDA.

Design technique
Linear-quadratic H∞

Models

Design: simplified versions of the
Eqs. A.6. Analysis: Eqs. A.6
(plus actuator, bending modes,
etc.) and

Design: Sec. A.5. Analysis:
linear models∗; non-linear
simplified[A,B,C] and

Analysis: non-linear digital simulations[A,B,C]. Validation:
hardware-in-the-loop simulations[A,B,D]. [A]Actuator saturation.
[B]Sensors bias and faults. [C]Sensors simulated noise. [D]Sensors
real noise. *For conventional and OBR purposes.

Stability
indexes

SISO gain and phase margins.
MIMO gain and phase margins.
(BALAS et al., 2007).

Performance
indexes

Rise and settling time, maximum overshoot and maximum
control effort.

Robustness
indexes

Inherent to the chosen
technique.

New metric for LTV systems
(see Sec. 4).

Additional
indexes

Smoothness of the controller
gains.

Smoothness of the closed-loop ei-
genvalues and OBR estimation
vectors, combined with the qua-
lity of the OBR estimation.

Main CSDA
purposes

Controller smoothing and full
trajectory optimization.

Smoothing of the closed-loop
eigenvalues and OBR vectors;
combinatoric search.

CSDA
components

Multi-objective GA. Multi-objective GA plus FS.

Additional
features

-
Computation of the controller
OBR.
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5.2 VLS CSDA no. 1: GS linear-quadratic controller

The LQ controller is composed of only three gains, which are to be smoothed by

the CI-based GS design. The adopted strategy is simple: obtain the elite for a time

instant of the vehicle trajectory, and try to mimic its gains at the next instant.

However, the second case study will require a different strategy due to the length of

the smoothed vector.

5.2.1 GA characterization.

The procedure for the CSDA-LQ is shown in the Fig. 5.4. There, one assumes a

system with time variant parameters; thus, a new model is defined for each time,

upon which the controller gains are calculated for the n-element population (binary

representation of each individual), modified through reproduction, cross over and

mutation processes (figure 5.5). Then, the controller candidates are rated, based on

certain indexes to be given next, where the best one is selected to the elitism process.

The cost function considers the well known indexes in the control engineering com-

munity: rise time (tr), settling time (ts), overshoot size (Mp), and gain and phase

margins (mg and mp). Furthermore, a smoothing factor (Sf ) is also included, which

weights the relative magnitude of the gain vectors, according to the equation 5.1:

Sf =

√∑
i [Ki(k + 1)−Ki(k)]2∑

i [Ki(k)]2
(5.1)

where K(k) = [K1(k) K2(k) ... Kn(k)], i ≤ n and k is the design time.

The smoothing factor is necessary because the genetic way to produce the gain

vectors does not address directly the relative variation of these vectors for consecu-

tive design times, which is an important issue as shown by (CLÉMENT; MAUFFREY,

2005); in this case, linear interpolation is permitted if the gains are sufficiently closer

from each other.

The mapping from the indexes to the cost values is assigned as shown in the Fig.

5.6. These unity values are further scaled to give the final rating points. The Table

5.2 presents the parameters indicated in the Fig. 5.6 for each index.
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01 procedure gen_alg()

02 Elite = Elite_init

03 for time = initial_time:end_time

04 NewModel = model(parameter(time))

05 Population = {}

06 for generation=1:max_number_gener

07 Data = {Population,Elite}

08 Population = evolute(Data)

09 Data = {Population,NewModel}

10 Rating = evaluate(Data)

11 Elite = Population(max(Rating))

12 if Rating_Steady_Value, break

13 end generation

14 Evolution(time) = Elite

15 end time

16 return Evolution

17 end gen_alg

Figure 5.4 - The pseudocode of the main procedure gen_alg.

01 procedure evolute(Data) 01 procedure evaluate(Data)

02 if isempty(Population) 02 for element = 1:size(Population)

03 Population = randomize() 03 Individual = Population(element)

04 return Population 04 Gains = lqdesign(Individual,NewModel)

05 end 05 [Output Stab]= simulate(Gains,NewModel)

06 Population = reproduce(Population) 06 Performance = analyse(Output)

07 Population = crossover(Population) 07 Data = {Performance, Stab, Gains}

08 Population = mutate(Population) 08 Score(element) = cost(Data)

09 Population = elitism(Population,Elite) 09 end element

10 return Population 10 return Score

11 end evolute 11 end evaluate

Figure 5.5 - The pseudocode of the procedures evolute and evaluate.

Table 5.2 - Parameter values of the cost function indexes (N. A. = not applied).

Index I0 I1 I2 I3 I4
tr tr_inf tr_min tr_opt tr_max tr_sup

ts tr_min tr_opt ts_opt ts_max ts_sup

Mp N. A. N. A. 0 mp_max mp_sup

mg mg_inf mg_min mg_opt N. A. N. A.
mp mp_inf mp_min mp_opt mp_max mp_sup

Sf N. A. N. A. 0 sf_max sf_sup
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Figure 5.6 - Mapping from constraints and indexes to cost values.

5.2.2 Design comparison with respect to the smoothing issue

This section presents the following design comparisons: (i) LQ-CSDA including or

not the gain vector smoothing factor in the genetic algorithm cost function and (ii)

LQ-CSDA design with smoothing factor given earlier and the conventional one. The

following conditions apply:

• Genetic algorithm characterization: 8 bit representation of each individual,

10 individuals per generation and maximal mutation rate of 5%.

• Performance indexes and robustness margins (see the Table 5.2): tr_inf =

0.5 [s], tr_min = 0.6 [s], tr_opt = 0.65 [s], tr_max = 0.8 [s], tr_sup = 1.0 [s],

ts_opt = 5.0 [s], ts_max = 8.0 [s], ts_sup = 10.0 [s], Mp_max = 30 [%], Mp_sup

= 35 [%], mg_inf = 6 [dB], mg_min = 9 [dB], mg_opt = 12 [dB], mp_inf = 15

[o], mp_min = 30 [o], mp_opt = 60 [o], mp_max = 90 [o] and mp_sup = 120 [o].

The index-to-cost mapping of Sf (Csf ) is redefined as shown in equation 5.2, where

sf_max = 0.5, Ssf is the cost-to-rating scaling factor and Pmax is the maximum ra-

ting which can be obtained with the cost function for all indexes. The new mapping

imposes higher penalties to the individuals outside a given region of smoothness,

avoiding large discontinuities of the gain vector due to the variation of the aerody-

namic coefficients, used for the linear-quadratic design. Note: the individuals are

gain vectors, each one composed of proportional, integral and velocity feedback gains

(Kp, Ki and Kd respectively).

Csf = 1−Ksf

[
1− e

(

−Sf

Sf,max

)
]
, Ksf =

Pmax
Ssf

(5.2)
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The linear-quadratic optimization is now applied over the complete trajectory, from

1st stage ignition to 3rd stage burnout, thus complementing the work of (RAMOS;

LEITE FILHO, 2007c). However, there are certain regions of the trajectory (around

lift-off and engine burnout) which demand special treatment. For example, during

the lift-off when the vehicle is close to the launch pad and hence a collision may occur,

the integral action of the controller should be reduced or even disabled. Therefore,

after the CSDA-LQ design these regions are modified in order to comply with the

imposed restrictions.

Other details of the genetic optimization are:

a) Intervals optimized: from maximal dynamic pressure to (a) 2nd stage bur-

nout and (b) 1st stage ignition; few seconds before 3rd stage burnout to (c)

3rd stage burnout and (d) 3rd stage ignition.

b) The first point of each interval is found with three times more individuals,

to assure a better elite, from which the other ones will follow.

Evaluation of the CSDA-LQ design. Observing the Fig. 5.7, it is evident the

contribution of the Sf factor to the controller optimization. The CSDA-LQ design

presents a gain vector profile even smoother than the conventional design (Fig. 5.8).

Moreover, it can be noticed that lower gain values are produced; this is an attractive

feature for fault tolerant systems, as concluded by (RAMOS; LEITE FILHO, 2001). (It

is important to note the fast variations of the gain vector during lift-off and engine

burnout; as was said before, these are regions dealt in a particular manner.)

Figures 5.9 and 5.10 present the comparisons between the performance indexes and

the stability margins between the CSDA-LQ design with the smoothing factor and

the conventional one. The genetic optimization improved the rise time (since a lower

bound is required in order to reduce bending excitation), although the overshoot

has increased, but not excessively. For the robustness issue, the gain margin is much

higher during the most part of the flight, at the expense of subtracting few degrees

of the phase margin.

The most notable result comes from the evaluation of the control signal; as shown

in the Fig. 5.11 (obtained from a non-linear digital simulation), the linear quadratic

optimization was fully achieved by the CSDA-LQ design, since the maximal control

effort was considerably smaller.
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Figure 5.7 - Controller gains obtained by the CSDA-LQ design without (left, proportional
gain only) and with a smoothing factor Sf in the cost function.
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Figure 5.8 - Controller gains obtained by the conventional design.
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Figure 5.9 - Rise time and overshoot: a comparison between the conventional and the
CSDA-LQ (-) designs.
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Figure 5.11 - Maximal control effort (pitch axis): a comparison between the conventional
and the CSDA-LQ (-) designs (non-linear digital simulation).
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5.2.3 Hardware-in-the-loop simulations

This section presents and evaluates the results of the Hardware-in-the-loop (HWIL)

simulations, for the nominal case and scenarios. Most of the simulations were exe-

cuted as phase B ones (see (LEITE FILHO; CARRIJO, 1997)), plus two phase D si-

mulations (with real inertial sensors instead of models), accounting for the nominal

cases of conventional and CSDA-LQ designs.

Scenarios for HWIL simulations, phase B. The following scenarios were defined

for the phase B HWIL simulations:

a) (Nominal) Nominal case for thrust force and bending modes. No external

disturbance. Guidance disabled.

b) (Engine+,Engine-,EngUn) Engines: all strong, all weak, unbalanced. No-

minal case for bending modes. No external disturbance. Guidance disabled.

c) (Bend+,Bend-) Bending modes: bending frequencies variation of +15%

and -5%. Nominal case for thrust force. No external disturbance. Guidance

disabled.

d) (Wind) External disturbance: wind synthetic profile. Guidance disabled.

Nominal case for thrust force and bending modes.

e) (Guidance) Guidance enabled. External disturbance: wind synthetic pro-

file. Nominal case for thrust force and bending modes.

The indexes used to compare both designs (CSDA-LQ and conventional) are:

a) The integral of the squared control signal (ISCS).

b) The maximal amplitude of the 1st and 2nd bending modes (BM1,BM2),

according to the Fast Fourier Transform of the pitch axis angular velocity.

Note: BM2 is negligible during the 3rd stage flight phase.

c) The maximum amplitude associated with the limit-cycle (LCyc) due to

the actuator non-linearities, according to the Fast Fourier Transform of

the pitch axis angular velocity.
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Tables 5.3, 5.4 and 5.5 summarize the results for each flight phase. Regarding the

ISCS index, small regions around lift-off and engine ignition and burnout were not

taken into account. LCyc, BM1 and BM2 indexes were measured during the maximal

dynamic pressure (1st stage) and near engine burnout (2nd and 3rd stages). Note:

for the 1st stage, only the results of boosters 1A and 1B are presented, since they

are representative of the other two. The main comments related to the simulations

are:

a) The CSDA-LQ design presents better or equivalent results according to

the ISCS index; the conventional design is superior only for Engine+ and

Wind scenarios of the 1st stage phase.

b) The results associated with the LCyc index are favourable to the CSDA-LQ

design in the 1st and 2nd stage phases and favourable to the conventional

design in the 3rd stage phase, considering LCyc amplitudes and frequencies

(for both characteristics, smaller values mean better evaluation).

c) The first bending mode is a problem for both designs during the 2nd stage

phase. For the EngUn and Bend- scenarios, the CSDA-LQ design is in-

ferior; however, for scenarios Engine- and Wind, the conventional design

performed even worse, and unsatisfactorily (although stable) for the Bend+

scenario.

Table 5.3 - Results of the HWIL simulations, phase B, 1st stage.

Scenario Conventional design CSDA-LQ design
ISCS ISCS LCyc BM1, ISCS ISCS LCyc BM1,
(1A) (1B) BM2 (1A) (1B) BM2

Nominal 6.3 11.6 0.4@1.2Hz 3.6,0.3 5.6 11.4 1.2@1.4Hz 0.6,0.1
Engine+ 5.2 14.3 0.9@1.1Hz 0.9,0.4 5.4 14.6 0.5@1.0Hz 1.2,0.8
Engine– 5.6 9.3 1.0@1.0Hz 1.6,0.4 5.2 9.1 0.6@1.2Hz 1.8,0.2
EngUn 5.8 18.3 1.0@1.1Hz 0.9,0.4 5.8 18.4 0.3@1.5Hz 0.8,0.1
Bend+ 5.1 12.0 1.6@1.1Hz 12.5,0.1 5.1 11.5 0.3@1.5Hz 18.5,0.6
Bend– 5.3 11.7 0.6@1.1Hz 0.4,0.3 5.1 11.6 0.4@1.5Hz 0.2,0.3
Wind 30.1 23.4 1.9@1.2Hz 0.6,0.3 35.9 25.6 1.0@1.5Hz 1.0,0.1

HWIL simulations, phase D (inertial sensors included). Phase D and phase

B simulations results agreed, according to the indexes given. Besides, the actua-

tion signals (Fig. 5.12) confirmed the same behaviour seen in the non-linear digital
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Table 5.4 - Results of the HWIL simulations, phase B, 2nd stage.

