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Abstract. Poorly written requirements are a common source of software  
defects. In application areas like space systems, the cost of malfunctioning soft-
ware can be very high. This way, assessing the quality of software requirements 
before coding is of utmost importance. This work proposes a systematic proce-
dure for assessing software requirements for space systems that adopt the Euro-
pean Cooperation for Space Standardization (ECSS) standards. The main goal 
is to provide a low-cost, easy-to-use benchmarking procedure that can be ap-
plied during the software requirements review to guarantee that the require-
ments specifications comply with the ECSS standards. The benchmark includes 
two checklists that are composed by a set of questions to be applied to the re-
quirements specification. It was applied to the software requirements specifica-
tion for one of the services described in the ECSS Packet Utilization Standard 
(PUS). Results show that the proposed benchmark allows finding more with a 
low effort. 

Keywords: benchmark; software requirements quality; space systems; ECSS 
standards; Packet Utilization Standard. 

1   Introduction 

Writing a high quality software requirements specification (SRS) is one of the hardest 
phases of the development life cycle of a software system [1]. Ill-defined require-
ments contribute to significant schedule delays and cost increases [2]. Furthermore, 
there are evidences that errors in the requirements can lead to serious problems during 
software development and usage [3].  
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Some problems in the specification of requirements, such as the occurrence of  
conflicts, can be resolved by using formal specification languages or formal methods. 
However, they are hard to be understood by non-experts, which limits their practical 
application to some restricted domains [4]. Despite the many problems of using natu-
ral languages, such as the lack of formality and ambiguity, this is still the most used 
mean to express software requirements and to communicate those requirements  
to customers [5]. Software for space systems is no exception and requirements  
specification based on natural languages are still widely used. 

The European Cooperation for Space Standardization (ECSS) [6] provides a set of 
standards to support the development of space products. These standards cover a 
broad range of application areas, such as mechanical, software engineering, control 
engineering and ground system. Among the ECSS standards, ECSS-70-41A [7] pro-
poses the Packet Utilization Standard, also known by its acronym PUS, which  
addresses the utilization of telecommand and telemetry for the remote monitoring and 
control of spacecrafts. It defines a set of services that covers all the fundamental re-
quirements for spacecraft operation. PUS defines the protocol for the communication 
between the spacecraft and the ground segment (i.e. the control centre in Earth). 

Leveson [8] studied in detail five software-related accidents in space systems. 
Among the factors that contributed to the accidents, there are some related to software 
engineering, such as poor or missing specifications, and inadequate review activities. 
Common sense is that these problems can be mitigated by applying a standardized 
process of assessing or reviewing the quality of the requirements. This work proposes 
a starting point to define a benchmark to be applied to the software requirements 
specification of space systems that adopt the PUS.  

Typically, a benchmark is a systematic procedure to assess measures related to the 
behaviour of a computer system or computer component, and aims at comparing al-
ternative solutions or evaluating its characteristics against a reference model (e.g., a 
standard). While a performance benchmark is composed by a workload and meas-
urements, a dependability benchmark adds an additional component: a faultload that 
represents real faults experienced by systems in the field. The system under bench-
marking (SUB) and the benchmark target must be well defined, as well as the bench-
marking rules and procedures. The benchmark shall be validated taking into account 
its representativeness, repeatability, reproducibility, portability, non-intrusiveness, 
scalability, time (that has to be as short as possible) and cost (the perceived value 
shall be higher than the associated costs). 

As the target of the benchmarking approach proposed in this work is a document, 
there is no workload to run or faultload to inject. Instead, a checklist composed by 
questions replaces the workload and is used to obtain measures that portray specific 
characteristics of the software requirements specification. The purpose of this bench-
mark is to guide/help the review of the requirements for the onboard computer soft-
ware. This review is typically performed at the beginning of the space software  
development process. The proposed benchmark provides a standardized way for as-
sessing the quality of the requirements and their accomplishment regarding the PUS 
ECSS standard. 

