
INPE-16678-PUD/218

NATURAL LANGUAGE REQUIREMENTS:

AUTOMATING MODEL-BASED TESTING AND

ANALYSIS OF DEFECTS

Valdivino Alexandre de Santiago Júnior

Publicação Interna - sua reprodução ao público externo está sujeita à

autorização da chefia.

Original document registry:

<http://urlib.net/sid.inpe.br/mtc-m19@80/2010/02.26.16.20>

INPE

São José dos Campos

2010

http://urlib.net/sid.inpe.br/mtc-m19@80/2010/02.26.16.20

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE

Gabinete do Diretor (GB)

Serviço de Informação e Documentação (SID)

Caixa Postal 515 - CEP 12.245-970

São José dos Campos - SP - Brasil

Tel.:(012) 3945-6911/6923

Fax: (012) 3945-6919

E-mail: pubtc@sid.inpe.br

EDITORIAL COMMITTEE:

Chairperson:

Dr. Gerald Jean Francis Banon - Coordenação Observação da Terra (OBT)

Members:

Dra Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação

Dr. Haroldo Fraga de Campos Velho - Centro de Tecnologias Especiais (CTE)

Dra Inez Staciarini Batista - Coordenação Ciências Espaciais e Atmosféricas (CEA)

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Dr. Ralf Gielow - Centro de Previsão de Tempo e Estudos Climáticos (CPT)

Dr. Wilson Yamaguti - Coordenação Engenharia e Tecnologia Espacial (ETE)

DIGITAL LIBRARY:

Dr. Gerald Jean Francis Banon - Coordenação de Observação da Terra (OBT)

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Jefferson Andrade Ancelmo - Serviço de Informação e Documentação (SID)

Simone A. Del-Ducca Barbedo - Serviço de Informação e Documentação (SID)

DOCUMENT REVIEW:

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Marilúcia Santos Melo Cid - Serviço de Informação e Documentação (SID)

Yolanda Ribeiro da Silva Souza - Serviço de Informação e Documentação (SID)

ELECTRONIC EDITING:

Viveca Sant´Ana Lemos - Serviço de Informação e Documentação (SID)

pubtc@sid.inpe.br

INPE-16678-PUD/218

NATURAL LANGUAGE REQUIREMENTS:

AUTOMATING MODEL-BASED TESTING AND

ANALYSIS OF DEFECTS

Valdivino Alexandre de Santiago Júnior

Publicação Interna - sua reprodução ao público externo está sujeita à

autorização da chefia.

Original document registry:

<http://urlib.net/sid.inpe.br/mtc-m19@80/2010/02.26.16.20>

INPE

São José dos Campos

2010

http://urlib.net/sid.inpe.br/mtc-m19@80/2010/02.26.16.20

ABSTRACT

At present, there are several techniques to elaborate software requirements
specifications. However, the simplest way for stakeholders to elaborate software
requirements is still Natural Language. Moreover, Natural Language may be
associated to requirements modeling methods, like use case models where a textual
description exists in order to describe behavior through a sequence of actor-
system interactions. But, Natural Language specifications suffer from problems
like inconsistency, incompleteness, and ambiguity. Some authors argue that trying
to develop complete and consistent requirements models is not interesting, but
the goal shall be to analyze and resolve conflicting requirements, and to reason
with models that contain inconsistencies. However, in order to follow these
guidelines, the aforementioned issues, inconsistency and incompleteness, shall be
first properly detected. Requirements also serve as a starting point to develop
models for system and accepance test case generation. However, both activities,
system and acceptance test case generation, and analysis of Natural Language
requirements to detect defects, are usually very time-consuming specially if one
considers complex systems. This PhD proposal presents a methodology, as well as
the main characteristics of the tool that will support it, named Automatizando
TesStes BasEados em Modelos e Análise de DeFeitos considerAndo Requisitos
em Linguagem NAtural (SEMAFALA - Automating Model-Based Testing and
Analysis of Defects considering Natural Language Requirements). The goals of
the methodology are exactly the automated translation of Natural Language
requirements into behavioral models to support system and acceptance Model-Based
Testing, and to also detect automatically inconsistency and incompleteness in such
requirements.

RESUMO

Atualmente, existem diversas técnicas para elaborar especificações de requisitos de
software. Entretanto, o modo mais simples para“stakeholders”elaborarem requisitos
de software é ainda a Linguagem Natural. Além disso, Linguagem Natural pode estar
associada a métodos de modelagem de requisitos, tais como modelos de caso de uso
onde uma descrição textual existe para descrever comportamento por meio de uma
seqüência de interações ator-sistema. Mas, especificações elaboradas em Linguagem
Natural possuem problemas como inconsistência, não completude e ambiguidade.
Alguns autores argumentam que tentar desenvolver modelos de requisitos completos
e consistentes não é interessante, mas o objetivo deve ser analisar e resolver conflitos
em requisitos, e raciocinar com modelos que possuem inconsistência. Porém, para
seguir essas diretivas, os problemas mencionados anteriormente, inconsistência e
não completude, devem ser primeiramnte detectados adequadamente. Requisitos
também servem de ponto de partida para desenvolver modelos para a geração de
casos de teste de sistema e aceitação. Entretanto, ambas as atividades, geração
de casos de teste de sistema e aceitação e análise de requisitos elaborados
em Linguagem Natural para detectar defeitos, usualmente consomem bastante
tempo, especialmente se forem considerados sistemas complexos. Esta proposta de
doutorado apresenta uma metodologia, assim como as principais caracteŕısticas
da ferramenta que dará suporte a tal metodologia, denominada Automatizando
TesStes BasEados em Modelos e Análise de DeFeitos considerAndo Requisitos em
Linguagem NAtural (SEMAFALA). Os objetivos da metodologia são exatamente a
tradução automática de requisitos elaborados em Linguagem Natural em modelos
comportamentais visando Testes Baseados em Modelos de sistema e aceitação, e
também detectar automaticamente inconsistência e não completude em tais tipos
de requisitos.

MTC-Rodolfo
REQUISITOS ELABORADOS EM LINGUAGEM NATURAL:AUTOMATIZANDO TESTES BASEADOS EM MODELOS EANÁLISE DE DEFEITOS

CONTENTS

Pág.

LIST OF FIGURES

LIST OF TABLES

1 INTRODUCTION . 13

2 NATURAL LANGUAGE REQUIREMENTS 17

2.1 Analysis of Defects in NL Requirements 17

3 SOFTWARE TESTING . 25

3.1 Test Case Generation . 28

3.1.1 Model-Based Testing . 31

3.1.2 Combinatorial Designs . 37

4 PROPOSAL FOR AUTOMATING MBT AND ANALYSIS OF

DEFECTS CONSIDERING NL REQUIREMENTS 39

4.1 Defects Analyzer . 48

4.2 Preliminary Results . 53

4.2.1 Analysis of Defects . 57

5 CONCLUSIONS . 63

5.1 Future Work and Schedule . 64

REFERENCES . 67

LIST OF FIGURES

Pág.

