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Abstract. Information about a minimal set of characteristic variables and types of scene was 
searched for GOES 8 Imager multispectral imagery over an extended area of South America, 
September 2002, 1600 UTC (near local noon over most part of the area). Thirteen variables 
were considered for each pixel: five of them described reflectance and brightness temperature in 
4 channels, three variables assessed temperature difference related to channel 4; finally, five 
variables assessed local homogeneity (texture) in each channel. Thirty-two clusters were 
determined by a classification scheme (“dynamic cluster”) based on minimal Euclidean 
distance. Factor analysis in principal components applied to cluster centroids shows that only 
five variables might be taken as non-redundant, namely reflectance in channel 1 and brightness 
temperature in channel 4 as well as their textures, together with difference between channels 5 
and 4. Although factor analysis suggests to define about seven clusters (which in turn are 
consistent with image nephanalysis), principal components analysis makes evident that an 
objective minimal number of scenes is actually loosely defined but provides some useful 
criterions for definition of proper centroids, depending on user’s convenience.  
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1. Introduction 

 

The type and amount of cloud over a region is important information for meteorological 
analysis and for climate studies. A proper characterization provides important parameters for 
cloud representation in atmospheric general circulation models (Lau and Crane 1995, Norris and 
Weaver 2001, Gordon et al. 2005), in climate studies (Budyko 1969, Minnis and Harrison 1984, 
Philander et al. 1996), and in rainfall estimates (Uddstrom and Gray 1996, Germán et al. 2006). 
It is also useful for technological applications in agriculture and renewable energy generation 
(Chou 1991, Ceballos et al. 2004, among others). Last but not least, cloud masking is an 
important tool for remote sensing studies of earth surface such as biomass burning detection 
(França et al. 1995), sea surface temperature (Barton 1995) and vegetation index assessment 
(Defries and Townshend 1994).  

Geostationary satellite imagery allows for higher frequency observation of extended areas 
from a constant position in space, thus becoming a current tool for continuous visual diagnostics 
(nephanalysis) of cloud type and cover. Images in the atmospheric window spectral band (11 
µm) are the most usually inspected, looking at brightness temperature (or grey levels 
representative of emerging radiance) as well as observing image texture. Additional useful 
information is provided by channels associated to reflectance in visible spectrum or to 
absorption/emission by infrared vapour band. Concerning South America and neighbouring 
ocean area, two satellites are especially important. GOES satellite carries an Imager system 
providing information in five spectral intervals, while the Meteosat Second Generation SEVIRI 
system increases this number to 12 bands.  

Considering the importance of GOES imagery for the South American region, the present 
paper analyzes some aspects of bulk information provided by the Imager. GOES 8 was in 
operation as GOES-E from 1996 with nadir at Amazon region (75ºW), being substituted by 
GOES 12 in March 2003. GOES 10 was located at GOES-W position (Pacific Ocean, 135º W) 
and was substituted by GOES 13 in September 2006. Following the EOPA Program (Earth 
Observation Partnership of the Americas), GOES 10 was shifted to 60ºW location in early 2007 
with an expected life time until 2010. This new position allows for a continuous and specific 
monitoring of South American region. It is important to note that Imager channels in GOES 8 
and 10 have the same spectral distribution (see details online at 
http://www.oso.noaa.gov/goes/goes-calibration/change-channels.htm). Therefore, cloud 
classification methods applied to GOES 8 Imager will remain useful for the next years. In 
addition, a long-term time series integrating similar spectral data base, provided by GOES 8 and 
GOES 10 imagery, will be highly useful for climatological studies over South America and 
neighbouring oceans. Only GOES 8 imagery characteristics will be considered hereafter. 

Concerning cloud characterization, it is usual to present pixels in two-dimensional 
diagrams (brightness temperature Tb in thermal window channel vs. albedo or reflectance R) to 
illustrate physical features of cloud fields (Sèze and Rossow 1991, Porcú and Levizzani 1992, 
Rossow and Garder 1993). Nevertheless, these two variables yield partial information only. For 
instance, Cu and St fields presenting the same coordinates (R, Tb) exhibit quite different 
textures (Sèze and Desbois 1987, Welch et al. 1988). GOES imagery provides albedo in a 
narrow interval of visible solar spectrum (channel 1), and brightness temperature in four 
additional channels located in thermal infrared spectrum. The set of five-channel data describes 
remarkably different physical characteristics of surface, cloud and atmosphere. Considering 
diurnal scenes, VIS channel 1 allows to assess bidirectional reflectance for solar radiation while 
upwelling radiance detected in the channel 2 (at 3.9 µm) includes  the contribution of reflected 
as well as emitted radiation (produced at upper wavelength tail of solar spectrum and lower tail 
of terrestrial thermal  spectrum, respectively). This channel allows for detection of hot pixels 
associated to burning mass (Setzer and Verstraete 1994). The other channels inform about 1) 
radiance emitted in 6.7 µm (channel 3) water vapour band, which strongly absorbs and emits 
radiation, being representative of mid- and upper atmospheric levels; 2) radiance in the 
atmospheric window 10.8 µm (channel 4), hopefully providing information about lowest cloud 
or ground temperatures, but being affected by upper level vapour continuum 
absorption/emission; 3) radiance in a spectral range close to atmospheric window at 12 µm 
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(channel 5, allowing for correction methods in ground temperature assessment, and also cirrus 
detection).  

Shortcomings of pixel analysis based on single channel information are evident. The most 
frequent problem is discrimination between Ci and developed Cu (both cold in atmospheric 
window), or between Cu fields and St cloud (both bright in VIS channel). Additional 
information provided by several channels, their differences and/or local texture provide valuable 
means of cloud discrimination. For instance, Tb difference between channels in 11 and 12 µm is 
roughly linear with precipitable water, being the base for the so-called split-window technique 
for ground temperature assessment, which can be used for AVHRR sensors in NOAA-n series 
as well as for GOES 8 and GOES 10 sensors (Barton 1995, Sun and Pinker 2003). This 
temperature difference is also affected by semitransparent cirrus due to ice-cloud spectral 
emissivity response (Inoue 1987, Giraud et al. 1997). The difference of Tb between channels 3 
and 4 discriminates water vapor absorption in middle and low levels and is used to identify high 
well developed clouds (Tokuno and Tsuchiya 1993, Bottino et al. 2003). Also, Tb difference 
between radiances emitted at 3.9 and 11 µm is higher during night time in presence of fog and 
stratus (Ellrod 1995). A characteristic Tb difference may also be expected during day time. 
Uddstrom and Gray (1996) estimated the solar reflected parcel from 3.9 µm signal which can 
provide clouds microphysical information. 

