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Abstract. This paper presents a technique for reducing speckle in Po-
larimetric Synthetic Aperture Radar (PolSAR) imagery using Nonlocal
Means and a statistical test based on stochastic divergences. The main
objective is to select homogeneous pixels in the filtering area through
statistical tests between distributions. This proposal uses the complex
Wishart model to describe PolSAR data, but the technique can be ex-
tended to other models. The weights of the location-variant linear filter
are function of the p-values of tests which verify the hypothesis that two
samples come from the same distribution and, therefore, can be used
to compute a local mean. The test stems from the family of (h-φ) di-
vergences which originated in Information Theory. This novel technique
was compared with the Boxcar, Refined Lee and IDAN filters. Image
quality assessment methods on simulated and real data are employed to
validate the performance of this approach. We show that the proposed
filter also enhances the polarimetric entropy and preserves the scattering
information of the targets.

Keywords: Hypothesis testing, Information theory, Multiplicative noise,
PolSAR imagery, Speckle reduction, Stochastic distances, Synthetic Aper-
ture Radar

1 Introduction

Among the remote sensing technologies, Polarimetric Synthetic Aperture Radar
(PolSAR) has achieved a prominent position. PolSAR imaging is a well-developed

? The authors are grateful to CNPq, CAPES, FAPEAL and FAPESP for supporting
this research.
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coherent microwave remote sensing technique for providing large-scale two-di-
mensional (2-D) high spatial resolution images of the Earth’s surface dielectric
properties [20].

In SAR systems, the value at each pixel is a complex number: the amplitude
and phase information of the returned signal. Full PolSAR data is comprised of
four complex channels which result from the combination of the horizontal and
vertical transmission modes, and horizontal and vertical reception modes.

The speckle phenomenon in SAR data hinders the interpretation these data
and reduces the accuracy of segmentation, classification and analysis of objects
contained within the image. Therefore, reducing the noise effect is an important
task, and multilook processing is often used for this purpose in single- and full-
channel data. In the latter, such processing yields a covariance matrix in each
pixel, but further noise reduction is frequently needed.

According to Lee and Pottier [20], Polarimetric SAR image smoothing re-
quires preserving the target polarimetric signature. Such requirement can be
posed as: (i) each element of the image should be filtered in a similar way to
multilook processing by averaging the covariance matrix of neighboring pixels;
and (ii) homogeneous regions in the neighborhood should be adaptively selected
to preserve resolution, edges and the image quality. The second requirement,
i.e. selecting homogeneous areas given similarity criterion, is a common problem
in pattern recognition. It boils down to identifying observations from different
stationary stochastic processes.

Usually, the Boxcar filter is the standard choice because of its simple design.
However, it has poor performance since it does not discriminate different targets.
Lee et al. [17,18] propose techniques for speckle reduction based on the multi-
plicative noise model using the minimum mean-square error (MMSE) criterion.
Lee et al. [19] proposed a methodology for selecting neighboring pixels with sim-
ilar scattering characteristics, known as Refined Lee filter. Other techniques use
the local linear minimum mean-squared error (LLMMSE) criterion proposed by
Vasile et al. [37], in a similar adaptive technique, but the decision to select homo-
geneous areas is based on the intensity information of the polarimetric coherency
matrices, namely intensity-driven adaptive-neighborhood (IDAN).

Çetin and Karl [4] presented a technique for image formation based on regu-
larized image reconstruction. This approach employs a tomographic model which
allows the incorporation of prior information about, among other features, the
sensor. The resulting images have many desirable properties, reduced speckled
among them. Our approach deals with data already produced and, thus, does
not require interfering in the processing protocol of the data.

Osher et al. [25] presented a novel iterative regularization method for inverse
problems based on the use of Bregman distances using a total variation denoising
technique tailored to additive noise. The authors also propose a generalization for
multiplicative noise, but no results with this kind of contamination are show. The
main contributions were the rigorous convergence results and effective stopping
criteria for the general procedure, that provides information on how to obtain
an approximation of the noise-free image intensity. Goldstein and Osher [15]
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presented an improvement of this work using the class of L1-regularized opti-
mization problems, that originated in functional analysis for finding extrema of
convex functionals. The authors apply this technique to the Rudin-Osher-Fatemi
model for image denoising and to a compressed sensing problem that arises in
magnetic resonance imaging. Our work deals with full polarimetric data, for
which, to the best of our knowledge, there are no similar results that take into
account its particular nature: the pixels values are definite positive Hermitian
complex matrices.

Soccorsi et al. [28] presented a despeckling technique for single-look com-
plex SAR image using nonquadratic regularization. They use an image model, a
gradient, and a prior model, to compute the objective function. We employ the
full polarimetric information provided by the multilook scaled complex Wishart
distribution.

Chambolle [5] proposed a Total Variation approach for a number of problems
in image restoration (denoising, zooming and mean curvature motion), but under
the Gaussian additive noise assumption.

Li et al. [21] propose the use of a particle swarm optimization algorithm and
an extension of the curvelet transform for speckle reduction. They employ the
homomorophic transformation, so their technique can be used either in ampli-
tude or intensity data, but not in complex-valued imagery, as is the case we
present here.

Wong and Fieguth [41] presented a novel approach for performing blind
decorrelation of SAR data. They use a similarity technique between patches
of the point-spread function using a Bayesian least squares estimation approach
based on a Fisher-Tippett log-scatter model. In a similar way, Sølbo and Eltoft [29]
assume a Gamma distribution in a wavelet-based speckle reduction procedure,
and they estimate all the parameters locally without imposing a fixed number
of looks (which they call “degree of heterogeneity”) for the whole image.

Buades et al. [3] proposed a methodology, termed Nonlocal Means (NL-
means), which consists in using similarities between patches as the weights
of a mean filter; it is known to be well suited for combating additive Gaus-
sian noise. Deledalle et al. [11] applied this methodology to PolSAR data using
the Kullback-Leibler distance between two zero-mean complex circular Gaus-
sian laws. Following the same strategy, Chen et al. [6] used the test for equality
between two complex Wishart matrices proposed by Conradsen et al. [8].

This paper proposes a new approach for speckle noise filtering in PolSAR
imagery: an adaptive nonlinear extension of the NL-means algorithm. This is
an extension of previous works [33,34], where we used an approach similar to
that of Nagao and Matsuyma [23]. Overlapping samples are compared based
on stochastic distances between distributions, and the p-values resulting from
such comparisons are used to build the weights of an adaptive linear filter.
The goodness-of-fit tests are derived from the divergences discussed by Frery
et al. [14] and Nascimento et al. [24]. The new proposal is called Stochastic
Distances Nonlocal Means (SDNLM), and amounts to using those observations
which are not rejected by a test seeking for a strong stationary process.
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This paper is organized as follows. First, we summarize the basic principles
that lead to the complex Wishart model for full polarimetric data. In Section 3 we
recall the Nonlocal Means method. Our approach for reducing speckle in PolSAR
data using stochastic distances between two complex Wishart distributions is
proposed in Section 4. Image Quality Assessment is briefly discussed in Section 5.
Results are presented in Section 6, while Section 7 concludes the paper.

