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The testing of the functionalities of an On-Board Data Handling Computer (OBDH) is a 

highly complex task, especially when a standard language, appropriate for procedures 

execution, is not available. To reduce the complexity degree, the European Cooperation for 

Space Standardization (ECSS) specified a language that can be used to standardize the test 

procedures, called Procedure Language for Users in Test and Operations (PLUTO). The use 

of such language implies some resources that are considered essential for procedures 

execution. One of them is the existence of a system data model, called Space System Model 

(SSM), also specified by ECSS. The Brazilian Institute for Space Research (INPE) wants to 

use this language to standardize the creation and execution of its test procedures, but does 

not have all the needed resources yet. To achieve this goal, a computational environment is 

being developed at INPE through the following steps: definition of an architecture that 

contains the key resources to execute PLUTO procedures; creation of procedures in the 

language syntax; modeling of the system under test through SSM specifications; and the 

development of common communication interfaces between the model and the system to be 

tested. Functional requirements of an OBDH were selected to be used on the construction of 

test procedures. These requirements are related to attitude and orbit control functionalities 

executed according to input data acquired by simulation result of a sun sensor. This paper 

describes the architecture defined to the development of this environment. 

Nomenclature  

 

ACDH = Attitude Control and Data-Handling 

AIT = Assembly, Integration and Test 

DSV = Domain-Specific View 

ECSS = European Cooperation for Space Standardization 

EGSE = Electrical Ground Support Equipment 

ESA = European Space Agency 

IDE = Integrated Development Environment 

INPE = Brazilian National Institute for Space Research 

OBDH = On-Board Data Handling 

PLUTO = Procedures Language for Users in Test and Operations 

SIA = Inertial Systems for Aerospace Application 

SSM = Space System Model 

STEPS = Spacecraft Test Procedures System 

SUT = System Under Test 

SVDA = Sun Vector’s Determination Algorithm 
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I. Introduction 

N order to validate the functionalities of a satellite, sets of test procedures are executed in different abstraction 

levels during the development phases of the space system. It is common to create test procedures using different 

languages, at different development and integration stages that do the same (or almost the same) thing. To avoid 

such “re-creation” effort, the solution is the standardization of the procedures using only one language. Once 

standardized, a single procedure could be applied in different scenarios. 

The Brazilian National Institute for Space Research (INPE) lacks such standardization. Each Electrical Ground 

Support Equipment (EGSE) developed to test the subsystems and equipments of INPE’s satellites has its own test 

procedures execution system that implements “ad-hoc” technologies or processes. This generates high costs that 

could be reduced if a single standard were followed. 

The European Cooperation for Space Standardization (ECSS) defines engineering, product assurance and project 

management standards to be applied to space activities. These standards allow a better organization of satellite’s 

development processes. One of this standards is the ‘Test and Operations Procedure Language’ that specifies a 

language standard called Procedure Language for Users in Test and Operations (PLUTO) 
1
. 

This language can be used to describe test and operation procedures to be executed in computational 

environments. In recent years, the European industry and universities and research institutes are using it in projects 

for the ESA’s missions and human resources training 
2, 3

. 

INPE’s goal is to develop a computational environment that allows test procedures creation and execution with 

the PLUTO language. This system was named ‘Spacecraft Test Procedures System’ (STEPS). A STEPS prototype 

and its architecture will be shown in this paper. To develop this prototype, a Sun Vector’s Determination Algorithm 

(SVDA) was used as a case study. This algorithm is executed by an on-board computer that is being developed 

through Inertial Systems for Aerospace Application (SIA) project. 

II. Our approach to standardize procedures with PLUTO 

A. The Procedures Structure and Needs to Use It 

Using this language for test procedures brings a set of advantage for INPE: 

1) Allows the re-use of test procedures at different levels (unit, subsystem and system); 

2) Increases the information exchange between test and operation activities; and 

3) Analyze it for application at satellite’s operation procedures. 

 

 
   Figure 1. Structure of a PLUTO procedure 

1
. 

