

INPE-16669-NTC/382

UMA ARQUITETURA DE CONTROLE RECONFIGURÁVEL PARA A PLATAFORMA MULTIMISSÃO

Jairo Cavalcanti Amaral

Monografia de Exame de Qualificação do Curso de Pós-Graduação em Engenharia e Tecnologia Espaciais com Concentração em Mecânica Espacial e Controle, orientada pelo Dr. Marcelo Lopes de Oliveira e Souza.

> Registro do documento original: <http://urlib.net/sid.inpe.br/mtc-m19@80/2010/02.09.17.49>

> > INPE São José dos Campos 2010

PUBLICADO POR:

Instituto Nacional de Pesquisas Espaciais - INPE Gabinete do Diretor (GB) Serviço de Informação e Documentação (SID) Caixa Postal 515 - CEP 12.245-970 São José dos Campos - SP - Brasil Tel.:(012) 3945-6911/6923 Fax: (012) 3945-6919 E-mail: pubtc@sid.inpe.br

CONSELHO DE EDITORAÇÃO:

Presidente:

Dr. Gerald Jean Francis Banon - Coordenação Observação da Terra (OBT) Membros:

Dr^a Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação Dr. Haroldo Fraga de Campos Velho - Centro de Tecnologias Especiais (CTE) Dr^a Inez Staciarini Batista - Coordenação Ciências Espaciais e Atmosféricas (CEA) Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID) Dr. Ralf Gielow - Centro de Previsão de Tempo e Estudos Climáticos (CPT) Dr. Wilson Yamaguti - Coordenação Engenharia e Tecnologia Espacial (ETE) **BIBLIOTECA DIGITAL:**

Dr. Gerald Jean Francis Banon - Coordenação de Observação da Terra (OBT) Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID) Jefferson Andrade Ancelmo - Serviço de Informação e Documentação (SID) Simone A. Del-Ducca Barbedo - Serviço de Informação e Documentação (SID) **REVISÃO E NORMALIZAÇÃO DOCUMENTÁRIA:**

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID) Marilúcia Santos Melo Cid - Serviço de Informação e Documentação (SID) Yolanda Ribeiro da Silva Souza - Serviço de Informação e Documentação (SID) EDITORAÇÃO ELETRÔNICA:

Viveca Sant'Ana Lemos - Serviço de Informação e Documentação (SID)

AGRADECIMENTOS

Agradeço aos professores Dr. Petrônio Noronha de Souza, Dr. Luiz Carlos Gadelha de Souza, Dr. Mário César Ricci e Dr. Marcelo Lopes de Oliveira e Souza pelo conhecimento oferecido nas respectivas matérias.

RESUMO

Neste trabalho, tentaremos realizar o estudo de uma arquitetura de controle reconfigurável para a Plataforma Multimissão, à luz das matérias CSE-200-4 Introdução à Tecnologia de Satélites, CMC-311-2 Projeto de Sistemas de Controle Multivariáveis I, CMC-209-3 Controle Adaptativo I e CMC-315-5 Estabilidade I. Uma breve introdução do sistema será apresentada, seguida dos resultados e conclusões.

ABSTRACT

In this work, we intend to study a reconfigurable control architecture for the Multimission Platform, in the light of the disciplines CSE-200-4 Introduction to Satellite Technology, CMC-311-2 Project of Multivariable Control Systems I, CMC-209-3 Adaptive Control I and CMC-315-5 Stability I. A brief description of the system will be presented, followed by the results and conclusions.

SUMÁRIO

1	INTRODUÇÃO	1
1.1	Contexto e Motivação	1
1.2	Conteúdo	1
2	MODELAGEM DA PMM	2
2.1	A Plataforma Multimissão	2
2.2	Implementação	4
2.3	Atuadores	5
3	SISTEMA DE CONTROLE DE ATITUDE	9
3.1	Rastreador Linear Quadrático	9
3.2	Implementação do Rastreador Linear Quadrático	12
3.3	Agendamento de Ganho	14
3.4	Detector de falha	16
3.5	Considerações sobre a estabilidade	17
4	RESULTADOS	19
4.1	Primeiro Caso	19
4.2	Segundo Caso	21
4.3	Terceiro Caso	23
4.4	Quarto Caso	25
4.5	Quinto Caso	
	Erro! Indicador não definido.	
4.6	Sexto Caso	28
5	CONCLUSÃO	29
RE	FERÊNCIAS BIBLIOGRÁFICAS	31

1 INTRODUÇÃO

Neste trabalho, tentaremos realizar um estudo sobre uma arquitetura reconfigurável para a Plataforma Multimissão (PMM). Devido ao espaço disponível e à complexidade do assunto, iremos cobrir esse objetivo apenas superficialmente.