2 The Complex Wishart Distribution

PolSAR imaging results in a complex scattering matrix, which includes intensity
and relative phase data [14]. Such matrices have usually four distinct complex
elements, namely SVV , SVH , SHV , and SHH , where H and V refer to the horizon-
tal and vertical wave polarization states, respectively. In a reciprocal medium,
which is most common situation in remote sensing, SVH = SHV so the com-
plex signal backscattered from each resolution cell can be characterized by a
scattering vector Y with three complex elements [36].

Thus, we have a scattering complex random vector Y = [SHH , SVH , SVV ]t,
where [·]t indicates vector transposition. In general, PolSAR data are locally
modeled by a multivariate zero-mean complex circular Gaussian distribution
that characterize the scene reflectivity [35,36], whose probability density function
is

f(Y ;Σ) =
1

π3|Σ|
exp
{
−Y ∗tΣ−1Y

}
,

where | · | is the determinant, and the superscript ‘∗’ denotes the complex con-
jugate of a vector; Σ is the covariance matrix of Y . This distribution is defined
on C3. The covariance matrix Σ, besides being Hermitian and positive definite,
has all the information which characterizes the scene under analysis.

Multilook processing enhances the signal-to-noise ratio. It is performed av-
eraging over L ideally independent looks of the same scene, and it yields the
sample covariance matrix Z given, in each pixel, by Z = L−1

∑L
ι=1 YιY

∗
ι , where

L is the number of looks.
Goodman [16] proved that Z follows a scaled multilook complex Wishart

distribution, denoted by Z ∼W(Σ, L), and characterized by the following prob-
ability density function:

fZ(Z ′;Σ, L) =
L3L|Z ′|L−3

|Σ|LΓ3(L)
exp
{
−L tr

(
Σ−1Z ′

)}
, (1)

where, for L ≥ 3, Γ3(L) = π3
∏2
i=0 Γ (L − i), Γ (·) is the gamma function, tr(·)

is the trace operator, and the covariance matrix Z is given by

Σ = E{Y Y ∗t} =

E{SHHS∗HH} E{SHHS∗VH} E{SHHS∗VV }E{SVHS∗HH} E{SVHS∗VH} E{SVHS∗VV }
E{SVV S∗HH} E{SVV S∗VH} E{SVV S∗VV }

 ,
where E{·} denote expectation. Anfinsen et al. [2] removed the restriction L ≥ 3.
The resulting distribution has the same form as in (1) and is termed the “relaxed”
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Wishart. We assume this last model, and we allow variations of L along the
image.

The support of this distribution is the cone of positive definite Hermitian
complex matrices [12].

The parameters are usually estimated by maximum likelihood (ML) due to
its statistical properties. Let Zr be a random matrix which follows a W(Σ, L)
law. Its log-likelihood function is given by

`r(Σ, L) = 3L logL+ (L− 3) log |Zr| − L log |Σ| − 3 log π−
2∑
q=0

logΓ (L− q)− Ltr(Σ−1Zr),

resulting in the following score function:

∇`r =

(
Lvec(Σ−1ZrΣ

−1 −Σ−1)

3(logL+ 1) + log |Zr| − log |Σ| −
∑2
j=0 ψ

0(L− j)− tr(Σ−1Zr)

)
,

where ψ0 is the digamma function. Let {Z1,Z2, . . . ,ZN} be an i.i.d. random

sample of size N from theW(Σ, L) law. The ML estimator (Σ̂, L̂) of its param-

eters is Σ̂ = Z = N−1ΣN
r=1Zr and the solution of

3 log L̂+
1

N

N∑
r=1

log |Zr| − log |Z| −
2∑
q=0

ψ0(L̂− q) = 0. (2)

The case L < q was also treated by Anfinsen et al. [2].

3 Nonlocal Means

The NL-means method was proposed by Buades et al. [3] based on the redun-
dancy of neighboring patches in images. In this method, the noise-free estimated
value of a pixel is defined as a weighted mean of pixels in a certain region. Un-
der the additive white Gaussian noise assumption, these weights are calculated
based on Euclidean distances which are used to measure the similarity between
a central region patch and neighboring patches in a search window. The filtered
pixel is computed as:

g(x, y) =

∑
u,v∈W f(x+ u, y + v)w(u, v)∑

u,v∈W w(u, v)
, (3)

where w(u, v) are the weights defined on the search window W . The resulting
image g is, thus, the convolution of the input image f with the mask w =
w′/

∑
w′(u, v). The factor w′(u, v) is inversely proportional to a distance between

the patches, and is given by

w′(u, v) = exp
{
− 1

h

∑
k∈P

|f(ρu(k))− f(ρv(k))|2
}
,
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where h > 0 controls the intensity, in a similar way the temperature controls
the Simulated Annealing algorithm, f(ρu(k)) and f(ρv(k)) are the observations
in the k-th pixels of the patches centered in u and v, respectively. When h →
∞ the weights tend to be equal, while when h → 0 they tend to zero unless
f(ρu(k)) = f(ρv(k)). In the first case the filter becomes a mean over the search
window; in the last case, the filtered value will remain unaltered.

The NL-Means proposal and its extensions rely on computing the weights
of a convolution mask as functions of similarity measures: the closer (in some
sense) two patches are, the heavier the contribution of the central pixel to the
filter.

Deledalle et al. [10] analyze several similarity criteria for data which depart
from the Gaussian assumption. In particular, the authors consider the Gamma
and Poisson noises, because they are good image models. Deledalle et al. [9]
extended the NL-means method to speckled imagery using statistical inference
in an iterative procedure. The authors derive the weights using the likelihood
function of Gaussian and square root of Gamma (termed “Nakagami-Rayleigh”)
noises. This idea is extended by Deledalle et al. [11] to PolSAR data under the
complex Gaussian distribution, and by Su et al. [30] to multitemporal PolSAR
data.

Chen et al. [6] presented a NL-Means filter for PolSAR data under the com-
plex Wishart distribution. The authors employ the likelihood ratio test of equal-
ity between two W(Σ, L) laws with the same number of looks L, as presented
by Conradsen et al. [8], to calculate the weights between the patches.