A variety of texture features may be assessed for an image segment (Welch et al. 1988, 
Baum et al. 1997). Gray-level vector methods used by Chen et al. (1989) for Landsat imagery 
assess texture aspects related with probability distributions of brightness over an image. This 
seems appropriate for defining general morphologic features of cloud field. However, these 
parameters are hardly associated to pixel-by-pixel analysis without a complex and expensive 
time computer effort. 

This paper assumes that local information about an Imager pixel admits a set of simple 
numerical variables, such as signal intensity and local texture in five channels, as well as the 
difference between brightness temperatures in thermal channels. The pixel texture variables are 
assessed using only 3 × 3-pixel sets (eg.: Coakley and Baldwin 1984, Sèze and Desbois 1987). 
This implies in a reasonable array size (about 15 × 15 km), compatible with pixel resolution and 
local spatial variability of cloudiness.  

Two basic issues are explored: 1) How many variables should be actually defined? It is 
important to avoid excessive computer time processing. Also, noisier information could be 
expected when redundant variables are included. 2) How many groups or types of objects are 
distinctly meaningful? Rough separation in a limited number of main types of objects should be 
possible: for instance, surfaces as land and water, and clouds as Cu, St, Ci, Cb. Nevertheless, a 
certain number of transitions between these main classes could be useful, especially in presence 
of a multi-layered (ML) cloud field.  

To investigate these questions, factor analysis in principal components (PCA) is a useful 
tool to quantify variables relationships describing a series of data. As far as software tools for 
analysis exhibit limitations for very large samples, we have first sought a limited but 
representative set of covers by means of clustering procedures and then proceeded to apply PCA 
to cluster centroids (Ceballos and Bottino 1997).  The clustering was performed using a non-
supervisioned iterative classification method with the minimal Euclidean distance (hereafter 
referred as MED) as similarity measure. The method is described in section 2. The study was 
focused on the subtropical South American sector imagery described in section 3. In that 
section, we also present the procedures for classification and valuation the coherence of the 
method.  

A first step in classification was performed using as many as 13 variables and finding 
several tens of centroids. Factor analysis allowed to select a smaller set of non-redundant 
variables. This restricted set yielded several tens of final centroids, expectedly corresponding to 
different classes or types of scene. In order to valuation the coherence of the method a set of 
several hundreds of image targets was randomly chosen, which were labelled by nephanalysis 
and compared with classification by MED. The results are discussed in section 4. Finally, the 
classes were grouped by factor analysis to define the main types of scenes. 
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2. A scene classification method 

 

The proposed task is to describe (in the scale of one pixel or 3 × 3-pixels) multispectral and 
spatial variability properties which allow to distinguish various objects such as different types of 
clouds or ground surfaces. The analysis includes definition of a numerical method for scene 
classification, respecting the limitations of spatial resolution inherent to available imagery.  

Classification of satellite imagery presents different statistical approaches, according to 
the purpose of the research. Generally speaking, they exhibit one of two main aspects: 1)  
supervisioned procedures start by the collection of samples within an image which correspond 
to  known cover types, then drawing up a statistical description used to classify the whole image 
(Welch et al. 1988, Baum et al. 1997, Chen et al. 1989, Uddstrom and Gray 1996, Tag et al. 
2000); 2) non-supervisioned procedures find out a statistical repartition function which is 
applied for image segmentation in different objects, whose nature is subject of further analysis 
(Desbois et al. 1982, Sèze and Desbois 1987, Sèze and Rossow 1991, Porcú and Levizzani 
1992, Ceballos and Bottino 1997, Gordon et al. 2005).  

It was chosen a non-supervisioned classification procedure known as “method of dynamic 
clusters” (hereafter referred as MDC). It performs classification of an image using the MED as 
similarity measure and an iterative definition of a given number of groups or clusters (Diday 
and Simon 1980, Desbois et al. 1982). MED is assessed considering pixels as vectors in M-
dimensional space, with M = number of variables or data defining the pixel. M = 13 variables 
were defined as follows.  

Five basic data are associated to each pixel in GOES-8 imagery. Information associated 
to channel 1 is a reflectance factor F for solar radiation incident on the top of the atmosphere 
[also called “bidirectional reflectance” (Stuhlmann et al. 1985)]. Reflectance R instead of 
reflectance factor was chosen as a variable because it appears nearly constant for clear-sky 
conditions (except for slant solar beam, i.e. extreme situations of sunrise and sunset), at least 
over land scenes (Ceballos et al. 2004). Relationship between F and R is 

ZFbRSLF cos/,/ == λλπ  (1) 

Lλ being spectral radiance detected in channel 1, Sλ the spectral specific flux (of solar 
origin) incident on the top of atmosphere, and Z = zenithal solar angle. Factor b accounts for a 
correction due to anisotropy of reflecting surface; usually lies in the range 0.8-1.2 (Lubin and 
Weber 1995) and will be ignored hereafter, assuming a priori b = 1. 

Channels 2 to 5 detect radiance of thermal emission origin which is usually quantified in 
terms of brightness temperatures (T2, ..., T5). It is to be noted that radiance in channel 2 
includes reflected (solar) radiation during daytime.  

Eight additional variables were considered, as follows. Two types of variables were 
defined:  1) differences of thermal channels (T24, T34, T54) related to T4; 2) texture in each 
channel (X1, …, X5), defined as the logarithm of variance in a set of 3 × 3 elements around a 
central pixel. The first type usually allows to separate thin from thick and well developed  
clouds; the second one quantifies local homogeneity of cloud field, helping to separate 
stratiform from broken cloud.  

Pixels were considered vectors in a M-dimensional Euclidean space, be pn(x1n, x2n, ..., 
xM,n),  M = 13,  n = 1,2, ..., N (N = total number of sampled pixels in a given image or group of 
images). A set of K groups can be defined following the “dynamic cluster” procedure. Defining 
K initial reference vectors or “seeds” rk(r1k, r2k, ..., rM,k), k = 1, 2, ..., K,  the distance of the n-th 
vector pn to the k-th reference vector rk is given by 

2/1
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Each pixel is associated to the nearest reference vector, leading to define K clusters with 
sizes N1, N2, ..., NK and centroids given by the respective average vector rk
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These centroids are taken as a new set of seeds and the N vectors pn are once more 
classified. The procedure is repeated generating successive centroids rk

(i), i = 1, 2, ... It is 
generally expected for displacements of centroids to be shorter at each new step. The iteration 
stops at i = I, when all K displacements |rk

(I) – rk
(I-1)| are smaller than a given value ε. Noting that 

components xmn of a vector pn refer to physically different magnitudes and might have quite 
different numerical values, standardized ymn values were adopted in lieu of the original 
components: 

mmmnmn sxxy /)( ><−=  (4) 

where <xm> and sm are the average and standard deviation of the m-th variable over the N-
sized sample (or “universe”). Hereafter, vectors p are defined by a set of standardized 
components. The procedure leads to K centroids rk considered characteristic of K different 
clusters. Subsequently, pixels of new images can be associated to one of K classes according to 
the nearest centroid. 
 
