
Revista Brasileira de Cartografia (2012) N0 64/6: 797-806
Sociedade Brasileira de Cartografia, Geodésia, Fotogrametria e Sensoriamento Remoto
ISSN: 1808-0936

S

 B

 C

MOVING OBJECTS AND SPATIAL DATA SOURCES

Objetos Móveis e Fonte de Dados Espaciais

Karine Reis Ferreira1; Lúbia Vinhas1;
Antônio Miguel Vieira Monteiro1 & Gilberto Câmara1

1Instituto Nacional de Pesquisas Espaciais – INPE
Divisão de Processamento de Imagens - DPI

Av. do Astronautas, 1758 Jardim da Granja São José dos Campos-SP 12227-010
{karine, lubia, miguel, gilberto}@dpi.inpe.br

Recebido em 20 de julho, 2012/ Aceito em 09 de setembro, 2012

Received on july 20, 2012/ Accepted on september 09, 2012

ABSTRACT

Moving object is a well-established concept in geographic information system (GIS) science. It is an entity whose

spatial position or extent changes continuously over time. Some examples are cars, animals and deforested regions.

Nowadays, there is a growing demand for GIS tools that are able to handle and analyze moving objects. Most existing

spatial file formats (e.g. KML and GML) and database systems (e.g. PostGIS) represent spatial and temporal information

using structures and types predefined in specifications written by the International Organization for Standardization

(ISO) and the Open Geospatial Consortium (OGC). However, in these specifications, there is nothing about moving

object representation in data files or databases. Each data producer adopts its own format to do it. Therefore, this work

proposes an interoperable strategy to translate spatial and temporal information stored in different data sources into

moving object trajectories for further analyses. The proposed approach is based on the processing of an additional

metadata file that describes how moving objects are stored in a particular data source. Grounded on this strategy, we

have built a new software module for moving object analysis in a geographical library called TerraLib. This module

architecture is also described in this paper.

Keywords: Geographical Information Systems (GIS), Moving Objects, Spatial Data Sources, KML, PostGIS.

RESUMO

Objeto móvel é um conceito bem estabelecido na ciência de Sistemas de Informações Geográficas (SIG). Um objeto

móvel é uma entidade cuja localização ou extensão espacial muda de maneira contínua ao longo do tempo. Alguns

exemplos são carros, animais e áreas de desmatamento. Atualmente, existe uma crescente demanda por ferramentas de

SIG capazes de manipular e analisar objetos móveis. A maioria dos formatos de arquivos de dados espaciais (por

exemplo, KML e GML) e dos sistemas de bancos de dados espaciais (por exemplo, PostGIS) representam informações

espaciais e temporais utilizando estruturas e tipos pré-definidos em especificações escritas pela International

Organization for Standardization (ISO) e pelo Open Geospatial Consortium (OGC). Porém, nessas especificações, não

existe nada sobre a representação de objetos móveis em arquivos de dados ou bancos de dados. Cada produtor desse

tipo de dado adota seu próprio formato para representá-lo. Portanto, este trabalho propõe uma estratégia interoperável

para traduzir informações espaciais e temporais armazenadas em diferentes fontes de dados em trajetórias de objetos

798 Revista Brasileira de Cartografia, N0 64/6, p. 797-806, 2012

Ferreira K.R. et al.

móveis para análises posteriores. Nossa abordagem consiste no processamento de um arquivo adicional de metadados

que descreve como os objetos móveis são armazenados em cada fonte de dados. Baseado nessa estratégia, foi construído

um novo módulo de software para análise de objetos móveis em uma biblioteca geográfica chamada TerraLib. A arquite-

tura desse módulo é descrita também ao longo desse artigo.

Palavras chaves: Sistemas de Informações Geográficas (GIS), Objetos Móveis, Fontes de dados Espaciais, KML,

PostGIS.

1. INTRODUCTION

This work extends (FERREIRA et al., 2012),
in two ways. First, the strategy designed only for
KML files is generalized to deal with different kinds
of spatial data sources, including database systems
such as PostGIS. Second, we propose a new
software architecture based on this extended
strategy. To prove such strategy and architecture,
we build a prototype and try out it with animal
tracking and car movement data from different
sources.