Our proposal addresses the problem in a more general fashion: we use the
p-value of a goodness-of-fit test between two samples. The tests are derived using
an Information Theory approach to compute stochastic divergences, which are
turned into distances and then scaled to exhibit good asymptotic properties:
they obey a χ2 distribution. The weights are computed with a soft threshold
which incorporates all the observations which were not rejected by the test, and
some of the others. As presented in the next section, all these elements can be
easily generalized to other models, tests and weight functions.

4 Stochastic Distances Filter

4.1 The weights

In this paper we use a 7×7 search window. The shape and size of the neighboring
patches and the central patch are the same: squares of 3× 3 pixels. The central
patch, with center pixel Z1, is thus compared with 24 neighboring patches, whose
center pixels are Zi, i = 2, . . . , 25, as illustrated in Figure 1.

The estimate of the noise-free observation at Z1 is a weighted sum of the
observations at Z2, . . . ,Z25, being each weight a function of the p-value (p(1, i))
observed in a test of same distribution between two complex Wishart laws:

w(1, i) =


1 if p(1, i) ≥ η,
2
ηp(1, i)− 1 if η

2 < p(1, i) < η,

0 otherwise,

(4)
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Z1

Z2

Fig. 1. Central pixel Z1 and its neighboring Zi, i = {2, . . . , 25} with patches 3 × 3
pixels and filtering window 5× 5 pixels.

where η is the significance of the test, specified by the user. By definition,
p(1, 1) = 1. This function is illustrated in Figure 2.

0

1

w(1, i)

η/2 η 1 p(1, i)

Fig. 2. Weight function.

In this way we employ a soft threshold instead of an accept-reject decision.
This allows the use of more evidence than with a binary decision, as the one
used in [32,34] which was 1 if the sample was not rejected and 0 otherwise.

When all weights are computed, the mask of convolution coefficients is scaled
to add one.

This setup can be generalized in many ways, among them:

– The support, i.e., the set of positions i do not need to be local; it can extend
arbitrarily.

– The shape and size of the local windows.
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– The weight function; we opted for the piecewise linear function presented in
equation (4) as a good compromise between generality and computational
cost.

– The test which produces each p-value.

The rationale for using the weight function specified in equation (4) is the
following. If the p-values were used instead, the presence of a single sample with
excellent match to the central sample would dominate the weights in the mask,
forcing other samples that were not rejected by the test to be practically dis-
carded. For instance, consider the case p(1, i1) = 0.89, p(1, i2) = 0.05 and all
other p-values close to zero. Without the weight function, the nonzero weights
would be, approximately, 0.46 and 0.03, so the second observation would have
a negligible influence on the filtered value while the first, along with the cen-
tral value, dominate the result. Using the aforementioned expression, the three
weights would equal 1/3. This increases the smoothing effect without loosing the
discriminatory ability.

4.2 The statistical test

As defined in the previous section, filtering each pixel requires computing a
number of goodness-of-fit tests between the patch around the central pixel Z1

and the patches surrounding pixels Zi, 2 ≤ i ≤ 25. This will be performed using
tests derived from stochastic distances between samples.

Denote θ̂1 the estimated parameter in the central regionZ1, and
(
θ̂2, . . . , θ̂25

)
the estimated parameters in the remaining areas. To account for possible de-
partures from the homogeneous model, we estimate θ̂ = (Σ̂, L̂) by maximum
likelihood.

The proposal is based on the use of stochastic distances between the patches.
Consider that Z1 and Zi, 2 ≤ i ≤ 25, are random matrices defined on the
same probability space, whose distributions are characterized by the densities
fZ1(Z ′;θ1) and fZi(Z

′;θi), respectively, where θ1 and θi are parameters. As-
suming that the densities have the same support given by the cone of Hermitian
positive definite matrices A, the h-φ divergence between fZ1

and fZi
is given

by

Dh
φ(Z1,Zi) = h

(∫
A
φ
(fZ1

(Z ′;θ1)

fZi(Z
′;θi)

)
fZi

(Z ′;θi) dZ ′
)
,

where h : (0,∞) → [0,∞) is a strictly increasing function with h(0) = 0 and
h′(x) > 0 for every x ∈ R, and φ : (0,∞) → [0,∞) is a convex function [26].
Choices of functions h and φ result in several divergences.

Divergences sometimes are not symmetric. A simple solution, described in
Frery et al. [14,24,13], is to define a new measure dhφ given by

dhφ(Z1,Zi) =
Dh
φ(Z1,Zi) +Dh

φ(Zi,Z1)

2
.
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Distances, in turn, can be conveniently scaled to present good statistical prop-
erties that make them suitable as test statistics [26]:

Shφ(θ̂1, θ̂i) =
2mn

(m+ n)h′(0)φ′′(1)
dhφ(θ̂1, θ̂i), (5)

where θ̂1 and θ̂i are maximum likelihood estimators based on samples size m
and n, respectively. When θ1 = θi, under mild conditions Shφ(θ̂1, θ̂i) is asymp-

totically χ2
M distributed, being M the dimension of θ1. Observing Shφ(θ̂1, θ̂i),

the (asymptotic) p-value of the test is p = Pr(χ2
M > Shφ(θ̂1, θ̂i)), and the null

hypothesis θ1 = θi can be rejected at significance level η if p ≤ η; details can
be seen in the work by Salicrú et al. [26]. Since we are using the same central

sample for 24 nontrivial tests (notice that Shφ(θ̂1, θ̂1) = 0).
Frery et al. [14,13] obtained several distances betweenW(Σ, L) distributions.

The test used in this paper was derived from the Hellinger distance, yielding:

SH(θ̂1, θ̂i) =
8mn

m+ n

[
1−

∣∣∣( L̂1Σ̂
−1
1 +L̂iΣ̂

−1
i

2

)−1∣∣∣(L̂1+L̂i)/2

|Σ̂1|L̂1/2 |Σ̂i|L̂i/2

√
L̂3L̂1
1 L̂3L̂i

i

2∏
q=0

Γ ( L̂1+L̂i

2 − q)√
Γ (L̂1 − q) Γ (L̂i − q)

]
, (6)

provided L ≥ 3. If L < 3, the following expression can be used

SH(θ̂1, θ̂i) =
8mn

m+ n

[
1−

(∣∣( Σ̂−1
1 +Σ̂−1

i

2

)−1∣∣√
|Σ̂1| |Σ̂i|

)(L̂1+L̂i)/2
]

;

it was also derived by Frery et al. [14,13] for the case when L1 = L2 = L; in

this last case, the equivalent number of looks L̂ should be estimated using all
the available data, for instance as presented by Anfinsen et al. [2]. The setup
presented in Section 4.1 leads to m = n = 9 since squared windows of side 3 are
used.