3. Imagery data and analysis procedures 

 

GOES-8 images available at CPTEC (Center for Weather Forecast and Climate Studies) were 
analyzed. A South American sector extended from Pacific to Atlantic oceans was considered 
(43°S to 20°S and 76°W to 35°W). Two different sets of ten days (one day every three days) 
were chosen in September 2002 at 1609 UTC (about 1200 local time for central longitude of the 
image). The first group (starting at 1st September) was chosen as training set and the other 
(starting at 2nd September) for validation procedure. Image sectors were matrices of 500 rows × 
1500 columns. GOES images currently recorded exhibit the following characteristics: 1) they 
have full resolution in channels 2, 4 and 5, so that pixels correspond to sizes of about 4 × 4 km 
at satellite nadir (longitude 75°W);  2) 16 pixels in channel 1 (size of about 1 × 1 km) 
correspond to each pixel in channel 4, but  only one of them is sampled;  3) pixel size in channel 
3 had correspondence with two pixels in channel 4 (covering two rows). Linear interpolation 
was adopted for line duplication in this channel in order to exactly collocate all five channels. 

Concerning the training set, one pixel was sampled from each two rows and two columns 
for defining variables R1, T2, T3, T4, T5, T24, T34, T54. The set of 3 × 3-pixels around it in the 
original image matrix was used for assessing textures X1 to X5. It could be expected that the 
most part of different types of clouds were present for the total sample (amounting more than 
1.8 million pixels).  

It is not clear if choice criteria for selecting K seeds and the number K itself are 
responsible for a unique definition of final groups and centroids. Sèze and Desbois (1987) 
randomly chose the starting seeds, while Porcú and Levizzani (1992) selected a number of 
maxima in bi-dimensional histograms. It is always possible to choose a reasonable number of 
samples corresponding to as many as possible different cover types (this choice induces a 
supervisioned initial clustering, but further non-supervisioned iteration can account for a 
“natural” distribution of proper centroids). Baum et al. (1997) selected a number of features 
depending of predominant type of air mass, ranging from 13 to 24.  This type of starting point 
seems more “natural” and convenient than the automatic choices abovementioned. Thirty-five 
seeds were defined selecting different types of scenes by visual inspection of the training set of 
images, then extracting a small set of pixels for each observed type and calculating the 
respective variable mean values. A stopping value ε = 0.04 was chosen for clustering iterations 
(considering standardized values as described in section 2). Using such initial seeds, not more 
than ten iterations were needed for fitting the convergence criterion.  

Concerning a method for validation, Sèze et al. (1986) compared their clustering method 
with conventional ground-based observation of cloudiness (in oktas), finding a reasonable 
agreement for the total cloud cover. Nevertheless, ground validation of any satellite cloud 
classification technique is a delicate issue due to the considerably different ways of observing 
the clouds (Henderson-Sellers and McGuffie, 1990). Two other possible procedures might be 
the  qualification of automatic results by comparison with 1) cloudiness as shown in synoptic 
charts (Porcú and Levizzani 1992); 2) visual nephanalysis of satellite imagery (Sèze and 
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Desbois 1987). Validation of specific cases may be performed choosing samples of targets, 
selected by previous nephanalysis (Uddstrom and Gray 1996; Baum et al. 1997; Tag et al. 
2000). They can also be selected randomly with subsequent identification by nephanalysis 
(Welch et al. 1988). Present paper follows this last criterion, in two steps. Firstly, the MDC 
applied to the training set of images allowed to define K = 35 centroids or reference vectors. 
Images of this set were classified by MED related to the K vectors, and the correspondence with 

scene types was found out by visual nephanalysis. Secondly, a set of 320 3 × 3-sized targets was 
chosen within the set of validation images. Targets were regularly distributed within the images. 
Each one was identified by visual nephanalysis of its neighborhood surrounding image and was 
labelled according to six types of scene: surface (Sf, 135), cumulus (Cu, 74), stratus (St, 28), 
cirrus (Ci, 30), multilayered (ML, 44) and cumulonimbus (Cb, 9).  The numbers indicate the 
observed target frequency. The term “multilayer cloud system” is used in association with 
complex sets of clouds present during synoptic disturbances, usually covering an extended area 
and presenting several cloudy layers. In order to compare the set of labelled targets with the 
objective classification method, each one of them was classified by MED according to the K 
classes. A contingency table allowed to compare  the independent nephanalysis with the results 
of classification by MED method (see section 4). 

 
4. Results 

 

Table 1 presents the components of centroids found using 13 variables. Three centroids were 
discarded because they presented unacceptable values due to noise in one or more channels. 
Note that standardized variables were used in clustering procedure but absolute values x are 
reported. Relative frequencies g of classes lied between 1% and 6%, thus being all of the same 
order in the N-sized sample. 
 
[Table 1.  Centroids resulting from multispectral clustering of the training set images, September 2002.] 
 
4.1. Detection of redundant variables 
  

Principal components analysis (PCA) was applied to data in table 1, considering the M × M 
correlation matrix R (M = 13) for components of K = 32 centroids rk (objects). This type of 
analysis provides tools for detection of redundant variables among the original M ones, as 
described in the Appendix A. Vectors rk(y1k y2k … yMk) have images Zk(ζ1k ζ2k … ζMk) obeying 
the relation 

rk = F Zk (5) 
[equation (A5) in the Appendix A], where F represents a matrix of factor loadings. Factor 
analysis allows for reduction from the M-dimensional description of original variables ym, to a 
new set of J < M independent variables ζj describing basic modes or behaviours. This is 
equivalent to describe the m-th variable y of the k-th vector through lower-ordered linear 
approximations [described by equation (A7), in Appendix A] 

ymk ≈ fm1 ζ1k + fm2 ζ2k + ... + fmJ ζJk, J < M, (6) 
 A Kaiser-type criterion was applied to assess J, by discarding PC’s with variance λj < 