The recent technological advances in
geospatial data collection, such as Earth observation
and GPS satellites, mobile computing, and sensor
networks, have motivated new applications that
handle spatiotemporal information. Some examples
are location-based systems, natural disaster and
environmental change monitoring. To support these
applications, there is a growing demand for
geographical information systems (GIS) that deal
with such information.

Since the beginning of the 2000s, the GIS
community has made a serious effort towards spatial
data interoperability. The International Organization
for Standardization (ISO) and the Open Geospatial
Consortium (OGC) have proposed standards to
represent and store spatial information in data files
and database systems. Geography Markup
Language (GML) (OGC, 2007) and Keyhole
Markup Language (KML) (OGC, 2008) are
examples of file formats proposed by OGC for
spatial data interchange. Many agencies and
institutions throughout the word have distributed
their spatial data using these formats. Spatial
extensions of traditional DataBase Management
Systems (DBMS), such as PostGIS and Oracle
Spatial, deal with spatial information in compliance
with the OGC Simple Feature Access (SFA)
specification (OGC, 2006a) (OGC, 2006b).

The compliance with ISO and OGC standards
has assured a high degree of spatial data
interoperability. Many GIS tools and libraries are
able to access spatial data files and databases that

follow these standards. Standards are useful to
promote spatial data interoperability. However, few
results have been achieved regarding spatiotemporal
data interoperability.

Moving object is a well-known category of
spatiotemporal data. They are objects whose spatial
positions or extents change continuously over time
(ERWIG et al., 1999). Examples of moving objects
are cars, aircraft, ships, mobile phone users, polar
bears, hurricanes, forest fires, and oil spills on the
sea. Although the concept of a moving object is well-
established in GIS science, there is not a standard
way to represent it in data files or database systems.
Each data producer adopts its own format to store
moving objects. A particular format specifies the way
to encode information and how it is organized.

This work focuses on this class of
spatiotemporal data. It proposes an interoperable
strategy to translate spatial and temporal information
stored in different data sources into moving object
trajectories for further analyses. The proposed
approach is based on the processing of an additional
metadata file that describes how moving objects are
stored in a particular data source. It is an XML file
that must be compliant with a schema proposed in
this paper. Grounded on this strategy, we have built
a new software module to deal with and analyze
moving objects in a geographical library called
TerraLib (CÂMARA et al., 2008).

This work meets the GIS and Cartographic
community needs on new technologies for dealing
with a myriad of space-time point-source data,
considering the diversity of storage means and of
semantic interpretation given a certain domain
application.

 2. RELATED WORK

Erwig et al. (1999) propose a model, called
Moving Object Model, which defines an algebra to
deal with moving objects. This algebra specifies three
main data types, moving points, moving lines and
moving regions, and a set of operations over them,
such as trajectory and distance. This work is based
on this algebra.

799Revista Brasileira de Cartografia, N0 64/6, p. 797-806, 2012

Moving objects and spatial data sources

ISO defines a conceptual model called
Moving Feature Model for moving features, that is,
features whose geometries move over time as a rigid
body (ISO, 2008). It supports changes of location,
translation and rotation, but not deformation of a
feature. The Moving Object Model is broader than
the Moving Feature Model because it supports
geometry deformation over time. By dealing with
geometry deformations, the model can cope with a
class of environmental problems, like deforested
region evolution show in Fig. 1 (b), where entity
geometries move and deform over time.

3. THE PROBLEM

Most existing spatial file formats (e.g. KML
and GML) and database systems (e.g. PostGIS)
do not provide data types or structures to represent
moving objects. They represent spatial and temporal
information using structures and types predefined in
ISO and OGC specifications. However, in these
specifications, there is nothing about moving object
representation in data files or database systems.
Each data producer adopts its own format to do it.
Therefore, this work addresses the problem: how

to translate spatial and temporal information

stored in different data sources into moving

object trajectories for further analyses?
To illustrate this problem, let us consider two

real examples of data sources that contain spatial
and temporal information related to moving objects:
a KML file and a PostGIS database.

3.1 Moving Objects in KML files

KML stands for Keyhole Markup Language
and is an OGC standard for encoding and
transporting representations of geographic data,
mainly for data display in an Earth browser. It is an
XML file that follows a predefined XML schema.
Such schema describes the grammar which KML
file instances must be compliant with. All components

Fig. 1 - Examples of moving objects: (a) an animal tracking and (b) the evolution of a deforested region.