The tests based on the Kullback-Leibler, Bhattacharyya and Rényi of order
β ∈ {.1, .5, .9} were also used. They produced almost exactly the same results
as of the Hellinger distance, at the expense of more computational load.

Although the distribution of the test statistics given in equation (5) is only
known in the limit when m,n→∞ such that m/(m+n)→ λ ∈ (0, 1), it has been
observed that the difference between the asymptotic and empirical distributions
is negligible in samples as small as the ones considered in this setup [13,14].

The filter obtained using the p-values produced by the test statistic given
in equation (6) can be applied iteratively. The complex Wishart distribution is
preserved by convolutions, and since the number of looks is estimated in every
pairwise comparison, the evolution of the filtered data is always controlled. This
also holds for any filter derived from h-φ divergences and the setup presented in
Section 4.1.

Computational information about our implementation is provided in A.
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5 Image Quality Assessment

According to Wang et al. [39] image quality assessment in general, and filter
performance evaluation in particular, are hard tasks and crucial for most image
processing applications.

We assess the filters using simulated and real input data by means of visual
inspection and quantitative measures. Visual inspection includes edges, small
features and color preservation. The measures are computed on the HH, HV
and VV intensity channels, and they amount to (a) the Equivalent Number of
Looks (ENL) in homogeneous areas; and (b) the Structural Similarity Index
Measure (SSIM), proposed by Wang et al. [40] for measuring the similarity be-
tween two images. (c) the Blind/Referenceless Image Spatial QUality Evaluator
(BRISQUE), proposed by Mittal et al. [22] to a holistic measure of quality on
no-reference images.

The equivalent number of looks N̂ can be estimated by maximum likelihood
solving equation (2). The ENL although it is a measure of the signal to noise
ratio, and it must be considered carefully since it will repute highly blurred
data as excellent: for this measure, the best result is a completely flat (constant)
image, i.e., an image with no information whatsoever. The Boxcar filter usually
has a higher ENL than other proposals because it will always use all the pixels in
the filtering window and the result is a large loss of spatial resolution. Therefore,
the equivalent number of looks should be used with care and only to assess noise
reduction and not image quality in general.

The SSIM index is a structural information measure that represents the
structure of objects in the scene, regardless the average luminance and con-
trast. The SSIM index takes into account three factors: (I) correlation between
edges; (II) brightness distortion; and (III) distortion contrast. Let f and g be the
original data and the filtered version, respectively, the SSIM index is expressed
by

SSIM(f, g) =
Cov(f, g) + C1

σ̂f σ̂g + C1

2fg + C2

f
2

+ g2 + C2

2σ̂f σ̂g + C3

σ̂2
f + σ̂2

g + C3
,

where f and g are sample means, σ̂2
f and σ̂2

g are the sample variances, Cov(f, g)
is the sample covariance between f and g, and the constants C1, C2, C3 are
intended to stabilize the index. Following [40], we used the following values:
C1 = (K1L)2, C2 = (K2L)2 and C3 = C2/2, where L is the observed dynamic
range and both K1,K2 � 1; we used K1 = 0.01 and K2 = 0.03.

The SSIM is defined for scalar-valued images and it ranges in the [−1, 1]
interval, being the bigger value observed is the better result. It was computed
on each intensity channel as the means over squared windows of side 8, and the
reported value is the mean over the three channels. This index is a particular
case of the Universal Quality Index proposed by Wang and Bovik [38]. We also
applied this last measure to all the images here discussed, and the results were
in full agreement with those reported by the SSIM index.

The BRISQUE is a model that operates in the spatial domain and requires
no-reference image. This image quality evaluator does not compute specific dis-
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tortions such as ringing, blurring, blocking, or aliasing, but quantifies possible
losses of “naturalness” in the image. This approach is based on the principle
that natural images possess certain regular statistical properties that are mea-
surably modified by the presence of distortions. No transformation to another
coordinate frame (DFT, DCT, wavelets, etc) is required, distinguishing it from
previous blind/no-reference approaches. The BRISQUE is defined for scalar-
valued images and it ranges in the [0, 100] interval, and smaller values indicate
better results.

6 Results

The proposed filter, termed “SDNLM (Stochastic Distances Nonlocal Means)
filter” was compared with the Refined Lee (Scattering-model-based), IDAN
(intensity-driven adaptive-neighborhood) and Boxcar filters. These filters act on
a well defined neighborhood (as our implementation of the SDNLM): a squared
search window of side of 5 × 5 pixels, and the former is adaptive (as is the
SDNLM).

6.1 Simulated data

Sampling from the Wishart distribution The simulated data was obtained
mimicking real data from six classes on a phantom, a segmented image of size
496× 496. The original data were produced by a polarimetric sensor aboard the
R99-B Brazilian Air Force aircraft in October 2005 over Campinas, São Paulo
State, Brazil. The sensor operates in the L-band, and produces imagery with
four nominal looks. The data were simulated in single look, i.e., in the lowest
signal-to-noise possible configuration. The covariance matrices are reported in B.

Figures 3(a) and 3(b) show, respectively, the phantom and simulated single-
look PolSAR image with with false color using |SHH |2 in the Red channel, |SHV |2
in the Green channel, and |SVV |2 in the Blue channel. The filtered versions with
the Boxcar, Refined Lee, IDAN and SDNLM filters are shown in Figures 3(c),
3(d), 3(e) and 3(f), respectively. The latter was obtained at the η = 90% confi-
dence level.

The noise reduction is noticeable in all the four filtered images. The speckled
effect was mitigated without loosing the color balance, but the Boxcar filter
produces a blurred image. The Refined Lee filter also introduces some blurring,
but less intense that the Boxcar filter. The IDAN filter also reduces noise, but
less effectively that the Refined Lee. The SDNLM filter is the one which best
preserves edges. This is particularly noticeable in the fine strip which appears
light, almost white, to the upper left region of the image. After applying the
Boxcar filter it appears wider than it is. The star-shaped bright spot in the
middle of the blue field looses detail after Boxcar, Refined Lee and IDAN filters
are applied, while the SDNLM noise reduction technique preserves its details
well. The Refined Lee filter introduces a noticeable pixellation effect which is
evident mainly in the brown areas.
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The Canny detector was applied to the HH band of all the available data
presented in Figure 3, and the results are presented in Figure 4. Even when
applied to the phantom, the Canny detector fails to produce continuous edges in
a few situations. In particular, it completely misses the small light features and a
few edges between regions; see Figure 4(a). Edge detection with this method is,
in practice, impossible using the original single-look data, cf. Figure 4(b) with the
other results, although a few large linear features are visible in the clutter of noisy
edges. As expected, the edges detected in the Boxcar filtered image are smooth,
but they neither grant continuity nor identify fine details; this information is
lost by the filter, see Figure 4(c). The edges detected in the image processed by
the IDAN filter are only marginally better than those observed in the original,
unfiltered, data; see Figure 4(e). Figures 4(d) and 4(f) are the edges detected on
the data filtered by the Refined Lee and SDNLM filters, respectively. Although
they look alike, it is noticeable that the latter preserves better the small details;
see, for instance, the star-shaped object to the center-right of the image. It
appears round in the former, while in the latter it is possible to identify minute
variations.