Scenario Conventional Design CSDA-LQ design
ISCS ISCS LCyc BM1, ISCS ISCS LCyc BM1,

(Pitch) (Yaw) BM2 (Pitch) (Yaw) BM2
Nominal 18.8 66.0 1.9@1.1Hz 272.0,0.8 16.9 66.3 0.9@1.4Hz 126.0,0.4
Engine+ 16.3 67.5 1.9@1.4Hz 92.6,0.2 16.8 66.4 0.2@1.6Hz 0.4,0.0
Engine– 19.8 71.5 1.7@0.8Hz 930.0,0.5 19.1 71.1 2.2@0.9Hz 30.7,1.4
EngUn 17.9 67.2 0.9@1.2Hz 188.0,0.6 17.4 64.4 0.7@0.9Hz 360.0,0.7
Bend+ 33.9 69.2 1.3@1.0Hz 14449.0,0.4 16.7 65.7 2.9@0.9Hz 143.5,1.0
Bend– 17.5 66.5 1.5@1.1Hz 182.6,0.3 17.0 65.4 2.0@0.7Hz 303.0,0.5
Wind 17.9 68.1 3.0@1.4Hz 1420.5,0.9 17.1 66.9 2.6@0.7Hz 5.5,0.4

Table 5.5 - Results of the HWIL simulations, phase B, 3rd stage.

Scenario Conventional design CSDA-LQ design
ISCS ISCS LCyc BM1 ISCS ISCS LCyc BM1

(Pitch) (Yaw) (Pitch) (Yaw)
Nominal 15.5 74.1 22.4@1.0Hz 0.2 15.2 68.9 4.9@1.1Hz 0.2
Engine+ 14.9 70.4 0.3@1.1Hz 0.0 14.8 69.7 17.8@1.1Hz 0.2
Engine– 16.2 69.9 7.7@1.1Hz 0.1 15.9 69.9 12.4@1.1Hz 0.3
EngUn 16.0 71.5 7.8@0.7Hz 0.2 15.6 69.0 8.1@0.9Hz 0.1
Bend+ 14.6 71.1 14.0@1.2Hz 0.0 14.2 67.7 10.4@0.9Hz 0.0
Bend– 14.4 70.5 7.1@0.7Hz 0.2 14.5 68.2 8.7@1.1Hz 0.3

Guidance 15.3 69.2 1.3@1.1Hz 2.6 15.9 68.0 2.5@1.4Hz 1.0

simulation (Fig. 5.11).

5.3 VLS CSDA no. 2: GS OBR H∞ controller

Compared with the previous case, this is a more complex one:

• The vector to be smoothed has more elements and variable length, thus it

is more difficult to find good matings.

• A new design step, the OBR computation, imposes additional effort to the

CSDA-H∞ mechanism, such as estimation evaluation and combinatoric

search.

• The computation time can increase excessively due to the search process

and the number of simulation runs, unless some measures are taken.

Those aspects are considered in the following sections.
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Figure 5.12 - Control effort (boosters A and B of the 1st stage): a comparison between
conventional and CSDA-LQ (-) designs, obtained from hardware-in-the-loop
phase D simulations, nominal scenario.

5.3.1 Design characterization

In order to reduce the problem size, one applies the CSDA to the roll plane of

the VLS launch vehicle, which has less states than the other two. This is a good

choice for posterior hardware-in-the-loop simulations, since one may keep the exis-

ting pitch/yaw controllers developed with the linear-quadratic technique in order to

evaluate the interpolation effects on the OBR estimations to be supplied by the new

H∞ roll plane GS controller presented now. Of course, the final step is to replace

the remaining controllers as well, but unfortunately it is beyond the scope of this

thesis due to time restrictions.

The GSM used for the H∞ design is presented in the Fig. 5.13, where GLA refers

to the association of the launcher and the actuator models. Most of the weighting

values k•• used in the H∞ design are scalars, although transfer functions would be

preferable (and are popularly adopted) in order to achieve a good trade-off between

conflicting objectives in various frequency ranges. One chose scalar values to keep

the problem simple, but it is surely possible to use transfer functions as well.

Gain and phase margins. The equations used to compute stability (BALAS et

al., 2007) are mg = 20 log10
(
1 + |T|−1

∞

)
and mp = 180

π
2sin−1

(
(2 |T|∞)−1), where

T = I− S is the complementary sensitivity function, S = (I+ L)−1 is the sensitivity

function, L = GP GA K is the open-loop function and GP, GA, K are the models

of the plant, actuator and controller respectively.
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Figure 5.13 - GSM of the VLS launch vehicle (roll plane).

H∞ design. The H∞ optimal controller synthesis for LTI plant (available as the

hinfsyn function of the MATLAB’s Robust Control Toolbox) was chosen for the

VLS H∞ CSDA. One limited the maximum H∞ norm ‖Tzw‖ (see Fig. (4.2, C)) as

‖Tzw‖ < γref , choosing γref as small as possible in order to reduce the number of

iterations and speed up the CSDA process.

Simulation models. In order to obtain the indexes used to feed the FSs presented

later and verify the quality of the estimations under time-varying conditions, two

simulation models were built and one adapted:

a) The first one (Fig. 5.14) is composed of the discrete versions of the plant,

output-limited controller (reflecting the real VLS on-board implementa-

tion) and actuator, where rate-transition blocks are used to connect the

controller with the remaining elements with higher sampling rates;

b) The second one produces the OBR estimation quality index, being com-

posed by the plant, actuator and controller with OBR estimation vectors

(Fig. 5.15), plus noise (added to plant outputs p and φ) and bias (added

to the output p).

c) Finally, the non-linear digital simulation program (written in C++) had its

original linear-quadratic controller replaced by the GS OBR H∞ one here

produced with state-space matrices interpolated during the simulation.
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5.3.2 OBR characterization

Before defining the on-board model used for the OBR computation, it is worth

to present some practical possibilities as the estimations of sensor bias or thrust

vector misalignment. In (RAMOS; ALAZARD, 2009a), one considers the former case

associated to the pitch plane of the same launch vehicle model used here; the on-

board model (Eq. 5.3 and Fig. 3.1) comprises the estimates b̂q (bias fault at the

angular velocity sensor output q̃) and the attack angle α̂ = (ŵ − ŵv)/Ū (where Ū

is the vehicle longitudinal velocity) by means of the wind disturbance ŵv (whose

steady value cannot be estimated) and the plant’s physical estimated variable ŵ

(from the state vector xL). The figures 5.16 (attack angle estimate) and 5.17 (sensor

bias estimate) depict the simulation results when a realistic wind disturbance, noise
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Figure 5.16 - Estimation of the attack angle α.

Simultaneous occurrence of output bias bq (abrupt variation at 10 seconds) and
external disturbance wv (wind gust profile); noise added to both plant outputs.

Black line: real value, gray line: estimated one.

added at both sensor outputs and a bias at the sensor output q are all applied

simultaneously in the same simulation model.
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(5.3)

The second case takes into account the roll plane of the launch vehicle; the on-board

model (Eq. 5.4) comprises the estimates of a bias fault bp at the angular velocity

sensor output p̃ and a thrust vector misalignment bβ. Note that the state-space

representation of Gφβ (Fig. 5.13) is {AL,BL,CL,DL} and the actuator model is

built upon the state variable β. The estimates produced for fault and misalignment

occuring at the same time range (besides the noise added to both sensor outputs)
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Figure 5.17 - Estimation of the bias bq.

Simultaneous occurrence of external disturbance wv (wind gust profile); noise
added to both plant outputs. Black line: real value, gray line: estimated one.

are displayed in the Fig. 5.18.
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(5.4)

Given those interesting implementations, one will introduce now the on-board model

devised for this second case study. The roll plane nominal model is of order 3 (two

states from the vehicle model (A.5c) plus the actuator state), with 2 measurements

(nm = 2), and the controller at the end of the CI design is of order 4 (nK = 4,

that is: the order of the GSM depicted in the Fig. A.4). Therefore, one can devise

an on-board model comprised of the plant model plus up to three extra states

(nK + nm = 6 ≥ n = nO = nP + 3).

In order to keep the problem simple, only one extra state will be added into the

plant model to take into account a bias fault on the p sensor (Eq. 5.5); thus, only
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Figure 5.18 - Estimation of the bias bp and misalignment bβ .

Noise added to both plant outputs. Black lines: real values, gray lines: estimated
ones.

the full order controller case could be considered (nK = n).
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However, the balancing of the controller (suggested in the Chapter 3) includes the

removal of eigenvalues faster than the sampling frequency used for sensor data ac-

quisition, which could result in nK < n (although nK > n− nm); thus, n+ nK may

vary. Therefore, as the closed-loop eigenvalues and the estimation vectors {H1, H2}
are intended to be smoothed during the gain-scheduling process, one has to define

the smoothing procedure of the CSDA-H∞ mechanism carefully.

NOTE: as the number of closed-loop eigenvalues is small (so the number of poles),

one will not employ computational intelligence for roll plane combinatoric search

but, instead, select and test those combinations where all or most of the fastest

poles are assigned to the estimation dynamics, according to the recommendations
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of the chapter 3.

5.3.3 GA characterization

Some of the main characteristics of the GA employed in the CI-based design me-

chanism (Fig. 2.6) are :

• Each gene is a binary number (2n combinations, n bits), which is explored

with a crescent “deepness”, that is, in the beginning of the simulation, only

the most significant bit (bn) is explored; if the elite rating is stationary, the

deepness is increased by including the next significant bit in the search, and

so on, finally covering all bits of the gene; if there is enough elite rating

increase, the deepness is zeroed. Such strategy is aimed to implement a

variant grid size in order to achieve some degree of uniform exploration in

the beginning of the evolutionary process.

• Each weight k•• used in the H∞ standard problem depicted in the Fig. A.2

is represented by two genes in the form g1/g2 producing a numeric interval

from 1/(2n − 1) up to (2n − 1)/1. An entire set of weightings is called an

individual, which in this case is composed of 14 genes, resulting in a huge

search space order of 1033 for n = 8 bits.

• The roulette wheel is used for the selection of the individuals.

• Each run is finished by a stop criterion (standard deviation of recent best

ratings).

• A record of every individual is kept in order to avoid wasted time in re-

peated evaluations.

• The fitness function is a fuzzy system.

• In order to save time, simulation for OBR estimation quality evaluation

is only performed when the current individual presents an optimistic glo-

bal rating higher than the elite’s one, that is, presuming that the current

individual achieves the maximum rating for estimation quality, and then

computing the global rating (which includes the remaining specifications).
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5.3.4 FS characterization

Regarding the scoring element, there was an improvement regarding the CSDA-LQ

design, where the index-to-cost mapping was substituted by two FSs, yielding an

intuitive and very simple interface for the designer to translate the specifications as

fuzzy rules. Before presenting the FSs, one defines the indexes used.

Indexes. Six indexes were chosen to evaluate each individual generated by the

CSDA-H∞ mechanism: {ts,Mp, umax,mg,mp, pcl} (settling time, overshoot, control

effort, gain and phase margins, and closed-loop poles dynamics). One may note that

the rising time index is not taken into account this time because tr seems to be

a redundant specification when observing the results produced by the evolutionary

process. The control effort index umax is computed with the Eq. 5.6, based on the

discrete output of the actuator β(k).

umax = max
k

[β(k)]
∑

k

β(k) (5.6)

The index pcl refers to the smoothing and OBR estimation quality. Each vector of

the set S = {x1,x2} to be smoothed (where xi are the two designs to be compared)

is composed of (i) closed-loop eigenvalues and (ii) OBR vectors {H1, H2} (see

Chapter 3) used to produce the estimations. One devised to smooth the OBR vectors

based on a supposition that this characteristic (OBR vectors smoothness) could

affect the estimation produced by interpolated non-linear digital simulations.

The length of the set S may vary due to the controller balancing, as said before,

impacting on the OBR vectors as well. Resuming: one faces here a problem to

compare structures of different sizes. The chosen solution is to assign zero rating

for sets with different sizes and also with different numbers of real and complex-

conjugated eigenvalues. Otherwise, the pcl index is computed as pcl = Qne (1−Qs),

where Qne comes from a FS which evaluates noise and error qualities (Qn, Qe) of

each OBR solution, and Qs is the smoothness index.