PLUTO language is similar to a high-level 

programming language. Its structure is shown in Figure 

1. Some instructions are optional, except the ‘Main 

Body’ that is composed by steps. The steps can be a 

command or a set of commands, an action request to the 

operator or a call to another procedure.  

The language allows logical conditions construction; 

operator interaction during execution; loop routines; 

arithmetic operations with various engineering data; and 

scheduling of execution.  

In a ‘Declaration Body’ the user can declare global 

variables or events that can occur in the System Under 

Test (SUT) during the procedure execution. The 

‘Preconditions Body’ allows the description of conditions 

to start the procedure execution. These conditions can be: 

wait some time, wait until a condition or set of conditions 

become true. 

The ‘Watchdog Body’ purpose is to detect events at 

system level, for example, anomalies on some equipment. 

On a given anomaly detection, the watchdog interrupts 

the procedure execution. 

The instructions written in the ‘Confirmation Body’ verify the equipment under test or operation to make sure 

that the ‘Main Body’ steps were executed correctly. As PLUTO is an interpreted language, it needs an interpreter to 

execute its instructions set in conformance with the ECSS standard that specifies it. INPE aims to develop a 

PLUTO language interpreter for applying it in test activity during the development of its equipments and 

I 



 

 
 

 

3

subsystems, and also at AIT activities. Having an interpreter, PLUTO test procedures start to be a deliverable item, 

together with contracted subsystems and equipments. 

B. The Space System Model 
The use of the PLUTO language requires a SUT data model. ECSS has proposed a data model for the entire 

space system in its ‘Ground Systems and Operations’ standard. 

 

 
 Figure 2. Object types associated to a System Element 

5
. 

 

The data model structure must be 

hierarchical in order to represent the real 

functional decomposition of the system. This 

structure is called Space System Model 

(SSM) 
4
. 

The SSM is composed by different data 

types which are identified as objects. The 

object types are classified as System Element; 

Activity, that can be executed by it System 

Elements; Report Data that reflects the 

System Element state; and Events that can be 

handled for its control and monitoring.  

Figure 2 shows a System Element 

composed by Activities, Report Data and 

other data that are used for configuration 

management and requirements control during 

its life cycle. Any System Element can also 

comprise other System Elements. 

Due to the large amount of information in 

a SSM, there is the need to extract, for a given 

problem, only the required data. In order to do so, ECSS has specified the Domain Specific View (DSV) 
4
. A DSV is 

composed by a subset of the model needed for a given application. This concept can be used during the development 

of equipments and subsystems and only the interest data for that application are used into SSM. 

Croce
6
 applied PLUTO language and SSM concepts in its work. He stated that a PLUTO procedure must 

reference a SSM object and, in order to write or execute the procedures the best way is to maintain the SSM 

structure between the procedure executor and the SUT. During the execution, the access to the model is 

encapsulated. Seymour
7
 also says that a PLUTO procedure must refer to the SSM to read or write values into its 

objects. The data read and write into the model are done by a language interpreter during execution. 
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III. STEPS Architecture 

From those presented concepts, INPE is developing a computational environment called ‘Spacecraft Test 

Procedures System’ (STEPS) to prepare and execute test procedures. Figure 3 shows its components. 

 

 
 Figure 3. STEPS’s architecture. 

 

To start procedures execution, the SSM must be loaded in memory in order to be accessed by the language 

interpreter accesses its objects. This image of the SUT’s model is called ‘SSM Instance’. This module allocates a 

data structure into memory with the same hierarchical characteristics as the SSM specifications. Its basic operation 

is to search the model objects through parameter identification. The access to model is done through Get and Set 

requests generated by language interpreter and sent to the ‘SSM Instance’. 

A Get request reads an object of type Event or Report Data. A Set request writes data into a SSM object or 

requests an execution, if the object is Activity type. If the SSM receives a Get request from ‘PLUTO Interpreter’, it 

returns the last acquired value and if it receives a Set request, it interacts with SUT through transmission of 

telecommand and telemetry. The communication between ‘SSM Instance’ and ‘SUT’ is done by an interface that 

interprets the object purpose and transcribes its purpose into telecommand. 