Fig. 1 (a) and (b) shows the tracking of an
animal and the evolution of a deforested region. The
former is an example of a moving point because the
animal position changes over time. The latter is a
moving region, since the object extent evolves over
time.

Although moving object spatial positions or
extents change continuously over time, they are often
represented by discrete observations. For instance,
Fig. 1 (a) shows an animal tracking through an
observation set. Each observation records a spatial
position, represented by a point, and a time instant
when the animal was at that position. Fig. 1 (b)
presents the evolution of a deforested region through
three observations. Each one contains the spatial
extent of the deforested region, represented by a
polygon, and the year when it was detected.

Trajectories are countable journeys
associated to objects that are moving over time
(SPACCAPIETRA et al., 2008). Different kinds
of trajectories can be extracted from a moving
object. For example, if an application is interested
in studying the daily behavior of an animal, it can
extract its trajectories by grouping its daily
observations. In another case, the application might
extract trajectories that group the animal
observations by its intersection with some regions
of interest.

Based on the algebra proposed by Erwig et
al. (ERWIG et al., 1999), there are two main
initiatives of Moving Object Database (MOD)
systems, SECONDO (GUTING and
SCHNEIDER, 2005) and Hermes (PELEKIS et

al., 2008). Both extend the SQL type system with
data types to represent moving objects, such as
moving point and moving region, and a set of
functions to deal with them. SECONDO is an
extensible database system prototype designed at
the FernUniversität in Hagen. Hermes is a MOD
engine that has been implemented as an Oracle data
cartridge.

800 Revista Brasileira de Cartografia, N0 64/6, p. 797-806, 2012

Ferreira K.R. et al.

Fig. 2 - Trajectories of sea elephants: display of the KML in the Google Earth software.

of the KML schema are defined in the namespace
with the identifier “http://www.opengis.net/kml/2.2”.

The KML Schema defines an element called
kml::PlacemarkType to represent spatial objects and
time stamps associated to them. Spatial objects are
represented by five types: kml:MultiGeometryType,
kml:PointType, kml:LineStringType,
kml:LinearRingType and kml:PolygonType. It defines
two types for time information: kml:TimeStampType
and kml:TimeSpanType.

The first example is a KML file generated by
a project that monitors sea elephants in the Antarctica
(INPE, 2012). This file contains observations of eight
animals during three years. Each observation has an
animal location at a specific time and is represented
by a kml::PlacemarkType element. The animal
location is represented by kml::PointType and its
associated time by kml::TimeStampType.

Although KML is used to describe journeys,
there is not a predefined type in its schema that
associates spatial and temporal elements to a same
trajectory. There is nothing to indicate what
kml::PlacemarkType elements must be grouped as
the same moving object trajectory. In this example,
the KML file uses a kml::FolderType element to
group all observations of the same animal. However,
KML files generated by other producer can use
different elements to do it.

This file also contains visual style elements to
describe how the data should be visualized. Fig. 2
shows the display of this KML file in the Google
Earth, where the red lines represent the sea elephant
trajectories.

3.2 Moving Objects in a PostGIS database

PostGIS extends the PostgreSQL, an open
source object-relational database system, to deal
with geographic objects. It is compliant with the
OGC Simple Feature Access (SFA) specification
(OGC, 2006a) (OGC, 2006b). It provides a set
of data types to represent geometries, such as
st_point and st_polygon, and of functions to handle
these types, such as st_distance and st_intersection.
These types and functions come from the OGC
geometry model. For temporal information,
PostgreSQL supports the full set of Structured
Query Language (SQL) date and time types, such
as timestamp, interval, date and time.

The SFA specification uses the term feature

tables to refer to tables that have at least a spatial
attribute, stored in a column whose domain is a
geometry type. It proposes two metadata tables:
geometry_columns and spatial_ref_sys. The
spatial_ref_sys table holds the numeric
identifications and textual descriptions of coordinate
systems used in the spatial database. The
geometry_columns table registers the available
feature tables in the database and metadata about
their geometry columns, such as their types and
associated spatial reference systems identifications
(srid).