The proposal of a benchmark for software requirements is motivated by the high costs 
of conducting a software requirement review over low quality software requirements 
specifications and by the very high costs of the rework caused by poorly written  
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requirements. In fact, problems detected at the end of the software development cycle may 
compromise the entire space mission timeline. Moreover, applications with high complex-
ity, like space systems, demand the use of standards in order to guide the whole develop-
ment life cycle. Naturally, if a project is in accordance with key standards, the overall 
software quality tends to increase. 

Particularly, the paper discusses the definition of the benchmark checklist. As this 
checklist greatly influences the benchmark representativeness, we use two sources of 
information for defining two different checklists. The first is based on the description 
of the services in the PUS and basically aims at guaranteeing that the SRS complies 
with the standard (regarding its content). The second is based on the CoFI methodol-
ogy [9], which aims at verifying whether the SRS covers system failure situations.  

To show the feasibility and applicability of the proposed benchmarking approach, 
we use the telecommand verification service described in PUS as a case study. The 
two checklists are applied to a concrete software requirements specification of a space 
product. The results are analysed and discussed in detail. The idea of the whole work 
is to propose a benchmark to assess the overall SRS by defining checklists that cover 
all of the services described in PUS. Although the proposed benchmark is restricted to 
software that follows the PUS, the methodology we used to create it can be easily 
extended to embedded software that follows other standards. 

The paper is organized as follows. Section 2 reviews related work. Section 3 pre-
sents the definition of the two checklists. Section 4 presents the concrete example for 
the telecommand verification service and discusses the results obtained from the  
application of the two proposed checklists. Section 5 concludes the paper. 

2   Related Work 

Many works aim at studying attributes of software requirements quality, such as: correct-
ness, completeness, consistency, clarity, and feasibility. Halligan [10] presents a structured 
methodology for measuring the quality of requirements individually and collectively, 
based on each requirement statement (which provides a score for individual requirements). 
Davis [11] proposes metrics to measure the quality of software requirements following an 
approach based on the assessment of each requirement according to quality attributes 
similar to the ones proposed in [10]. This approach provides a score that reflects the qual-
ity of the overall requirements document. However, Davis does not define the point from 
which the document is considered good enough to proceed to next phase of the develop-
ment process. Knauss [12] performed a study based on the metrics defined by Davis in 
order to find out a threshold that determines whether the requirements document can be 
considered good enough to serve as a foundation for project success. 

Hofmann and Lehner [13] conducted a field study to identify requirements engi-
neering practices that contribute to project success. Boehm [14] and Wilson [15] de-
veloped tools to help developers analysing requirements and identifying conflicts 
among them, as well as tools to assess requirements by searching for terms that are 
quality indicators. Kim [4] proposed an approach for systematically identifying and 
managing requirements conflicts based on requirement partition in natural language. 

Gilliam [16] focused his work on the development of a software security checklist  
for the software life cycle, including, among others, the requirements gathering and speci-
fication process. Sheldon [17] discusses the validation of a SRS based on natural language 
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in terms of completeness, consistency and fault-tolerance. A method for detecting  
semantic level inconsistency in software requirements based on state transition is  
described in [18]. 

The works presented above (and many others) deal with SRS quality assessment in 
general and try to perform this by using some new method, some combination of 
existing methods or by proposing some new process of assessment. Although there is 
a considerable number of works in the literature, to the best of our knowledge none 
target specifically critical embedded software, neither systems that follow some spe-
cific standard. Furthermore, none of the existing works are based on a benchmarking 
process, with well-defined metrics and a very well contextualized scenario. 

The Transaction Processing Performance Council (TPC) [19], an organization  
composed by major vendors of database and transaction processing software, has a 
long-standing tradition in proposing and managing performance benchmarks. Although, 
dependability measures have been largely absent of the TPC benchmarking effort, the 
TPC benchmarks have influenced many dependability benchmarks proposed so far (see, 
for example, the book edited by K. Kanoun and L. Spainhower [20]). Dependability 
benchmarking has been mainly focused in the evaluation and comparison of the  
dependability of COTS (Component Off-The-Shelf) and COTS-based systems in em-
bedded, real-time and transactions systems. Both academy and industry have proposed 
benchmarks focusing on a wide range of types of systems [20]. Examples of bench-
marks for embedded systems are [21] and [22]. The former focused on real-time kernels 
for on-board space systems and the latter addressed automotive systems. 