The phantom is available, so it is possible to make a quantitative assessment
of the results. Table 1 presents the assessment of the filters in the three intensity
channels HH, HV and VV of the data presented in Figure 3 using the Equivalent
Number of Looks (ENL) and the SSIM index.

Table 1. Image quality indexes in the images shown in Figure 3.

Filter
ENL SSIM Index

HH HV VV HH HV VV

Boxcar 15.696 5.768 25.111 0.083 0.038 0.083
Refined Lee 11.665 10.136 14.398 0.164 0.092 0.144

IDAN 2.164 3.171 1.977 0.199 0.137 0.188
SDNLM 80% 7.269 5.999 11.217 0.234 0.150 0.230
SDNLM 90% 8.786 6.578 13.559 0.181 0.101 0.177
SDNLM 99% 14.429 7.129 23.787 0.101 0.055 0.101

The ENL was estimated on homogeneous areas far from edges, so no smudg-
ing from other areas contaminated these values. As expected, the most intense
blurring produces the best results with respect to this criterion: the Boxcar filter
outperforms in two out of three bands and, when, it is not the best, the Refined
Lee filter is. Regarding the Equivalent Number of Looks, IDAN produces worse
results, but a good performance in SSIM index. The SDNLM filter improves
with respect to the ENL criterion when the significance level increases. In order
to make it competitive with the Boxcar, Refined Lee and IDAN filters, the ap-
plication to real data was done using η = 90%. Regarding the SSIM index, our
proposal consistently outperforms the other three filters and, as expected, the
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smallest the significance of the test the better the performance is with respect
to this criterion since the least the image is blurred.

Physical-based simulation Sant’Anna et al. [27] proposed a methodology for
simulating PolSAR imagery taking into account the electromagnetic character-
istics of the targets and of the sensing system. The simulated images are more
realistic than the ones obtained by merely stipulating the posterior distribu-
tion given the classes, in particular spatial correlation among pixels emerges and
mixture of classes in the borders as observed.

Each simulated pixel is a complex scattering matrix based on a phantom
image (an idealized cartoon model) with five distinct regions. Multifrequency
sets of single-look PolSAR images have been generated in the L-, C- and X-bands,
corresponding to 1.25 , 5.3 and 9.6 GHz, respectively. The acquisition geometry
is that of an airborne monostatic sensor flying at 6,000 m of altitude and 35 ◦

grazing angle imaging a 290× 290 m2 area terrain. The 3.0 m spatial resolution
and 2.8 m pixel spacing were set in the range and the azimuth directions. The
data have 128× 128 pixels; details in [27].

Figure 5 shows the simulated images in the L-, C- and X-bands (Figures 5(a),
5(f) and 5(k), resp.) and its filtered versions by the Boxcar (Figures 5(b), 5(g)
and 5(l), resp.), Refined Lee (Figures 5(c), 5(h) and 5(m), resp.), IDAN (Fig-
ures 5(d), 5(i) and 5(n), resp.) and SDNLM filters (Figures 5(e), 5(j) and 5(o),
resp.) with η = 90%.

The three main visual drawbacks of the Boxcar, Refined Lee and IDAN filters
are noticeable in these results, namely the excessive blurring introduced by the
former, and the pixellate effect produced by the latter. The SDNLM filter con-
sistently presents a good compromise between smoothing and edge preservation.

Table 2 presents the assessment of the filters in three intensity channels by
means of the ENL (computed in the central region, a homogeneous area), and
by means of the SSIM index. The best results are highlighted in boldface. The
results are consistent with those observed in Table 1: the Boxcar filter is the best
with respect to the ENL computed in homogeneous areas far from edges, but
the SDNLM filter outperforms the other three filters when a more sophisticated
metric is used: the SSIM index, which takes into account not only smoothness
but structural information. Regarding these data, the ideal significance level lies
approximately between η = 80% and η = 90%; these values provide a good
smoothing without compromising the structural information.

6.2 Real data

In the remainder of this section the data will be presented in false color using the
Pauli decomposition [20]. This representation of PolSAR data has the advantage
of being interpretable in terms of types of backscattering mechanisms. It consists
of assigning |SHH+SVV |2 to the Red channel, |SHH−SVV |2 to the Green channel,
and 2|SHV |2 to the Blue channel. This is one of many possible representations,
and it is noteworthy that the data are filtered in their original domain, before
being decomposed for visualization.
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Table 2. Image quality indexes in the images shown in Figure 5.

b
a
n
d

Filter
ENL SSIM Index

HH HV VV HH HV VV

L
-

Boxcar 19.294 21.952 23.072 0.067 0.077 0.115
Refined Lee 12.639 14.059 14.850 0.159 0.163 0.186

IDAN 4.278 4.400 4.655 0.239 0.205 0.237
SDNLM 80% 8.683 9.619 9.588 0.246 0.231 0.251
SDNLM 90% 9.737 11.128 10.780 0.120 0.187 0.220
SDNLM 99% 17.559 20.359 21.125 0.100 0.168 0.140

C
-

Boxcar 24.008 21.970 23.547 0.078 0.077 0.087
Refined Lee 14.305 12.947 12.434 0.177 0.165 0.144

IDAN 2.626 3.079 4.492 0.268 0.253 0.243
SDNLM 80% 10.290 9.217 9.429 0.271 0.265 0.244
SDNLM 90% 11.840 10.599 10.801 0.212 0.211 0.194
SDNLM 99% 22.061 19.576 21.045 0.110 0.110 0.114

X
-

Boxcar 18.553 23.125 23.747 0.080 0.102 0.154
Refined Lee 9.694 13.603 14.526 0.169 0.195 0.235

IDAN 1.945 2.151 2.986 0.259 0.259 0.273
SDNLM 80% 8.348 9.463 9.574 0.267 0.270 0.300
SDNLM 90% 9.371 11.049 11.620 0.210 0.222 0.261
SDNLM 99% 17.023 21.082 21.547 0.121 0.131 0.190

A National Aeronautics and Space Administration Jet Propulsion Laboratory
(NASA/JPL) Airborne SAR (AIRSAR) image of the San Francisco Bay was used
for evaluating the proposed filter, see http://earth.eo.esa.int/polsarpro/

datasets.html. The original PolSAR image was generated in the L-band, four
nominal looks, and 10 × 10 m spatial resolution. The test region has 350 × 350
pixels, and is shown in Figure 6(b), along with a Google Map c© of the area
(Figure 6(a), see http://goo.gl/maps/HJkPf).