The noise index is the maximum value in the frequency range [fmin, fsamp/2] of the

FFT response of the estimated variables. The error index is computed as Qe =√∑
k (y(k)− ŷ(k))2. The smoothness index Qs is obtained by (i) arranging real

and complex closed-loop eigenvalues supplied by the two vectors being compared in

pairs with the smallest deviation, and then computing sp1 = e− log
10
(1+10∆̄), where
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∆̄i = |xi1 − xi2| /max({|xi1| , |xi2|}); (ii) repeating for the OBR vectors without re-

arranging them, thus producing sp2; (iii) finally computing Qs = s̄p+ sp1sp2(1− s̄p),

where s̄p = (sp1 + sp2)/2.

NOTE: at first, the smoothing will be applied only to closed-loop eigenvalues, and

later expanded to OBR vectors.

Presentation of the FSs.1 The FS no. 1 is Sugeno-type, where the linguistic input

variables are the cost function indexes {ts,Mp, umax,mg,mp, pcl} and the linguistic

output variable is Rating. The linguistic values are expressed as: (i) a generalized

bell-shaped function fB, given by the triple 〈a, b, c〉 according to the Eq. 5.7a, or (ii)

a Gaussian function fG, given by the pair 〈σ, c〉 according to the Eq. 5.7b, or (iii) a

triangular-shaped function fT , given by the triple 〈a, b, c〉 according to the Eq. 5.7c.

fB(x; a, b, c) =

(
1 +

∣∣∣∣
x− c

a

∣∣∣∣
2b
)−1

(5.7a)

fG(x; σ, c) = e





−(x− c)2

2 σ2





(5.7b)

fT (x; a, b, c) = max

(
min

(
x− a

b− a
,
c− x

c− b

)
, 0

)
(5.7c)

The FS no. 1’s premises (Fig. 5.19) and universes of discourse are defined as follows:

• The linguistic variable ts is associated with the settling time of the control

system step response, where its universe of discourse is [0, 30] [s]. The

linguistic value {large} is defined as fB(x; 12, 3, 30).

• The linguistic variable Mp is associated with the overshoot size of the

control system step response, where its universe of discourse is [0, 100] [%].

The linguistic value {satisfactory} is defined as fG(x; 30, 0).

• The linguistic variable umax is associated with the maximum actuation ef-

fort of the control system step response, where its universe of discourse is [0,

10] [rad2]. The linguistic value {satisfactory} is defined as fB(x; 0.2, 0.6, 0).

1For a better comprehension, please consult the MATLAB’s FS edition GUI which can be called
with the command fuzzy.
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• The linguistic variable mg is associated with the control system gain mar-

gin, where its universe of discourse is [0, 20] [dB]. The linguistic value

{unsatisfactory} is defined as fB(x; 0.5, 0.5, 0).

• The linguistic variable mp is associated with the control system phase

margin, where its universe of discourse is [0, 90] [o]. The linguistic value

{unsatisfactory} is defined as fG(x; 12, 0).

• The linguistic variable pcl is associated with the smoothness of the closed-

loop eigenvalues and the OBR estimation quality, where its universe of

discourse is [0, 1]. The linguistic values {good,bad} are defined respectively

as fG(x; 0.3, 0) and fT (x; 0.9, 1, 1.5).

• The linguistic variable Rating is associated with the total score. The lin-

guistic values {good,bad} are defined as the constants 1 and 0 respectively.

The FS no. 1 rules are given by the Eq. 5.8.

R1: IF (ts IS large) OR (umax IS NOT satisfactory) OR (mg IS unsatisfactory)

OR (mp IS unsatisfactory) OR (pcl IS bad) THEN (Rating IS bad)

R2: IF (ts IS NOT large) AND (umax IS satisfactory) AND (mg IS NOT unsatisfactory)

AND (mp IS NOT unsatisfactory) AND (pcl IS good) THEN (Rating IS good)

R3: IF (ts IS NOT large) AND (umax IS satisfactory) AND (mg IS NOT unsatisfactory)

AND (mp IS NOT unsatisfactory) AND (pcl IS NOT bad) AND (Mp IS satisfactory)

THEN (Rating IS good)
(5.8)

The FS no. 2 is Sugeno-type, where the linguistic input variables are the cost function

indexes [Qn, Qe] and the linguistic output variable is Rating (= Qne). The premises

and universes of discourse are defined as follows:

• The linguistic variable Qn is associated with the OBR estimation noise,

where its universe of discourse is [0, 0.1]. The linguistic value {satisfactory}

is defined as fB(x; 0.0005, 0.5, 0).

• The linguistic variable Qe is associated with the OBR estimation error,

where its universe of discourse is [0, 1]. The linguistic value {satisfactory}

is defined as fB(x; 0.1, 0.5, 0).
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Figure 5.19 - Premises of the FS no. 1.

• The linguistic variable Rating is associated with the total score. The lin-

guistic values {good,bad} are defined as the constants 1 and 0 respectively.

The FS no. 2 rules are given by the Eq. 5.9.

R1: IF (Qn IS NOT satisfactory) OR (Qe IS NOT satisfactory) THEN (Rating IS bad)

R2: IF (Qn IS satisfactory) AND (Qe IS satisfactory) THEN (Rating IS good)
(5.9)

5.3.5 Results: smoothing closed-loop eigenvalues only

System specifications. After performing the CSDA simulation, one obtained the

results shown in the Fig. 5.20 according to the stability, performance, smoothness

and OBR indexes based on the original specifications stored in the fuzzy systems.
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Figure 5.20 - Indexes obtained with the CSDA-H∞ mechanism.

One can see that the rise time has an acceptable profile - not too fast in order

to avoid the excitation of the bending modes - although it was not included as

an specification during the CSDA procedure. The other indexes have acceptable

profiles as well: multi-variable gain and phase margins values are above 3.5dB and

30o, overshoot is around 30% (maximum of 45% in a very short period), settling

time below 15s and actuation effort inferior to 0.05 rad2. The smoothness index and

closed-loop poles dynamics index are near to 0 and 1 respectively, which are the best

values for each one. The smoothed closed-loop eigenvalues (2 complex-conjugated

pairs and 3 real ones) are shown in the Fig. 5.21, and the non-smoothed OBR vectors

in the Fig. 5.22.

Regarding the robustness associated with the new metric, one identified two ele-

ments (Fig 5.23) of the closed-loop state-space representation with a slow-increase

behaviour on which the new metric was applied. In both cases, the system was

considered stable to the modelled uncertainty (bound = 2) with a large tolerance:

Uncertain System is robustly stable to modelled uncertainty. It can tolerate up to

1.2e+003% of the modeled uncertainty. A destabilizing combination of 1.2e+003%
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From top to bottom: H1_a1(1:3) and H2_a1(1:2) (see the Fig. 5.15).
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Figure 5.23 - Time variation of two elements of the closed-loop state-space matrix ACL.

of the modeled uncertainty exists, causing an instability at 6.21e-010 rad/s.

Again, one emphasizes that this finding is preliminary and must be posteriorly sub-

ject to a more profound analysis.

OBR estimations from non-linear digital simulations. The Fig. 5.24 presents

the results obtained from a non-linear digital simulation. One must admit that, not

considering the abrupt changes occurring on the estimate b̂p (to be discussed soon),

the fault bias on the p sensor output has a shape which matches the real bias, and

the compensated sensor output followed visibly the real variable.

5.3.6 Remarks on the non-linear digital simulation results

One supposed, at first, that OBR vectors smoothness could affect the estimation

produced by interpolated non-linear digital simulations, but comparing figures 5.24

and 5.22 such assumption is hard to confirm: the abrupt changes found around 20,

25 and 40 seconds in the first figure appear to have not a clear counterpart in any

of the graphs of the second one; besides, the OBR vector is notably non-smooth

from 40 seconds on, while the estimate b̂p is well-behaved in the same time range.
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Figure 5.24 - Estimate b̂p produced by non-linear digital simulation.

Top: real (black line) and estimated (grey line) biases. Bottom: real (black line),
measured (dash-dotted line) and compensated (grey line) signals.

Examining other sources such as attitude references {θref , ψref , φref}, external dis-

turbances (Fig. 3.4), the individual elements of the state-space closed-loop matrices,

one again does not find a cause for the estimation disturbances. However, those dis-

turbances appear to be reflected in the real variable p (compare the black and grey

lines in the Fig. 5.24), or they originate in the later and are amplified in the former,

or are both caused by a (still unknown) common factor. Finally, one inspected the

individual elements of the state-space matrices of the discrete H∞ controller (Fig.

5.25): it was possible to identify several elements with peaks occurring at the same

instant than those of the estimate b̂p; thus, a possible suspect (the H∞ controller)

was revealed. Unfortunately, the assumption on the OBR vectors smoothness had to

be abandoned, and further investigation must be conducted in order to confirm the

origin of the disturbances and devise a suitable strategy which can produce accep-

table estimations. Although interesting, this investigation could not be performed

due to time restrictions, but it is proposed for future research.
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Figure 5.25 - Elements of the state-space matrices of the discrete H∞ controller.

5.4 Conclusion

In this work, CSDA was proposed as a complement for complex CSDs, specially for

the aerospace area: gain-scheduled design with controller interpolation. The first of

the two case studies dealt with linear-quadratic optimization extended to the full

launch vehicle trajectory. The second one replaced the original 3-gain controller by

an H∞ one, of higher order, allowing the application of the OBR technique and thus

the estimation of a bias fault on the roll angular-velocity sensor; such estimation

was confirmed with non-linear digital simulations, although with some imperfec-

tions, probably due to the non-smooth profile of the controller coefficients. Anyway,

the investigation of the real nature of those imperfections is left for future research,

together with other important tasks that could not be achieved due to time restric-

tions, such as the hardware-in-the-loop simulation of the CSDA implementation for

the three planes of manoeuvring of the VLS launch vehicle.

81





6 Conclusions

6.1 Main facts

The main purpose of this work is to demonstrate the synergy between control en-

gineering techniques and computationally-intelligent mechanisms. In this sense, one

presents in the next lines few key points regarding the CSDA potential.

CSDA is not “object-oriented”. CSDA can be implemented independently of the

chosen control system, controller structure, design technique, and specifications. In

this work, one combined computational intelligence with various design techniques

such as linear-quadratic, H2, H∞, and even simple transfer functions. The inva-

riable task is always to identify the chromosomes and genes linked to the object to

be evolved (a controller or set of controllers, generally) and to translate the specifi-

cations as mathematical functions or fuzzy systems in order to allow the evaluation

of generations of these objects. Finally, linear or non-linear models aimed for de-

sign and/or analysis can be freely added to the automated process. These models

must be connected to the CSDA mechanism, but it is possible to develop a friendly

plug-and-play environment in order to reduce code generation or adaptation, per-

haps with a library of general models (simple LTI controller-actuator-plant ones)

and specifications (stability and performance mainly). Such environment is didac-

tically appealing at least, but it may offer some beneficial side effects to the most

experienced users, such as to provide specifications even when they still do not exist.

CSDA provides a unified and standard framework. Design and analysis tasks

are necessarily embodied in a sequential and ordered fashion. CSDA takes metho-

dologies and procedures as inputs and then translate them into design, assuring

repeatability during the entire process. Furthermore, posterior modifications are

easily accommodated inside the whole procedure. By the other side, automated

intelligence-based processes may produce non-identical solutions from different runs,

in the same way that two engineers (or even a single one assuming a given span)

would produce non-identical solutions when presented with the same problem. One

must face that perhaps there is no such “golden solution” in everyday control engi-

neering, but rather solutions that comply with specifications.

CSDA boosts CSD. CSDA is aimed to accelerate the design process and explore

deeply the available space of possibilities, thus yielding better accomplishment with
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the specifications; an example is provided by chapter 5 where, according to hardware-

in-the-loop simulations, linear-quadratic optimization was fully achieved for the en-

tire launch vehicle trajectory. Furthermore, mechanic and tiring tasks are not best

suited for human designers but for the machine instead. However, the former ones

are not expelled from the design process, neither their authority is reduced, on the

contrary: there is a viewpoint change which allows the human designer to matter

with more relevant questions while the machine is assigned the less interesting ones.

By the other side, computational intelligence is frequently associated with compu-

tational burden; indeed, some effort is put on procedure optimization, that is, to

choose the right models and evolution strategies in order to find short cuts in the

design process. At the same time, computer hardware is continuously developing in

size and speed, so even burden for very complex problems tends to decrease with

time - thus, CSDA progress is assured.

CSDA eases the way to innovations. CSDA allows the exploration of new forms

of solutions, and in different phases of the design process; system specifications can

be extracted or tuned based on the indexes produced by preliminary set-ups. In

the chapter 2, one observed that would be hypothetically possible to have on-board

real-time CSDA for a satellite application; in the chapter 5, it was devised that

OBR combinatoric search (a mechanic, tedious and most possibly arduous task) can

be performed by means of computational intelligence; a new specification named

“smoothness” was coined in order to better comply the stability issue with time-

varying systems. All these ideas certainly arise in the designer’s mind when their

hands are free of non-creative demands; that is the baseline for CSDA, which in a

extreme form will inexorably produce the very innovations.