Existing benchmarks aim at assessing and/or comparing computer systems or com-
ponents. The purpose is to assess products, i.e., the systems under benchmarking are 
final products and they do not take into account the quality of the requirements docu-
mentation or the impact of low quality requirements in the final product. Our work 
opens a new research direction by extending the benchmarking concept to software 
documentation, namely requirements specifications for space systems. 

3   Benchmarking Approach for Software Requirements 

Although based on the concepts of dependability benchmarking, which aim at assess-
ing and comparing key features of the behaviour of a computer system or component, 
the purpose of our approach is to assess software requirements specification, thereby 
requiring the redefinition of the main elements of a typical dependability benchmark 
[20], [23]. Besides allowing comparing some quality attributes of software require-
ments specifications, it allows comparing a given SRS against a reference model (in 
our case, the PUS standard). 

In our approach, the workload and faultload are replaced by a checklist that con-
sists of a set of questions to assess key features of the software requirements specifi-
cation under benchmark. The purpose of these questions is to verify whether the SRS 
is in accordance with the PUS [7] (PUS-based checklist), as well as to verify whether 
the SRS describes the actions that the system shall perform in the case of a failure 
(CoFI-based checklist). All of these questions accept just “yes” or “no” as answer. 
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The measure of the proposed benchmark is the number of questions answered “yes” 
when applied to the software requirements document under benchmarking. The amount 
of time necessary to the specialist to execute the benchmark is also assessed in order to 
provide an idea of the ease of application of the benchmark. 

Although the checklists proposed for this benchmark takes into account only the 
telecommand verification service of the PUS, they can be easily extended to the other 
15 basic services of the PUS, which constitute the capabilities to be implemented on-
board a satellite along with the corresponding monitoring and control facilities on the 
ground. The telecommand verification service provides the capability for explicit 
verification of each distinct stage of the execution of a telecommand packet, from the 
on-board acceptance through the completion of the telecommand execution. This 
service consists of the following stages: (1) acceptance of the telecommand by the 
destination application process, which includes syntax, validity and feasibility check-
ing, (2) telecommand execution start, (3) intermediate stages of execution progress, 
(4) telecommand execution conclusion. The telecommand verification service shall 
generate a report if a telecommand fails at any of its identified stages of execution. It 
shall also generate a report of successful completion of the same stages if this has 
been requested in the acknowledgment flags in the telecommand packet header. These 
reports shall provide auxiliary data for the ground system to fully understand the re-
port (e.g. to identify the nature and cause of a telecommand failure). 

As mentioned before, the proposed benchmarking checklists were defined by using 
two different methods, which allows comparing the results obtained from the applica-
tion of each one. The first is directly based on the telecommand verification service of 
the PUS and on the description of the telecommand packets structure. The second was 
generated by applying the CoFI methodology to the PUS. 

3.1   Checklist Based on the PUS 

The questions that compose this checklist were defined by analysing the specification 
of the telecommand verification service. For each mandatory statement of the stan-
dard, one or more questions were defined. When necessary, other parts of the standard 
were consulted to gather more information to define the questions (e.g., when the 
telecommand verification service makes reference to the structure of the telecommand 
and telemetry packets). For example, there is a question to verify if the SRS defines 
the type and size of each field of the telecommand and telemetry packets. 

The resulting checklist was reviewed by a developer with a large experience (more 
than 6 years) that works on space application software in the context of PUS and by a 
researcher on space systems (whose knowledge is described in section 4.1 of this 
paper, specialist 3). The suggestions and recommendations received from the special-
ists were then incorporated into the final checklist. 