The four filters employ a kernel of 5×5 pixels, and the patches in our proposal
are 3 × 3 windows. Figure 6(c) shows the effect of the Boxcar filter. Albeit the
noise reduction is evident, it is also clear that the blurring introduced eliminates
useful information as, for instance, the Presidio Golf Course: the curvilinear dark
features to the center of the image: a forested area. Figure 6(d) is the result of
applying the Refined Lee filter, which shows a good performance, but some
details in the edges are eliminated. In particular, the Mountain Lake, the small
brown spot to the center of the image, is blurred, as well as the blocks in the
urban area. The results of the IDAN filter and of our proposal with η = 90% are
shown in Figures 6(e) and 6(f), respectively. Both filters are able to smooth the
image in a selective way, but the SDNLM filter enhances more the signal-to-noise
ratio while preserving fine details than the IDAN filter.

In image quality assessment, the SSIM requires a reference image, as was the
case of sections 6.1 and 6.1, therefore this index is not applied with ease on real

http://earth.eo.esa.int/polsarpro/datasets.html
http://earth.eo.esa.int/polsarpro/datasets.html
http://goo.gl/maps/HJkPf
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images. Table 3 presents the result of assessing the filters in the three intensity
channels by means of the ENL in the large forest area, a homogeneous area, and
of the BRISQUE index. Again, the results are consistent with what was observed
before: the mere evaluation of the noise reduction by the ENL suggests the
Boxcar filter as the best one, but the natural scene distortion-generic BRISQUE
index is better after applying the SDNLM filter in all intensity channels.

Table 3. Image quality indexes in the real PolSAR image.

Filter
ENL BRISQUE Index

HH HV VV HH HV VV

Real data 3.867 4.227 4.494 58.258 70.845 61.593

Boxcar 14.564 25.611 18.946 36.498 37.714 36.792
Refined Lee 11.491 20.415 15.407 44.997 51.547 49.412

IDAN 2.994 3.732 3.923 28.823 34.853 34.691
SDNLM 80% 7.263 11.532 8.299 27.841 27.256 33.541
SDNLM 90% 8.177 12.404 9.013 28.622 35.622 35.016
SDNLM 99% 10.828 18.379 13.075 31.026 33.881 36.881

6.3 Effect of the filters on the scattering characteristics

Polarimetric target decompositions aim at expressing the physical properties
of the scattering mechanisms. Among them, the entropy-based decomposition
proposed by Cloude and Pottier [7] is widely used in PolSAR image classification.
It extracts two parameters from each observed covariance matrix: the scattering
entropy H ∈ [0, 1], and α ∈ [0, 90], an indicator of the type of scattering. The
(H,α) plane is then divided into nine regions which provide both a classification
rule and an interpretation for the observed data.

Figure 7 shows the effect of the filters on the entropy of the data. Three classes
of entropy are barely visible corresponding, in increasing brightness, to the sea,
urban area an forest. The difference between the classes is small. All filters
enhance the discrimination ability of the entropy, cf. figures Figures 7(b), 7(c),
7(d) and 7(e) with Figure 7(a). Again, the best preservation of detail is obtained
by the IDAN and SDNLM techniques that, among others, retain the information
of the Presidio Golf Course. Additionally, our proposal is the one that best
preserves the low entropy small spots within the urban area, a feature typical of
the high variability of these areas due to their heterogeneous composition.

Samples from the sea, the urban area, and the forest, identified in red, blue
and magenta, respectively, in Figure 6(b), were taken. The (H,α) value of each
point from these samples is presented in Figure 8 before and after applying the
filters. The improvement of using filters is notorious when comparing Figure 8(a)
with figures 8(b), 8(c), 8(d) and 8(e). While the original data is mixed, specially
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the samples from urban and forest areas, after applying the filters the data tend
to group in clusters.

The sea samples are confined to Zone 9 in all datasets, and all filters have
the effect of reducing their variability. While the Boxcar and Refined Lee filters
produce very similar clusters of data, the IDAN and SDNLM filters reduce both
the entropy and the α coefficient, but still within the zone of low entropy surface
scatter, making the sample much more distinguishable from the rest of the data.

The samples from urban (in blue) and forest (in magenta) areas have different
mean values of entropy and α. The former occupy mostly zones 4 (medium
entropy multiple scattering) and 5 (medium entropy vegetation scattering), while
the latter span mostly zones 2 (high entropy vegetation scattering) and 5. While
both are present in Zone 5, they seldom overlap; the forest samples have higher
values of α. Comparing these two samples in the images filtered by the Refined
Lee and SDNLM techniques, one notices that they would produce very similar
classifications. The SDNLM produces clusters with more spread than the Refined
Lee, but not at the expense of mixing different classes.

In this manner, the filters preserve the scattering properties of the samples, a
central feature of every speckle smoothing technique for PolSAR data, according
to Lee and Pottier [20].

6.4 Effect of iterations number in filtering

As previously discussed, SDNLM can be iterated since the properties upon which
it is based are preserved by convolutions. Figure 9 presents the original image
for reference (Figure 6(b)), and the result of applying each technique (Boxcar,
Refined Lee, IDAN and SDNLM with η = 80% in each row) one, three and five
times (first, second and third column, respectively).

The most notorious new result stems from comparing the IDAN and SDNLM
filters. Three iterations are enough for the former to smudge the original data,
and with five iterations the blurring it produces is comparable with that of the
Refined Lee and Boxcar filters. The SDNLM filter, even after five iterations, still
preserves most of the spatial information.

Figure 10 presents the (H,α) scatter plot of the samples before and after
iterating the filters one, three and five times. Each new iteration adds cohesion to
the clusters, whatever the filter employed. Regarding the SDNLM, the difference
between one and three iterations is noticeable.

Table 4 presents the quantitative analysis of the resulting images. Again, the
Boxcar procedure yields the best noise reduction in smudge-free areas in most
of the situations, followed by the Refined Lee filter. The SDNLM filter tuned
somewhere between 80% and 90% of significance produces the best BRISQUE
indexes.

Table 5 presents the values of mean, variance and ENL estimator on the
samples from the three regions of interest (sea, urban and forest), in the cross-
polarized band (HV ). The fist line in Table 5 presents the values observed in
the original (unfiltered) image. The best values are highlighted in bold; being
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Table 4. Image quality indexes in the real PolSAR image.