6.2 Summary of contributions

Regarding the CI area, the main contributions are:

• Conception and implementation of new forms for interpolation of control-

lers, closed-loop eigenvalues and OBR vectors by adding a smoothing func-

tion in the system specifications of the CSDA mechanism.

• Conception and implementation of FSs as storing elements of the system

specifications during the CSDA process.

• Proposal of the CSDA process for OBR combinatoric search, besides the
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gain-scheduled controller design.

Regarding the control engineering area, the main contributions are:

• Conception of a new robustness metric associated with exponentially-

varying elements of the system model.

• Considerations about the combinatoric selection for OBR computation,

where (i) the fastest poles are not necessarily the best choice for the es-

timation dynamics, and (ii) each combinatoric (which produces the best

combination of noise and error indexes) assigned to each estimate is not

necessarily the same for all estimates.

• Evaluation of the interpolation action on the OBR estimations obtained

from non-linear digital simulations.

6.3 Future research

Due to the time restrictions, the following questions remain for further exploration:

• Compute the GS H∞ CSDA for the other two manoeuvring planes of the

launch vehicle and execute HWIL simulations.

• Replace the weighting scalars k•• with appropriate transfer functions.

• Investigate the disturbances found in the estimate b̂p (case study n. 2).

• Implement real-time satellite CSDA in the laboratory.

• Define a universal CSDA environment where models, techniques and spe-

cifications can be attached easily.

• Verify if the excitation is persistent enough for the case study considering

the controller OBR.

85





REFERENCES

ALAZARD, D.; APKARIAN, P. Exact observer-based structures for arbitrary

compensators. International Journal of Robust and Non-linear control,

v. 9, n. 2, p. 101–118, Feb. 1999. 24

ALAZARD, D.; CUMER, C.; APKARIAN, P.; GAUVRIT, M.; FERRERES, G.

Robustesse et comande optimale. Toulouse: Cépaduès-Éditions, 1999. 24, 25

BALAS, G.; PACKARD, A.; SAFONOV, M.; CHIANG, R. Next generation of

tools for robust control. In: AMERICAN CONTROL CONFERENCE.

Proceedings... Boston, 2004. v. 6, p. 5612–5615. 45

BALAS, G. J.; CHIANG, R. Y.; PACKARD, A. K.; SAFONOV, M. G. Robust

Control Toolbox 3 user’s guide. Natick: MathWorks, 2007. Available from:

<http://www.mathworks.com>. 56, 66

BRITO, A. G.; LEITE FILHO, W. C.; RAMOS, F. O. Approach comparison for

controller design of a launcher. In: 6th INTERNATIONAL ESA CONFERENCE

ON GUIDANCE, NAVIGATION AND CONTROL SYSTEMS. Proceedings...

Loutraki, 2006. p. 20.1–20.6. 2, 4

CLÉMENT, G. D. B.; MAUFFREY, S. Aerospace launch vehicle control: a gain

scheduling approach. Control Engineering Practice, v. 13, n. 3, p. 333–347,

March 2005. 44, 57

COELLO, G. B. L. C. A. C.; VELDHUIZEN, D. A. van. Evolutionary

algorithms for solving multi-objective problems. 2. ed. New York: Springer

Science+Business Media, LLC, 2007. (Genetic and evolutionary computation). 3, 5

CRAENEN, B. C.; EIBEN, A. E. Computational intelligence. 2002. Available

from: <http://www.eolss.net/>. 6

DORATO, P. A historical review of robust control. IEEE Control Systems

Magazine, v. 7, n. 2, p. 44–47, April 1987. 42

FLEMING, P. J.; PURSHOUSE, R. C. Evolutionary algorithms in control systems

engineering: a survey. Control Engineering Practice, v. 10, n. 11, p. 1223–1241,

Nov. 2002. 1, 8

87

http://www.mathworks.com
http://www.eolss.net/


FOGEL, D. B.; ANDERSON, R. W. Revisiting bremermann’s genetic algorithm. i.

simultaneous mutation of all parameters. In: IEEE CONGRESS ON

EVOLUTIONARY COMPUTATION. Proceedings... San Diego, 2000. p.

1204–1209. 8

FONSECA, C. M. M. da. Multiobjective genetic algorithms with

application to control engineering problems. PhD Thesis (PhD) — The

University of Sheffield, Sheffield, 1995. 8

FRANKLIN, G. F.; POWELL, J. D.; EMAMI-NAEINI, A. Feedback control of

dynamic systems. 3. ed. Boston: Addison-Wesley Publishing Company, 1994. 41

GALICHET, S.; BOUKEZZOULA, R.; FOULLOY, L. Words or numbers,

mamdani or sugeno fuzzy systems: a comparative study. In:

BOUCHON-MEUNIER, B.; MARSALA, C.; RIFQI, M.; YAGER, R. R. (Ed.).

Uncertainty and intelligent information systems. Singapore: World

Scientific Publishing Co. Pte. Ltd., 2008. p. 291–305. 11

KIENITZ, K. H.; MOREIRA, F. J. O. Anteprojeto de algoritmos de controle

do VLS com atuadores do tipo tubeira móvel. Brazil, April 1993. Doc. n.

CTA/IAE n. 590-000000/B3033. 93, 96, 102

KONAR, A. Computational Intelligence: principles, techniques and

applications. New York: Springer, 2005. 6, 7

LARSON, W. J.; WERTZ, J. R. Space mission analysis and design. 2. ed.

Boston: Microcosm Inc. & Kluwer Academic Publishers, 1992. (Space Technology

Series). 19

LEITE FILHO, W. C.; CARRIJO, D. S. Hardware-in-loop simulation of Brazilian

launcher VLS. In: 3rd ESA INTERNATIONAL CONFERENCE ON

SPACECRAFT GUIDANCE, NAVIGATION AND CONTROL SYSTEMS.

Proceedings... Noordwijk, 1997. p. 355–358. 55, 63

. Control system of Brazilian launcher. In: 4th ESA INTERNATIONAL

CONFERENCE ON SPACECRAFT GUIDANCE, NAVIGATION AND

CONTROL SYSTEMS. Proceedings... Noordwijk, 1999. p. 401–405. 53

LEITH, D. J.; LEITHEAD, W. E. Survey of gain-scheduling analysis & design.

International Journal of Control, v. 73, n. 11, p. 1001–1025, July 2000. 44

88



LI, Y.; ANG, K. H.; CHONG, G. C.; FENG, W.; TAN, K. C. CAutoCSD -

evolutionary search and optimization enabled computer automated control system

design. International Journal of Automation and Computing, 2004. 3, 5

LUENBERGER, D. G. An introduction to observers. IEEE Transactions on

Automatic Control, AC-16, n. 6, p. 596–602, Dec. 1971. 23, 24

MAEKAWA, K.; PANG, G. K. H. Control system design automation for

mechanical systems. Journal of Intelligent & Robotic Systems, Springer

Netherlands, v. 21, p. 239–256, 1998. 3, 5

MATHWORKS. Fuzzy Logic Toolbox 2 user’s guide. Natick: MathWorks,

2010. Available from: <http://www.mathworks.com>. 10

MEDEIROS, F. E. L.; PELLANDA, P. C.; LEITE FILHO, W. C. H∞ analysis

and synthesis by genetic algorithms of the attitude control system of the brazilian

satellite launcher. In: 6th INTERNATIONAL ESA CONFERENCE ON

GUIDANCE, NAVIGATION AND CONTROL SYSTEMS. Proceedings...

Loutraki, 2005. p. 21.1–21.6. 3

MENDEL, J. Fuzzy logic systems for engineering: a tutorial. Proceedings of the

IEEE, v. 83, n. 3, p. 345 –377, March 1995. 10

MOREIRA, F. J. O.; CARRIJO, D. S. Modelamento matemático usado no

projeto do sistema de controle do VLS. Brazil, May 1995. Doc. n. CTA/IAE

n. 590-000000/B3043. 93, 96

MULLHAUPT, P.; BUCCIERI, D.; BONVIN, D. A numerical sufficiency test for

the asymptotic stability of linear time-varying systems. Automatica, v. 43, n. 4,

p. 631–638, April 2007. 44

OGATA, K. Engenharia de controle moderno. Rio de Janeiro: Ed. Prentice

Hall do Brasil, 1985. 112

OLIVA, P.; LEITE FILHO, W. C. Rocket tracking and decoupling eigenstructure

control law. Journal of the Brazilian Society of Mechanical Sciences, 2000.

93, 96, 101

PELLANDA, P. C.; APKARIAN, P. Une méthode d’interpolation de structures

estimation/commande pour des compensateurs H∞ et µ. In: PUBLICATIONS, H.

89

http://www.mathworks.com


science (Ed.). Conception de commandes robustes. Paris: J. Bernussou, and

A. Oustaloup, 2002. chapter 8, p. 141–187. 44

RAMOS, F. O. Combining observer-based form with computational intelligence for

H∞ controller design and interpolation. In: 10ÈME CONGRÈS DES
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APPENDIX - REVISION OF THE VLS MODELS

A.1 Objective.

This work reviews the VLS launch vehicle models presented by two principal sources

((KIENITZ; MOREIRA, 1993) and (OLIVA; LEITE FILHO, 2000)):

• The rigid body non-linear model.

• The rigid body linear coupled model.

• The rigid body linear decoupled models.

• The full linear coupled model.

• The full linear decoupled models.

• The general standard model (GSM).

A MATLAB R©script was written in order to produce all the models named above

(but the non-linear one) from two input files used in the design procedure at

CTA/IAE (Brazilian laboratories where the VLS launch vehicle is developed).

A.2 Rigid body non-linear model of the VLS launch vehicle.

The VLS rigid body non-linear model is presented by two principal sources:

CTA/IAE (KIENITZ; MOREIRA, 1993) and Oliva and Leite Filho (OLIVA; LEITE

FILHO, 2000) (both based on the full mathematical description of the VLS deve-

loped in (MOREIRA; CARRIJO, 1995)). Here, one intends to produce a more detailed

version and comment on some dissimilarities between both works. The Eq. A.1 re-

presents (without time dependencies) the non-linear model ((OLIVA; LEITE FILHO,

2000), Eqs. (1)-(8)). The rotation from the coordinate axes systems {X, Y, Z}
(inertial frame) to {Xb, Yb, Zb} (body frame) is shown in the Fig. A.1, along with

the correspondent angles, angular velocities and linear velocities.

93



v̇ = −Cnα Pd Sref
m U0

v − g sin(θ) sin(φ) + g cos(θ) sin(ψ) cos(φ)− U0 r + p w +
Fcoy
m

r − 2FE
m

βy

(A.1a)

ẇ = −Cnα Pd Sref
m U0

w − g sin(θ) cos(φ)− g cos(θ) sin(ψ) sin(φ) + U0 q − p v +
Fcoz
m

q +
2FE
m

βz

(A.1b)

ṗ = −
(
Clp Pd Sref D

2
ref

2 U0 Ixx
+
İxx
Ixx

)
p− (Izz − Iyy)

Ixx
q r +

4 dl FE
Ixx

βr (A.1c)

q̇ =
lax Cnα Pd Sref

Iyy U0
w +

(
Mcoy

Iyy
−
Cmq Pd Sref D

2
ref

2 U0 Iyy
− İyy
Iyy

)
q − (Ixx − Izz)

Iyy
p r − 2 lcx FE

Iyy
βz

(A.1d)

ṙ = − lax Cnα Pd Sref
Izz U0

v +

(
Mcoz

Izz
−
Cmq Pd Sref D

2
ref

2 U0 Izz
− İzz
Izz

)
r − (Iyy − Ixx)

Izz
p q − 2 lcx FE

Izz
βy

(A.1e)

θ̇ =
cos(φ)

cos(ψ)
q − sin(φ)

cos(ψ)
r (A.1f)

ψ̇ = sin(φ) q + cos(φ) r (A.1g)

φ̇ = p− tan(ψ) cos(φ) q + tan(ψ) sin(φ) r (A.1h)

where:

U0 is the velocity of the vehicle relative to the axis Xb.

Cnα is the derivative of the aerodynamic normal force relative to the attack angle (α).

Clp is the derivative of the roll damping moment relative to the rolling rate (p).

Cmq is the derivative of the pitch (yaw) moment relative to the pitch (yaw) rate.

Pd is the dynamic pressure.

Sref is the reference area of the vehicle.

Dref is the reference diameter of the vehicle.

m is the mass of the vehicle.

Ixx, Iyy, Izz are the inertia moments relative to the axes Xb, Yb and Zb.

dl is the control moment of the rolling arm.

lax is the length of the aerodynamic moment arm.

lcx is the length of the pitch and yaw control arms.

FE is the thrust force.