0.8. The underlying reasoning is that the independent variables ζj with j > J are less meaningful 
than any single variable ym, thus should be interpreted as random noise. Table 2 shows factor 
loadings in matrix F corresponding to centroids in table 1. It is seen that 4 from 13 principal 
components could be adopted, since they cumulate 90% of the total variance M = 13. When 
considering four PC’s, communality h is higher than 0.83 for all variables y except for texture in 
channel 3. Factor loadings contributing with more than 50% of variances are underlined in table 
2, helping to put in evidence “hidden behaviours” or “factors” in satellite imagery. It is seen that 
the first two PC’s are especially well correlated with variables stressing brightness temperatures 
(except T54) and with texture in channels 4 and 5, respectively, whereas the third PC is 
representative of texture in VIS channel. Fourth column suggests the existence of a factor better 
correlated with T54.  
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[Table 2.  Factor analysis in principal components for centroids of table 1, 13 variables.  eigen: 
eigenvalues; f1, …, f4: loading factors; fr1, …, fr4: varimax-rotated factors; comm.: fourth-order 
communality] 

 
It is worthwhile to note that equation (5) describes a rigid rotation of orthogonal axis 

transforming rk vectors in their images Zk. Equation (6) assumes that second order behaviours (λ 
<< 1) are mainly due to random noise, but certainly they influence the process of assessing 
“principal axes” described by equation (A1) (in Appendix A). The so-called Varimax rotation 
improves factor analysis by executing a new rigid rotation, limited to the subspace of 
meaningful axes, maximizing factor loadings without changing communality hmJ (Johnson and 
Wiechern, 1982). Rotated factor loadings fr in table 2 make evident a better defined set of 
correlations between factors and variables: 

1) Factor 1 is mainly associated to temperature variables (T2 to T5; T24 and T34). 
R1 is also included (with changed sign), due to higher reflectance of well developed (thus 
colder) cloud. Lower clouds are better observed in channel 1 since it is not so affected by 
the “blurring” noted in thermal windows (channels 4, 5), which is induced by water 
vapour absorption/emission. Channel 2 detects thermal emission as well as reflected solar  
radiation, so that difference T24 shows also somewhat lower association with Factor 1.   

2) Factor 2 associates with cloud texture in temperature channels. Channel 3 
exhibits lower correlation, at least because: (a) spatial resolution is different; (b) 
brightness temperature and texture tend to be the same in channels 3 and 4 for higher 
cloud (due to negligible water vapour presence above top); (c) on the other hand, spatial 
variations in water vapour column induce smooth texture in channel 3 for cloudless and 
low-level cloudy scenes.  

3) Texture in VIS channel is described by Factor 3 and (to a certain extent) by 
Factor 2. Indeed, VIS channel allows better visual inspection of lower clouds (especially 
cumulus fields). Table 3 also shows the lower but distinct correlation of Factor 3 with R1 
and T24.  

4) Factor 4 is associated to T54. This noteworthy behaviour might be explained by 
the influence of water vapour continuum in channels 4 and 5 (for instance, T54 is used in 
the well-known split-window technique for sea surface temperature assessment); also, 
liquid and ice phase in clouds have different behaviours of emission/scattering, 
suggesting T54 as a valuable tool for analysis of high-level clouds, especially cirrus 
(Inoue 1987). 
It is concluded that four original variables could be used for describing a pixel. It is 

suggested the set (T4, X4, X1, T54). Nevertheless, partial correlations of R1 and T24 with 
rotated factors 1 and 3 (allied to better detection of surface and lower finite clouds) suggest  to 
include one of them as a fifth basic variable. 

The method described in sections 2 and 3 was applied to the training set of images now 
considering 5-dimensional vectors rk in coordinates R1, T4, T54, X1, X4. Centroids in table 1  
were taken as initial seeds. A minor set of pixels converged to one anomalous centroid, so that 
only K = 31 final centroids are considered. The new set of 5-dimensional centroids is presented 
in table 4. 

Figures 1 illustrate the effects of choosing M = 5 in lieu of M = 13. The multispectral 
image of September 1, 2002, 1609 UT was classified by MED related to centroids in table 1 
[plate 1(a)] and table 4 [plate 1(b)]. The plates are RGB composite images based on a simple 
combination of T4 and R1. T4 is used to define grey levels between red and blue, with linear 
change from warmer (pure red) to cooler (pure blue) pixels, and R1 defines the green level as 
pixel reflectance. Thus, the expected scene tonalities are: Sf – reddish; Cu – brownish; St – 
greenish; Ci – bluish; ML – bluish-cyan; Cb – bright cyan. A restricted number of K sets of (R1, 
T4) are actually used, according to the classification of the pixel and the (R1, T4) pair of the 
corresponding centroid. Note that variables X1, X4 are made evident visually by image texture. 
It is seen that plates 1a and 1b are practically equivalent, although some details have been lost in 
the second one. 
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[FIGURE 1. Classified scene for September 1, 2002, 1609 UT. RGB image using R1 in Green and T4 in 
Red and Blue (component R increases with T4, B has opposite behaviour). Thirty-two clusters obtained 
for (a) M = 13 variables, (b) M = 5 variables (R1, T4, T54, X1, X4).] 
 
4.2. Coherence analysis of automatic classification  

 
The 320 labelled targets chosen in the set of validation images were labelled by visual 

nephanalysis in 6 types of scene (see section 3). They were also classified by MED related to 
13-dimensional (table 1) and 5-dimensional (table 4) centroids. The results are presented in two 
contingency tables (tables 3). Each line in these these tables exhibit the frequency of 
correspondence of one class with each type of scene (“observed truth” found by nephanalysis). 
It is observed an outstanding monomodal concentration of frequencies around a unique type of 
scene, suggesting that each centroid defines, almost univocally, characteristics of one of the six 
types of scene. Conversely, a given type of scene may correspond to several well-defined 
centroids. These facts are observed for both 13- and 5-dimensional schemes. For instance, 
centroids grouped as Sf scenes cumulate 91% of 135 diagnosed surface targets when using M = 
13 variables, and 90% when using M = 5. The remaining 10% cases were misclassified as Cu or 
Ci probably due to low cover or semitransparent cloud structure. An additional contingency 
table (not shown), was built with pixel-by-pixel direct comparison of 13- and 5-dimensional 
classification results. It was evident an almost one-to-one correspondence between initial 13-
dimensional centroids (used as seeds) and the final ones, with scarcely observed migration to 
another class. The close resemblance between Figures 1 (a and b) clearly illustrates this fact.  

Observing the number of misclassified targets for each type of scene, it is to be noted 
that: 1)  13-dimensional results better discriminate high level cloud scenes (Ci, ML, Cb); 2) 
surface and low and mid-level clouds (Cu, St) exhibit lower dispersion when using only 5 
variables.    
 
[Table 3. Frequency of targets objectively classified in several types of scene, using (a) M = 13 variables 
and (b) M = 5 variables. Total number: 320 targets. Modal frequencies (in bold) indicate closer 
association of centroid to a given  type of scene.] 
 
4.3. Search for a minimal group of scenes  
 
The centroids vk [vm] shown in table 4 were considered as M = 31 objects defined by K = 5 data. 
Standardized variables were adopted, leading to a 31 × 31-dimensional correlation matrix Q. 
Factor analysis lead to J = 4 non-redundant variables.  
 