Filter
ENL BRISQUE Index

HH HV VV HH HV VV

Real data 3.867 4.227 4.494 58.258 70.845 61.593
1
-i
te

ra
ti
o
n

Boxcar 14.564 25.611 18.946 36.498 37.714 36.792
Refined Lee 11.491 20.415 15.407 44.997 51.547 49.412

IDAN 2.994 3.732 3.923 28.823 34.853 34.691
SDNLM 80% 7.263 11.532 8.299 27.841 27.256 33.541
SDNLM 90% 8.177 12.404 9.013 28.622 35.622 35.016
SDNLM 99% 10.828 18.379 13.075 31.026 33.881 36.881

3
-i
te

ra
ti
o
n
s Boxcar 24.107 54.348 37.501 78.379 63.823 79.307

Refined Lee 24.451 45.088 47.423 62.421 42.882 67.016
IDAN 30.880 40.220 41.640 55.811 52.470 67.016

SDNLM 80% 15.502 32.595 21.686 39.500 39.801 42.866
SDNLM 90% 17.279 35.896 23.478 41.800 42.371 45.177
SDNLM 99% 21.892 50.069 33.347 55.824 52.824 56.844

5
-i
te

ra
ti
o
n
s Boxcar 29.950 73.504 50.811 81.585 71.628 82.365

Refined Lee 36.142 72.948 91.634 70.908 51.728 77.271
IDAN 31.310 41.050 42.340 65.906 64.803 66.400

SDNLM 80% 20.069 52.620 31.233 49.357 46.318 50.872
SDNLM 90% 23.793 61.817 36.548 48.803 47.177 50.430
SDNLM 99% 27.798 72.209 46.450 66.251 58.663 65.944

the best mean the closest to the original value, and the best standard deviation
the smallest one.

The SDNLM filter is the best at preserving the original mean values, and
with reduced standard deviation. Our proposal does not provide the best vari-
ability reduction, a behavior that may be associated with the preservation of fine
structures and a smaller loss of spatial resolution, as can be noted in Figure 9.
The equivalent number of looks behaves consistently with what was observed in
previous examples.

7 Conclusions

The use h-φ divergences, a tool in Information Theory, led to test statistics (with
a known and tractable asymptotic distribution) able to check if two samples
cannot be described by the same complex Wishart distribution, the classical
model for PolSAR data. Using one of these test statistics, namely the one based
on the Hellinger distance, we devised a convolution filter whose weights are
function of the p-value of tests which compare two patches of size 3 × 3 in a
search window of size 5× 5 pixels.

The filter obtained in this manner (SDNLM – Stochastic Distances Nonlocal
Means) was compared with the Boxcar, Refined Lee and IDAN filters in a variety
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of PolSAR imagery: data simulated from the complex Wishart law over a realistic
phantom using parameters observed in practice, data simulated from the elec-
tromagnetic properties of the scattering over a simplified cartoon model, and a
real PolSAR image over San Francisco, CA. The quantitative assessment verified
the equivalent number of looks (a measure of noise reduction) over smudge-free
samples, the structural SSIM index, and the BRISQUE index used appropriately
on no-references images (real images or blind). The Boxcar filter promotes the
strongest noise reduction in these conditions, but at the expense of obliterating
small details. The Refined Lee and IDAN filters are competitive, but produce a
pixellated effect and their SSIM index is worse than the produced by the SDNLM
filter in all instances. We noted this same feature with the BRISQUE index ap-
plied to real data and the index values remain stable even during iteration of
the SDNLM filter, which does not happen with other filters assessed.

A qualitative assessment was also made checking how the polarimetric en-
tropy is affected by the filters. We noticed that all the filters enhance it but,
in particular, our proposal performs the most refined enhancement since it pre-
serves very small details which are characteristic of complex urban areas.

The effect of the filters and of applying them iteratively was also verified
in the (H,α) plane. All filters produced more and more compact clusters of
observations in this plane as more iterations were applied. The SDNLM filter
yielded the best separation of the sea sample, while the other two were treated
at least as well as they were by the other filters.

The SDNLM filter has three tuning parameter: (i) filtering window size,
(ii) the size of the patches, and (iii) the significance of the test. We provide a
range of suggested values for the latter, and show good results with an economic
choice for the two former. The filter can also be applied iteratively if more
smoothing is requested and, provided an adequate statistical model, it can also
be applied to other types of data.

We conclude that our proposal is a good candidate for smoothing PolSAR im-
agery without compromising either small details or the scattering characteristics
of the targets.

The test statistics are invariant with respect to permutations of the sample;
directional features will be considered in forthcoming works. Future research
includes the proposal of quality measures for PolSAR imagery, and the use of
tests based on entropies [12].
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26. Salicrú, M., Morales, D., Menéndez, M.L., Pardo, L.: On the applications of di-
vergence type measures in testing statistical hypotheses. Journal of Multivariate
Analysis 21(2), 372–391 (1994)

27. Sant’Anna, S.J.S., Lacava, J.C.S., Fernandes, D.: From Maxwell’s equations to
polarimetric SAR images: A simulation approach. Sensors 8(11), 7380–7409 (2008)

28. Soccorsi, M., Gleich, D., Datcu, M.: Huber–Markov model for complex SAR image
restoration. IEEE Geoscience and Remote Sensing Letters 7(1), 63–67 (2010)

29. Sølbo, S., Eltoft, T.: Homomorphic wavelet-based statistical despeckling of SAR
images. IEEE Transactions on Geoscience and Remote Sensing 42(4), 711–721
(2004)

30. Su, X., Deledalle, C., Tupin, F., Sun, H.: Two steps multi-temporal non-local means
for SAR images. In: IEEE International Geoscience and Remote Sensing Sympo-
sium (IGARSS). pp. 2008–2011. Munich (2012)

31. Development Core Team, R.: R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna (2013), http:

//www.R-project.org, ISBN: 3-900051-07-0
32. Torres, L., Cavalcante, T., Frery, A.C.: A new algorithm of speckle filtering us-

ing stochastic distances. In: IEEE International Geoscience and Remote Sensing
Symposium (IGARSS). Munich (2012)

33. Torres, L., Cavalcante, T., Frery, A.C.: Speckle reduction using stochastic dis-
tances. In: L. Alvarez et al. (ed.) Pattern Recognition, Image Analysis, Computer
Vision, and Applications. Lecture Notes in Computer Science, vol. 7441, pp. 632–
639. Springer, Buenos Aires (2012)