1.1 Contexto e Motivação

A capacidade detectar uma falha e reconfigurar-se para acomodá-la sem a necessidade de auxílio humano fornece robustez ao satélite, e pode ser uma alternativa mais econômica do que adicionar componentes redundantes. Uma dificuldade associada a isso é garantir a estabilidade da transição entre os diferentes modos de funcionamento. Isso já é utilizado em várias áreas tecnológicas, e já obteve sucessos inclusive na área espacial. Escolhemos a PMM como base para este estudo por ser um satélite atualmente em desenvolvimento no INPE. Excetuando o sistema de controle, a modelagem da PMM e do ambiente utilizada aqui já existe, e veio do trabalho de Amaral (2008), que por sua vez é uma extensão dos trabalhos de Moreira (2006) e Prudêncio (1997).

1.2 Conteúdo

Este trabalho está dividido como segue: o Capítulo 2 faz uma breve descrição da Plataforma Multimissão e de como ela foi modelada; o Capítulo 3 descreve o sistema de controle projetado para este trabalho; o Capítulo 4 exibe os resultados relevantes; e o Capítulo 5 mostra as conclusões. Por fim, é apresentada a bibliografia utilizada.

2 MODELAGEM DA PMM

2.1A Plataforma Multimissão

A Plataforma Multimissão (PMM), objeto de aplicação desse trabalho, é um conceito moderno em arquitetura de satélites e consiste em reunir em uma única plataforma versátil os equipamentos essenciais à operação do satélite, independente de sua órbita e de sua missão específica (definida pelos sensores do módulo de carga útil). Nesta arquitetura existe uma separação física entre a plataforma e o módulo de carga útil, possibilitando que ambos possam ser desenvolvidos, construídos e testados separadamente, antes da integração e teste final do satélite. Um desenho da configuração em órbita pode ser visto na Figura 1:

Fonte: INPE (2001)

Devido à diversidade de condições em que um satélite irá encontrar durante toda sua vida, faz-se uma separação em vários Modos de Operação, Figura 2, onde cada modo é definido pelo ambiente e condição em que o satélite se encontra. Uma descrição mais detalhada dos modos de funcionamento pode ser encontrada em Amaral (2008).

Figura 2 – Lógica de Transição dos modos de Operação da PMM. INPE (2001a), traduzida por Moreira (2006).

Para o tipo de missão escolhida neste trabalho, o Modo Nominal se encarrega de manter os eixos da PMM alinhados com os eixos do referencial Vertical Local Horizonte Local (VLHL), Figura 3. Esse é um referencial girante no plano da órbita do satélite cujo sistema de coordenadas tem origem no centro de massa do satélite. O eixo z aponta na direção do centro da Terra, o eixo y aponta na direção normal ao plano da órbita e o eixo x é obtido pela regra da mão direita, e coincide com a direção do vetor velocidade orbital linear, para uma órbita circular.

Figura 3: referencial Vertical Local Horizonte Local.

A atitude do satélite assim como a taxa de variação da mesma deve ser controlada nos três eixos para cumprir com os seguintes requisitos:

- •Precisão de apontamento: $< 0,05^{\circ}(3 \sigma)$;
- •Deriva ("Drift"): < 0,001%s (3 σ);
- •Determinação de atitude: $\leq 0,005^{\circ}(3 \sigma)$;
- •Desvio ("Off pointing") de até 30° em 180 s.

2.2Implementação

A implementação da PMM usada como base para este trabalho (Figura 4) foi feita por Amaral (2008), utilizando a ferramenta SystemBuild do MATRIXx.

Modelagem matemática considera a PMM como um corpo sem flexão, torques internos nulos, atrito da roda e momento inicial nulos. Ela propaga a atitude e a órbita, e inclui modelos para o gradiente gravitacional, arrasto atmosférico, eclipses, variação de massa por gasto de propelente, e variação de momentos de inércia pela abertura dos painéis solares. Além disso, ela inclui torques perturbatórios fixos em 0,00015 Nm² em todos os três eixos.