3.1 The GTSC Architecture. 36

4.1 The SEMAFALA Methodology. 40

4.2 Output of the Link Grammar Parser for requirement [TS018]. 41

4.3 SWPDC NL requirements characterizing a scenario. 53

4.4 A piece of the Dictionary for the SWPDC case study. 54

4.5 CSAO 4-tuples generated according to the NL requirements in Figure 4.3. 55

4.6 Statechart model before calling the Refine Model method. 56

4.7 Statechart model after calling the Refine Model method. 56

4.8 A logical contradiction. 58

4.9 A non-determinism inconsistency. 58

5.1 Schedule of the main acitivities regarding this PhD Thesis. 66

LIST OF TABLES

Pág.

2.1 Characterisitics of tools/approaches for analysis of NL requirements. . . 23

3.1 An adaptation from Mathur’s definition for the classifier source of test

generation. 29

3.2 An adaptation from Mathur’s definition for the classifier lifecycle phase

in which testing takes place. 30

4.1 An example of factors and levels for the SWPDC case study. 51

4.2 Factors and levels for the incompleteness analysis of the SWPDC case

study. 59

4.3 MCA considering factors and levels of Table 4.2. 61

1 INTRODUCTION

One desirable property related to every single product is quality. Despite the domain,

organizations want to assure they build high-quality products. In software context

it is not different. Nowadays, several software development organizations put lot of

emphasis in the quality mechanisms for achieving products with high levels of user

satisfaction.

Quality is very difficult to define. Different specialists provide distinct points of

views regarding this concept. However, it is possible to identify elements of quality

definitions, such as defect level, defect origins, product complexity, conformance to

requirements, user satisfaction and robustness (GODBOLE, 2006). Regardless of the

perspective, practitioners agree that quality is a major business factor and achieving

it requires huge effort from the organizations.

Software Quality Assurance involves several activities like planning, measurement,

configuration management, walkthroughs, inspection and testing. The level of such

activities depends on the project and on the organization. Thus testing a software

product is only a facet to get quality. However, the role of testing is undoubtedly

important and industry and academia have been paying attention to this task for

several years.

One issue is that testing activities accounts for 30% to 40% of total software

development efforts (PRESSMAN, 2001), or even higher depending on the criticality

of the application. Thus, test automation appeared as an attempt to reduce the

costs of testing, increase fault detection and shorten testing cycles. Although test

automation is not a silver bullet to solve all testing problems, if properly planned

and implemented, it can help to achieve cost-effectiveness of test process activities

during the software development lifecycle (SANTIAGO et al., 2008a).

In spite of the fact that several commercial, proprietary, or open source tools are

available supporting the automation of testing, the human factor is still very present

within a test process. For instance, a tool may help to automatically generate test

cases, but a test designer is necessary to evaluate if all test cases are feasible to apply

given constraints like lack of time and test cases redundancies. Or an enviroment is

able to create test cases automatically, but one shall derive a behavioral model to

be the basis for such enviroment to do its job. A framework may support execution

13

and assertion of verdicts of test cases automatically, but a testing professional shall

develop lots of test scripts. The point is that there are several ways to improve even

more the testing automation and try to provide confidence that the software product

has intrinsic quality.

Dynamic Analysis is the process of evaluating a system or component based on its

behavior during execution (IEEE, 1990). The bottom line is that testing can be

considered a type of dynamic analysis technique. There are many other dynamic

analysis techniques such as: Ernst et al. (2001) which used dynamic techniques for

discovering invariants from execution traces to support software evolution; Ammons

et al. (2002) which proposed a technique to produce specifications based on program

execution and also enable such artifacts to be used by formal verification tools to

find faults; and Lorenzoli et al. (2008) which addressed the generation of models

of relations between data values and component interactions based on GK-tail, a

technique to automatically generate Extended Finite State Machines (EFSMs) from

interaction traces.

On the other hand, Static Analysis is the process of evaluating a system or

component based on its form, structure, content, or documentation (IEEE, 1990).

Hence, program execution is not required in static analysis. Inspection is an

example of a classic static analysis technique that relies on visual examination

of development products to detect errors, violations of development standards,

and other problems (IEEE, 1990). Examples of deliverables examined within an

inspection are software requirements specifications, design documents and source

code. Inspection is a review method with a related process. An inspection meeting

is held with various participants playing distinct roles like moderator, author of the

inspected deliverables and reviewer. The general idea is to add value to the artifacts

developed by the author giving hints to improve them.

Software Systems Requirements Engineering (RE) also contributes to software

quality. A simple definition states that RE is the process of discovering the purpose of

a software system. Nuseibeh and Easterbrook define 5 core RE activities: elicitation,

modeling and analysis, communication, agreement, and evolution (NUSEIBEH;

EASTERBROOK, 2000). Elicitation is the process of gathering requirements

information, and it is closely related to other RE activities. Modeling refers to the

development of abstract descriptions that are amenable to interpretation. Several

analysis techniques exist once requirements are modeled. Requirements shall be

14

effectively communicated among the diferent stakeholders, and the way in which

requirements are documented plays an important role regarding this. As the name

implies, agreement refers to the fact that stakeholders get consensus about the

requirements. Inspection is one technique that may be applied within this activity.

Software systems are dynamic, i.e. they evolve. Stakeholders requirements also

change. Thus, evolution is a natural characteristic of requirements. Some studies

revealed that more than 50% of software defects are attributed to requirements

problems and more than 80% of rework effort is spent on requirements-related defects

(FERGUSON; LAMI, 2005). This fact proves how important RE is in the context of

software development.

Software requirements specifications may be elaborated according to several

approaches. Requirements may be elicited and modeled based on scenario-based

methods, such as use case models (OMG, 2007), and goal-oriented methods, such as

Tropos (BRESCIANI et al., 2004). Class and object hierarchies may be the choice to

model data. Formal methods (models and languages) may be used to model behavior,

but they require high expertise for that. Thus, formal methods are not very common

in industrial practice. The conclusion is that Natural Language (NL) is still the most

used to elaborate requirements specifications (MICH et al., 2004) provided it is the

simplest way for stakeholders. Moreover, NL may be associated to requirements

modeling methods, like use case models where a textual description exists in order

to narrate the behavior through a sequence of actor-system interactions (SINHA et

al., 2007).

Unfortunately, serious shortcomings exist if a specification is elaborated in NL. Most

notably, ambiguity, incompleteness and inconsistency make a document unclear and

this may impact on the next artifacts produced within the software development

lifecycle. However, Nuseibeih and Easterbrook argue that“The idea that the attempt

to build consistent and complete requirements models is futile, and that RE has to

take seriously the need to analyse and resolve conflicting requirements, to support

stakeholder negotiation, and to reason with models that contain inconsistencies”

(NUSEIBEH; EASTERBROOK, 2000). However, in order to follow these guidelines,

the aforementioned issues, inconsistency and incompleteness, shall be first properly

detected. For instance, if an inconsistency is detected in a software requirements

specification, such inconsistency may be tolerated, and resolved at a later stage. This

is known as the tolerating inconsistency approach (BALZER, 1991). Requirements

15

can continue evolving, and inconsistency is nonblocking in this proposal (GERVASI;

ZOWGHI, 2005). But, in order to adopt the tolerating inconsistency approach, the

inconsistency itself shall be first detected. To accomplish this in very complex NL

software requirements specifications automatically is very challenging but, at the

same time, relevant in order to decrease the time required to perform such analysis.