[Table 4. Set of 31 5-dimensional centroids, and their classification using factor analysis in principal 
components; fr are Varimax rotated factor loadings. Boldface means fr2 ≥ 0.75 [fr ≥ 0.86]; underlined 
means fr2 ≥ 0.6 [fr ≥ 0.775]; italic means 0.6 > fr2 ≥ 0.2 [0.775 > fr ≥ 0.45]. Groups labelled “G” include 
one factor contribution fr

2 ≥ 0.6; labels “a”, “b” indicate factor loading being positive and negative, 
respectively. The last column is the modal type of scene identified by nephanalysis.]  
 

Table 4 summarizes data about centroids vk and their clustering based on observation of 
Varimax-rotated factors. A simple criterion of separation in groups was chosen according to 
squared loads fr2 (instead of the values fr), given that these ones are the actual contributions to 
communality of centroid components. Cases with fr2 > 0.75 are bold-labelled, underlined cases 
correspond to 0.75 > fr2 ≥ 0.6, and italics is used for 0.6 > fr2 ≥ 0.2.  

The simple condition of choosing combinations of factors cumulating more than 75% of 
total communality leads to define twenty groups. Groups labelled “G” contain one factor 
contribution fr2 > 0.6; labels “a” and “b” correspond to positive and negative factor loadings, 
respectively. In order to compare, the most frequent type of scene classificated in labelled 
targets set [present in table 3 (b)] are included in the last column of table 4. 

 It is seen that groups with one predominant factor (“G-groups”) show some definite 
characteristics: 
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• Groups G1a, G1b. Negative extremes of fr1 correspond to elements with low-
reflectance (R1 < 16%, and a single centroid wit 22%), warm and somewhat homogeneous (T4 

> 286 K, X1 < 0.38, X4 < 0.2). They correspond to ocean, ground and desert areas. Positive fr1 
is associated to elements with higher reflectance (R1 > 37%), somewhat low temperatures (T4 < 
275 K) and relatively high texture (X1 > 0.84, X4 > 0.35). They are developed Cu, thick Ci, and 
mixtures of Ci and St (multilayers).  

• Groups G2a, G2b. They present similar brightness temperatures and VIS texture (T4 ≈ 
275 K, X1 ≈ 0.9-1.2) but differ in reflectance and temperature texture. G2a identifies Ci over 
surface with low reflectance, high texture and temperature difference (R1 = 18%, X4 = 1.1, T54 

= –2.8 K), while G2b is thermally homogeneous (X4 < –1.5) and corresponds to St top (class 
19) or low clouds contamination over ocean (class 3).   

• Group G3a. Fair weather Cu field (R1 = 13-22%, T4 = 278-285 K) with high texture 
(X1 > 1). No “pure” group G3b is identified. The group with factors g3b1a and g3b2b (class 32 
and 18, identified as Cb and thick stratus deck, respectively) shows the stronger opposite 
behaviour, with high reflectance (R1 > 74%) and relatively low temperature (T4 < 269 K).   

• Group G4b. Thin Ci over surface, presenting low reflectance (R1 = 29%), somewhat 
low brightness temperature (T4 = 268 K) and high difference T54 (between –12 K and –7 K). 
The opposite behaviour G4a does not appear. 

 
Therefore, Factor 1 is associated to extremes between clear-sky and mid-high level high-

textured clouds (multilayered structure; eventually, large Cu). Factor 2 describes cloudy systems 
with somewhat low brightness temperature, with extremes of thermal texture between low (St) 
and high (Ci over surface) values. Factor 3 describes cumuliform fields between the extremes of 
(warm) fair weather Cu and (cold) extended Cb. Factor 4 identifies thin Ci over surface. 

Joining “pure” and mixed classes such that combinations of up to two factors cumulate 
more than 75% of total communality (except for the classes 9 and 16), the number of groups is 
reduced to seven, similarly to results published by Desbois et al. (1982), Sèze and Desbois 
(1987), Porcú and Levizzani (1992), Baum et al. (1997) and Gordon et al. (2005).  

Mixed groups present the following patterns: 
• Class 27 (g1b2a): the relatively low temperature, T54 = −2.1 K and the presence of 

factor 2a, indicate some cirrus contamination over surface. 
• Class 9 (g1b3a): the highest reflectance and texture in the factor 1b is associated to high 

altitude Andes deserts. 
• Class 22 (g2b1a): the high texture corresponds to a transition from stratiform to 

developed and non-uniform cover. That is found in modal labelled target classification too. 
• Class 12 (g3a2b): the reflectance and low thermal texture indicate a transition cumulus 

to stratiform, as shown by the factor 2b. 
• Classes 16 and 11: the temperature difference (T54 < −4.1 K) is associated to cirrus 

(Inoue 1987). Warm temperature (T4 = 290 K) which lower reflectance and factor 1b 
contribution indicate cirrus over surface;  high reflectance texture and factor 3a indicate cirrus 
over cumulus. 
 
[Figure 2. Bidimensional histogram from training image sample in (R1, T4) plane. Centroids position (for 
M = 5 variables) is also represented by numbered black square. It can be seen the typical “ear-sized” 
distribution.] 
 

The preceding discussion makes evident that well-known bidimensional histograms using 
reflectance and brightness temperature are not able to illustrate the complexity of multispectral 
scene descriptions. Figure 2 shows a bidimensional histogram in the plane (R1, T4), obtained 
from training image sample, including  centroids components described in table 4. The diagram 
exhibits the typical “ear-sized” characteristics reported in the literature (Desbois et al. 1982; 
Sèze and Desbois 1987). It must be noted that some centroids seem closer but are actually 
separated by components X1, X4 and/or T54 in dimensions not included in the histogram. 
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One realizes that an “objective” small number of cloudy scenes is a somewhat naïf 
hypothesis, since a continuous series of transitions can be expected between the principal types 
of cloud fields (especially Cu, St, Ci, Cb) and surfaces (ocean, vegetated and bare soil, desert), 
with “contaminated” or mixed landscapes between “pure” situations. Clearly, the number of 
possible or effective scene elements may be defined by the user according to his need. 
 
5. Conclusions 

 
The Method of Dynamic Clusters (MDC) uses minimal Euclidean distance as clustering 
criterion. It was applied to multispectral information of a large population of GOES 8 Imager 
pixels, seeking for a proper set of clusters representative of main cloud and ground classes. 
Pixels properties were defined through M = 13 variables describing reflectance and brightness 
temperature (5 variables), temperature difference related to channel 4 (3 variables) and local 
homogeneity or texture (5 variables). MDC sought for thirty-two clusters. The method was 
applied to an extended area of South America, using a number of daytime multispectral images 
of September 2002 at 1609 UTC (about local noon over most part of the area). Two sets of 
images were considered, one for training of classification and the other for validation of results.  