Figura 4: Implementação da PMM em Systembuild MATRIXx. Amaral (2008)

2.3Atuadores

Os atuadores utilizados no Modo Nominal são três rodas de reação, alinhadas com os eixos da PMM. Elas já estão implementadas de trabalhos anteriores. O modelo da roda de reação é semelhante ao sugerido por Souza (1980). Ele é baseado numa aproximação linear da curva característica de um servomotor CC e diagrama de blocos correspondente como mostrado na figura 5:

Figura 5 – Aproximação Linear Da Curva Característica Do Servomotor E Diagrama De Blocos Correspondente. Fonte: Souza (1980)

O cálculo dos parâmetros da roda pode ser feito, de acordo com Souza (1980), da seguinte forma:

$$T_{W} = \frac{I_{R} \cdot \omega_{R \max}}{M_{R \max}}$$
$$K_{W} = \frac{M_{R \max}}{V_{R \max}}$$

onde T_w é a constante de tempo da roda e K_w o ganho da roda.

As rodas de reação da PMM seguem as especificações dadas na tabela abaixo:

	Tabela 1 –	Parâmetros	Da	Roda D	e Re	eação –	Espec	cificação	PMM
--	------------	------------	----	--------	------	---------	-------	-----------	-----

I	0.015		
IR	[kg.m^2]		
$\omega_{R \max}$	7500 [r.p.m]	$T_{W} = 157[s]$	$K_W = 7.5 \cdot 10^{-3}$
$M_{R \max}$	0.075 [N.m]		
$V_{R \max}$	10 [V]		

No entanto, em caráter ditático, decidimos adotar os valores de uma roda de reação mais rápida e forte, também utilizada nos trabalhos de Amaral (2008), Moreira (2006) e Gobato (1997):

Tabela 2 Parâmetros Da Roda De Reação – Utilizados Nesse Trabalho

I	0.015				
IR	[kg.m^2]				
$\omega_{R \max}$	7500 [r.p.m]	$T_{W} = 20[s]$	$K_{W} = 0.06$		
$M_{R \max}$	0.6 [N.m]				
V _{R max}	10 [V]				

O modelo das rodas de reação utilizadas nesse trabalho tem como entrada as tensões $V_{Rx_{-}s}$, $V_{Ry_{-}s}$, $V_{Rz_{-}s}$ e $V_{Rs_{-}s}$ geradas pelo controlador e como saída as velocidades angulares das rodas ω_{Rx} , ω_{Ry} , ω_{Rz} e ω_{Rs} ; os torques gerados pelas rodas \dot{h}_{Rx} , \dot{h}_{Ry} , \dot{h}_{Rz} e \dot{h}_{Rs} ; e os torques totais gerados nos três eixos, acrescidos da parcela de torque gerado pela roda ortogonal, $\dot{h}_{Rx_{-}t}$, $\dot{h}_{Ry_{-}t}$ e $\dot{h}_{Rz_{-}t}$

Adicionalmente, as seguintes simplificações, de acordo com Souza (1980), puderam ser feitas:

Os momentos de inércia dos eixos da PMM são $I_{sx} = 295.71[kg \cdot m^2]$, $I_{sy} = 501.37[kg \cdot m^2]$, $I_{sz} = 364.82[kg \cdot m^2]$; e o momento de inércia de cada roda de reação é $I_{Rj} = 0.015[kg \cdot m^2]$. Portanto, como $|I_s| >> |I_R|$ então $(I_R + I_s) \cong I_s$. Se ω_s for suficientemente pequeno então os torques giroscópicos devidos ao movimento de rotação do conjunto satélite + rodas de reação em relação ao referencial inercial serão desprezíveis; e se \vec{H}_{RS} for suficientemente pequeno então os torques giroscópicos devido ao movimento de rotação das rodas de reação em relação ao referencial móvel serão desprezíveis. No modo nominal,

a velocidade de rotação do satélite é $\omega_{Sj} \leq 0.167^{\circ} / s = \frac{\pi}{1080} rad / s$, e seu momento angular é $H_{RSj} \leq 12N \cdot m \cdot s$. Considerando I_{Sx} , I_{Sy} , I_{Sz} e I_R , teríamos no pior caso as resultantes $\dot{h}_{Sy} \approx 0.00424239N \cdot m$ e $\dot{h}_{RS_x,xyz} \approx 0.0349066N \cdot m$, o que é bem menor que o torque fornecido pela roda de reação $\dot{h}_{RS_x,xyz} \leq 0.6N \cdot m$

Se se escolhem como referencial móvel os três eixos principais de inércia do satélite, então I_s é diagonal. Desaparecem assim os torques gerados pelos produtos de inércia. I_s é diagonal, dessa forma, a equação abaixo:

$$\vec{H}_{S} + \vec{\omega}_{S} \times [(\vec{I}_{W} + \vec{I}_{S})\vec{\omega}_{S} + \vec{I}_{W}\vec{\omega}_{WS}] = \vec{M}_{Ext} + \vec{H}_{W}$$

pode ser reduzida a:

$$I_{Sx}\dot{\omega}_{Sx} = M_{Ext_x} + \dot{h}_{Rx}$$
$$I_{Sy}\dot{\omega}_{Sy} = M_{Ext_y} + \dot{h}_{Ry}$$
$$I_{Sz}\dot{\omega}_{Sz} = M_{Ext_z} + \dot{h}_{Rz}$$