This document presents the proposal regarding this PhD Thesis. The goals of this

proposal are two-fold. First, the automated translation of NL requirements into

behavioral models addressing system and acceptance test case generation. This

is very challenging given that system and acceptance test cases are generated

considering the entire software product. In a Model-Based Testing (MBT) approach,

a test designer should identify scenarios and later develop models to cover them,

and this demands huge effort from the testing professional because the number of

scenarios may be very large. Besides, the idea is to develop a methodology with tool

support so that the requirements expressed in NL can be converted automatically to

the behavioral models. The second goal is to addresss automatically incompleteness

and inconsistency in NL software requirements specifications with the help of the

tool that will be developed. Thus, such tool will support the RE modeling and

analysis activity (NUSEIBEH; EASTERBROOK, 2000).

This work is organized as follows. Chapter 2 will provide an overview of some

approaches dealing with the previously cited issues in NL requirements. Chapter 3

will discuss briefly software testing with emphasis in MBT. Chapter 4 will present

the proposal itself. Conclusions, future work, and schedule of this proposal are in

Chapter 5.

16

2 NATURAL LANGUAGE REQUIREMENTS

Natural Language Processing (NLP) is a field of computer science and linguistics

dealing with the problem of computers to process and understand human languages.

NLP has significant overlap with the field of computational linguistics, and some

authors consider it a sub-field of Artificial Intelligence (AI) (RUSSELL; NORVIG,

1995). There are several domains in which NLP may be applied such as spelling

correction, grammar checking, search engines, information extraction, information

retrieval, speech recognition, and so on.

Jurafsky and Martin distinguish into six categories the knowledge of language needed

to engage in complex language behavior (JURAFSKY; MARTIN, 2000): Phonetics

and Phonology, Morphology, Syntax, Semantics, Pragmatics, and Discourse. The

field of NLP is vastly supported by several concepts like finite automata, N-grams,

Hidden Markov Models, Part-Of-Speech (POS) tagging, lexicalized and probabilistic

parsing, Chomsky hierarchy, pumping lemma, first order predicate calculus, and

many others.

The following section will present some works addressing the analysis of defects

in NL requirements. These approaches make use of some categories and concepts

mentioned above.

2.1 Analysis of Defects in NL Requirements

Published literature has been addressing the analysis of software requirements

to detect defects such as ambiguity, incompleteness, and inconsistency. Formal

specification languages have drawn attention to specify software requirements

because they add formality and remove ambiguities, usually found in NL

requirements specifications. However, they are difficult to understand by ordinary

professionals in industry and this limits their applicability to some restricted

domains. Requirements modeling methods with an associated graphical notation,

such as Unified Modeling Language (UML) (OMG, 2007) use cases and goal-oriented

approaches, have become popular in academia and also in some industry domains.

However, it is usual that requirements expressed in NL are the basis for deriving high

level design documents containing UML class, sequence and state machines models.

The point is by no means to say that UML-based software development is worthless

but to stress that NL is the most natural way to describe requirements and, hence,

17

it is still the most common approach to elaborate software requirements in practice

(GNESI et al., 2005) (MICH et al., 2004).

The aforementioned defects (ambiguity, incompleteness, and inconsistency) usually

present in NL requirements specifications demand the development of methodologies

and supporting tools to try to improve the specification quality. This section will

present some significant approaches with respect to this issue. The Quality Analyzer

for Requirements Specification (QuARS) is a tool that enables the user to analyze

NL requirements automatically (LAMI; TRENTANNI, 2004) (GNESI et al., 2005)

(FERGUSON; LAMI, 2005) (BUCCHIARONE et al., 2008). Three categories of quality

properties should be accounted for when analyzing NL specifications: expressiveness

(mainly ambiguity and poor readability), consistency, and completeness. A quality

model for the expressiveness property was defined in a previous work (FABBRINI

et al., 2001) and QuARS was developed based on such model to automate NL

requirements analysis. QuARS makes use of dictionaries to support the requirements

analysis.

QuARS is able to partially support inconsistency and incompleteness analysis by

clustering the requirements, also known as View Derivation, according to specific

topics like security. However, such analysis is not accomplished automatically.

Moreover, the analysis QuARS performs is limited to syntax-related issues of a NL

requirements document addressing ambiguity. Matching words in NL requirements

with those stored in repositories cannot remove ambiguity completely: a thorough

analysis is necessary for that purpose (BERRY et al., 2003).

CIRCE is an environment that supports modeling and analysis of requirements

elaborated in NL (AMBRIOLA; GERVASI, 2006) (AMBRIOLA; GERVASI, 1997). The

modeling and analysis activity is accomplished by an expert system based on

modular agents. The tool parses and transforms NL requirements into a forest

of parse trees. To do that, CIRCE uses a domain-based parser called CICO. A

requirements specification D is considered a triple ⟨G,F,R⟩, where G is a set

of designations (also called a glossary), F is a set of definitions, and R is a set

of requirements. Another element of CIRCE are the modelers. In particular, the

validation modelers aim at identifying inconsistent, ambiguous, and incomplete

requirements. By defining a few requirements in accordance with the formal model

embedded in CIRCE, i.e. by means of designations and definitions, the tool can

generate models like state transition diagrams allowing the user to analyze problems

18

in requirements.

CIRCE seems to be a remarkable tool. However, the issue is how easy for a user

to express the domain in order to use CIRCE. In other words, application domain

must be expressed by a user by means of designations and definitions which, in

turn, must be written using a formal syntax. A Requirements Engineer must declare

designations using lots of tags and he/she must perform a deep analysis of the NL

requirements to accomplish that. The authors reported that their tool has been

applied successfully in three informal pilot studies with industrial partners, and

a more controlled study in cooperation with the National Aeronautics and Space

Administration (NASA) Independent Verification and Validation (IV&V) facility.

Although many benefits are pointed out, the cost of introducing CIRCE in the work

environment shall not be neglected. The authors asserted that, in the NASA case

study: “... pre-existing requirements can be analyzed by CIRCE as they are, thus

imposing no additional burden on the requirements writer.”However, it was not that

simple because it was necessary to write Model, Action, Substitution (MAS) rules

which are rules that drive the CICO’s parsing algorithm. One of the authors, an

expert in the conception of the tool, took 2 days to write such formal rules. Even

though it is a one-time operation, depending on the domain it will be necessary to

write these rules formally besides designations and definitions. One may wonder how

easy is for a CIRCE non-specialized professional to write MAS rules.

Both forms to elaborate NL requirements, unrestricted and restricted (controlled)

approaches, have supporters. In a recent survey among 142 software development

organizations, Mich et al. (2004) asserted: “... we find that in a majority of cases it

is necessary to use NL Processing systems capable of analysing documents in full

natural language”. In a previous work, Mich (MICH, 1996) presented the Natural

Language - Object Oriented Production System (NL-OOPS). The NL-OOPS tool

supports analysis of unrestricted NL requirements by extracting the classes and

their associations for use in creating class models. The unrestricted NL analysis

is obtained using as a core the NL processing system Large-scale, Object-based,

Linguistic Interactor, Translator, and Analyser (LOLITA) (MORGAN et al., 1995).