The second example is a PostGIS database
that has observations of moving cars in a city. Fig. 3
shows the trajectories of three cars during a day,
where each point represents a car location at a
specific time. All observations of all cars are stored

801Revista Brasileira de Cartografia, N0 64/6, p. 797-806, 2012

Moving objects and spatial data sources

in a feature table, called car_trajectories, that has
three columns: (1) car_id: to store the car identities;
(2) location: to store the car spatial locations (st_point
type); and (3) date_time: to store the temporal
information (timestamp type).

The car_trajectories is a feature table and so
the metadata about its geometry column is registered
in the geometry_columns table. However, there is
not a metadata in this database that indicates how
to translate the spatial and temporal information of
the car_trajectories table into moving object
trajectories.

3.3 Analyzing Moving Objects

Most GIS tools can access and display
geometries and their associated times from PostGIS
databases and KML files. Some of them, such as
Google Earth, can automatically configure timelines
and generates animations over time. However, they
are not able to analyze them as moving object
trajectories. They cannot answer questions like: (1)
Where was object o

1
 at time t

5
? (2) When did

object o
1
 enter a specific region r

10
 and how long

did it stay in this region? (3) When and where

did objects o
1
 and o

2
 meet each other

(considering a meeting when the distance

between two objects is less than 2 meters)? (4)
Where and when was there a spatiotemporal

cluster of objects?

This requires a more specialized tool that is
able to: (1) translate geometry objects associated
to time stamps stored in data sources into data

structures that represent moving object trajectories,
and (2) analyze trajectories, by providing functions
over its data structures that can answer questions
like the ones presented above. To meet these
requirements, we are developing a new software
module in a geographical library called TerraLib
(CÂMARA et al., 2008). Its architecture is
described at follow.

4. SOFTWARE ARCHITECTURE

This section describes the architecture of a
new software module for moving object analysis,
built in a geographical library called TerraLib.
TerraLib is a C++ software library base to build
geographical information systems. It is open source
and is developed by the National Institute for Space
Research (INPE) (CÂMARA et al., 2008).

This new module is composed of three other
ones, ST (SpatioTemporal), STLoader and
DataAccess, as shown in Fig. 4. The ST module
contains data structures and functions to represent
and analyze moving objects. It provides functions
to calculate the distance between two moving
objects and the intersection between a moving object
and a region of interest. The distance operation
results in a time series that maps each time to the
distance between the objects at that time. The
intersection operation results in patches or
trajectories of a moving object that intersect a region
of interest, as shown in Fig. 5. In this figure, each

Fig. 3 - Trajectories of three cars in a city during a
day.

Fig. 4 - Software architecture.

802 Revista Brasileira de Cartografia, N0 64/6, p. 797-806, 2012

Ferreira K.R. et al.

trajectory represents a patch when the object was
inside the region of interest. Using the ST module
functions, a user can answer questions like the four
ones presented in Section 3.3.

The DataAccess module is in charge of
accessing data sets from different sources, such as
KML and GML files as well as PostGIS databases.
Each source stores spatial and temporal information
using particular predefined structures. A point is
stored in a kml::PointType element in KML files and
in a st_point type in PostGIS databases. So, this
module has to know the particularities of each source
to load its data sets.

The STLoader module is responsible for
translating the data sets loaded by the DataAccess
into moving object structures of the ST module. To
do this, it needs extra information about how the
sources represent moving objects. Let us consider
the PostGIS database presented in Section 3.2. To
load its moving cars, this module has to know that
the car_trajectories table contains moving objects.
Besides that, it needs to know that its column car_id
stores the car identities, location stores the car
locations and date_time contains the temporal
information. To load moving animals from the KML
file described in Section 3.1, this module has to
know that all observations of each animal are
grouped in a kml::FolderType element.

Therefore, this module requires an additional
metadata file, called moving object source

metadata, which contains this necessary extra
information.

5. MOVING OBJECT SOURCE METADATA

The moving object source metadata is an
XML file. XML stands for eXtensible Markup
Language and is a markup language designed to
transport and store structured data. It is a World
Wide Web Consortium (W3C) recommendation and
has been widely used to carry and share data mainly
in the Web environment (BRAY et al., 2008). An

Fig. 5 - Intersection between a moving object and a
region of interest.