3 SISTEMA DE CONTROLE DE ATITUDE

Decidimos adotar um sistema de controle de atitude baseado no rastreador linear quadrático, mas capaz de detectar uma deterioração no funcionamento de uma das rodas de reação e adaptar-se de acordo. Devido ao tamanho deste trabalho, o monitoramento e a adaptação foram projetados apenas para a roda do eixo x. O diagrama do sistema de controle pode ser visto na Figura 6:

Figura 6 diagrama em blocos do sistema de controle de atitude

3.1 Rastreador Linear Quadrático

O Rastreador Linear Quadrático é uma extensão do Regulador Linear Quadrático (LQR), que por sua vez apresenta uma lei de controle ótima por realimentação linear da combinação dos estados do sistema. A diferença é que enquanto o LQR simplesmente busca levar a saída para a origem, o rastreador segue uma referência movel.

Figura 7 - Controle via rastreador linear quadrático

O objetivo do rastreador linear quadrático é de manter o vetor de estados próximo à referência zero sem um gasto excessivo de energia de controle, minimizando o funcional de custo quadrático J:

$$J = \frac{1}{2}x^{T}(t_{f})H(t_{f})x(t_{f}) + \frac{1}{2}\int_{t_{0}}^{t_{f}} \left[x^{T}(t)Q(t)x(t) + u^{T}(t)R(t)u(t)\right]dt$$

A situação aqui demonstrada será aquela que leva em consideração o fato da planta ser controlada permanentemente (tf – to $\rightarrow \infty$). Isso simplifica bastante o método para determinação da matriz K.

De acordo com Kirk (1970), como já demonstrado por Kalman, se:

•a planta é controlável;

•H(t)=0;

•A, B, Q e R são matrizes constantes;

então a matriz $K(t) \rightarrow K$ quando $t_f - t_0 \rightarrow \infty$.

Sendo Q uma matriz não negativa definida e R uma matriz positiva definida. Então o controle ótimo minimizando J é dado pela lei de realimentação linear:

$$u(t) = -K(t)x(t)$$

com:

 $K = R^{-1}B^T P$

P pode ser determinado pela única solução positiva definida da Equação Algébrica de Riccati:

$$0 = -PA - A^T P - Q + PBR^{-1}B^T P$$

As matrizes Q e R são conhecidas como parâmetros de sintonia, e são definidas como:

$$R = diag([r_1, r_2, ..., r_{na}))$$

 $Q = diag([q_1, q_2, ..., q_{nc}))$ onde *na* é o número de atuadores no sistema de controle e *ns* é o número de estados de interesse. O desempenho desejado do sistema é obtido pelo ajuste dos parâmetros de sintonia.

Como sugerido por Arantes (2005), uma forma de fazer a primeira escolha dos parâmetros de sintonia é:

$$q_i = \frac{1}{(\Delta x_i^2)}$$

e:

$$r_i = \frac{1}{(\Delta u_i^2)}$$

Os valores de Δu_i são baseados no máximo esforço de controle ou valor máximo de operação dos atuadores. Os valores de Δx_i são baseados na faixa/intervalo de operação dos estados.

3.2Implementação do Rastreador Linear Quadrático

A implementação do rastreador linear quadrático é similar à que pode ser encontrada no trabalho de Gobato (2006). O vetor de estados contém os ângulos, velocidades angulares e velocidades das rodas de cada eixo, e será definido da forma abaixo:

$$x(t) = \begin{bmatrix} \phi & \dot{\phi} & \omega_{Rx} & \theta & \dot{\theta} & \omega_{Ry} & \psi & \dot{\psi} & \omega_{Rz} \end{bmatrix}$$

O vetor de controle contém as tensões de cada roda de reação, e será:

$$u(t) = \begin{bmatrix} V_{Rx_s} & V_{Ry_s} & V_{Rz_s} \end{bmatrix}$$

Em cada um dos três eixos de rotação, o conjunto ângulo, velocidade angular e velocidade da roda de reação não é completamente controlável. No entanto, esta última foi incluída no vetor de estados para que a dinâmica da roda fosse considerada, e a saída do controlador u(t) = -Kx(t) fosse tensão, em vez de torque.