34. Torres, L., Medeiros, A.C., Frery, A.C.: Polarimetric SAR image smoothing with
stochastic distances. In: L. Alvarez et al. (ed.) Pattern Recognition, Image Analysis,
Computer Vision, and Applications. Lecture Notes in Computer Science, vol. 7441,
pp. 674–681. Springer, Buenos Aires (2012)

35. Touzi, R., Boerner, W.M., Lee, J.S., Lueneburg, E.: A review of polarimetry in the
context of synthetic aperture radar: concepts and information extraction. Canadian
Journal of Remote Sensing 30(3), 380–407 (2004)

http://www.R-project.org
http://www.R-project.org


Speckle Reduction in Polarimetric SAR Imagery with SD and NL-means 21

36. Ulaby, F.T., Elachi, C.: Radar Polarimetry for Geoscience Applications. Artech
House, Norwood (1990)

37. Vasile, G., Trouve, E., Lee, J.S., Buzuloiu, V.: Intensity-driven adaptive-neighbor-
hood technique for Polarimetric and Interferometric SAR parameters estimation.
IEEE Transactions on Geoscience and Remote Sensing 44(6), 1609–1621 (2006)

38. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Processing
Letters 9(3), 81–84 (2002)

39. Wang, Z., Bovik, A.C., Lu, L.: Why is image quality assessment so difficult? In:
IEEE International Conference on Acoustics, Speech, & Signal Processing. vol. 4,
pp. 3313–3316. Orlando (2002)

40. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
From error visibility to structural similarity. IEEE Transactions on Image Process-
ing 13(4), 600–612 (2004)

41. Wong, A., Fieguth, P.: A new Bayesian source separation approach to blind decor-
relation of SAR data. In: IEEE International Geoscience and Remote Sensing Sym-
posium (IGARSS) (2010)

A Computational information

Computing the ML estimator of the equivalent number of looks L̂ given in equa-
tion (2) and the test statistic based on the Hellinger distance, c.f. equation (6),
are part of the computational core of this proposal. Each weight requires com-
puting these quantities. It is noteworthy that they involve only two operations
on complex matrices: the determinant and the inverse. Using the fact that the
matrices are Hermitian and positive definite, it is possible to reduce drastically
the number of operations required to calculate these two quantities. Specialized
accelerated function in the R programming language [31] were developed with
the speed of the filters in mind.

The time required to filter a 128 × 128 pixels image with one iteration is
of about 75 s in an Intel R©CoreTM i7-3632QM CPU 2.20 GHz, with software
developed in R version 2.14.1 running on Ubuntu 12.04. R was the choice because
of its excellent accuracy with respect to similar platforms [1].

B Observed covariance matrices

In the following we present the observed covariance matrices that were used to
simulate the data presented in Figure 3(b).
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Σ̂1 =

7.60830 −0.74901− 2.29165i 1.38157 + 8.39200i
24.8580 −5.90346− 0.45011i

32.2771

 · 10−4

Σ̂2 =

128.592 12.1941− 7.12246i 39.1107 + 18.7954i
336.959 −8.49716− 11.8210i

154.343

 · 10−4

Σ̂3 =

29.6303 4.86985 + 1.55848i 3.41851 + 1.43502i
86.8985 −2.03628− 8.24319i

43.3504

 · 10−4

Σ̂4 =

14.0576 −0.25731− 1.48967i 4.36926 + 9.41493i
60.5614 −4.92951− 2.16850i

42.3767

 · 10−4

Σ̂5 =

4.89301 −0.52225− 0.62765i 1.38866 + 5.29889i
12.1149 −3.30897− 0.85846i

25.6761

 · 10−4

Σ̂6 =

18.7013 0.81235− 1.72513i 1.26677 + 6.08878i
32.8094 −3.01618− 1.67916i

25.8651

 · 10−4.
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(a) Phantom (b) Simulated single-look data

(c) Boxcar filter (d) Refined Lee filter

(e) IDAN filter (f) SDNLM filter

Fig. 3. Original single-look PolSAR simulated data and filtered versions after one it-
eration.
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(a) Phantom edges (b) Edges of the simulated HH band

(c) Boxcar filter edges (d) Refined Lee filter edges

(e) IDAN filter edges (f) SDNLM filter edges

Fig. 4. Edges detected by the Canny filter applied to the HH polarization channel of
the original and filtered images.
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(a) Simulated
L-band

(b) Boxcar fil-
ter

(c) Refined Lee
filter

(d) IDAN filter (e) SDNLM fil-
ter

(f) Simulated
C-band

(g) Boxcar fil-
ter

(h) Refined Lee
filter

(i) IDAN filter (j) SDNLM fil-
ter

(k) Simulated
X-band

(l) Boxcar filter (m) Refined
Lee filter

(n) IDAN filter (o) SDNLM fil-
ter

Fig. 5. Original physical-based single-look images and their filtered versions after one
iteration.
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(a) Map of the area (b) AIRSAR L-band data

(c) Boxcar filter (d) Refined Lee filter

(e) IDAN filter (f) SDNLM filter

Fig. 6. Pauli decomposition of the original AIRSAR image over San Francisco and its
filtered versions.
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(a) Entropy of the Original data

(b) Entropy of the Boxcar filter (c) Entropy of the Refined Lee filter

(d) Entropy of the IDAN filter (e) Entropy of the SDNLM filter

Fig. 7. Entropy in the AIRSAR L-band data.
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(a) Original data

(b) Boxcar filtered data (c) Refined Lee filtered data

(d) IDAN filtered data (e) SDNLM filtered data

Fig. 8. Scatter plot in the (H,α) plane of samples from the AIRSAR L-band image.
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(a) Boxcar filter I = 1 (b) Boxcar filter I = 3 (c) Boxcar filter I = 5

(d) Refined Lee filter I = 1 (e) Refined Lee filter I = 3 (f) Refined Lee filter I = 5

(g) IDAN filter I = 1 (h) IDAN filter I = 1 (i) IDAN filter I = 1

(j) SDNLM filter I = 1 (k) SDNLM filter I = 3 (l) SDNLM filter I = 5

Fig. 9. Pauli decomposition of images filtered one, three and five times with each
technique.
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(a) AIRSAR L-band data

(b) Boxcar filter I = 1 (c) Boxcar filter I = 3 (d) Boxcar filter I = 5

(e) Refined Lee filter I = 1 (f) Refined Lee filter I = 3 (g) Refined Lee filter I = 5

(h) IDAN filter I = 1 (i) IDAN filter I = 3 (j) IDAN filter I = 5

(k) SDNLM filter I = 1 (l) SDNLM filter I = 3 (m) SDNLM filter I = 5

Fig. 10. Scatter plot in the (H,α) plane of samples from the AIRSAR L-band image
after one, three and five iterations I
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