This checklist verifies whether the SRS follows the PUS by taking into account the 
content of the PUS itself and of the SRS. The checklist is composed of a set of 92 
questions that accept as answer only “yes” or “no”, where “yes” means that a given 
requirement specification complies with the PUS and “no” means that the requirement 
specification does not comply with the PUS or has some ambiguity in the context of 
the question. Three examples of questions are: 
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• Does the requirement specification define the telecommand verification  
service type as 1? 

• Does the specification state that this service shall check whether the Packet 
Length field value is at least 16 octets and at most 65535 octets? 

• Does the requirement specification state that the code 0 of the failure  
acceptance report means “illegal APID (PAC error)”? 

As an example, let’s take the first question above. Each one of the services defined in 
PUS has a number that represents its service type and that distinguishes each service 
in a unique manner. The telecommand verification service shall have its type defined 
as 1. If the answer given to this question is “yes”, this means that the SRS follows the 
standard. The full PUS-based checklist is available at [25]. An important aspect is that 
the PUS does not state all the features to be mandatory. This standard has some points 
that are optional and specific to the mission. In this kind of situation, the user can 
mark the question in the checklist as not applicable to the SRS under benchmarking. 
Therefore, the resulting percentage of “yes” answers is referred to the applicable 
questions considered by each specialist. 

3.2   Checklist Based on the CoFI Methodology 

The second checklist was defined by using the CoFI methodology. CoFI stands for Con-
formance and Fault Injection as it drives the conformance and robustness test cases gen-
eration. This methodology guides a tester to create simple finite state machines (FSMs) 
starting from a textual description, such as the software requirements specifications. In-
stead of relying on a single behaviour model of the system, it guides the creation of a set of 
small FSMs representing partial behaviours to cover test objectives. The first step is to 
identify the set of services that the system provides and then create different FSMs for 
each service, taking into account the following classes of inputs: (i) normal, (ii) specified 
exception, (iii) inopportune input (i.e., corrects but in wrong moments), and (iv) invalid 
inputs caused by external faults. Thus, decomposition of the system complexity in small 
FSMs is driven in terms of: (i) the services and (ii) types of behaviour, namely, normal, 
specified-exception, sneak-path, and, fault-tolerance. Once the FSMs are defined, they are 
submitted to the ConData tool [24], which can automatically generate test cases, as those 
used for protocol testing. In our work, the description of the service in PUS is used to 
create the FSM for the normal, specified exception and inopportune input behaviours. 
Then, instead of using the FSM of CoFI to generate test cases, we used it to generate ques-
tions to compose the benchmark checklist.  

As mentioned before, this checklist does not take into account the content of the 
SRS and of the PUS. Instead, it considers the PUS as a kind of “black box”, it just 
considers the functional behaviour that the software shall have by verifying the output 
response to the provided inputs. It does not verify the steps that the software performs 
to accomplish what the standard defines. 

The questions derived from the CoFI methodology look for evidences in the re-
quirements specification that show that the developer considered not only the normal 
behaviour but also all the important cases of invalid inputs or sneak paths. The ration-
ale behind it is to discover potential ‘holes’ in the requirement specification that 
would lead to the identification of failures when testing of the final software product. 
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The FSM models the behaviour of the telecommand verification service when 
communicating with both the ground station and the on-board application process. 
The ground station sends a telecommand to be executed on-board and wait for re-
sponses about the execution status. The telecommand verification service receives the 
telecommand and sends it to the application process. The application process is the 
part that actually executes the command and informs the telecommand verification 
service about its status. Based on the information provided by the application process, 
the telecommand verification service generates success or failure reports that are sent 
to the ground station via telemetry. 

Each possible transition of a FSM represents an expected input/output relationship 
and originates a question. The question must characterize the initial state of the transi-
tion and the expected input/output, as well as the specific conditions under which the 
transition occurs.  