É necessário estabelecer o torque de uma relação entre o torque das rodas e suas respectivas tensões e velocidades de rotação:

$$\dot{h}_R = f(\omega_R, V_R)$$

Da função de transferência da roda, sabemos que:

$$W(s) = V(s) \cdot \frac{K_W T_W}{(1 + sT_W)I_R}$$

$$V(s) = \frac{W(s)I_R + sW(s)T_WI_R}{K_WT_W}$$

$$v(t) = \frac{\omega(t)I_R}{K_W T_W} + \frac{\dot{\omega}(t)I_R}{K_W}$$
$$\dot{\omega}(t) = \frac{v(t)K_W}{I_R} - \frac{\omega(t)}{T_W}$$

E ainda:

$$\dot{h}(t) = I_R \dot{\omega}(t) = v(t)K_W - \omega(t)\frac{I_W}{T_R}$$

Substituindo na cinemática linearizada da PMM,

$$\ddot{\phi} = \frac{M_{Ext_x}}{I_{Sx}} + \frac{\dot{h}_{Rx}}{I_{Sx}}$$
$$\ddot{\theta} = \frac{M_{Ext_y}}{I_{Sy}} + \frac{\dot{h}_{Ry}}{I_{Sy}}$$
$$\ddot{\psi} = \frac{M_{Ext_z}}{I_{Sz}} + \frac{\dot{h}_{Rz}}{I_{Sz}}$$

resulta em:

$$\ddot{\phi} = \frac{M_{Ext_x}}{I_{Sx}} + v_{Rx} \frac{K_W}{I_{Sx}} - \omega_{Rx} \frac{I_R}{T_R I_{Sx}}$$
$$\ddot{\theta} = \frac{M_{Ext_y}}{I_{Sy}} + v_{Ry} \frac{K_W}{I_{Sy}} - \omega_{Ry} \frac{I_R}{T_R I_{Sy}}$$
$$\ddot{\psi} = \frac{M_{Ext_z}}{I_{Sz}} + v_{Rz} \frac{K_W}{I_{Sz}} - \omega_{Rz} \frac{I_R}{T_R I_{Sz}}$$

Na forma de espaço de estados, temos o resultado abaixo:

		0	1	0	0	0	0	0	0	0]	0	0	0]	
		0	0	$-\frac{I_R}{T_R}$	0	0	0	0	0	0		$\frac{K_W}{L}$	0	0	
ϕ				$T_W I_{Sx}$							$\left[\begin{array}{c} \phi \end{array} \right]$	I_{Sx}			
ϕ		0	0	$-\frac{1}{T_{m}}$	0	0	0	0	0	0	ϕ	$\frac{\pi_W}{I}$	0	0	
$\dot{\omega}_{Rx}$		0	0	0	0	1	0	0	0	0	ω_{Rx}	$\begin{bmatrix} 1_R \\ 0 \end{bmatrix}$	0	0	
$\left \begin{array}{c} \theta \\ \vdots \end{array} \right $		0	0	0	0	0	$-\frac{I_R}{\pi}$	0	0	0	$\left \begin{array}{c} \theta \\ \cdot \end{array} \right $	0	K_W	0	$V_{Rx _ S}$
θ	=						$T_W I_{Sy}$				$ \cdot \theta +$		I_{Sy}		$\cdot V_{Ry_S} $
$\dot{\omega}_{Ry}$		0	0	0	0	0	$-\frac{1}{T}$	0	0	0	ω_{Ry}	0	$\frac{\Lambda_W}{I}$	0	$V_{Rz _ S}$
ψ		0	0	0	0	0	0	0	1	0	$ \psi $	0	I_R	0	
Ψ̈́		0	0	0	0	0	0	0	0	$-\overset{\circ}{I_R}$	<i>\\$</i>	0	0	$\check{K_W}$	
$\dot{\omega}_{Ry}$			0	0	0	0	0	0	0	$T_W I_{Sz}$	$\left\lfloor \omega_{Ry} \right\rfloor$		0	I_{Sz}	
		0	0	0	0	0	0	0	0			0	0	$\frac{K_W}{K_W}$	
										T_W		L		I_R	

A matriz *K* será calculada através da função LQR do Matlab, mas um algorítmo para sua resolução pode ser encontrada em Kwakernaak (1972). Os valores das matrizes de ajuste serão escolhidos empiricamente.

3.3 Agendamento de Ganho

O agendamento de ganho é uma das formas mais simples de controle adaptativo, e remonta aos primeiros usos do controle adaptativo em aviões para grande altitude nos anos 60 (Aström 2006). Ele consiste em obter informações da planta e chavear para os parâmetros de controle mais adequados dentro de um conjunto de parâmetros pré-estabelecidos.