LOLITA is built around a large graph called SemNet, a particular form of conceptual

graph, which holds knowledge that can be accessed, modified or expanded using NL

input. NL-OOPS allows detection of ambiguities in the text but there is no evidence

that it supports automated detection of incompleteness and inconsistency.

19

However, Ambriola and Gervasi (AMBRIOLA; GERVASI, 2006) mentioned that the

lack of domain knowledge limits the applicability of systems based on unrestricted

NL requirements. They asserted that “... assuming that the user should provide no

further information than the requirements themselves, these systems have to resort

to heuristics to identify the proper objects, or rely on domain-specific knowledge

bases”. In the first case, they mentioned unsatisfactory results when heuristic

algorithms may need to be tuned, as reported in Mich et al. (2002). Moreover,

there are also reports of bad performance regarding the evaluation of information

extraction by using the LOLITA system (MORGAN et al., 1995) (CALLAGHAN,

1998). In the second case, a negative aspect is the effort to build sufficiently large

domain knowledge bases which may be impractical.

Gervasi and Zowghi proposed a formal framework for identifying, analyzing,

and managing inconsistency in requirements derived from multiple stakeholders

and expressed in NL (GERVASI; ZOWGHI, 2005). A prototype tool, CARL, was

developed incorporating all the techniques described in the paper. Their formal

model relies on two different AI techniques, default reasoning and belief revision.

They focus on a particular kind of inconsistency, logical contradiction, and the

authors claim that the framework supports the detection of both explicit and

hidden inconsistencies (the cases in which the inconsistency occurs due to the

consequences of some requirements, rather than the requirements themselves). They

adopted the tolerating inconsistency approach (BALZER, 1991). For dealing formally

with inconsistency, first requirements expressed in controlled NL are automatically

parsed and translated into propositional logic formulae. This process involves

morphosyntactic analysis and the previously mentioned domain-based parser CICO.

Once the specification is represented as sets of propositional logic formulae, a

theorem prover and a “model checker”1 are used aiming at detecting inconsistencies,

the latter addressing the discovery of the hidden ones.

Despite these interesting features, and as well as CIRCE (AMBRIOLA; GERVASI,

2006), CARL suffers from the same problem regarding the likely need to write new

MAS rules depending on the domain. Moreover, scalability is still an issue because

the example shown in the paper is too simple as the specification has very few

requirements.

1Actually, CARL does not perform “true” model checking according to its most used definition
(CLARKE; LERDA, 2007).

20

Hunter and Nuseibeh proposed a formal approach to reason, analyze, and accomplish

actions in inconsistent specifications (HUNTER; NUSEIBEH, 1998). It seems that such

work influenced in some ways the CARL development. Hunter and Nuseibeh adopted

the tolerating inconsistency approach, they dealt with one kind of inconsistency,

logical contradiction, and multiple stakeholder development was accounted for. They

presented an adaptaion of classical logic, Quasi-Classical (QC) logic, that allows

continued reasoning in the presence of inconsistency. According to them, their

approach is also able to identify the likely sources of inconsistencies, and use this to

suggest actions. Despite the remarkable work, no tool was developed to automate

the processes of reasoning, analysis, and action, and the case study presented was

too much simple (by the way it is the same case study used in Gervasi and Zowghi

(GERVASI; ZOWGHI, 2005)).

Kim and Sheldon presented a method that models and evaluates NL software

requirements specifications using the Z formal language and Statecharts (KIM;

SHELDON, 2004). Their method transforms a NL specification into a Z specification

which in turn derives the Statecharts models (actually, State/Activity charts). The

case study used in their work was the NASA Guidance and Control Software (GCS)

developed for the Viking Mars Lander. The goal was to analyze the integrity of

the GCS specification in terms of completeness, consistency, and fault-tolerance.

Their work presented some interesting results but the transformations proposed

were heavily dependent on human skill, and there is no evidence that a tool was

developed to automate the defects detection.

Java Requirement Analyzer (J-RAn) is a tool that implements a Content Analysis

technique to support the analysis of inconsistency and incompleteness in NL

requirements specifications (FANTECHI; SPINICCI, 2005). Based on the NL

document, this technique exploits the extraction of the interactions between the

entities described in the specification as Subject-Action-Object (SAO) triads. These

SAO triads are obtained with the help of the Link Grammar Parser (SLEATOR;

TEMPERLEY, 1993), a syntactic parser of English based on link grammar, a formal

grammatical system. J-RAn was used in a very simplified case study and, even

so, a significant number of SAOs were incorrectly extracted (21%) and missing

extractions were also huge (16%). The tool helps in the analysis of inconsistency

and incompleteness by providing Content Analysis charts (graphs) to a requirements

analyst. However, the analysis itself is not automated but manually carried out by

21

the analyst.

Text Analyzer is a tool designed and implemented to generate test cases based

on NL requirements (SNEED, 2007). Thus, it supports black box testing and it is

intended to be used for system and acceptance testing. Text Analyzer needs heavy

user intervention in order to define the application domain. The tool first scans the

text in order to identify all nouns. These nouns are displayed to the test designer

who decides which ones are considered pertinent objects of the Implementation

Under Test (IUT), i.e. the software product that is the target of testing. Such

objects are in turn the elements which the test cases relate to. This task can be

very time-consuming depending on the complexity of the requirements specification.

The user must also identify keywords used in the requirements text (e.g. INPT =

this word indicates a system input). This is another activity that demands time and

probably makes the approach less attractive specially if one considers complex NL

requirements documents. One last remark is that the author did not mention how

to handle the previously explained problems regarding NL requirements (ambiguity,

inconsistency, incompleteness).

Table 2.1 summarizes the characteristics of the tools/approaches discussed in this

subsection. It is a hard task to realize all the properties of a tool without using it.

As all these tools are not available for free use, indeed some of them will probably be

delivered as commercial products, it was not possible to use them and perceive the

real benefits and shortcomngs in practice. In Table 2.1, a question mark (?) means

that it is not totally clear that the feature is provided by the tool. It happens once

within the CIRCE tool because it is not evident that the state transition diagrams

it generates are true Statecharts or FSMs. Partial refers to the cases where the

characteristic is partially covered because it is not clear to which extent the feature

is completely addressed by the tool/approach. Manual implies either that a user

must observe some sort of information on the interface of the tool in order to wonder

about the characteristic or that there is no tool developed at all. An X implies the

tool/approach has such feature and an empty box means the opposite. Besides, the

K-S column refers to the Kim-Sheldon approach (KIM; SHELDON, 2004), and Text

An is the Text Analyzer tool (SNEED, 2007).

Table 2.1 shows that none of the tools/approaches address the problem of

translating automatically NL requirements into behavioral models (e.g Statecharts

and/or FSMs) for system and acceptance MBT. Text Analyzer can be used for

22

Table 2.1 - Characterisitics of tools/approaches for analysis of NL requirements.