Fig. 1 presents the FSM for the normal behaviour of the telecommand verification 
service. Events like TC_Arrival represent the arrival of a telecommand sent by the 
ground station to the telecommand verification service. Actions like RepSuccAcc,  
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Fig. 1. Normal behaviour FSM 
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RepSucProgExec are different reports carried into the telemetry and sent to the 
ground station. The events Acc-OK, Start_TC_Exec_OK are related to the communi-
cation between the telecommand verification service and the application process. The 
numbers, such as [1---] and [-0--], are reference to the criteria specified in the PUS for 
generating a particular report of success. 

Some examples of the questions defined for the FSM of Fig. 1 are: 

• Does the requirement specification state that the telecommand verification 
service shall send the telecommands received from the ground to its  
destination process after its checking? (Q1) 

• Does the requirement specification state that the telecommand verification 
service shall send a report of success acceptance to the ground station if 
this is requested through the first bit set? (Q2) 

• Does the requirement specification state that the verification of the TC  
execution starting shall occur after the acceptance confirmation by the 
destination application process? (Q3) 

Fig. 2 illustrates the sneak paths behaviour. Basically, the sneak paths model consid-
ers the case of receiving a valid response from the application process at the wrong 
moment. Some examples of questions defined from the sneak path FSM are: 

• Does the requirement specification state the action of the telecommand veri-
fication service if it receives a confirmation of execution conclusion from 
the application process when it should receive a confirmation of execution 
start? (Q4) 

• Does the requirement specification state the action of the telecommand veri-
fication service if it receives a confirmation of telecommand execution 
progress from the application process when it should receive a confirma-
tion of execution conclusion? (Q5) 

• Does the specification state the action of the telecommand verification ser-
vice if it receives a confirmation of telecommand execution conclusion 
when it should receive a confirmation of successful acceptance? (Q6) 

By using the CoFI methodology, a list with 36 questions was generated. Additional 
questions were added to verify sensible points indirectly suggested by the system 
modelling. Some examples are: 

• Does the specification state that the confirmation of the progress given 
by the target application process shall identify the concerned step num-
ber? 

• Does the requirement specification define the action of the service if 
some answer of the application process is not received? 

The full CoFI-based checklist is available at [25]. By analysing both PUS and  
CoFI-based checklists, we conclude that the major contribution of using the CoFI 
methodology is the definition of the questions based on the sneak path FSM. The 
PUS-based checklist contemplates almost all of the questions based on the normal and 
the exceptional behaviour FSMs. However, none of the questions generated from  
the sneak path FSM are defined in the PUS-based checklist. Therefore, the portion of  
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the CoFI-based checklist defined from the sneak path FSM can be considered  
complementary to the PUS-based checklist. 

4   Example of Application 

This section presents a concrete example of the application of the benchmark and 
discusses the results obtained. 

4.1   Case Study 

The example used in this work consists of a software requirements specification that 
describes the functional requirements of the telecommand verification service. This 
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Fig. 2. Sneak path FSM 
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example is taken from a real space project under development at INPE (Instituto  
Nacional de Pesquisas Espaciais, Brazil). This specification does not take into account 
the whole software to be implemented, but just the piece of software that implements 
the telecommand verification service. Some examples of requirements are: 

• R4.3 - When a failure occurs during the acceptance of a telecommand, the 
OBDH (On-Board Data Handling) software shall generate a report informing 
this occurrence. 

• R4.3.1 – The report mentioned in R4.3 shall have subtype 2. 
• R4.3.2 – The format of the packet data field of the report mentioned in R4.3 

shall conform to the format specified in clause 6.3.2 of the ECSS-E-70-41A 
standard. 

The specification has a total of 39 functional requirements and is limited to the tele-
command verification service. Some requirements make reference to specific sections 
of the PUS standard. When applying the checklists, these sections of the PUS  
standard were considered as part of the requirements specification. 

Four specialists applied independently the benchmark to the requirements specifi-
cation. The purpose was to compare the results of the specialists in order to verify if 
the process is easily applicable, repeatable and if its application is independent of 
possible interpretations from the different specialists. The specialists were also al-
lowed to register additional comments to each question of the checklist. 