Formas mais sofisticadas de controle adaptativo, como a alocação de polos de malha fechada, dependem da solução de equações diofantinas polinomiais, e os estimadores associados a isso dependem de inversões de matrizes grandes durante o funcionamento do sistema (Aström 2006), exigindo uma carga computacional incomum para um controle de atitude de satélite.

De acordo com a implementação deste trabalho, ele começa utilizando uma matriz K calculada para três rodas de reação com parâmetros nominais. A matriz K utilizada foi a mesma do trabalho de Gobato (2006), que já foi feita para um caso nominal:

	5.2087e + 001	8.0875e + 002	-1.2500e - 002	- 8.2276e - 012	- 2.5735e - 006	7.6988e - 011	-1.7673e - 010	9.3877e - 005	- 3.8426e - 009
K =	-1.9573e - 011	- 2.3215e - 003	1.1776e - 007	5.2087e + 001	1.1264e + 003	-1.2500e - 002	1.0793e - 007	-1.4259e +000	5.8629e - 005
	- 4.1344e - 010	- 2.6859e - 003	1.3627e - 007	1.2451e - 007	1.0589e + 000	- 3.1681e - 005	5.2087e + 001	9.2140e + 002	-1.2571e - 002

obtida com as seguintes matrizes Q e R:

$$Q = \begin{bmatrix} \frac{1}{(11^{\circ})^2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{(10^{\circ}/s)^2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{(6800r.p.m)^2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{(11^{\circ})^2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & (10^{\circ}/s)^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{(6800r.p.m)^2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{(11^{\circ})^2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{(11^{\circ})^2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{(6800r.p.m)^2} & 0 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{1}{(10V)^2} & 0 & 0\\ 0 & \frac{1}{(10V)^2} & 0\\ 0 & 0 & \frac{1}{(10V)^2} \end{bmatrix}$$

Caso um sinal de erro do detector de falha ultrapasse um valor préestabelecido, ele chaveará para uma matriz K calculada para rodas nos eixos y e z nominais, e uma roda no eixo x com constantes de tempo e ganho inferiores (Kw = $0.2 \text{ Nm}^2/\text{V}$ e Tw = 100 s).

A disposição dos valores da matriz K para o caso de falha é mostrada abaixo:

 9.5492e+001
 3.8293e+003
 -7.5000e-003
 -3.0193e-015
 -3.3527e-006
 1.0231e-010
 1.8777e-014
 5.5879e-007
 -2.2737e-011

 2.8589e-015
 -1.1920e-005
 6.0254e-010
 9.5492e+001
 3.6862e+003
 -1.2499e-002
 3.9335e-015
 1.5832e-006
 -7.3896e-011

 1.4866e-014
 -1.4901e-006
 6.8212e-011
 1.6317e-013
 -3.7252e-007
 2.8421e-012
 9.5492e+001
 3.6154e+003
 -1.2499e-002

e foi obtida a partir das seguntes matrizes Q e R:

$$R = \begin{bmatrix} \frac{1}{(10V)^2} & 0 & 0\\ 0 & \frac{1}{(10V)^2} & 0\\ 0 & 0 & \frac{1}{(10V)^2} \end{bmatrix}$$

Isso representa uma resposta do sistema de controle caso a roda em questão sofra deterioração com o tempo e uso.

3.4 Detector de falha

Alterações na roda de reação do eixo x são detectadas através da comparação com um modelo, que recebe o mesmo sinal de controle. A especificação da PMM afirma que a velocidade das rodas de reação são monitoradas, portanto consideramos este valor como disponivel na simulação.

Modelo da roda de reação nominal para comparação

A diferença entre a velocidade da roda de reação e a do modelo fornece o sinal de erro que é observado pelo agendador.

Como o erro leva algum tempo para aumentar, isso significa que o chaveamento não é imediato. No entanto, como há um limite de 10 Volts no módulo do sinal de controle, e erros iniciais tão grandes provocam esse ceifamento nos primeiros instantes, qualquer uma das matrizes possívies resultaria em +10 ou -10 nos momentos iniciais. Portanto, tal problema é amenizado.