Fcoy, Fcoz are the Coriolis force components relative to the axes Yb and Zb.
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Mcoy,Mcoz are the Coriolis moment components relative to the axes Yb and Zb.

v, w are the linear velocity components relative to the axes Yb and Zb.

p, q, r are the angular velocities relative to the axes Xb, Yb, Zb.

βy, βz, βr are nozzle deflections applied on pitch, yaw and roll planes respectively.

θ, ψ, φ are the angular deflections required to align Y, Z and X and Yb, Zb and Xb axes.

θ̇, ψ̇, φ̇ are the angular velocities associated with θ, ψ, and φ angles.

NOTE: pitch, yaw and roll planes are produced by the rotation of the Yb, Zb and

Xb axes respectively.

Xb, u

Yb, v

Zb, w

p

q

r

Xb,X2

Xb,X2

Xb

Zb

Yb

Z1

θ̇

θ

X1

Y0 X0

Z0

Y1
Zb

Yb

Z1

ψ̇

ψ

Y0

X1

Y1

Zb,Z2

Yb,Y2

Z1

φ̇

φ

The set of axes {X0, Y0, Z0} represents the inertial system and {Xb, Yb, Zb} the body
system. The planes formed by the coloured pairs of axes are perpendicular to the
axis of the next frame rotation.

Figure A.1 - Transformation between systems of coordinate axes of the VLS vehicle.
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Remarks:

• The equation for u̇ is given in the reference (KIENITZ; MOREIRA, 1993) but

not in (OLIVA; LEITE FILHO, 2000)) where, according to the authors, “it is

not necessary because there is no thrust control ”.

• In the reference (OLIVA; LEITE FILHO, 2000), some coefficients are repea-

ted (e.g., Cnα in the v̇ equation should be Cnβ, as shown in (KIENITZ;

MOREIRA, 1993)), probably due to a presumed equivalence between the

pitch and yaw planes of manoeuvring.

• The Coriolis forces do not appear in the reference (KIENITZ; MOREIRA,

1993) (but they are shown in (OLIVA; LEITE FILHO, 2000), although as an

approximation compared with the mathematical model (MOREIRA; CAR-

RIJO, 1995)). The Coriolis moments appear in both references, as approxi-

mations compared with (MOREIRA; CARRIJO, 1995). For both force and

moments, the reference (OLIVA; LEITE FILHO, 2000) has a little disagree-

ment with (MOREIRA; CARRIJO, 1995), because the latter includes the

angular velocities into the Coriolis terms.

• The reference (KIENITZ; MOREIRA, 1993) takes into account the distur-

bance input (wind components in Yb and Zb axes), but (OLIVA; LEITE

FILHO, 2000) does not.

Here, for the sake of completeness, one will firstly adopt the full set of equations (u̇

included) and add the Coriolis terms and the disturbance inputs, substituting some

expressions by coefficients (as named by (KIENITZ; MOREIRA, 1993)) and rearran-

ging. Also, the occurrences of the single variable FE in (OLIVA; LEITE FILHO, 2000)

will be replaced by the individual components FEx, FEy and FEz. The nomenclature

of the variables was mostly kept. Finally, one arrives at the definitive set of the VLS

non-linear equations, as seen in the Eq. A.2.

96



u̇ = −Cx0 Pd Sref
m

+
FEx
m

+ v r − w q − g cos(θ) cos(ψ) (A.2a)

v̇ = −Yβ β + Yβy βy −
(
2 ṁ xe
m

+ u

)
r + w p− g sin(θ) sin(φ) + g cos(θ) sin(ψ) cos(φ)

(A.2b)

ẇ = −Zα α+ Zβz βz +

(
2 ṁ xe
m

+ u

)
q − v p− g sin(θ) cos(φ)− g cos(θ) sin(ψ) sin(φ)

(A.2c)

ṗ = −Lp p+
(Iyy − Izz)

Ixx
q r + Lβx βr (A.2d)

q̇ =Mα α−Mβz βz −Mq q −
(Ixx − Izz)

Iyy
p r (A.2e)

ṙ = −Nβ β +Nβy βy −Nr r +
(Ixx − Iyy)

Izz
p q (A.2f)

θ̇ =
cos(φ)

cos(ψ)
q − sin(φ)

cos(ψ)
r (A.2g)

ψ̇ = sin(φ) q + cos(φ) r (A.2h)

φ̇ = p− tan(ψ) cos(φ) q + tan(ψ) sin(φ) r (A.2i)

with:

Yβ =
Cnβ Pd Sref

m
, Yβy =

FEy
m

, Zα =
Cnα Pd Sref

m
, Zβz =

FEz
m

, Lβx =
lcx FEx
Ixx

,

Lp =

(
Clp Pd Sref D

2
ref

2 u Ixx
+
İxx
Ixx

)
, Mα =

lax Cnα Pd Sref
Iyy

, Mβz =
lcx FEz
Iyy

,

Mq =

(
Cmq Pd Sref D

2
ref

2 u Iyy
+
İyy
Iyy

− ṁ x2e
Iyy

)
, Nβ =

lax Cnβ Pd Sref
Izz

, Nβy =
lcx FEy
Izz

,

Nr =

(
Cnr Pd Sref D

2
ref

2 u Izz
+
İzz
Izz

− ṁ x2e
Izz

)
, β = tan−1

(
v − vv
u

)
, α = tan−1

(
w − wv
u

)

where:

u is the velocity component in the axis Xb.

xe is the length of the gases exhaustion arm (≈ lcx).

FEx, FEy, FEz are the thrust force components in the axes Xb, Yb, Zb.

Cx0 is the coefficient of aerodynamic drag.

Cnβ is the derivative of the aerodynamic normal force relative to the slipping lateral

angle.
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β, α are the slipping lateral angle and the attack angle.

vv, wv are the wind components in the axes Yb, Zb.

A.3 Rigid body linear models of the VLS launch vehicle.

In this section, the VLS linear coupled model and the decoupled ones (for each

manoeuvring plane) will be presented and inspected.

A.3.1 Numerical data.

The numerical data used in this work are shown in the Table A.1, associated with

the flight time interval tmax ± 1[s], where tmax is the instant of time when the

aerodynamic pressure Pd is maximal.

A.3.2 Rigid body linear coupled model.

Regarding the full set of non-linear equations of the VLS launch vehicle (Eq. A.2):

• The longitudinal velocity u can be viewed as a known time-varying para-

meter U , because the thrust force is function of the engines energy profiles,

which are known. Therefore, Eq. A.2a is discarded, and the variable u is

substituted by the parameter U in the remaining equations.

• Due to the large value of U , the small angle approximation is suitable1 to

the angles β and α.

Now, one rewrites the full set of the rigid body non-linear equations, resulting in

the Eq. A.3:

1Small angle approximation: tan(x) ≈ x and tan−1(x) ≈ x.
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Table A.1 - Parameters of the VLS model around tmax ± 1[s]. Units in MKS, angles in
radians.

Parameter Value @ ∆[%]
tmax − 1[s] tmax[s] tmax + 1[s] tmax − 1[s] tmax + 1[s]

Ȳβ 48.9809 48.8415 48.4431 0.29 -0.82

Ȳβy 20.7997 21.0547 21.4026 -1.2 1.7

Z̄α 48.9809 48.8415 48.4431 0.29 -0.82

Z̄βz 20.1978 20.5001 20.8069 -1.5 1.5

L̄p 0.10602 0.098859 0.091059 7.2 -7.9

L̄βx 59.4865 61.0492 62.8248 -2.6 2.9

M̄α 4.1586 4.077 3.9895 2 -2.1

M̄βz -7.3075 -7.3734 -7.4377 -0.89 0.87

M̄q 0.012673 0.013955 0.01539 -9.2 10

N̄β 4.1543 4.0726 3.9852 2 -2.1

N̄βy -7.5174 -7.5648 -7.6423 -0.63 1

N̄r 0.0073421 0.0087795 0.01038 -16 18

ū = Ū 621.3418 645.5643 670.4573 -3.8 3.9

v̄ -0.0017395 -0.0016109 -0.0014967 8 -7.1

w̄ 1.8281 1.9034 1.9867 -4 4.4

p̄ 0 0 0 0 0

q̄ -0.0047798 -0.0046546 -0.0045338 2.7 -2.6

r̄ 0 0 0 0 0

θ̄ -0.33573 -0.3405 -0.34514 -1.4 1.4

ψ̄ 0 0 0 0 0

φ̄ 0 0 0 0 0

¯̇θ -0.0047798 -0.0046546 -0.0045338 2.7 -2.6

¯̇ψ 0 0 0 0 0

¯̇φ 0 0 0 0 0

ḡ 9.7765 9.7747 9.7728 0.019 -0.019

m̄ 31212.378 30713.478 30216.475 1.6 -1.6

¯̇m -500.0652 -497.7389 -496.2699 0.47 -0.3

x̄e -5.0416 -5.0641 -5.0867 -0.44 0.45

Īxx 24458.292 23770.038 23082.511 2.9 -2.9

Īyy 434937.31 432429.63 429980.65 0.58 -0.57

Īzz 435391.3 432893.18 430453.18 0.58 -0.56

K̄B,1 -16.2279 -16.3397 -16.5089 -0.68 1

K̄B,2 12.694 12.7706 12.8922 -0.6 0.95

ω̄B,1 29.4187 29.5478 29.6768 -0.44 0.44

ω̄B,2 80.2636 80.4232 80.5829 -0.2 0.2

ζM 0.002 0.002 0.002 - -
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v̇ = −Yβ
U

v +
Yβ
U

vv + Yβy βy −
(
2 ṁ xe
m

+ U

)
r + w p− g sin(θ) sin(φ) + g cos(θ) sin(ψ) cos(φ)

(A.3a)

ẇ = −Zα
U

w +
Zα
U

wv + Zβz βz +

(
2 ṁ xe
m

+ U

)
q − v p− g sin(θ) cos(φ)− g cos(θ) sin(ψ) sin(φ)

(A.3b)

ṗ = −Lp p+
(Iyy − Izz)

Ixx
q r + Lβx βr (A.3c)

q̇ =
Mα

U
w − Mα

U
wv −Mβz βz −Mq q −

(Ixx − Izz)

Iyy
p r (A.3d)

ṙ = −Nβ

U
v +

Nβ

U
vv +Nβy βy −Nr r +

(Ixx − Iyy)

Izz
p q (A.3e)

θ̇ =
cos(φ)

cos(ψ)
q − sin(φ)

cos(ψ)
r (A.3f)

ψ̇ = sin(φ) q + cos(φ) r (A.3g)

φ̇ = p− tan(ψ) cos(φ) q + tan(ψ) sin(φ) r (A.3h)

with:

Yβ =
Cnβ Pd Sref

m
, Yβy =

FEy
m

, Zα =
Cnα Pd Sref

m
, Zβz =

FEz
m

, Lβx =
lcx FEx
Ixx

,

Lp =

(
Clp Pd Sref D

2
ref

2 U Ixx
+
İxx
Ixx

)
, Mα =

lax Cnα Pd Sref
Iyy

, Mβz =
lcx FEz
Iyy

,

Mq =

(
Cmq Pd Sref D

2
ref

2 U Iyy
+
İyy
Iyy

− ṁ x2e
Iyy

)
, Nβ =

lax Cnβ Pd Sref
Izz

, Nβy =
lcx FEy
Izz

,

Nr =

(
Cnr Pd Sref D

2
ref

2 U Izz
+
İzz
Izz

− ṁ x2e
Izz

)

The linearisation process is found in the section A.6, producing the Eq. A.4:

ẋ = A x+Bu u+Bd d, x = [w q θ v r ψ p φ ]T , u = [βz βy βr]
T and d = [vv wv]

T

(A.4)

with:
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A =




− Z̄α
Ū

2 ¯̇m x̄e
m̄

+ Ū A13 −p̄ 0 A16 −v̄ A18

M̄α

Ū
−M̄q 0 0 −

(
Īxx − Īzz

)

Īyy
p̄ 0 −

(
Īxx − Īzz

)

Īyy
r̄ 0

0
cos(φ̄)

cos(ψ̄)
0 0 − sin(φ̄)

cos(ψ̄)
A36 0 A38

p̄ 0 A43 − Ȳβ
Ū

−
(
2 ¯̇m x̄e
m̄

+ Ū

)
A46 w̄ A48

0

(
Īxx − Īyy

)

Īzz
p̄ 0 − N̄β

Ū
−N̄r 0

(
Īxx − Īyy

)

Īzz
q̄ 0

0 sin(φ̄) 0 0 cos(φ̄) 0 0 A68

0

(
Īyy − Īzz

)

Īxx
r̄ 0 0

(
Īyy − Īzz

)

Īxx
q̄ 0 −L̄p 0

0 − tan(ψ̄) cos(φ̄) 0 0 tan(ψ̄) sin(φ̄) A86 1 A88




,

Bu =




Z̄βz 0 0

−M̄βz 0 0

0 0 0

0 Ȳβy 0

0 N̄βy 0

0 0 0

0 0 L̄βx

0 0 0




, Bd =




0
Z̄α
Ū

0 −M̄α

Ū
0 0

Ȳβ
Ū

0

N̄β
Ū

0

0 0

0 0

0 0




where:

A13 = −ḡ cos(θ̄) cos(φ̄) + ḡ sin(θ̄) sin(ψ̄) sin(φ̄), A16 = −ḡ cos(θ̄) cos(ψ̄) sin(φ̄),
A18 = ḡ sin(θ̄) sin(φ̄)− ḡ cos(θ̄) sin(ψ̄) cos(φ̄), A36 =

cos(φ̄) q̄ − sin(φ̄) r̄√
1− ψ̄2

,

A38 =
− sin(φ̄) q̄ − cos(φ̄) r̄

cos(ψ̄)
, A43 = −ḡ cos(θ̄) sin(φ̄)− ḡ sin(θ̄) sin(ψ̄) cos(φ̄),

A46 = ḡ cos(θ̄) cos(ψ̄) cos(φ̄), A48 = −ḡ sin(θ̄) cos(φ̄)− ḡ cos(θ̄) sin(ψ̄) sin(φ̄),

A68 = cos(φ̄) q̄ − sin(φ̄) r̄, A86 =
− cos(φ̄) q̄ + sin(φ̄) r̄

cos2(ψ̄)
,

A88 = tan(ψ̄)
[
sin(φ̄) q̄ + cos(φ̄) r̄

]

Remarks:

• The reference (OLIVA; LEITE FILHO, 2000) does not include the terms

101



A36, A38, A68, A86, and A88 in the state space description of the linear

coupled model of the VLS launch vehicle.