All the specialists have knowledge in the PUS ECSS standard. Specialist 1 has 
been a professor and researcher in mechatronics and aerospace systems for 5 years 
and has experience in modelling, validation and verification of systems. Specialist 2 is 
a MSc student in aerospace systems and has worked with space projects that adopt 
ECSS standards. Specialist 3 has been researcher in space systems for 25 years and 
has worked with ground segment system, having also a broad experience in systems 
independent validation and verification. Specialist 4 is a PhD student and has worked 
with aerospace systems for 5 years, both in the academy and industry. All specialists 
had a participation in the discussion about this work since its preliminary steps.  

Each specialist read the software requirements document one time before start an-
swering the questions of the checklists. Particularly, specialist 2 is the one who actu-
ally wrote the requirement specification. The total time needed to apply the checklist 
(including the first read of the document) was measured. In practice, the attributes 
measured in the application of each of the checklists are the number of answers “yes” 
and the total time necessary to apply it. 

4.2   Results and Discussion 

The results obtained with the application of the PUS-based checklist by the four  
specialists are shown in Table 1, where the column A.Q. contains the number of  
Applicable Questions considered by the specialist. 

By analysing the answers of the four specialists, we observed that 68 questions had 
the same answers (either “yes” or “no”) for all specialists, and 7 other questions had 
the same answers for only three of the specialists. These results indicate that the  
remaining 17 questions may be ambiguous and may need to be revised. 
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Table 1. Result of the application of the PUS-based checklist 

 “Yes” A.Q. “Yes” (%) Time (hh:mm) 
Specialist 1 76 92 82.6 00:44 
Specialist 2 74 87 85.1 00:37 
Specialist 3 68 89 76.4 01:29 
Specialist 4 68 87 78.2 00:42 
Average 71.5 88.7 80.6 00:53 

The analysis of the comments provided by the specialists allowed understanding 
the reason for the discrepancy in the positive answers. Specialists 3 and 4 were more 
rigorous in the interpretation of the SRS, while specialists 1 and 2 were more flexible. 
One example is the case of Specialist 4 considering two requirements in conflict. As a 
consequence, he answered “no” to four questions of the checklist. The other 3 special-
ists answered “yes” to the same questions and detected no conflict. Even in the pres-
ence of some discrepancy among the answers of the specialists, we can see that the 
maximum difference between the average percentage of “yes” (80.6%) and the per-
centage of “yes” for any specialist is less than 5%, which is quite acceptable once that 
the checklist and SRS have a margin to interpretation. 

The mean time necessary to apply the PUS-based checklist to the SRS is 53 min-
utes, what gives us an idea of the ease of application of the 92 questions. In average, 
only three questions were considered not applicable to the SRS under assessment. In 
general, the questions that were considered not applicable are questions about aspects 
that are optional in the PUS. Thus, if the SRS does not intend to implement that point, 
the question about it is not applicable. 

The results obtained with the application of the checklist generated by using the 
CoFI methodology are listed in the Table 2. In the case of this checklist, there is no 
evaluation of the applicability of the questions because all of them are applicable. The 
total number of questions whose answers were the same for the four specialist is 17 
(again either “yes” or “no”), and the total number of (remaining) questions whose 
answers were the same for only three of the specialists is 14. 

Table 2. Result of the application of the CoFI-based checklist 

 “Yes” “Yes” (%) Time (hh:mm) 
Specialist 1 13 36.1 00:16 
Specialist 2 14 38.9 00:27 
Specialist 3 7 19.4 00:30 
Specialist 4 12 33.3 00:22 
Average 11.5 31.9 00:23 

Except for the questions generated by the sneak paths FSM, whose answers were 
all the same ones, the application of the questions to the requirements list were inter-
preted in different ways by the 4 specialists. Furthermore, the specialist 3 was much 
more rigorous than the other specialists. The main reason for the different interpreta-
tion is that the requirements are strongly based on the PUS standard and the PUS  
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standard leaves implicit the interaction with the application process. As a  
consequence, the requirements also leave this part poorly detailed. Some specialists 
considered the implicit interaction and answered “yes”, while other considered that 
there was no clear answer to the same question and answered “no”. 