Each cluster of the training set was represented by its 13-dimensional centroid. Factor 
analysis in principal components for the set of clusters clearly showed that 4 from 13 principal 
components would cumulate 90% of total variance, suggesting the existence of only four non-
redundant original variables. The non-redundant variable set could be (T4, X4, X1, T54). 
Nevertheless, R1 appears as a partially independent variable and can be also included, for the 
benefit of a better definition of surface and lower finite clouds in channel 1. 

The five-dimensional description of pixels lead by MDC to a set of thirty-two centroids 
(table 4) which were used for classifying images of the training set. Nephanalysis of classified 
images allowed to identification (labeling) of clusters through their correspondence with 
characteristic cloud and surface scenes. The hypothesis of their use as reference set is fairly 
supported by applying the classification process to the validation set of images, comparing 
results with the “true information” of  more than three hundred targets (independently labeled 
by nephanalysis). Comparison was performed considering 13- and 5-dimensional pixels. It is 
noticeable the fact that despite a significant reduction of variables, the accuracy in target 
classification remains similar (as verified by frequency distribution in respective contingency 
tables). However, it is important to note that the whole inclusion of thermal and textural 
information improves classification of high level clouds (Ci, ML and Cb); on the other hand, 
using M = 5 variables it is verified an improvement in classification of surface and low-middle 
clouds (Sf, Cu and St). Therefore, reduction to only 5 variables could still be an acceptable 
choice. 

The objective number of distinct objects to be considered is also a matter of discussion. 
Factor analysis in principal components with Varimax rotation applied to M = 31 (objects) 
defined by 5-dimensional centroids and a simplified method of clustering based on observing 
the contribution of factors to communality shows that basic scene behavious: 1) extremes 
between clear-sky and mid-high level high-textured clouds (multilayered structure; eventually, 
large Cu); 2) cloudy systems with somewhat high brightness temperature, with extremes of 
thermal texture between low (St) and high (Ci over surface) values; 3) cumuliform fields 
between the extremes of (warm) fair weather Cu and (cold) extended Cb or uniform thick cloud 
deck; and 4) thin Ci over surface. It is suggested that resulting labelling of scenes can be 
grouped itself in a basic set of six or seven distinct types. This number of scenes is somewhat 
low, but a continuous set of transitions can be expected with a number of “contaminated” or 
mixed landscapes defined between “pure” situations. 
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Appendix A. Principal components analysis  
 
Consider a population of K objects defined by column vectors r in a Euclidean M-dimensional 
space.  Let us suppose that components ym of vectors r are standardized, that is, each one has a 
null mean <ym> = 0 and unit variance Var{ym} = <ym

2> = 1. Basic Principal Components 
Analysis  (Johnson and Wiechern 1982) shows that each vector rk(y1k, y2k, ..., yMk) has an image 
vector zk(z1k, z2k, ..., zMk) obeying a linear transformation 

rk = A zk (A1) 
where columns in matrix A are the M-dimensional orthonormal eigenvectors aj (a1j, a2j, ..., aMj) 
of matrix R. This vector set uses to be ordered following decreasing eigenvalues λj of matrix A. 
The set of K vectors zk  has components zjk called principal components (PC’s) of the original 
variables ym. They have mean, variance and cross product such that  

<zj> = 0, Var{zj} = λj, <zi zj> = λj δij,  Σj Var{zj} = M (A2) 
where δij is the Kronecker symbol. Considering standardized PC’s ζjk = zjk/λj, the original 
components of rk are assessed exactly through M equations 

ymk = fm1 ζ1k + fm2 ζ2k + ... + fmM ζMk, m = 1,2, …, M, (A3) 
being 

fmj = amj λj
1/2, Var{ym} = <ym

2> = Σj fmj
2 = 1. (A4) 

The standardized PC’s ζ.j are orthonormal and the coefficients fmj (called loading factors) 
are correlation coefficients between the m-th ym and the j-th ζj variables. Equation (A1) can be 
alternatively written as 

rk = F Zk ; (A5) 
Zk are vectors composed by standardized PC’s ζjk and matrix F is composed by factor loadings 
fmj. Ordered eigenvalues usually show a steep decrease, attaining values λj << 1 for j = J << M. 

Equation (A4) make evident that factor loadings become fmj << 1 for j > J, so that equation (A3) 
includes not more than J meaningful PC’s:  

fm1
2 +  fm2

2 + ... + fmJ
2 = hmJ ≈ 1. (A6) 

and variables y can be approximated by 
ymk ≈ fm1 ζ1k + fm2 ζ2k + ... + fmJ ζJk, J < M (A7) 

The squared factor loading fmj in equation (A6) assesses the fraction of the variance of the 
m-th component ym contributed by the j-th factor or principal component, and hmJ (“J-th order 
communality”) accounts for the contribution accumulated up to the J-th order approximation. 
The quality of an approximation [equation (A7)] (assessed by hmJ) is not the same for all ym 
variables but increases with higher J, being perfect if J = M. Since M > J, equation (A7) 
constitute a linear system with redundancy of as many as (M − J) variables ym.  
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Table 1.  Centroids resulting from multispectral clustering of the training set images, September 2002. 

Class R1 T2 T3 T4 T5 T24 T34 T54 X1 X2 X3 X4 X5 

1      6.7   287.1   244.2   286.3   285.1  0.8 –42.1 –1.2 –0.416 –1.182 –1.793 –1.581 –1.504 

2      9.5   288.6   240.7   285.5   283.9  3.1 –44.8 –1.6 0.045 –0.468 –1.671 –0.922 –0.839 

3    16.8   291.5   245.3   285.7   284.7  5.9 –40.3 –1.0 –0.066 –1.106 –2.718 –6.000 –1.495 

4    20.9   318.9   251.2   310.9   310.7  8.0 –59.7 –0.3 0.398 –0.122 –1.439 –0.099 –0.144 

5    12.3   302.0   245.7   297.1   295.2  4.9 –51.5 –1.9 –0.014 –0.388 –6.000 –0.756 –0.736 

6    14.7   309.4   246.1   303.1   300.8  6.3 –57.0 –2.3 –0.163 –0.622 –1.758 –0.958 –0.973 

7    15.5   311.2   243.7   303.6   301.0  7.6 –59.9 –2.6 0.138 0.156 –1.637 –0.001 –0.078 

8    13.6   290.5   240.6   282.8   281.2  7.7 –42.2 –1.6 1.298 0.351 –1.665 –0.098 –0.173 