Characteristics CIRCE QuARS NL-OOPS CARL K-S J-RAn Text An

Ambiguity

(automatically)

Partial Partial Partial

Inconsistency

(automatically)

Partial Manual Partial Manual Manual

Incompleteness

(automatically)

Partial Manual Manual Manual

Solution

Suggestion

X X

Clustering (to

improve doc

structure)

X X

Transformation

to Statecharts

or FSMs

? Manual

Transformation

to other

structural and

behavioral

models

(including

UML use case,

class, sequence,

collaboration

models)

X X

(class

model)

Restricted NL X X X X X

Unrestricted

NL

X X

Scalability X X

Supported by

Formal Method

X X X

Supported by

AI

X X X

NL usage for

Testing

X

NL usage for

Model-Based

Testing

23

system and acceptance test case generation but it does not make use of formal

techniques (models) and their benefits. Automated derivation of UML models from

NL specifications is a desired and helpful feature which may support not only

software development but also the testing process. CIRCE and, although only

class models, NL-OOPS(LOLITA) allow such translation but deriving behavioral

models automatically (like Statecharts or FSMs) taken into account system and

acceptance testing is very challenging, because a test designer should usually derive

several models according to functionalities, gathered from complex NL requirements

specification, that an IUT must provide. In other words, it is used to adopt a

scenario-based approach. This kind of automation, addressing testing of the entire

product, is considerably difficult to be achieved. These facts explain why none of

the above tools/aproaches supports Model-based testing having as starting point

NL requirements.

The divide and conquer philosophy comes to help due to the fact that it is extremely

difficult to obtain Model-based test cases automatically if one considers the modeling

of the entire software. Test case explosion is likely to occur when trying to obtain

test cases from the model of the entire system. Hence, after the scenarios had been

defined and the models to cover them developed, a Model-based tool can be used for

test case generation. Moreover, despite the remarkable work of the tools/approaches

presented, it seems that novel methodologies/tools are necessary in order to truly

automate the detection of defects within NL requirements specifications.

One last work related to NL will be mentioned. Konrad and Cheng presented a

process that supports the specification and analysis of UML models with respect to

behavioral properties specified in NL (KONRAD; CHENG, 2006). This process has

been implemented in the SPIDER tool suite. This approach is a model checking

of UML models against NL properties. Specifically, the process is configured to

read UML 1.4 models and generate the formal specification language PROMELA

for the model checker SPIN (HOLZMANN, 2003). NL properties are derived using

a previously developed grammar (KONRAD; CHENG, 2005) that supports the

specification patterns proposed by Dwyer et al. (1999). The grammar enables the NL

representation of these specification patterns, and it is used to specify Linear-Time

Temporal logic (LTL) properties, the property description language of the SPIN

model checker. Hence, the goal is to analyze UML models against the NL properties

and not to detect the issues of the NL properties themselves.

24

3 SOFTWARE TESTING

Many definitions of software quality have been proposed in the literature. Pressman

defined this branch of Software Engineering as (PRESSMAN, 2001): “Conformance

to explicitly stated functional and performance requirements, explicitly documented

development standards, and implicit characteristics that are expected of all

professionally developed software”. This definition emphasizes, among other points,

that software requirements are the basis from which quality is measured. Lack

of conformance to requirements is lack of quality. However, one problem arises

when software requirements specifications are poorly elaborated and, therefore,

good requirements specifications are a valuable starting point towards high-quality

software.

Verification and Validation are two important concepts related to software quality. In

this work, these terms will be defined in accordance with the IEEE Std 610.12-1990,

IEEE Standard Glossary of Software Engineering Terminology (IEEE, 1990):

a) Verification: the process of evaluating a system or component to determine

whether the products of a given development phase satisfy the conditions

imposed at the beginning of that phase;

b) Validation: the process of evaluating a system or component during or

at the end of the development process to determine whether it satisfies

specified requirements.

In summary, what Verification highlights is whether the outputs of each phase of

the software development lifecycle are according to what has been specified during

planning. But, Verification does not guarantee that such outputs are necessarily

correct. In turn, Validation tries to confirm that specifications of one phase or

even the entire system is adequate and consistent with customer requirements.

Verification and Validation encompass a wide array of Sofware Quality Assurance

activities among others formal technical reviews, quality and configuration audits,

documentation review, feasibility study and all sort of testing (PRESSMAN, 2001).

Nevertheless, there is another definiton for Verification as stated in the IEEE Std

610.12-1990 (IEEE, 1990): Verification is formal proof of program correcteness.

Formal verification constructs mathematical proofs about the behavior of computer

25

hardware and software. As a heavy user of mathematical logic, it has strong

connections with theoretical computer science. Thus, the aim of formal verification

methods is to prove that a given system satisfies its specification by formal means,

e.g. mathematical proofs (CLARKE; LERDA, 2007). Basically, any formal method

consists of three elements:

a) Specification: expresses what the system ought to do;

b) Modeling: indicates what the system actually does;

c) Verification: process that checks whether the model satisfies the

specification.

At present, one popular formal method is temporal logic model checking

(CLARKE; EMERSON, 2008) (QUEILLE; SIFAKIS, 1982) (CLARKE; LERDA, 2007).

Model checking was originally conceived for verifying finite state systems such as

sequential circuit designs and communication protocols. In model checking, the

specification is expressed using temporal logic, an extension of propositional logic

that allows reasoning about the relative timing of events. On the other hand, the

semantics of a system is usually given by means of a Kripke structure, a type of

computational model.

One huge limitation of model checking is related to state explosion. If the system

to be verified is too large or the specification is too complex, model checking

might not terminate due to insufficient resources, e.g. running time and/or available

memory. The state explosion problem can be tackled by symbolic model checking,

a technique that uses Binary Decision Diagrams (BDDs) to represent sets of

states and transitions (BRYANT, 1986). Model checking is then performed directly

on the BDD representations. However, BDD-based symbolic model checking still

presents some problems when trying to solve the state explosion issue (CLARKE;

LERDA, 2007). Despite these drawbacks, model checking has been in use by many

semiconductor manufacturers for hardware design. With respect to software, there

are tools available for accomplishing formal verification using model checking, such

as SPIN (HOLZMANN, 2003), Symbolic Model Verifier (SMV/NuSMV) (McMILLAN,

1993), and MAGIC (CHAKI et al., 2004).

Three important concepts are very related to software testing: fault, error, and

failure. In this work, fault and error will be defined according to the IEEE Std 610.12-

26

1990 (IEEE, 1990) and failure in accordance with Laprie and Kanoun (LAPRIE;

KANOUN, 1996):

a) Fault: an incorrect step, process, or data definition. For example, an

incorrect instruction in a computer program;

b) Error: the difference between a computed, observed, or measured value or

condition and the true, specified, or theoretically correct value or condition.

For example, a difference of 30 meters between a computed result and the

correct result;

c) Failure: when an error passes through the system-user interface and affects

the service delivered by the system.

The term defect will be used as a synonym for fault. By reasoning about the above

definitions, one can assert that a fault may or may not lead to an error which in turn

may or may not lead to a failure. Hence, not always a fault provokes an error because

it is likely that a certain part of the source code has never been exercised neither

during the testing activities nor after the product was delivered to the customer.