XML file is structured through user-defined tags and
can be described by a XML Schema. The purpose
of an XML Schema is to define the legal building
blocks of an XML document in terms of elements
and attributes that can appear in an XML file. The
XML Schema language is called XML Schema
Definition (XSD).

Moving object source metadata files must be
compliant with the XML Schema proposed in this
section. The schema is:

<xs:complexType name=”MovingObjectSourceType”>

 <xs:sequence>

 <xs:element name=”DataSourceInfo”

 type=”DataSourceInfoType”

 use=”required”/>

 <xs:element name=”MovingObjectInfo”

 type=”MovingObjectInfoType”

 use=”required”

 maxOccurs=”unbounded”/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name=”DataSourceInfoType”>

 <xs:sequence>

 <xs:element name=”name”

 type=”xs:string”

 use=”required”/>

 <xs:element name=”type” use=”required”>

 <xs:simpleType>

 <xs:restriction base=”xs:string”>

 <xs:enumeration value=”KML”/>

 <xs:enumeration value=”POSTGIS”/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name=”Params”

 type=”DataSourceParamsType”

 use=”required”/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name=”DataSourceParamsType”>

 <xs:sequence>

 <xs:element name=”keyValuePair”

 type=”xs:string”

 use=”required”

 maxOccurs=”unbounded”/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name=”MovingObjectInfoType”>

 <xs:sequence>

 <xs:element name=”containerType”

 type=”xs:string”

 use=”required”/>

 <xs:element name=”containerName”

 type=”xs:string”

 use=”required”/>

 <xs:element name=”IdInfo”

 type=”IdInfoType”

803Revista Brasileira de Cartografia, N0 64/6, p. 797-806, 2012

Moving objects and spatial data sources

objects. Information about each data source is
described by the DataSourceInfoType element. It
holds the data source name, its type and its access
parameters. In this first version, the metadata file
supports two types of data sources, KML and
POSTGIS.

The access parameters are described by the
DataSourceParamsType element. Since each type
of data source requires a specific set of access
parameters, this element is composed of key-value
pairs instead of predefined elements. To access a
PostGIS database, a user opens a connection that
requires, at least, the database name, the server host
name and its available port, the user name and its
password. Otherwise, to access and open a KML
file, a system only needs its path and name. A list of
possible access parameters for each data source
type is available in the TerraLib documentation
available at www.terralib.org.

MovingObjectInfoType element carries
information about the containers in the data sources
that hold moving object observations. It includes:
(1) the container type and name (containerType and
containerName elements); (2) where the object
identities are stored (IdInfoType type); (3) where
the spatial and temporal information is stored
(SpatialInfoType and TemporalInfoType types). The
container that holds the moving car observations
(Section 3.2) is the table car_trajectories. The
identity of each car is stored in the column car_id.
The columns location and date_time store the spatial
and temporal information of each observation.

The IdInfoType element describes where the
object identities are stored. The SpatialInfoType
element describes where the spatial information is
stored and its Spatial Reference System
Identification (SRID). SRID is a unique number
used to identify projected and local spatial
coordinate system definitions. In the metadata file,
the srid is optional since it can be already registered
in the data source. A PostGIS database holds the
srid of its feature tables in the geometry_columns
table.

The TemporalInfoType element indicates
where the temporal information is stored as well as
its pattern and temporal resolution. Temporal pattern
refers to the format of a textual representation of a
date and time. For example, the text “01-03-2008”
is ambiguous; it can represent the first day of March
in 2008 or the third day of January in 2008. So, we

 use=”optional”/>

 <xs:element name=”SpatialInfo”

 type=”SpatialInfoType”

 use=”required”/>

 <xs:element name=”TemporalInfo”

 type=”TemporalInfoType”

 use=”required”/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name=”IdInfoType”>

 <xs:sequence>

 <xs:element name=”name”

 type=”xs:string”

 use=”required”/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name=”SpatialInfoType”>

 <xs:sequence>

 <xs:element name=”name”

 type=”xs:string”

 use=”required”/>

 <xs:element name=”srid”

 type=”xs:integer”

 use=”optional”/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name=”TemporalInfoType”>