‘SSM Instance’ module is composed by the ‘Identify Events’ and ‘External Interfaces’ components. The first can 

be used by the user to define customized Events in SUT context. An Event can be the occurrence of conditions that 

can be configured by the user into SSM or generated by SUT. The second component allows communication from 

procedure interpreter with external equipments. In some cases, a test procedure requires interaction of other 

equipment with SUT to achieve the test objectives. 

Once instantiated, the SSM can be accessed by the ‘PLUTO Interpreter’. ‘PLUTO interpreter’ interprets the 

procedure steps to execute it and sends Get and Set requests to the instantiated model. This architecture also has 

support elements to prepare and monitor the SUT model and PLUTO procedures and to store test results. 
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IV. Developing a STEPS Prototype 

A. A Case Study for the STEPS Prototype 

The INPE’s On-Board Data Handling team is developing an on-board computer to the SIA’s project orbital 

platform. As this on-board computer will execute both On-Board Data Handling and the Attitude Control functions, 

it is being called Attitude Control and Data Handling (ACDH) Computer. The ACDH Computer has communication 

interfaces with other equipments and subsystems including four solar sensors, each one measuring the intensity of 

sunlight on one face of the platform. 

ACDH Computer flight software runs a Sun Vector’s Determination Algorithm (SVDA) to define the satellite 

control parameters. It receives measurement values from four solar sensors and determines the current satellite 

attitude with respect to the Sun and, if necessary, to perform an attitude maneuver to point the solar panels to it. 

Figure 4 illustrates the four solar sensors scenario. 

 

 
 Figure 4. Case Study (Sun Vector’s Determination Scenario). 

 

SVDA calculates the X, Y and Z axis from sensors values and release it to satellite attitude control with three-

axis stabilization. To test this case, the EGSE communicates with ACDH Computer through analog and digital 

interfaces to send analog values to simulate the solar sensors. The on-board computer receives the EGSE analog 

values and uses it as parameters to SVDA execution. 

This case study was created to exercise the STEPS prototype, not being representative of a real attitude 

determination scenario. 

B. The STEPS Prototype 

From the case study a SSM and a PLUTO procedure to test SVDA were developed. The SSM includes all data 

relevant to the SVDA context: four input parameters generated by solar sensors and three output parameters 

generated by SVDA. The procedure has instructions to access the objects from model. Figure 5 shows the procedure 

created for this case study. 
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 1 procedureprocedureprocedureprocedure Sun_Vector_Determination  

 2 DDDDeclareeclareeclareeclare    

 3 variable real variable real variable real variable real X_Axis :=:=:=:= 0.0 degdegdegdeg;;;; 

 4 variable real variable real variable real variable real Y_Axis :=:=:=:= 0.0 degdegdegdeg;;;; 

 5 variable real variable real variable real variable real Z_Axis :=:=:=:= 0.0 degdegdegdeg;;;; 

 6 variable real variable real variable real variable real analog_value_out1 :=:=:=:= 0.0 VoltsVoltsVoltsVolts;;;; 

 7 variable real variable real variable real variable real analog_value_out2 :=:=:=:= 0.0 VoltsVoltsVoltsVolts;;;; 

 8 variable real variable real variable real variable real analog_value_out3 :=:=:=:= 0.0 VoltsVoltsVoltsVolts;;;; 

 9 variable real variable real variable real variable real analog_value_out4 :=:=:=:= 0.0 VoltsVoltsVoltsVolts;;;; 

10 end declare        end declare        end declare        end declare            

11 preconditionspreconditionspreconditionspreconditions    

12 wait until wait until wait until wait until switch_on ofofofof ACDH_COMPUTER = true;= true;= true;= true; 