Likewise, an error may occur but the user may not perceive the problem and then

a failure is not identified.

The simplest definition of testing was given by Myers (MYERS, 2004): “Testing

is the process of executing a program with the intent of finding faults1”. Thus, a

good test strategy is the one that finds faults in the IUT. Myers presented a very

interesting perspective regarding the psychology of testing and enunciated ten vital

software testing principles. For instance, he argues that “a programmer should avoid

attempting to test his or her own program”. The idea is that a programmer knows

exactly what his/her program is supposed to do and may not realize that some faults

exist. Moreover, in general, no one wants to find faults in one’s own product. It is a

destructive feeling.

From previous explanation, software testing relates to Verification and Validation.

Besides, a process must be defined for software testing to be effective. Such

process comprises a set of activities and organizations can adopt different solutions.

1Myers indeed used errors over faults. However, according to the definition given earlier, it is
more adequate to use fault because the main intention of software testing is to find bugs in the
source code, i.e. the existing faults.

27

Typical activities include Plan Test (IEEE, 1998), Generate/Select Test Cases

(MATHUR, 2008), Execute Test Cases (SANTIAGO et al., 2008a), Evaluate Test

Results (the oracle problem) (WEYUKER, 1982) (BINDER, 1999), and Select Test

Cases for Regression Testing (MATHUR, 2008). This work will detail only the

activity Generate/Select Test Cases because is the one most related to it. Only

a remark concerning with the Execute Test Cases activity is the Qualidade do

Software Embarcado em Aplicações Espaciais (QSEE - Quality of Space Application

Embedded Software) research project (SANTIAGO et al., 2007).

In the context of QSEE project, a tool was designed and implemented aiming

to automate both test case execution and test process documentation generation

(SILVA et al., 2006) (SILVA et al., 2007) (SILVA, 2008). The QSEE-Teste

Automatizado de Software (QSEE-TAS - QSEE-Software Automated Testing) tool

has, among others, the following characteristics (SANTIAGO et al., 2008a): support of

functional and robustness (fault injection) testing for embedded software, multiple

IUTs testing by means of communication channels using RS-232 and/or USB

interface standards, automated test case execution, and automated test process

documentation generation in an XML output file. In an empirical evaluation

comparing QSEE-TAS with a test execution tool previously developed at Instituto

Nacional de Pesquisas Espaciais (INPE - National Institute for Space Research),

which had little support for automation, and using test suites created for three space-

related IUTs, QSEE-TAS decreased in 52.5% regression testing execution time of

the same test suite for one IUT compared with the previous tool (SANTIAGO et al.,

2008a).

3.1 Test Case Generation

Applying exhaustive testing is not feasible. Thus, one must find a way to select

a set of inputs from the input domain of a Program P so that this set can find

the maximum number of faults. Test case generation/selection is exactly about this

issue.

A test case comprises the test input data and the corresponding expected result. The

expected result of a test case is the outcome that is expected to occur when the IUT

is stimulated by the test input data. A set of test cases is a test suite. The Test Case

Specification deliverable then specifies the test input data, the expected results, and

a set of execution conditions for a test item (IEEE, 1998).

28

Generating test cases is probably the most studied testing activity by researchers.

A very brief discussion of the types of existing testing techniques related to this

activity follows. This discussion is based on the recent book of Mathur who defines

five classifiers each of which maps from a set of features to a set of testing techniques

(MATHUR, 2008). Two of such classifiers will be addressed: source of test generation

and lifecycle phase in which testing takes place.

Table 3.1 is an adaptation with some slight modifications from Mathur’s proposal

for the classifier source of test generation. Table 3.2 is an adaptation regarding the

classifier lifecycle phase in which testing takes place.

Table 3.1 - An adaptation from Mathur’s definition for the classifier source of test
generation.

Artifact Technique Example
Requirements
(Informal)

Black Box - Ad hoc testing
- Boundary-value analysis
- Equivalence partitioning
- Category-partition method
- Classification trees
- Random testing

Requirements
(Formal Model)

Model-based
Specification

- Statechart testing
- Finite State Machine testing
- B testing
- Z testing
- Pairwise testing

Design Documents Model-based
Document

- Unified Modeling Language testing
(Sequence, Collaboration, ... Diagrams)

Source Code White Box - Control Flow testing
- Data Flow testing
- Mutation testing

Table 3.1 shows that test cases can be generated from informally or formally specified

requirements and without the aid of the source code. This technique is known as black

box testing. Examples of black box testing techniques based on informal requirements

include ad hoc testing and some heuristics like equivalence partitioning, boundary-

value analysis and the Category-Partition method (OSTRAND; BALCER, 1988).

As many other Software Enginering research areas, there are different perspectives

29

Table 3.2 - An adaptation from Mathur’s definition for the classifier lifecycle phase in
which testing takes place.

Phase Technique
Coding Unit testing
Integration Integration testing
System Integration System testing
Prerelease Acceptance testing
Maintenance Regression testing

with respect to Model-Based Testing (MBT). Mathur considers that MBT refers

to the situations where requirements are formally specified (MATHUR, 2008).

However, other authors assert that the testing community tends to consider MBT

as a type of testing in which tests are derived from software behavioral models

(EL-FAR; WHITTAKER, 2001). The latter definition includes formal model/language

specifications and other notations, like UML2 models (OMG, 2007). This work

follows the latter definition and, therefore, the second and third rows in Table 3.1

are considered examples of MBT. MBT is also a form of black box testing. When

test cases are derived from design documents, some authors define the technique as

grey box testing (ABDURAZIK; OFFUTT, 2000). Subsection 3.1.1 will further describe

MBT.

Table 3.2 takes into account the fact that testing activities occur during the entire

software development lifecycle. When a developer is coding, unit testing can be

applied. As a system usually is decomposed into several units, integration testing

takes place when such units are integrated. When the entire system has been

developed, system testing is applied. A customer can generate his/her own test suite

in order to accept the product developed by a supplier. Actually, an independent

organization may be in charge to create such tests and apply them. Thus, acceptance

testing comes into picture. Regression testing is useful, and mandatory, whenever a

new version of a product is created by modifying an existing version. It is impotant

to mention that black box techniques can be used for all phases of software lifecycle.

However, white box testing is suitable for unit, integration and regression testing

but not for system and acceptance testing, because it is difficult in practice to derive

tests cases based on source code when the entire system is considered.

2Some authors do not consider UML a formal language but rather a semi-formal language.

30

3.1.1 Model-Based Testing

MBT has drawn lot of attention in both industrial and academic areas in which

several models have been used in order to guide test process activities like test case

generation and test results evaluation (SANTIAGO et al., 2008b). This subsection will

provide an overview of works concerned with MBT.

Briand and Labiche presented the Testing Object-orienTed systEms with the

unified Modeling language (TOTEM) approach based on UML diagrams addresing

functional system testing (BRIAND; LABICHE, 2002). Test requirements are derived

from Use Case diagrams, Use Case descriptions, Interaction Diagrams (Sequence

or Collaboration) associated with each Use Case, and Class Diagrams (composed

of application domain classes and their contracts). In TOTEM, Activity Diagrams

can be used to capture sequential dependencies among Use Cases with the aid of

application domain experts. Based on these sequential dependencies, legal sequences

of Use Cases are built for test case generation.