 <xs:sequence>

 <xs:element name=”name”

 type=”xs:string”

 use=”required”/>

 <xs:element name=”pattern”

 type=”xs:string”

 use=”optional”/>

 <xs:element name=”resolution” use=”optional”>

 <xs:simpleType>

 <xs:restriction base=”xs:string”>

 <xs:enumeration value=”SECOND”/>

 <xs:enumeration value=”MINUTE”/>

 <xs:enumeration value=”HOUR”/>

 <xs:enumeration value=”DAY”/>

 <xs:enumeration value=”MONTH”/>

 <xs:enumeration value=”YEAR”/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

</xs:schema>

The schema above defines seven complex
elements: MovingObjectSourceType,
DataSourceInfoType, DataSourceParamsType,
MovingObjectInfoType, IdInfoType,
SpatialInfoType and TemporalInfoType.

 MovingObjectSourceType is the root
element. It encloses all the other elements that contain
metadata about data sources and theirs moving

804 Revista Brasileira de Cartografia, N0 64/6, p. 797-806, 2012

Ferreira K.R. et al.

<MovingObjectInfo>

<containerType>kml::FolderType</containerType>

<containerName>40: locations</containerName>

<IdInfo>

<name>kml::Placemark::Name</name>

</IdInfo>

<SpatialInfo>

<name>kml::Placemark::Point</name>

<srid>4326</srid>

</SpatialInfo>

<TemporalInfo>

<name>kml::Placemark::TimeStamp</name>

<resolution>SECOND</resolution>

</TemporalInfo>

</MovingObjectInfo>

<MovingObjectInfo>

<containerType>kml::FolderType</containerType>

<containerName>41: locations</containerName>

<IdInfo>

<name>kml::Placemark::Name</name>

</IdInfo>

<SpatialInfo>

<name>kml::Placemark::Point</name>

<srid>4326</srid>

</SpatialInfo>

<TemporalInfo>

<name>kml::Placemark::TimeStamp</name>

<resolution>SECOND</resolution>

</TemporalInfo>

</MovingObjectInfo>

</MovingObjectSource>

The DataSourceInfo element contains the data
source name (sea_elephants); its type (KML) and
its access parameters (NAME=c://
sea_elephants.kml). To access and open a KML
file, a system needs only its name and path. So, we
inform only the access parameter NAME.

In this file, there are two MovingObjectInfo
elements that describe information about two
containers of moving animal observations. The first
container is a folder (containerType is
kml::FolderType) called 40: locations
(containerName). The second one is also a folder
(containerType is kml::FolderType) called 41:
locations (containerName). Both folders hold
moving animals observations using the following
KML elements: (1) kml::Placemark::Name to store
the animal identities (IdInfo); (2)
kml::Placemark::Point to store the animal locations
(SpatialInfo); and (3) kml::Placemark::TimeStamp
to store the temporal information associated to each
location (TemporalInfo). The srid of the locations is
4326 that refers to the reference coordinate system
WGS84. And, its temporal resolution is SECOND.

have to inform what pattern it follows in order to
understand its right meaning. ISO 8601:2004 (ISO,
2004) proposes some date and time format
representations, such as DD-MM-YYYY or MM-
DD-YYYY, and this work adopts them. The
temporal pattern information is optional. It is only
necessary when the temporal data is of a textual
type.

Temporal resolution refers to the time
granularity which must be considered to deal with
temporal information. Each deforested region
observation (shown in Fig. 1 (b)) can have a complete
date associated to it (a day, a month and a year),
such as ‘01-01-2003’. Nevertheless, the
measurement of deforested regions is done yearly
and so only the year must be considered in this date.
In other words, the time resolution associated to it
is YEAR. The possible time resolutions are: YEAR,
MONTH, WEEK, DAY, HOUR, MINUTE and
SECOND.

6. EXAMPLES

This section presents the moving object
source metadata files related to the two examples
presented in Section 3. These files contain necessary
information to translate the spatial and temporal
information in the KML file and in the PostGIS
database into moving animals and moving cars,
respectively. They follow the schema described in
the previous section.