• The reference (KIENITZ; MOREIRA, 1993) considers only decoupled models

for all manoeuvring planes in the design stage. The linear coupled mo-

del is not presented. The non-linear model is employed in more realistic

simulations during the final analysis phases.

The matrices A, Bu and Bd in the Eq. A.4 assume the following values at tmax:

A =




−0.0757 645.7285 −9.2135 0 0 0 0.0016 0

0.0063 −0.0140 0 0 0 0 0 0

0 1.0000 0 0 0 −0.0047 0 0

0 0 0 −0.0757 −645.7285 9.2135 1.9034 3.2643

0 0 0 −0.0063 −0.0088 0 0.0044 0

0 0 0 0 1.0000 0 0 −0.0047

0 0 0 0 0.0001 0 −0.0989 0

0 0 0 0 0 0.0047 1.0000 0




,

Bu =




20.5001 0 0

7.3734 0 0

0 0 0

0 21.0547 0

0 −7.5648 0

0 0 0

0 0 61.0492

0 0 0




, Bd =




0 0.0757

0 −0.0063

0 0

0.0757 0

0.0063 0

0 0

0 0

0 0




A.3.3 Rigid body linear decoupled models.

It is easier to design the control system if the three planes of manoeuvring are

decoupled, which is accomplished when the angle φ and the angular velocity p are

small enough2 (KIENITZ; MOREIRA, 1993). In such case, the Eq. A.5 holds:

2Verify the elements outside the blocks A1−3,1−3, A4−6,4−6 and A7−8,7−8 of the matrix A (Eq.
A.4) and the product Ax.
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

ẇ

q̇

θ̇


 ≈




− Z̄α
Ū

2 ¯̇m x̄e
m̄

+ Ū −ḡ cos(θ̄)
M̄α

Ū
−M̄q 0

0 1 0






w

q

θ


+




Z̄βz

−M̄βz

0


βz +




Z̄α
Ū

−M̄α

Ū
0



wv

(A.5a)



v̇

ṙ

ψ̇


 ≈




− Ȳβ
Ū

−
(
2 ¯̇m x̄e
m̄

+ Ū

)
ḡ cos(θ̄)

−N̄β

Ū
−Nr 0

0 1 0






v

r

ψ


+



Ȳβy

N̄βy

0


βy +




Ȳβ
Ū
N̄β

Ū
0



vv

(A.5b)
[
ṗ

φ̇

]
≈
[

−L̄p 0

1 0

][
p

φ

]
+

[
L̄βx

0

]
βr (A.5c)

A.3.4 Transfer functions of the rigid body decoupled dynamics.

The transfer functions associated to the state-space descriptions of the Eq. A.5 are

shown in the Eq. A.6.
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Gwβ(s) =
w(s)

βz(s)
=

Z̄βzs
2 +

[
Z̄βzM̄q − M̄βz

(
Ū + 2 ¯̇mx̄e

m̄

)]
s+ M̄βz ḡ cos(θ̄)

s3 + (M̄q +
Z̄α

Ū
) s2 +

[
1
Ū

(
Z̄αM̄q − 2M̄α

¯̇mx̄e

m̄

)
− M̄α

]
s+ M̄αḡ

Ū
cos(θ̄)

(A.6a)

Gwd(s) =
w(s)

wv(s)
=

M̄α

Ū
s2 −

[
1
Ū

(
Z̄αM̄q +

2M̄α
¯̇mx̄e

m̄

)
+ M̄α

]
s+ M̄βz ḡ cos(θ̄)

s3 + (M̄q +
Z̄α

Ū
) s2 +

[
1
Ū

(
Z̄αM̄q − 2M̄α

¯̇mx̄e

m̄

)
− M̄α

]
s+ M̄αḡ

Ū
cos(θ̄)

(A.6b)

Gqβ(s) =
q(s)

βz(s)
=

[
−M̄βzs+

1
Ū

(
M̄αZ̄βz − Z̄αM̄βz

)]
s

s3 + (M̄q +
Z̄α

Ū
) s2 +

[
1
Ū

(
Z̄αM̄q − 2M̄α

¯̇mx̄e

m̄

)
− M̄α

]
s+ M̄αḡ

Ū
cos(θ̄)

(A.6c)

Gqd(s) =
q(s)

wv(s)
=

− M̄α

Ū
s2

s3 + (M̄q +
Z̄α

Ū
) s2 +

[
1
Ū

(
Z̄αM̄q − 2M̄α

¯̇mx̄e

m̄

)
− M̄α

]
s+ M̄αḡ

Ū
cos(θ̄)

(A.6d)

Gθβ(s) =
θ(s)

βz(s)
=

−M̄βzs+
1
Ū

(
M̄αZ̄βz − Z̄αM̄βz

)

s3 + (M̄q +
Z̄α

Ū
) s2 +

[
1
Ū

(
Z̄αM̄q − 2M̄α

¯̇mx̄e

m̄

)
− M̄α

]
s+ M̄αḡ

Ū
cos(θ̄)

(A.6e)

Gθd(s) =
θ(s)

wv(s)
=

− M̄α

Ū
s

s3 + (M̄q +
Z̄α

Ū
) s2 +

[
1
Ū

(
Z̄αM̄q − 2M̄α

¯̇mx̄e

m̄

)
− M̄α

]
s+ M̄αḡ

Ū
cos(θ̄)

(A.6f)

Gvβ(s) =
v(s)

βy(s)
=

Ȳβys
2 +

[
ȲβyN̄r − N̄βy

(
Ū + 2 ¯̇mx̄e

m̄

)]
s+ N̄βy ḡ cos(θ̄)

s3 + (N̄r +
Ȳβ

Ū
) s2 +

[
1
Ū

(
ȲβN̄r − 2N̄β

¯̇mx̄e

m̄

)
− N̄β

]
s+

N̄β ḡ

Ū
cos(θ̄)

(A.6g)

Gvd(s) =
v(s)

vv(s)
=

Ȳβ

Ū
s2 +

[
1
Ū

(
ȲβN̄r − 2N̄β

¯̇mx̄e

m̄

)
− N̄β

]
s+ N̄βy ḡ cos(θ̄)

s3 + (N̄r +
Ȳβ

Ū
) s2 +

[
1
Ū

(
ȲβN̄r − 2N̄β

¯̇mx̄e

m̄

)
− N̄β

]
s+

N̄β ḡ

Ū
cos(θ̄)

(A.6h)

Grβ(s) =
r(s)

βy(s)
=

[
N̄βys+

1
Ū

(
ȲβN̄βy − N̄βȲβy

)]
s

s3 + (N̄r +
Ȳβ

Ū
) s2 +

[
1
Ū

(
ȲβN̄r − 2N̄β

¯̇mx̄e

m̄

)
− N̄β

]
s+

N̄β ḡ

Ū
cos(θ̄)

(A.6i)

Grd(s) =
r(s)

vv(s)
=

− N̄β

Ū
s2

s3 + (N̄r +
Ȳβ

Ū
) s2 +

[
1
Ū

(
ȲβN̄r − 2N̄β

¯̇mx̄e

m̄

)
− N̄β

]
s+

N̄β ḡ

Ū
cos(θ̄)

(A.6j)

Gψβ(s) =
ψ(s)

βy(s)
=

N̄βys+
1
Ū

(
ȲβN̄βy − N̄β Ȳβy

)

s3 + (N̄r +
Ȳβ

Ū
) s2 +

[
1
Ū

(
ȲβN̄r − 2N̄β

¯̇mx̄e

m̄

)
− N̄β

]
s+

N̄β ḡ

Ū
cos(θ̄)

(A.6k)

Gψd(s) =
ψ(s)

vv(s)
=

− N̄β

Ū
s

s3 + (N̄r +
Ȳβ

Ū
) s2 +

[
1
Ū

(
ȲβN̄r − 2N̄β

¯̇mx̄e

m̄

)
− N̄β

]
s+

N̄β ḡ

Ū
cos(θ̄)

(A.6l)

Gpβ(s) =
p(s)

βr(s)
=

L̄βx
s+ L̄p

(A.6m)

Gφβ(s) =
φ(s)

βr(s)
=

L̄βx(
s+ L̄p

)
s

(A.6n)
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A.4 Full linear models.

This section presents the rigid body models of the launch vehicle added to the

bending and torsional modes.

A.4.1 Bending and torsional modes.

These modes are described by the following differential equations for pitch (bending),

yaw (bending) and roll (torsional) planes:

θ̈B,i(t) = Kθ,i βz(t)− 2ζθ,i ωθ,i θ̇(t)− ω2
θ,i θ(t) (A.7a)

ψ̈B,i(t) = Kψ,i βy(t)− 2ζψ,i ωψ,i ψ̇(t)− ω2
ψ,i ψ(t) (A.7b)

φ̈T,i(t) = Kφ,i βr(t)− 2ζφ,i ωφ,i φ̇(t)− ω2
φ,i φ(t) (A.7c)

where i is the number of the mode; for the VLS launch vehicle, torsional modes

and all bending modes but the 1st and the 2nd are neglected due to their high

normal frequency (ωθ,i, ωψ,i, ωφ,i), very above the control cut-off frequency.

Furthermore, due to the symmetry of the launch vehicle, Kθ,i = Kψ,i , KB,i and

ωθ,i = ωψ,i , ωB,i. Finally, ζθ,i = ζψ,i = ζφ,i , ζM = 0.002 ∀ i.

The generic transfer function of the last set of equations is:

GBi(s) =
K̄Fi

s2 + 2 ζM ω̄B,i s+ ω̄2
B,i

, i = 1, 2 (A.8)

A.4.2 Full linear coupled model.

Including the two first bending modes for each one of the pitch and yaw planes of

manoeuvring (states θBi1, θBi2, ψBi1 and ψBi2 ) in the rigid body linear coupled

model (Eq. A.4), one arrives at the Eq. A.9.