An approach to system testing based on UML activity diagrams was proposed by

Hartmann et al. (2005). The approach is based on the transformation of existing

textual use case specifications into UML activity diagrams. Test generation is

accomplished using the Category-Partition method (OSTRAND; BALCER, 1988).

Despite the automated features, the test designer must manually annotate with

stereotypes the resulting UML activity diagrams in order to indicate whether an

activity pertains to a user or to the system.

Finite State Machines (FSMs) (LEE; YANNAKAKIS, 1996), Statecharts (HAREL,

1987) (HAREL et al., 1987) and Specification and Description Language (SDL)

(DOLDI, 2003) are a few examples of modeling techniques commonly user for testing.

At this point, it is important to formally define what is an FSM in the context of

this work. Different authors have distinct definitions about FSM and in many cases

the term FSM is used as a class of models which encompasses many other state-

transition models. In this work, an FSM is a deterministic Mealy machine which can

be formally defined as follows (PETRENKO; YEVTUSHENKO, 2005):

Definition 1: An FSM A is a 7-tuple (S, s0, X, Y,DA, �, �), where:

- S is a finite set of states with the initial state s0,

- X is a finite set of inputs,

31

- Y is a finite set of outputs,

- DA ⊆ S x X is a specification domain,

- � is a transition function � : DA → S, and

- � is an output function � : DA → Y .

Note that there is no set of final states in the above definition. Thus, a Deterministic

Finite State Automaton (DFA) basically differs from an FSM because a DFA has a

set of final states but it has neither a finite set of outputs (Y) nor an output function

(�). A DFA is used as a regular language acceptor. An FSM is desired when it is

necessary to model the dynamics of input/output of a system, although it is possible

to use it as an acceptor too. Hopcroft and Ullman define a Determininistic Mealy

machine, like the one defined above, as a DFA with output (HOPCROFT; ULLMAN,

1979). However, there are also Finite State Transducers (FSTs) which have not only

a set of final states but also a finite set of outputs and a relation which encompasses

the roles of both the transition and output functions.

Simplicity is one of the key advantages in using FSM and this technique has been

in use for modeling reactive systems and protocol implementations for a long time.

Once an IUT is modeled as a state-transition diagram representing an FSM, several

test criteria3 like Transition Tour (TT), Distinguishing Sequence (DS), Unique

Input/Output (UIO) (SIDHU; LEUNG, 1989), W (CHOW, 1978), switch cover (1-

switch) (PIMONT; RAULT, 1976) and state counting (PETRENKO; YEVTUSHENKO,

2005) can be used to generate test cases. Also, a comparison of fault detection

effectiveness of some of these criteria was made in (SIDHU; LEUNG, 1989).

Sinha et al. (2007) demonstrated how a combination of UML use case and class

diagrams can be converted to an EFSM. The transformation algorithm translates

different use case specific constructs such as included use cases, extension points,

conditional statements by accounting for their associated semantics. One issue of

their work is that there is no more than one state in the EFSM representing use

cases. For testing, it is hard to think of an EFSM with only one single state and a

lot of self-loop transitions as proposed in their approach. It is not very clear, and

probably not suitable, how to get test cases with a model like this.

A Model-based approach to generate a set of conformance test cases for interactive

3Some authors prefer the term method rather than criterion. However, this work will adopt the
latter.

32

systems, i.e. those which react to operations invoked by external environment, was

proposed by Paradkar (PARADKAR, 2003). The approach presents extensions to

both the Category-Partition method (OSTRAND; BALCER, 1988) and the Test

Specification Language (TSL) (BALCER et al., 1989). Test case generation is based

on the extraction of a Finite State Automaton (FSA) from a specification written in

an extended version of TSL, known as Specification and Abstraction Language for

Testing (SALT). An environment was developed to support the approach but even

the author mentioned that the method was not applied in industrial context with

more complex applications.

An algorithm that generates a partition of the input domain from a Z specification

has been introduced by Hierons (HIERONS, 1997). This partition can be used both for

test case generation and for the production of an FSA. This FSA can then be used to

control the testing process. This method generates a large FSA making this approach

difficult for test case generation addressing large software systems (PARADKAR,

2003). Singh et al. (1997) proposed an approach for generating test cases from formal

specifications written in Z language by combining the classification-tree method for

partition testing with the Disjunctive Normal Form (DNF) (DICK; FAIVRE, 1993)

approach. Their technique first derives a classification tree describing high level test

cases from the Z formal specification of the IUT. Then, the high level test cases are

further refined by generating a DNF for them.

Complex software usually presents features like parallel activities and hierarchy.

These features are very hard to represent using FSMs, so this leads to considering

higher-level techniques as Statecharts. Several approaches have been proposed to

generate test cases from Statecharts models. Hong et al. (2000) provides a way to

derive EFSMs from Statecharts to devise test criteria based on control and data flow

analysis. Binder adapted the W criterion to a UML context and named it round-

trip path testing, in which flattening a Statechart is a pre-requisite before using the

criterion itself (BINDER, 1999). Santiago et al. (2006) proposed a methodology to

transform hierarchical and concurrent Statecharts into FSMs with the support of

the PerformCharts tool (VIJAYKUMAR et al., 2006).

Souza proposed a family of testing coverage criteria, the Statechart Coverage Criteria

Family (SCCF), for models in Statecharts (SOUZA, 2000). Test requirements

established by the SCCF criteria are obtained from the Statecharts reachability tree

(MASIERO et al., 1994). Antoniol et al. (2002) presented a study whose main goal

33

was to analyze cost and efficiency of the Binder’s round-trip path criterion. Briand

et al. (2004) showed a simulation and a procedure to analyze cost and efficiency of

three criteria proposed by Offutt and Abdurazik (OFFUTT; ABDURAZIK, 1999) and

the very same round-trip path.

A system testing approach to coverage of elementary transition paths was proposed

by Sarma and Mall (SARMA; MALL, 2009). The technique relies on the derivation of

a System State Graph (SSG) based on UML 2.0 use case, sequence, and Statecharts

diagrams. The test criterion which their method aims to satisfy is transition path

coverage which states that each elementary transition path p of the SSG must be

exercised at least once by a test suite T . Sarma-Mall’s work presents some limitations

but the most severe one concerns with the combined fragment loop (like control

structures while or for) of sequence diagrams. A loop is either not executed at all

or it is executed only once. In other words, a loop is reduced to an option (opt - like

control structure if) combined fragment. Thus, the authors did not address one of the

major problems in path testing. Howden (1976) stated that, in general, a program

containing loops will have an infinite or undetermined number of paths. Hence,

testing all the paths of a program is unfeasible. As UML 2.0 sequence diagrams

allow to model loops, this fact restricts their approach considerably and the problem

of testing applications in the presence of huge number of paths is not properly

addressed.