6.1 Moving Animals in the KML file

The moving object metadata file related to
the KML file described in Section 3.1 is:

<?xml version=”1.0" encoding=”UTF-8"

 standalone=”no”?>

<MovingObjectSource

 xmlns:xlink=”http://www.w3.org/1999/xlink”

 xmlns:xsd=”http://www.w3.org/2001/XMLSchema

 instance”

 xmlns=”http://www.terralib.org/schemas/

 movingobjectsource”

xsd:schemaLocation=”http://www.terralib.org/

 schemas/movingobjectsource

 movingobjectsource.xsd”>

<DataSourceInfo>

 <name>sea_elephants</name>

<type>KML</type>

<Params>

 <keyValuePair>NAME=C://sea_elephants.kml

 </keyValuePair>

</Params>

</DataSourceInfo>

805Revista Brasileira de Cartografia, N0 64/6, p. 797-806, 2012

Moving objects and spatial data sources

6.2 Moving Cars in the PostGIS database

The moving object metadata file related to the
PostGIS database described in Section 3.2:

The DataSourceInfo element contains the data
source name (cars), its type (POSTGIS) and its
access parameters. These parameters contain
necessary information to open a connection to a
PostGIS database: the database name
(NAME=stdatabase), the server host name
(HOST=localhost), its available port (PORT=5432)
and the user name (USER=postgres).

Information about how the moving cars are
stored in this database is in the MovingObjectInfo
element. The moving car observations are stored in
a table (containerType is Table) called
car_trajectories (containerName). The car identities
are stored in a column called car_id (IdInfo). The
car spatial locations are stored in a column called
location (SpatialInfo) and their associated times in a
column called date_time (TemporalInfo). We do not
need to inform the srid in this file. It comes from the
geometry_columns where the table car_trajectories
is registered.

7. PROTOTYPE

We have built a new software module to deal
with and analyze moving objects in the geographical
library TerraLib. This module is based on the
software architecture and strategy proposed in this
paper. Besides that, we have adapted the open GIS
TerraView to display and analyze moving objects,
using this new module. TerraView is a geographical
application built utilizing the TerraLib library (INPE,
2012). It is open source and developed by INPE.

Fig. 6 shows TerraView displaying the
trajectories of two sea elephants (blue and yellow
lines at the bottom) and the distance between both.
The distance operation results in a time series (right
side of the figure) that maps each time to the distance
between both at that time. TerraView has loaded
these two trajectories from the KML shown in Fig.
2, using the moving object source metadata file
presented in Section 6.1. It can also display them
through an animation over time.

We have built this module using three open
source C++ software libraries: Xerces-C++, OGR
and libpq. Xerces-C++ (http://xerces.apache.org/
xerces-c/) is able to read and write XML data,
checking its compliance with predefined schemas.
It is used to read the moving object source metadata

Fig. 6 - TerraView - displaying and analyzing sea
elephant trajectories.

files that are XML files. OGR is provides read (and
sometimes write) access to a variety of geographical
vector file formats, including KML files (http://
www.gdal.org/ogr/). We use the OGR LIBKML
Driver to read KML files (http://www.gdal.org/ogr/
drv_libkml.html). To access PostGIS databases, we
use the libpq library (http://www.postgresql.org/
docs/8.2/static/libpq.html).

8. FINAL REMARKS

The proposed approach consists in loading
spatial and temporal information from data sources
as it is and, afterwards, translating it into moving
objects trajectories. To do this, it uses an additional
metadata file that describes how moving objects are
stored in a particular data source. This translation is
essential to analyze the original information as moving
object trajectories. To answer the question “when

and where did objects o
1
 and o

2
 meet each other

(considering a meeting when the distance

between two objects is less than 2 meters)?”, we
need to structure the original data as moving object
trajectories.

This strategy has two main advantages. The
first one is that no change in the original data sources
is required. It loads the original data as it is and uses
the metadata file to know how to translate it into
moving objects. This feature is particularly interesting
when dealing with database servers and the final
application do not have permission to change them.

The second advantage is that it can be easily
extended to other data sources. In this paper, we
show a prototype working with KML files and
PostGIS databases. However, we can easily extend
it to other kinds of data sources, such as GML or
Oracle Spatial. To do it, we have to: (1) add the

806 Revista Brasileira de Cartografia, N0 64/6, p. 797-806, 2012

Ferreira K.R. et al.

new types of data sources in the moving object
source metadata file schema, including them in the
element type of the DataSourceInfoType type
(Section 5); and (2) build a new software piece in
the DataAccess module that is able to load spatial
and temporal information from these new data
sources.