A good example is the question: “Does the requirement specification state that the  
successful report of telecommand execution starting shall be generated after the confirma-
tion of the execution starting sent by the target application process?”. The requirements 
contain no information about a confirmation that should be received from the target appli-
cation process. On the other hand, it says explicitly that the successful report should be 
sent after the execution start. This has resulted in different answers from the specialists. 

Despite the SRS used in this work is from a real project, the number of answers 
“yes” given in the application of the CoFI-based checklist is very low. This can be 
explained by the fact that this checklist looks for system failure situations that the 
PUS does not cover. In this way, the SRS does not describe this kind of situation. The 
idea of applying these checklists during the software requirements definition phase is 
exactly to find this kind of weakness in the SRS. 

As can be seen in tables 2 and 3, the mean time required to apply the PUS-based 
checklist is more than two times the time required to apply the CoFI-based checklist. 
This is mainly due to the number of questions of each checklist (92 question of the 
former, against 36 questions of the later). 

It is important to emphasize that the questions in the PUS-based checklist aim to ver-
ify whether the software requirements specifications complies with the PUS. On the other 
hand, the CoFI-based checklist goes beyond the standard. Through the development of 
the FSMs, this methodology provides a mean for verifying key aspects that are not ex-
plicitly approached by the standard, such as the sequence of messages changing between 
the telecommand verification service and the target application process. In addition, the 
sneak path FSMs provides a way for thinking about operational conditions not handled 
by the PUS and allows verifying the robustness and dependability of the system. 

This is the reason why the average percentage of “yes” answers in the CoFI check-
list (31.9%) was much smaller than in the PUS-based checklist (80.6%). The software 
requirements specification used as case study does not describe how the system shall 
behave in the presence of faults. As the PUS-based checklist did not contemplate this, 
the number of “yes” answers was higher. On the other hand, the CoFI-based checklist 
is not as detailed as the PUS-based checklist. 

Results show that the proposed checklists are quite complementary and can be merged 
to form a more comprehensive and representative checklist. Also, the definition of a repre-
sentative checklist for a benchmark for requirements specifications must take into account 
different sources of information. It is important to emphasize that the results obtained by 
applying the proposed benchmark can be used as a feedback to the development team. In 
fact, those results provide a measure of the completeness, robustness and accomplishment 
with the followed standards (ECSS standards). The negative answers given to the checklist 
can be used to improve these aspects in the requirements specification. 

5   Conclusion and Future Work 

This work proposed a benchmarking approach for software requirements specifica-
tions for space applications. This benchmark is based in two checklists that help  
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assessing specific characteristics of a requirements specification. As a starting point, 
the proposed work is restricted to software that implements the telecommand verifica-
tion service of the PUS, an ECSS standard. 

The definition of the first checklist was based on the analysis of PUS specification 
and the second was based on the CoFI methodology. The former evaluates whether 
the software requirement specification complies with the PUS, the latter goes beyond 
this and verifies whether the document handles situations such as the presence of 
faults. Although the PUS-based checklist does not approach this kind of situation, it 
has detailed questions about telecommand and telemetry data that verify the compli-
ance of the software requirements with the standard. 

The proposed approach has been applied to a software requirements specification 
of a real space project currently under development at INPE. Four specialists have 
applied the proposed benchmark to provide a more consistent evaluation of the study. 
Results showed that the piece of the CoFI-based checklist that aims at verifying 
whether the SRS handles situations of presence of faults is complementary to the 
PUS-based checklist. The PUS-based checklist already contemplates the remaining 
parts of the CoFI-based checklist. 

To each question of the checklist criticality could be associated, according to the 
severity of the aspect treated by that question. As a future work, we are planning to 
define how to measure the result of the benchmark considering that each question has 
a weight. Additionally, a minimum threshold value to decide whether the requirement 
specification is good enough to pass to next project phase needs to be determined. 
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