ẋ = A x+Bu u+Bd d, (A.9)

x = [w q θ θB11 θB12 θB21 θB22 v r ψ ψB11 ψB12 ψB21 ψB22 p φ ]T ,

u = [βz βy βr]
T and d = [vv wv]

T
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with:

Bu =




Z̄βz 0 0

−M̄βz 0 0

0 0 0

0 0 0

KB,1 0 0

0 0 0

KB,2 0 0

0 Ȳβy 0

0 N̄βy 0

0 0 0

0 0 0

0 KB,1 0

0 0 0

0 KB,2 0

0 0 L̄βx

0 0 0




, Bd =




0
Z̄α
Ū

0 −M̄α

Ū
0 0

0 0

0 0

0 0

0 0

Ȳβ
Ū

0

N̄β

Ū
0

0 0

0 0

0 0

0 0

0 0

0 0

0 0




, and (see next page),
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A =




− Z̄α
Ū

2 ¯̇m x̄e
m̄

+ Ū ∗ 0 0 0 0 −p̄ 0 ∗ 0 0 0 0 −v̄ ∗
M̄α

Ū
−M̄q 0 0 0 0 0 0 −

(
Īxx − Īzz

)

Īyy
p̄ 0 0 0 0 0 −

(
Īxx − Īzz

)

Īyy
r̄ 0

0
cos(φ̄)

cos(ψ̄)
0 0 0 0 0 0 − sin(φ̄)

cos(ψ̄)
∗ 0 0 0 0 0 ∗

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0 0 0

p̄ 0 ∗ 0 0 0 0 − Ȳβ
Ū

−
(
2 ¯̇m x̄e
m̄

+ Ū

)
∗ 0 0 0 0 w̄ ∗

0

(
Īxx − Īyy

)

Īzz
p̄ 0 0 0 0 0 − N̄β

Ū
−N̄r 0 0 0 0 0

(
Īxx − Īyy

)

Īzz
q̄ 0

0 sin(φ̄) 0 0 0 0 0 0 cos(φ̄) 0 0 0 0 0 0 ∗
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0

0

(
Īyy − Īzz

)

Īxx
r̄ 0 0 0 0 0 0

(
Īyy − Īzz

)

Īxx
q̄ 0 0 0 0 0 −L̄p 0

0 − tan(ψ̄) cos(φ̄) 0 0 0 0 0 0 tan(ψ̄) sin(φ̄) ∗ 0 0 0 0 1 ∗




, where:

A1,3 = −ḡ cos(θ̄) cos(φ̄) + ḡ sin(θ̄) sin(ψ̄) sin(φ̄), A1,10 = −ḡ cos(θ̄) cos(ψ̄) sin(φ̄), A1,16 = ḡ sin(θ̄) sin(φ̄)− ḡ cos(θ̄) sin(ψ̄) cos(φ̄),

A3,10 =
cos(φ̄) q̄ − sin(φ̄) r̄√

1− ψ̄2
, A3,16 =

− sin(φ̄) q̄ − cos(φ̄) r̄

cos(ψ̄)
, A5,4 = −ω2

B,1, A5,5 = −2 ζB,1 ωB,1, A7,6 = −ω2
B,2, A7,7 = −2ζB,2 ωB,2,

A8,3 = −ḡ cos(θ̄) sin(φ̄)− ḡ sin(θ̄) sin(ψ̄) cos(φ̄), A8,10 = ḡ cos(θ̄) cos(ψ̄) cos(φ̄), A8,16 = −ḡ sin(θ̄) cos(φ̄)− ḡ cos(θ̄) sin(ψ̄) sin(φ̄),

A10,16 = cos(φ̄) q̄ − sin(φ̄) r̄, A12,11 = −ω2
B,1, A12,12 = −2ζB,1 ωB,1, A14,13 = −ω2

B,2, A14,14 = −2ζB,2 ωB,2, A16,10 =
− cos(φ̄) q̄ + sin(φ̄) r̄

cos2(ψ̄)
,

A16,16 = tan(ψ̄)
[
sin(φ̄) q̄ + cos(φ̄) r̄

]
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A.4.3 Full linear decoupled models.

The same assumptions made in the section A.3.3 are adopted here for the full linear

model, resulting in the set of equations A.10. Furthermore, the full linear decoupled

model for the roll plane is the same given earlier for the rigid body (Eq. A.5c, where

the output equation is [p φ]T = I [p φ]T + [0 0]T βr), since the torsional modes were

neglected.
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−Ȳβ/Ū −
(

2 ¯̇m x̄e/m̄+ Ū
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ḡ cos(θ̄) 0 0 0 0
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A.5 VLS launch vehicle general standard model.

The general standard models (GSMs) of each manoeuvring plane of the launch

vehicle are developed, with which a robust controller can be designed. In this work,

in order to reduce the complexity of the design, the GSMs of the pitch and yaw

planes are assumed equal, supposing vehicle symmetry.

A.5.1 Structure of the GSM.

The pitch plane will be chosen to illustrate detailedly the building method of the

GSM, which can be applied to the other two manoeuvring planes. The mathematical

description of the GSM is given by the Eq. A.11 (GL(s) = Gθβ(s) +
∑
GBi(s), k••

are scalars), associated with the Fig. A.2.
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(A.11)
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Figure A.2 - GSM of the VLS launch vehicle (pitch plane).

110



The following transfer functions will be considered:

a) Gθβ (Eq. A.6e) and Gθd (Eq. A.6f) are the transfer functions of the li-

near rigid body decoupled model with respect to the control input βz and

disturbance input wv respectively.

b) GB1 and GB2 are the transfer functions of the 1st and 2nd bending modes,

given by the Eq. A.8.

c) GA is the actuator transfer function, given by the Eq. A.12:

GA(s) =
λa

s+ λa
(A.12)

d) Geθ is the transfer function representing the (approximated) integral of the

error signal kwθ wθ − θ:

Geθ(s) =
1

s+ ǫeθ
(A.13)

This transfer function is required to cancel the steady-state error to a step

function at input wθ (or otherwise reference input θref ). The parameter ǫeθ
is necessary to comply with the properties required for the GSM, which

will be given soon.

A.5.2 Development of the GSM state equations.

The atmospheric phase of the VLS flight trajectory is associated with a set of aero-

dynamic coefficients, but some of them become null when the vehicle is outside the

atmosphere. Due to this aspect, the development of the GSM will be presented for

these two conditions, namely: full set and reduced set.

A.5.2.1 Full set of coefficients.

In this section, the pitch plane GSM will be developed, based on the Eq. A.11. First,

one observes a common term given by:

h(s) = kwdGθd(s)wd(s)+GL(s)GA(s) [u(s) + kwuwu(s)] = kwdGθd(s)wd(s)+GL(s) βz(s)

(A.14)
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One may rewrite the Eq. A.14 in a fractional form:

h(s) = kwd
Gθd,n(s)

Gθd,d(s)
wd(s) +

GL,n(s)

GL,d(s)
βz(s) (A.15)

where

{
GL,n(s) = Gθβ,n(s)GB1,d(s)GB2,d(s) +GB1,n(s)Gθβ,d(s)GB2,d(s) +GB2,n(s)Gθβ,d(s)GB1,d(s)

GL,d(s) = Gθβ,d(s)GB1,d(s)GB2,d(s)

As Gθβ,d(s) = Gθd,d(s) , Gθ,d(s), and considering the advice given by ((SKOGESTAD;

POSTLETHWAITE, 2005), Chapter 4), associated with the unstable disturbance mo-

del Gθd(s), in order to avoid internal pole-zero cancellations the Eq. A.15 is redefined

as:

GL,d(s)h(s) = kwdGθd,n(s)GB1,d(s)GB2,d(s)wd(s) +GL,n(s)βz(s)

or, given the degree of each of the transfer functions A.6e, A.6f and A.8, then:

[
s7 +

6∑

i=0

(
a1is

i
)
]
h(s) = kwd

5∑

i=1

(
a2is

i
)
wd(s) +

5∑

i=0

(
a3is

i
)
βz(s) (A.16)

The inverse Laplace transform produces:

h(7)(t) + a16 h
(6)(t) + a15 h

(5)(t) + a14 h
(4)(t) + a13 h

(3)(t) + a12 ḧ(t) + a11 ḣ(t) + a10 h(t) =

kwd a25w
(5)
d (t) + kwd a24w

(4)
d (t) + kwd a23w

(3)
d (t) + kwd a22 ẅd(t) + kwd a21 ẇd(t) +

a35 β
(5)
z (t) + a34 β

(4)
z (t) + a33 β

(3)
z (t) + a32 β̈z(t) + a31 β̇z(t) + a30 βz(t) (A.17)

The Eq. A.17 contains derivatives of the inputs, thus the following realization in

state space is necessary (see for example, (OGATA, 1985), pp. 763-766):

x1(t) = ρ0h(t) + η0wd(t) + µ0 βz(t) = h(t)

x2(t) = ẋ1(t) + ρ1h(t) + η1wd(t) + µ1 βz(t)

= ḣ(t) + a16 h(t) ⇒ ẋ1(t) = x2(t)− a16x1(t)
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x3(t) = ẋ2(t) + ρ2h(t) + η2wd(t) + µ2 βz(t)

= ḧ(t) + a16 ḣ(t) + a15 h(t)− kwd a25wd(t)− a35βz(t)

⇒ ẋ2(t) = x3(t)− a15x1(t) + kwd a25wd(t) + a35βz(t)

x4(t) = ẋ3(t) + ρ3h(t) + η3wd(t) + µ3 βz(t) =

h(3)(t) + a16 ḧ(t) + a15 ḣ(t)− kwd a25 ẇd(t)− a35 β̇z(t)

+a14 h(t)− kwd a24wd(t)− a34 βz(t)

⇒ ẋ3(t) = x4(t)− a14x1(t) + kwd a24wd(t) + a34βz(t)

x5(t) = ẋ4(t) + ρ4h(t) + η4wd(t) + µ4 βz(t) =

h(4)(t) + a16 h
(3)(t) + a15 ḧ(t)− kwd a25 ẅd(t)− a35 β̈z(t)

+a14 ḣ(t)− kwd a24 ẇd(t)− a34 β̇z(t) + a13 h(t)− kwd a23wd(t)− a33 βz(t)

⇒ ẋ4(t) = x5(t)− a13x1(t) + kwd a23wd(t) + a33βz(t)

x6(t) = ẋ5(t) + ρ5h(t) + η5wd(t) + µ5 βz(t) =

h(5)(t) + a16 h
(4)(t) + a15 h

(3)(t)− kwd a25w
(3)
d (t)− a35 β

(3)
z (t)

+a14 ḧ(t)− kwd a24 ẅd(t)− a34 β̈z(t) + a13 ḣ(t)− kwd a23 ẇd(t)

−a33 β̇z(t) + a12 h(t)− kwd a22wd(t)− a32 βz(t)

⇒ ẋ5(t) = x6(t)− a12x1(t) + kwd a22wd(t) + a32βz(t)

x7(t) = ẋ6(t) + ρ6h(t) + η6wd(t) + µ6 βz(t)

= h(6)(t) + a16 h
(5)(t) + a15 h

(4)(t)− kwd a25w
(4)
d (t)− a35 β

(4)
z (t)

+a14 h
(3)(t)− kwd a24w

(3)
d (t)− a34 β

(3)
z (t) + a13 ḧ(t)− kwd a23 ẅd(t)

−a33 β̈z(t) + a12 ḣ(t)− kwd a22 ẇd(t)− a32 β̇z(t) + a11 h(t)

−kwd a21wd(t)− a31 βz(t)

⇒ ẋ6(t) = x7(t)− a11x1(t) + kwd a21wd(t) + a31βz(t)
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ẋ7(t) = h(7)(t) + a16 h
(6)(t) + a15 h

(5)(t) + a14 h
(4)(t) + a13 h

(3)(t) + a12 ḧ(t) + a11 ḣ(t)

−kwd a25w(5)
d (t)− kwd a24w

(4)
d (t)− kwd a23w

(3)
d (t)− kwd a22 ẅd(t)− kwd a21 ẇd(t)

−a35 β(5)
z (t)− a34 β

(4)
z (t)− a33 β

(3)
z (t)− a32 β̈z(t)− a31 β̇z(t) = −a10 h(t) + a30 βz(t)

⇒ ẋ7(t) = −a10x1(t) + a30βz(t)

An additional state is required for zeθ:

zeθ(s) = x8(s) = Geθ(s) θ̃(s) = Geθ(s) [kwθ wθ(s)− h(s)] = Geθ(s) [kwθ wθ(s)− x1(s)]

Then, substituting the Eq. A.13 and applying the inverse Laplace transform:

ẋ8(t) = kwθ wθ(t)− x1(t)− ǫeθ x8(t)

Finally, one adds the actuator state: ẋ9(t) = −λa x9(t)+λa (u(t) + kwu wu(t)), where

x9(t) = βz(t). Returning to the Eq. A.11, one can see that3: zθ(s) = kzθ h(s), zq(s) =

kzq h(s) s, q̃(s) = kwq wq(s)−h(s) s, and θ̃(s) = kwθ wθ(s)−h(s). Therefore, the state

space description of the pitch plane GSM is given by the Eqs. A.18 and A.19, where

x = [x1 x2 · · · x9]T , z = [zu zq zθ zeθ]
T , v =

[
q̃ θ̃
]T

and w = [wq wθ wd wu]
T .




ẋ(t)

z(t)

v(t)


 = P




x(t)

w(t)

u(t)


 =




A B1 B2

C1 D11 D12

C2 D21 D22







x(t)

w(t)

u(t)


 (A.18)

3Note also that ḣ(t) = x2(t)− a16 x1(t).
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P =




−a16 1 0 0 0 0 0 0 0 0 0 0 0 0

−a15 0 1 0 0 0 0 0 a35 0 0 kwd a25 0 0

−a14 0 0 1 0 0 0 0 a34 0 0 kwd a24 0 0

−a13 0 0 0 1 0 0 0 a33 0 0 kwd a23 0 0

−a12 0 0 0 0 1 0 0 a32 0 0 kwd a22 0 0

−a11 0 0 0 0 0 1 0 a31 0 0 kwd a21 0 0

−a10 0 0 0 0 0 0 0 a30 0 0 0 0 0

−1 0 0 0 0 0 0 −ǫeθ 0 0 kwθ 0 0 0

0 0 0 0 0 0 0 0 −λa 0 0 0 λa kwu λa

0 0 0 0 0 0 0 0 0 0 0 0 0 kzu

−kzq a16 kzq 0 0 0 0 0 0 0 0 0 0 0 0

kzθ 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

a16 −1 0 0 0 0 0 0 0 kwq 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 kwθ 0 0 0




(A.19)

A.5.2.2 Reduced set of coefficients.