This proposal allows for dealing with moving
objects data using common GIS spatial files and
DBMS spatial extensions. In this perspective, this
work advances towards a new generation of GIS
that deals with spatiotemporal data.

REFERÊNCIAS BIBLIOGRÁFICAS

BRAY, T.; PAOLI, J.; SPERBERG-MCQUEEN,
C. M.; MALER, E.; YERGEAU, F. Extensible
Markup Language (XML) 1.0 (Fifth Edition). W3C
recommendation. Report. W3C, 2008.

CÂMARA, G.; VINHAS, L.; FERREIRA, K.;
QUEIROZ, G.; SOUZA, R. C.; MONTEIRO, A.
M. V.; CARVALHO, M. T.; CASANOVA, M. A.;
FREITAS, U. M. TerraLib: An Open Source GIS
Library for Large-scale Environmental and Socio-
economic Applications. Open Source Approaches
to Spatial Data Handling, Berlin, Springer-Verlag,
2008.

ERWIG, M.; GUTING, R. H.; SCHNEIDER, M.;
VAZIRGIANNIS, M. Spatio-Temporal Data
Types: An Approach to Modeling and Querying
Moving Objects in Databases. GeoInformatica.
v. 3, p. 265-291, 1999.

FERREIRA, K. R.; VINHAS, L.; MONTEIRO,
A. M. V.; CÂMARA, G. Moving Objects and
KML Files. In: Proceedings of the 28th IEEE
International Conference on Data Engineering
(ICDE 2012) Workshop on Spatio Temporal data
Integration and Retrieval. Washington D.C., USA,
2012.

GUTING, R. H.; SCHNEIDER, M. Moving
Objects Databases. San Francisco, Morgan
Kaufmann, 2005.

INPE. Projeto MEOP: INPE, 2012. Available at:
<http://www.inpe.br/crs/pan/pesquisas/
telemetria.php>. Access data: 12/07/2012.

INPE. TerraView software. São José dos Campos,
SP: INPE, 2012. Available at: <http://
www.dpi.inpe.br/terraview_eng/index.php>.
Access data: 12/07/2012.

INTERNATIONAL STANDARD
ORGANIZATION (ISO). ISO 8601:2004: Data
elements and interchange formats - Representation
of dates and times. Report. Geneva, Switzerland,
2004.

INTERNATIONAL STANDARD
ORGANIZATION (ISO). ISO 19141:2008:
Geographic information - Schema for moving
features. Report. Geneva, Switzerland, 2008.

OPEN GEOSPATIAL CONSORTIUM (OGC):
OpenGIS Implementation Specification for
Geographic Information – Simple Feature Access -
Part 1: Common architecture. Reference number:
OGC 06-103r3. Version: 1.2.0. Report. Available
at <http://www.opengeospatial.org>. 2006a.

OPEN GEOSPATIAL CONSORTIUM (OGC):
OpenGIS Implementation Specification for
Geographic Information – Simple Feature Access -
Part 2: SQL option. Reference number: OGC 06-
104r3. Version: 1.2.0. Report. Available at <http:/
/www.opengeospatial.org>. 2006b.

OPEN GEOSPATIAL CONSORTIUM (OGC).
OpenGIS Geography Markup Language (GML)
Encoding Standard. Reference number: OGC 07-
036. Version: 3.2.1. Report. Available at: <http://
www.opengeospatial.org>. 2007.

OPEN GEOSPATIAL CONSORTIUM (OGC).
OGC KML. Reference number: OGC 07-147r2.
Version: 2.2.0. Report. Available at: <http://
www.opengeospatial.org>. 2008.

PELEKIS, N.; FRENTZOS, E.; GIATRAKOS,
N.; THEODORIDIS, Y. HERMES: Aggregative
LBS via a Trajectory DB Engine. In: Proceedings
of the ACM SIGMOD’ 08 Conference. Vancouver,
BC, Canada. 2008.

SPACCAPIETRA, S.; PARENT, C.; DAMIANI,
M.; MACEDO, J. A. F.; PORTO, F.;
VANGENOT, C. A conceptual view on
trajectories. Data & Knowledge Engineering. v.
65, p. 126-146, 2008.