9    22.1   311.1   251.1   301.1   300.8  10.0 –50.0 –0.2 0.880 0.711 –1.076 0.762 0.714 

10    24.7   302.6   237.5   280.0   273.4  22.5 –42.6 –6.7 1.196 0.373 –0.918 1.229 1.212 

11    22.9   304.8   245.4   291.3   288.1  13.6 –45.9 –3.1 1.650 –0.335 –1.693 0.527 0.424 

12    25.7   299.5   251.4   283.3   282.5  16.2 –31.8 –0.8 1.535 0.097 –1.678 –0.489 –0.583 

13    23.2   292.1   241.5   278.3   276.7  13.8 –36.8 –1.6 2.070 0.597 –1.495 0.881 0.768 

14    13.5   301.9   248.5   296.2   294.6  5.7 –47.6 –1.6 0.069 0.010 –1.638 –0.355 –0.410 

15    59.9   292.6   242.9   271.2   270.4  21.4 –28.4 –0.9 2.084 0.644 –1.319 0.798 0.695 

16    17.1   305.5   239.4   295.0   291.7  10.6 –55.6 –3.3 0.424 0.656 –0.890 1.024 1.027 

17    26.3   295.2   242.6   281.3   279.5  14.0 –38.6 –1.8 1.682 0.359 –6.000 0.504 0.385 

18    67.3   295.8   244.3   272.9   272.5  22.9 –28.6 –0.3 1.369 –0.037 –1.623 –0.837 –0.790 

19    48.8   305.0   250.7   279.9   279.7  25.0 –29.2 –0.2 1.252 –1.057 –1.814 –1.361 –1.421 

20    18.5   290.8   235.6   277.1   274.3  13.7 –41.5 –2.8 1.084 1.123 –0.574 1.438 1.408 

21    73.4   281.7   235.1   254.1   252.8  27.6 –19.0 –1.3 1.544 1.258 –0.732 0.829 0.772 

22    50.4   300.0   247.7   276.6   276.2  23.4 –28.9 –0.4 1.404 –0.367 –6.000 –0.948 –0.966 

23    66.6   290.6   234.8   252.7   251.5  37.9 –17.9 –1.2 1.119 0.404 –1.509 –0.127 –0.185 

24    32.1   293.6   229.6   260.1   251.7  33.5 –30.5 –8.4 0.879 –0.058 –0.812 0.619 0.530 

25    42.3   293.7   239.4   272.8   271.8  20.9 –33.3 –1.0 1.750 0.005 –1.579 –0.014 –0.137 

26    65.6   255.9   227.4   235.8   234.9  20.1 –8.5 –1.0 0.747 0.348 –0.916 0.137 0.099 

27    12.8   288.7   236.5   280.7   278.2  8.0 –44.2 –2.5 0.210 –0.084 –1.122 0.368 0.392 

28    30.2   279.5   231.6   258.1   255.3  21.5 –26.5 –2.7 0.977 0.522 –0.866 0.718 0.658 

29    33.1   280.7   232.9   259.1   256.7  21.6 –26.3 –2.4 1.641 1.420 –0.389 1.607 1.528 

30    54.3   263.9   228.4   240.5   239.2  23.5 –12.1 –1.3 1.296 1.159 –0.344 1.118 1.021 

31    49.6   271.3   222.6   235.4   231.6  35.9 –12.8 –3.8 0.836 0.415 –0.543 0.607 0.487 

32    75.5   252.9   218.7   221.3   220.8  31.6 –2.6 –0.6 0.352 0.244 –1.002 –0.301 –0.251 
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Table 2.  Factor analysis in principal components for centroids of table 1, 13 variables.  eigen: 

eigenvalues; f1, …, f4: loading factors; fr1, …, fr4: varimax-rotated factors; comm.: fourth-order 

communality. 

Eigen var f1 f2 f3 f4 fr1 fr2 fr3 fr4 comm 

6.612 R1 0.763 –0.357 0.394 –0.041 0.759 0.040 0.484 0.234 0.867 

2.643 T2 –0.807 0.350 0.267 –0.262 –0.913 –0.149 0.210 –0.117 0.914 

1.518 T3 –0.861 0.028 0.451 0.002 –0.842 –0.334 0.194 0.296 0.946 

0.887 T4 –0.948 0.294 0.097 0.004 –0.977 –0.166 –0.101 0.030 0.995 

0.654 T5 –0.953 0.252 0.140 0.055 –0.970 –0.183 –0.094 0.107 0.994 

0.319 T24 0.828 –0.106 0.197 –0.406 0.731 0.134 0.537 –0.243 0.900 

0.197 T34 0.892 –0.412 0.112 –0.005 0.946 0.053 0.255 0.122 0.978 

0.073 T54 –0.162 –0.495 0.556 0.631 –0.005 –0.226 0.071 0.961 0.979 

0.057 X1 0.462 0.303 0.721 –0.171 0.136 0.417 0.806 0.110 0.854 

0.039 X2 0.635 0.617 0.193 0.287 0.239 0.896 0.194 0.073 0.904 

0.000 X3 0.442 0.324 –0.356 0.364 0.303 0.577 –0.364 –0.044 0.560 

0.000 X4 0.481 0.766 0.122 0.036 0.047 0.857 0.241 –0.197 0.834 

0.000 X5 0.531 0.809 –0.004 0.073 0.093 0.923 0.131 –0.252 0.942 
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Table 3. Frequency of targets objectively classified in several types of scene, using (a) M = 13 variables 

and (b) M = 5 variables. Total number: 320 targets. Modal frequencies (in bold) indicate closer 

association of centroid to a given  type of scene. 

 
(a) 

 

 (b) 

 