13 end preconditionsend preconditionsend preconditionsend preconditions    

14 mainmainmainmain    

15 Simulate Environment Analog_Value_Out_1 ofofofof SUN_SENSOR_A ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;; 

16 Simulate Environment Analog_Value_Out_2 ofofofof SUN_SENSOR_B ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;; 

17 Simulate Environment Analog_Value_Out_3 ofofofof SUN_SENSOR_C ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;; 

18 Simulate Environment Analog_Value_Out_4 ofofofof SUN_SENSOR_D ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;; 

19 analog_value_out1 :=:=:=:= Analog_Value_Out_1 ofofofof SUN_SENSOR_A ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;; 

20 analog_value_out2 :=:=:=:= Analog_Value_Out_2 ofofofof SUN_SENSOR_B ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;; 

21 analog_value_out3 :=:=:=:= Analog_Value_Out_3 ofofofof SUN_SENSOR_C ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;; 

22 analog_value_out4 :=:=:=:= Analog_Value_Out_4 ofofofof SUN_SENSOR_D ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;; 

23 wait for wait for wait for wait for 0.5 ssss;;;; 

24    X_Axis :=:=:=:= Sun_Vector_X_Axis ofofofof SUN_VECTOR_ALG ofofofof ACDH_COMPUTER ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;; 

25    inform userinform userinform userinform user “X axis result: ” X_Axis;;;; 

26    Y_Axis :=:=:=:= Sun_Vector_Y_Axis ofofofof SUN_VECTOR_ALG ofofofof ACDH_COMPUTER ofofofof ACDH_SUBSYSTEM ooooffff SATELLITE;;;; 

27    inform userinform userinform userinform user “Y axis result: ” Y_Axis;;;; 

28    Z_Axis :=:=:=:= Sun_Vector_Z_Axis ofofofof SUN_VECTOR_ALG ofofofof ACDH_COMPUTER ofofofof ACDH_SUBSYSTEM ofofofof SATELLITE;;;; 

29    inform userinform userinform userinform user “Z axis result: ” Z_Axis;;;; 

30 end mainend mainend mainend main    

31 endendendend    

    

 Figure 5. PLUTO procedure defined for the case study. 
 

Access to objects from model is done through procedure either for data reading or writing. The procedure 

described at Figure 5, has a command called Simulates Environment that is not specified in PLUTO standard. It was 

defined due to an expected need regards to the interaction from SUT with other equipments during the tests. At this 

work, ADVS depends on interaction between ACDH Computer and solar sensors. When the Simulates Environment 

command is interpreted, the PLUTO Interpreter sends a Set request to SSM Instance. Then SSM Instance uses the 

communication mechanism that was defined in the External Interfaces to keep communication with these solar 

sensors. 

Although due to the lack of these solar sensors, a simulator was created to send relevant data to ACDH 

Computer. This simulator sends four individual values to be used as input data by ADVS. The usage of this 

simulator can be manually or automated by a PLUTO procedure as presented in this work. 

Figure 6 shows the STEPS prototype Graphical User Interface (GUI). This prototype loads the SSM, shows SSM 

hierarchical and waits for start of procedure execution. It also affords data visualization through ‘Housekeeping 

Data’ area during execution. The procedure and model were described in text format and XML scheme. The 

confirmation status of each procedure command is informed as ‘confirmed’, ‘not confirmed’ or ‘aborted’ and each 

operation made by interpreter is also informed in the Output Log area. 
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 Figure 6. STEPS’s Graphical Interface. 

 

V. Conclusions 

This work represents a first effort to standardize INPE’s test procedures with PLUTO language. A prototype was 

developed having a ‘PLUTO Interpreter’ with routines to execute a procedure and a ‘SSM Instance’ to manage a 

model. Both were applied to the presented case study. Communication mechanisms between interpreter and 

instanced model were developed to allow its communication with SUT and external equipment. Our goal is to 

follow with the STEPS development to create a full ‘PLUTO Interpreter’ and a ‘SSM Manager’ with GUIs to 

facilitate the preparation and to monitor the test procedures execution. 
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