3.5Considerações sobre a estabilidade

Normalmente é difícil garantir analiticamente a estabilidade de um modelo nãolinear. O sistema em questão é linearizado, mas a variação de parâmetros do bloco adaptativo pode introduzir instabilidades. A análise por plano de fases (Poincaré 1967) permite determinar o comportamento de sistemas dinâmicos sem a necessidade de resolver equações analíticas, e autores como Popov (19**) desenvolveram abordagens analíticas para casos não-lineares, mas uma maneira simples de garantir a estabilidade ou o desempenho é inspecionar o comportamento do sistema para os piores casos que possam ser encontrados em seu funcionamento nominal. De acordo com as especificações da PMM, este pior caso é quando todos os ângulos de atitude estão a 30 graus da origem do sistema VLHL. Assim, essa será a condição inicial para os testes.

4 RESULTADOS

Os casos exibidos a seguir foram feitos com uma órbita circular de raio 7000 km, e a atitude inicial era de 30 graus em todos os três eixos, em relação ao referencial VLHL.

4.1 Primeiro Caso

Regulador linear quadrático projetado para os valores nominais das rodas de reação. Não há qualquer controle adaptativo.

Gráfico 1: Módulo da velocidade de rotação em graus por segundo, e atitude em graus nos eixos x, y e z no referencial VLHL, em função do tempo em segundos.

Gráfico 2: Atitude em graus nos eixos x, y e z no referencial VLHL, em função do tempo em segundos.

Gráfico 3: Velocidade de rotação em rpm das rodas de reação dos eixos x, y e z, em função do tempo em segundos.

4.2Segundo Caso

Regulador linear quadrático projetado para valores nominais das rodas de reação dos eixos y e z, e para uma roda arbitrariamente deteriorada no eixo x $(K = 0.2 \text{ Nm}^2/\text{V} \text{ e T} = 100 \text{ s})$. As rodas usadas na simulação são nominais. Não há qualquer controle adaptativo.

Gráfico 4: Módulo da velocidade de rotação em graus por segundo, e atitude em graus nos eixos x, y e z no referencial VLHL, em função do tempo em segundos.

Gráfico 5: Atitude em graus nos eixos x, y e z no referencial VLHL, em função do tempo em segundos.

Gráfico 6: Velocidade de rotação em rpm das rodas de reação dos eixos x, y e z, em função do tempo em segundos.

4.3Terceiro Caso

Regulador linear quadrático projetado para valores nominais das rodas de reação dos eixos y e z, e para uma roda arbitrariamente deteriorada no eixo x (K = $0.2 \text{ Nm}^2/\text{V}$ e T = 100 s). A roda do eixo x tem esses parâmetros. Não há qualquer controle adaptativo.

Gráfico 7: Módulo da velocidade de rotação em graus por segundo, e atitude em graus nos eixos x, y e z no referencial VLHL, em função do tempo em segundos.

Gráfico 8: Atitude em graus nos eixos x, y e z no referencial VLHL, em função do tempo em segundos.

Gráfico 9: Velocidade de rotação em rpm das rodas de reação dos eixos x, y e z, em função do tempo em segundos.

4.4Quarto Caso

Sistema de controle completo, com a roda do eixo x com Kw = $0.2 \text{ Nm}^2/\text{V}$ e Tw = 100s. O critério para determinar a mudança de ganho é o módulo do sinal de erro entre a velocidade angular da roda de reação do eixo x ultrapassar 100 rad/s, e a velocidade angular de um modelo da roda de reação nominal.

Gráfico 10: Atitude em graus nos eixos x, y e z no referencial VLHL, e o erro do modelo em radianos por segundo, em função do tempo em segundos.

Gráfico 11: Atitude em graus nos eixos x, y e z no referencial VLHL, em função do tempo em segundos.

4.5Quinto Caso

Similar ao quarto caso, porém com uma roda de reação com Kw = $0.4 \text{ Nm}^2/\text{V}$ e Tw = 40 s, com critério de chaveamento sendo o módulo do erro maior do que 100 radianos por segundo. Uma roda assim está no limiar de ativar o chaveamento para uma nova matriz K, para o caso inicial da atitude ser de 30 graus em todos os eixos.

Gráfico 12: Atitude em graus nos eixos x, y e z no referencial VLHL, e o erro do modelo em radianos por segundo, em função do tempo em segundos.

Gráfico 13: Atitude em graus nos eixos x, y e z no referencial VLHL, em função do tempo em segundos.

4.6Sexto Caso

Usando o sistema de controle completo, com uma roda de reação a com Kw = 0,4 Nm2/V e Tw = 40s, e critério de chaveamento sendo o módulo do erro maior do que 50 radianos por segundo.

Gráfico 14: Atitude em graus nos eixos x, y e z no referencial VLHL, em função do tempo em segundos.

5 CONCLUSÃO

Os gráficos do Caso 1 mostram que o comportamento nominal do sistema de controle de atitude não satisfez os requisitos especificados, pois após 180 segundos a atitude no eixo z ainda se encontrava levemente acima de 0,05 graus.