 Type of scene   Type of scene 

Centroid Sf Cu St Ci ML Cb  Centroid Sf Cu St Ci ML Cb 

1 22 0 0 0 0 0  1 30 0 0 0 0 0 

2 16 2 0 1 0 0  2 14 1 0 1 0 0 

3 2 1 0 0 0 0  3 2 1 0 0 0 0 

4 12 0 0 0 0 0  4 15 0 0 0 0 0 

5 15 0 0 0 0 0  5 24 0 0 0 0 0 

6 24 0 0 0 0 0  6 10 0 0 0 0 0 

7 14 0 0 1 0 0  7 8 0 0 0 0 0 

9 3 1 0 0 0 0  14 8 0 0 1 0 0 

14 6 1 0 0 0 0  27 10 1 0 3 0 0 

16 9 2 0 2 0 0  8 7 11 0 0 0 0 

8 7 14 0 1 0 0  11 0 2 0 0 0 0 

11 1 9 0 0 0 0  12 0 5 1 1 0 0 

12 0 5 1 0 0 0  13 0 7 0 1 1 0 

13 0 16 0 1 2 0  15 0 3 2 0 1 0 

15 0 4 3 0 1 0  17 0 24 0 1 0 0 

17 0 10 0 1 0 0  25 0 14 1 0 0 0 

25 0 6 3 0 1 0  18 0 0 6 0 1 0 

18 0 0 10 0 0 0  19 0 0 14 0 0 0 

19 0 0 5 0 0 0  10 1 0 0 3 1 0 

22 0 2 3 0 0 0  16 2 1 0 5 0 0 

10 1 0 0 6 0 0  20 2 2 0 7 1 0 

20 0 1 0 9 0 0  24 0 0 0 1 0 0 

27 3 0 0 4 0 0  23 0 0 3 0 5 0 

21 0 0 1 0 3 0  26 0 0 0 0 13 0 

23 0 0 2 0 7 0  28 0 0 0 1 5 0 

24 0 0 0 0 1 0  29 0 1 0 2 3 0 

26 0 0 0 0 10 1  30 0 0 0 1 3 0 

28 0 0 0 1 2 0  31 0 0 0 0 3 0 

30 0 0 0 0 5 0  32 0 0 0 0 7 9 

31 0 0 0 0 5 0  9 2 0 0 2 0 0 

32 0 0 0 0 4 8  22 0 1 1 0 0 0 

29 0 0 0 3 3 0  21 0 0 0 0 0 0 

Sum 135 74 28 30 44 9  Sum 135 74 28 30 44 9 

 

Page 16 of 19

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

INPE ePrint: sid.inpe.br/mtc-m19@80/2009/12.03.12.31 v1 2009-12-04



For Peer Review
 O

nly

 4 

Table 4. Set of 31 5-dimensional centroids, and their classification using factor analysis in principal 

components; fr are Varimax rotated factor loadings. Boldface means fr
2
 ≥ 0.75 [fr ≥ 0.86]; underlined 

means fr
2
 ≥ 0.6 [fr ≥ 0.775]; italic means 0.6 > fr

2
 ≥ 0.2 [0.775 > fr ≥ 0.45]. Groups labelled “G” include 

one factor contribution fr
2
 ≥ 0.6; labels “a”, “b” indicate factor loading being positive and negative, 

respectively. The last column is the modal type of scene identified by nephanalysis. 

Class R1 T4 T54 X1 X4 fr1 fr2 fr3 fr4 Group type of scene 

30 40.0 251 –0.4 1.61 1.39 0.88 0.36 0.04 0.31 G1a ML 

28 38.8 249 –2.0 0.95 0.64 0.86 0.34 –0.31 0.21 G1a ML 

15 64.6 270 –0.5 2.32 0.84 0.94 –0.33 0.00 –0.08 G1a Cu 

25 40.4 275 –1.1 1.99 0.51 0.80 –0.20 0.57 –0.04 G1a3a Cu 

26 65.9 237 –0.8 0.97 0.35 0.78 –0.06 –0.56 0.26 G1a3b ML 

23 75.1 255 –1.6 1.48 0.74 0.81 –0.17 –0.56 –0.07 G1a3b ML 

31 53.1 241 –4.1 0.84 0.60 0.80 0.16 –0.54 –0.21 G1a3b ML 

29 36.6 263 –3.6 1.73 1.28 0.78 0.37 0.21 –0.46 G1a4b ML 

4 21.9 309 0.2 0.38 –0.01 –0.94 0.04 0.08 0.34 G1b Sf  (Andes) 

5 13.9 301 –1.7 –0.22 –0.73 –0.97 0.04 –0.05 0.23 G1b Sf 

14 15.8 303 –1.5 0.28 0.11 –0.96 0.22 0.12 0.14 G1b Sf 

6 14.1 304 –3.5 –0.23 –0.79 –0.99 0.03 –0.05 –0.09 G1b Sf 

7 15.4 302 –3.3 0.35 0.19 –0.92 0.27 0.15 –0.24 G1b Sf 

1 6.9 286 –1.2 –0.43 –1.54 –0.85 –0.06 –0.04 0.52 G1b4a Sf   (Ocean) 

2 10.4 287 –1.4 0.24 –0.91 –0.86 –0.02 0.22 0.45 G1b4a Sf 

27 12.3 282 –2.1 0.04 0.40 –0.73 0.62 –0.04 0.28 g1b2a Sf 

9 24.1 296 0.2 1.21 0.94 –0.60 0.39 0.55 0.43 g1b3a (Sf/Ci) (Andes) 

20 18.3 275 –2.8 0.89 1.14 –0.04 0.93 0.32 –0.15 G2a Ci 

19 52.2 278 –0.1 1.20 –1.49 0.10 –0.90 –0.19 0.39 G2b St 

3 16.9 286 –1.0 –0.06 –6.00 –0.44 –0.81 0.05 0.38 G2b1b Sf 

22 53.5 272 –0.4 1.72 –0.34 0.68 –0.69 –0.04 0.24 g2b1a (St/Cu) 

17 17.4 282 –1.8 1.74 0.41 0.08 0.16 0.98 –0.07 G3a Cu 

13 21.7 278 –1.4 2.30 1.05 0.43 0.20 0.88 –0.09 G3a Cu 

8 13.0 285 –1.7 1.06 –0.20 –0.53 0.10 0.81 0.22 G3a1b Cu 

12 27.2 281 –0.6 1.53 –0.71 0.02 –0.56 0.72 0.41 g3a2b Cu 

32 74.7 226 –1.1 0.28 –0.29 0.62 –0.12 –0.72 0.27 g3b1a Cb 

18 73.8 269 –0.4 1.13 –0.55 0.42 –0.61 –0.65 0.17 g3b2b St 

10 28.5 267 –7.0 1.18 1.14 0.31 0.42 0.07 –0.85 G4b Ci 

24 29.1 268 –12.4 0.75 0.79 0.11 0.24 –0.07 –0.96 G4b Ci 

16 17.9 290 –5.4 0.39 0.75 –0.57 0.52 0.03 –0.63 g4b1b2a Ci 

11 22.3 290 –4.1 1.73 0.88 –0.04 0.25 0.67 –0.69 g4b3a Cu 
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(a) 

 

(b) 

FIGURE 1. Classified scene for September 1, 2002, 1609 UT. RGB image using R1 in Green and T4 in 
Red and Blue (component R increases with T4, B has opposite behaviour). Thirty-two clusters obtained 
for (a) M = 13 variables, (b) M = 5 variables (R1, T4, T54, X1, X4). 
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Figure 2. Bidimensional histogram from training image sample in (R1, T4) plane. Centroids position (for 
M = 5 variables) is also represented by numbered black square. It can be seen the typical “ear-sized” 
distribution. 
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