For the pitch plane considered here, the subsets of the coefficients
{
M̄α, Z̄α

}
(set 1)

and
{
M̄q, M̄βz, Z̄βz

}
(set 2) become null after the atmospheric phase, but in different

superimposed intervals (see Fig. A.3). These sets produce the following effects:

• The transfer function Gθd becomes zero due to the set 1, being removed

from the GSM (Fig. A.2) together with the weighting value kwd and the

input wd.

• Set 1 also makes the transfer function Gθβ (Eq. A.6e) to become:

Gθβ(s) =
θ(s)

βz(s)
= − M̄βz

s2 + M̄q s
(A.20)

• The set 2 finally removes the rigid body transfer function from the GSM,

which means that practically there is no control action acting on the vehicle

(burn-out of the second and third stages).

Equation A.11 was rewritten as Eq. A.21 in order to reflect the described changes.
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Set 2Set 1 Flight time

Figure A.3 - Intervals for null coefficients of the subsets 1 and 2 (illustrative view).
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zu

zq

zθ

zeθ
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
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=
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

0 0 0 kzu

0 0 kzq kwuGLGAs kzq GLGAs

0 0 kzθ kwuGLGA kzθGLGA

0 Geθ kwθ −kwuGeθGLGA −GeθGLGA

kwq 0 −kwuGLGAs −GLGAs

0 kwθ −kwuGLGA −GLGA







wq

wθ

wu

u




(A.21)

The Eq. A.16 is affected by the set 1 with the coefficients a10, a2i and a30 equal to

zero, which also changes the state-space realization to:

ẋ1(t) = x2(t)− a16x1(t)ẋ2(t) = x3(t)− a15x1(t) + a35βz(t)

ẋ3(t) = x4(t)− a14x1(t) + a34βz(t)ẋ4(t) = x5(t)− a13x1(t) + a33βz(t)

ẋ5(t) = x6(t)− a12x1(t) + a32βz(t)ẋ6(t) = −a11 x1(t) + a31βz(t)

The other two additional states for zeθ(s) and the actuator are renamed as ẋ7(t) and

ẋ8. The final general standard equation for the reduced set of coefficients is given
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by the Eq. A.22.

P =




−a16 1 0 0 0 0 0 0 0 0 0 0 0

−a15 0 1 0 0 0 0 a35 0 0 kwd a25 0 0

−a14 0 0 1 0 0 0 a34 0 0 kwd a24 0 0

−a13 0 0 0 1 0 0 a33 0 0 kwd a23 0 0

−a12 0 0 0 0 1 0 a32 0 0 kwd a22 0 0

−a11 0 0 0 0 0 0 a31 0 0 kwd a21 0 0

−1 0 0 0 0 0 −ǫeθ 0 0 kwθ 0 0 0

0 0 0 0 0 0 0 −λa 0 0 0 λa kwu λa

0 0 0 0 0 0 0 0 0 0 0 0 kzu

−kzq a16 kzq 0 0 0 0 0 0 0 0 0 0 0

kzθ 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

a16 −1 0 0 0 0 0 0 kwq 0 0 0 0

−1 0 0 0 0 0 0 0 0 kwθ 0 0 0




(A.22)

A.5.3 Properties of the GSM.

To be used in the multi-variable control design, the matrix P must comply with the

following properties: (i) the pair (A,B2) must be stabilizable4; (ii) the pair (A,C2)

must be detectable5; (iii) the matrices D12 and D21 must have full rank6; (iv) the

matrix [A − sI B2; C1 D12] must have left inverse for all s = jw, w ∈ ℜ; (v) the

matrix [A − sI B1; C2 D21] must have right inverse for all s = jw, w ∈ ℜ; (vi)

D11 = 0,D22 = 0.

One can see that properties (iii) and (vi) are already satisfied by the model P

(given that kzu, kwq and kwθ 6= 0), resulting from the procedure of development

given earlier.

4A pair A,B is stabilizable if there exists some matrix F such that (A+BF) is stable (the real
part of each eigenvalue of (A + BF) is negative).

5A pair A,C is detectable if there exists some matrix L such that (A+LC) is stable (the real
part of each eigenvalue of (A + LC) is negative).

6A matrix M ∈ Rm×n has full rank if rank(M) = min(m,n).
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A.5.4 GSM of the roll plane.

The block diagram representing the roll plane GSM and its mathematical description

are seen in the Fig. A.4 and the Eq. A.23 respectively.




zu

zp

zφ

zeφ

p̃

φ̃




=




0 0 0 kzu

0 0 kzp kwuGφβGAs kzpGφβGA s

0 0 kzφ kwuGφβGA kzφGφβGA

0 Geφ kwφ −kwuGeφGφβGA −GeφGφβGA

kwp 0 −kwuGφβGA s −GφβGA s

0 kwφ −kwuGφβGA −GφβGA







wp

wφ

wu

u




(A.23)
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Figure A.4 - GSM of the VLS launch vehicle (roll plane).

Repeating the procedure followed in the section A.5.2.1, one starts by identifying a

common term given by:

h(s) = Gφβ(s)GA(s) [u(s) + kwuwu(s)] =
Gφβ,n(s)

Gφβ,d(s)
βr(s) (A.24)

Recalling the Eq. A.6n, one readily defines ẋ1(t) = x2(t) − L̄p x1(t) and ẋ2(t) =

L̄βx βr(t), where x1(t) = h(t). The remaining states are: ẋ3(t) = kwφwφ(t) −
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x1(t) − ǫeφx3(t) (where x3(t) = zeφ(t)), and the actuator state ẋ4(t) = −λa x4(t) +
λa (u(t) + kwu wu(t)), where x4(t) = βr(t). Returning to the Eq. A.23, one can

see that7: zφ(s) = kzφ h(s), zp(s) = kzp h(s) s, p̃(s) = kwpwp(s) − h(s) s, and

φ̃(s) = kwφwφ(s)−h(s). Therefore, the state space description of the roll plane GSM

is given by the Eqs. A.18 and A.25, where x = [x1 x2 · · · x4]T , z = [zu zp zφ zeφ]
T ,

v =
[
p̃ φ̃
]T

and w = [wp wφ wu]
T .

P =




−L̄p 1 0 0 0 0 0 0

0 0 0 L̄βx 0 0 0 0

−1 0 −ǫeφ 0 0 kwφ 0 0

0 0 0 −λa 0 0 λa kwu λa

0 0 0 0 0 0 0 kzu

−kzpL̄p kzp 0 0 0 0 0 0

kzφ 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

L̄p −1 0 0 kwp 0 0 0

−1 0 0 0 0 kwφ 0 0




(A.25)

It is important to observe that the parameter L̄βx is zero after the burn-out of the

1st stage engines, and thus the Eq. A.25 is discarded; in such condition, the roll

plane control is achieved by other means (not considered in this work.)

A.6 Linearisation of the VLS rigid body non-linear model.

The method of linearisation chosen here is based on the approximation of a Taylor

series of a given multi-variable function f(x) with x = [x1 x2 · · · xd]T around a

linearisation point x̄ = [x̄1 x̄2 · · · x̄d]T :

f x̄(x) =
∞∑

n1=0

· · ·
∞∑

nd=0

(x1 − x̄1)
n1 · · · (xd − x̄d)

nd

n1! · · ·nd!

[
∂n1+···+nd

∂xn1

1 · · · ∂xnd

d

f(x)

]

x=x̄

and respective Jacobians. First, consider two scalar functions fi = fi(ẋi) = ẋi and

gi = gi(x,u), x ∈ ℜmx1 and u ∈ ℜnx1, so that fi(ẋi) = gi(x,u), and also the triple

(¯̇x, x̄, ū) corresponding to the reference point of linearisation P, fi |P , fP
i =

gP
i , gi |P . The first terms of the Taylor series can be used as an approximation of

7Note also that ḣ(t) = x2(t)− L̄p x1(t).
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the functions considered, so that:

fP

i +
∂fi(ẋi)

∂ẋi

∣∣∣∣
P

(ẋi − ˙̄xi) ≈ fi(ẋi) = gi(x,u) ≈ gP

i +
∂gi(x,u)

∂x

∣∣∣∣
P

(x− x̄)+
∂gi(x,u)

∂u

∣∣∣∣
P

(u− ū)

which simplifies to:

ẋi − ¯̇xi ≈
∂gi(x,u)

∂x

∣∣∣∣
P

x+
∂gi(x,u)

∂u

∣∣∣∣
P

u− ∂gi(x,u)

∂x

∣∣∣∣
P

x̄− ∂gi(x,u)

∂u

∣∣∣∣
P

ū

If one considers in the last equation that the second element of the left side is fP
i and

the two last ones of the right side are −gP
i , it follows that ẋi− fP

i ≈ gi(x,u)− gP
i ,

and therefore:

ẋi ≈
∂gi(x,u)

∂x

∣∣∣∣
P

x+
∂gi(x,u)

∂u

∣∣∣∣
P

u = aTi x+ bTi u (A.26)

where aTi and bTi are row vectors of the state-space matrices Amxm = [a1 a2 · · · am]T

and Bmxn = [b1 b2 · · ·bn]T of the linear system A x+B u. However, considering

the VLS model, in order to separate the effects of the control inputs from the dis-

turbance inputs, two matrices Bu and Bd will be assigned respectively to each set,

according to the Eq. A.27 (where x = [w q θ v r ψ p φ ]T , u = [βz βy βr ]
T and

d = [vv wv]
T ):

ẋ = A x+Bu u+Bd d (A.27)

NOTE: in the next lines, a given parameter γ̄ and respective variable γ(t) are

associated as γ̄ = γ(t)|
P

.

The linearisation of the VLS non-linear model (Eq. A.3) requires the partial

derivatives shown in the Eq. A.26. The state space matrices of the VLS linear

model, according to the Eq. A.27, are:
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A =




− Z̄α
Ū

2 ¯̇m x̄e
m̄

+ Ū A13 −p̄ 0 A16 −v̄ A18

M̄α

Ū
−M̄q 0 0 −

(
Īxx − Īzz

)

Īyy
p̄ 0 −

(
Īxx − Īzz

)

Īyy
r̄ 0

0
cos(φ̄)

cos(ψ̄)
0 0 − sin(φ̄)

cos(ψ̄)
A36 0 A38

p̄ 0 A43 − Ȳβ
Ū

−
(
2 ¯̇m x̄e
m̄

+ Ū

)
A46 w̄ A48

0

(
Īxx − Īyy

)

Īzz
p̄ 0 − N̄β

Ū
−N̄r 0

(
Īxx − Īyy

)

Īzz
q̄ 0

0 sin(φ̄) 0 0 cos(φ̄) 0 0 A68

0

(
Īyy − Īzz

)

Īxx
r̄ 0 0

(
Īyy − Īzz

)

Īxx
q̄ 0 −L̄p 0

0 − tan(ψ̄) cos(φ̄) 0 0 tan(ψ̄) sin(φ̄) A86 1 A88




,

Bu =




Z̄βz 0 0

−M̄βz 0 0

0 0 0

0 Ȳβy 0

0 N̄βy 0

0 0 0

0 0 L̄βx

0 0 0




, Bd =




0
Z̄α
Ū

0 −M̄α

Ū
0 0

Ȳβ
Ū

0

N̄β
Ū

0

0 0

0 0

0 0




where:

A13 = −ḡ cos(θ̄) cos(φ̄) + ḡ sin(θ̄) sin(ψ̄) sin(φ̄), A16 = −ḡ cos(θ̄) cos(ψ̄) sin(φ̄),
A18 = ḡ sin(θ̄) sin(φ̄)− ḡ cos(θ̄) sin(ψ̄) cos(φ̄), A36 =

cos(φ̄) q̄ − sin(φ̄) r̄√
1− ψ̄2

,

A38 =
− sin(φ̄) q̄ − cos(φ̄) r̄

cos(ψ̄)
, A43 = −ḡ cos(θ̄) sin(φ̄)− ḡ sin(θ̄) sin(ψ̄) cos(φ̄),

A46 = ḡ cos(θ̄) cos(ψ̄) cos(φ̄), A48 = −ḡ sin(θ̄) cos(φ̄)− ḡ cos(θ̄) sin(ψ̄) sin(φ̄),

A68 = cos(φ̄) q̄ − sin(φ̄) r̄, A86 =
− cos(φ̄) q̄ + sin(φ̄) r̄

cos2(ψ̄)
, A88 = tan(ψ̄)

[
sin(φ̄) q̄ + cos(φ̄) r̄

]
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