Os gráficos do Caso 2 mostram que o uso indevido do modo de falha resulta em um apontamento pior que o caso nominal. No tempo de 180 segundos, todos os eixos continham erros entre 0,2 e 0,5 graus.

Os gráficos do Caso 3 mostram que o uso do modo nominal com uma roda degradada (Kw 0,2 Nm^2/V Tw = 100s) resulta em um apontamento pior que o caso nominal. O erro no eixo x ainda em 1 grau.

Os gráficos do Caso 4 mostram que o uso apropriado do modo de falha resultou em erros inferiores a 0,5 graus após 180 segundos. Não é superior ao funcionamento nominal, mas é melhor que o controle nominal durante uma falha.

Os gráficos do Caso 5 mostram que uma roda com (Kw 0,4 Nm²/V e Tw = 40s) não provoca o chaveamento e o resultado é um erro de 0,5 grau após 180 segundos. Considerando o módulo do erro dos três eixos, é um erro maior do que alquele foi obtido no Caso 4. Isso indica que o critério de módulo de erro de 100 radianos por segundo é tolerante demais.

Os gráficos do Caso 6 mostram que usar um critério de 50 radianos por segundo produz resultados melhores no sistema de controle. O módulo do erro nos três eixos é semelhante ao que foi obtido no caso 4. Isso indica que esse critério é mais adequado, pois o limiar da ativação do modo de erro deve coincidir com o limiar a partir de onde seu uso é mais vantajoso.

Embora o sistema de controle não satisfaça os requisitos de apontamento, a inclusão de um controle adaptativo faz com que seu desempenho seja melhor do que se usasse um controle de ganhos fixos.

REFERÊNCIAS BIBLIOGRÁFICAS

MARAL, J. C. Análise, projeto e simulação de uma arquitetura de controle reconfigurável para a plataforma multimissão. 2008. 149 p. (INPE-15682-TDI/1456). Dissertação (Mestrado em Mecânica Espacial e Controle) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos. 2009. Disponível em: http://urlib.net/sid.inpe.br/mtc-m18@80/2008/11.23.12.58. Acesso em: 12 fev. 2010.

ARANTES JÚNIOR, G. Estudo comparativo de técnicas de controle de atitude em três eixos para satélites artificiais. 2005. 201 p. (INPE-12970-TDI/1018). Dissertação (Mestrado em Mecânica Espacial e Controle) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos. 2005. Disponível em: <http://urlib.net/sid.inpe.br/jeferson/2005/03.09.14.25>. Acesso em: 12 fev. 2010.

ÅSTRÖM K J, WITTENMARK B. Adaptive control. 2. ed. 2006 - Pearson Education

GOBATO, M. F. Controles monovariáveis e multivariáveis aplicados a sistemas aeroespaciais fracamente ou fortemente acoplados. 2006. 388 p. (INPE-14494-TDI/1175). Dissertação (Mestrado em Mecânica Espacial e Controle) - Instituto Nacional de Pesquisas Espaciais, São

INSTITUTO NACIOANAL DE PESQUISAS ESPACIAIS (INPE). **A822000-DPK-01/D5a – Multimission Platform Data Package for System Requirements Review (SRR)**. 2001. São José dos Campos – SP.

KIRK, D. E. **Optimal control theory** – an introduction. New Jersey, USA: Prentice-Hall. 1970.

KWAKERNAAK, H. ; SIVAN, R. Linear optimal control systems. New York: Wiley-Interscience, 1972.

Moreira, M. L. B. **Projeto e simulação de um controle discreto para a plataforma multi-missão e sua migração para um sistema operacional de tempo real**. 2006. 181 p. (INPE-14202-TDI/1103). Dissertação (Mestrado em Mecânica Espacial e Controle) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos. 2006.

POINCARÉ, H. **New methods of celestial mechanics, 3 vols.** [S.I.:s.n.], 1967. English trans.

Prudêncio, S.V. Simulação Digital em Tempo Real de um Sistema de Controle de Atitude Magnético Autônomo de um Satélite. Dissertação de Mestrado em **Engenharia e Tecnologia Espaciais/Mecânica Espacial e Controle**. 1997. São José dos Campos – SP.

Souza, M. L. O. Estudo e Desenvolvimento de um Sistema de Controle de Atitude Ativo em Três Eixos para Satélites Artificiais Usando Atuadores Pneumáticos a Gás Frio e Volantes de Reação. Dissertação de Mestrado em Ciência Espacial. 1980. São José dos Campos – SP.