Fröhlich and Link presented a system testing method based on textual descriptions of

UML use cases (FROHLICH; LINK, 2000). They translated a use case description into

a UML Statechart (UML state machine) and, after that, they applied AI planning

techniques to derive test suites satisfying the coverage testing criterion which states

that all transitions of the UML state machine must be traversed at least once. Their

method sounds interesting but they considered a weak testing criterion. Covering

all transitions of an FSM (state model) is one of the weakest test criterion in terms

of fault detection effectiveness (CHOW, 1978) (SIDHU; LEUNG, 1989).

Hartmann et al. (2000) presented an integration testing approach based on

Statecharts which were used to model components and their interfaces. They defined

a strategy to compose Statecharts that model software components as well as

an algorithm to reduce the size of the composed Statecharts. Test generation is

accomplished using the Category-Partition method (OSTRAND; BALCER, 1988). A

TSL (BALCER et al., 1989) test design is created from the Global Behavioral Model,

34

a Statechart obtained after integration of state models representing components.

Such Global Behavioral Model is similar to the flat FSM generated by the Geração

Automática de Casos de Teste Baseada em Statecharts (GTSC - Automated Test

Case Generation based on Statecharts) environment (SANTIAGO et al., 2008b) having

global states (configurations) formed by active BASIC states of each orthogonal

Statecharts component. A limitation of their approach is the fact of not supporting

concurrent Statecharts to model each component, a common feature in present day

software.

Software modeling for testing purposes may be adapted from non-formal

requirements specifications and design documents. Naturally, the greatest benefit

occurs when test case generation is accomplished automatically by means, for

instance, of environments that support behavioral models. As a result of a

cooperation between Ciências Espaciais e Atmosféricas (CEA - Atmospheric and

Space Sciences) and Laboratório Associado de Computação e Matemática Aplicada

(LAC - Associate Laboratory of Computing and Applied Mathematics) at INPE,

GTSC is an environment that allows test designers to model software behavior using

Statecharts and/or FSMs in order to generate test cases automatically based on

some test criteria for FSM and some for Statecharts (SANTIAGO et al., 2008b).

At present, GTSC has implemented switch cover, UIO and DS test criteria for

FSM models and two test criteria from SCCF, all-transitions and all-simple-paths,

targeting Statecharts models. In other words, test criteria define the rules that drive

test case generation in GTSC.

Figure 3.1 shows the GTSC architecture. Note that besides the architectural

elements, it also shows external elements (Reachability Tree, Test Cases, ...) built

during the use of GTSC by a test designer.

In order to use the system, a user shall translate the Statecharts behavioral model

into an XML-based language named PerformCharts Markup Language (PcML)

(SANTIAGO et al., 2006). Based on a PcML document, a flat FSM is generated by

the Statecharts Flattening element. A flat FSM is a model where all hierarchical

and orthogonal features of a Statecharts model were removed. PerformCharts tool

(VIJAYKUMAR et al., 2006), one of the components of the Statecharts Flattening

element, is responsible for that.

The flat FSM is actually the basis for test case generation. Hence, a test designer

35

Figure 3.1 - The GTSC Architecture.

may follow two approaches. If a SCCF test criterion will derive test cases, GTSC

must adapt the flat FSM to resemble a reachability tree (MASIERO et al., 1994).

A reachability tree is only a behavioral representation of Statecharts, showing the

possible configurations and paths (sequence of configurations) that the system can

reach. SCCF requires a reachability tree in order to generate, at the end of the

process, test cases. Thus, based on the selected test criterion of SCCF and on the

this tree, test cases are created.

If an FSM test criterion is the option, it is only necessary for the user to choose

among the available criteria for FSM and instruct the environment to generate test

cases, based on the flat FSM. A final observation is in order to mention that a

Statecharts without hierarchy, parallelism, synchronization is nothing more than an

FSM (or Extended FSM if guard conditions are used). Hence, it is perfectly possible

to provide as input to GTSC an FSM in PcML syntax and use the same FSM test

criteria to derive test cases.

GTSC was able to generate flat FSMs with as many as 40 states (configurations)

and more than 300 transitions, and test suites with up to 265 optimized test

cases, showing its potential scalability for dealing with modeling of complex systems

(SANTIAGO et al., 2008b).

36

3.1.2 Combinatorial Designs

Combinatorial designs are a set of techniques for test case generation which allow the

selection of a small set of test cases even when the input domain, and the number of

subdomains in its partition, is large and complex (MATHUR, 2008). These techniques

have been found to be effective in the discovery of faults due to the interaction of

various input variables. Depending on the context, several other names may be found

in the literature such as orthogonal designs and pairwise testing. Only the techniques

most closely related to this PhD proposal will be shortly described.

Some basic definitions follow. Consider a program P that takes k inputs

corresponding to variables X1, X2, ..., Xk. These input variables are known as factors.

Each value assignable to a factor is known as a level. A set of levels, one for each

factor, is a factor combination or run.

The first technique described is Orthogonal Arrays. An Orthogonal Array (OA)

is an N × k matrix in which the entries are from a finite set L of l levels such that

any N× t subarray contains each t-tuple exactly the same number of times. Such an

array is denoted by OA(N, k, l, t), where N is the number of runs, k is the number

of factors, l is the number of levels, and t is the strength of the OA. Pairwise design

occurs when t = 2.

Orthogonal Arrays assume that each factor, fi, will be assigned a value from the same

set of l levels. This is not realistic and, thus, Mixed-Level Orthogonal Arrays

(MOAs) come into picture for situations where factors may be assigned values from

different sets. Such an array is denoted by MOA(N, l1
k1 l2

k2 ... lp
kp , t), indicating N

runs where k1 factors are at l1 levels, ..., kp factors are at lp levels. As before, t is

the strength.

Both OA and MOA are examples of balanced designs, i.e. any N × t subarray

contains each t-tuple exactly the same number of times. In software testing, the

balance requirement is not always essential. Mathur (2008) mentions that if an IUT

has been tested once for a given pair of levels, there is usually no need for testing it

again for the same pair unless the IUT is known to behave nondeterministically. For

deterministic applications, the balance requirement may be relaxed and unbalanced

designs are adequate choices.

A Covering Array (CA) is an example of unbalanced design. A Covering Array

37

CA(N, k, l, t) is an N × k matrix in which the entries are from a finite set L of l

levels such that each N×t subarray contains each possible t-tuple at least a certain

number of times. In other words, the number of times the different t-tuples occur in

the N × t subarrays may vary. This difference often leads to combinatorial designs

smaller in size than orthogonal arrays.

A Mixed-Level Covering Array, MCA(N, l1
k1 l2

k2 ... lp
kp , t), is analogous to an

MOA in that both allow factors to assume levels from different sets. MCA is also

an instance of unbalanced designs. MCAs seem to be the most popular choice of

combinatorial designs among software testers, because they are generally smaller

than MOAs and more adequate for testing.

38

4 PROPOSAL FOR AUTOMATING MBT AND ANALYSIS OF

DEFECTS CONSIDERING NL REQUIREMENTS

This PhD Thesis proposal consists of a methodology with tool support aiming

to address the objectives stated in Chapter 1: automated translation of NL

requirements into behavioral models to support system and acceptance Model-Based

Testing, and to also detect automatically inconsistency and incompleteness in NL

requirements. Within this chapter, the SWPDC software product, developed in the

context of the QSEE project (SANTIAGO et al., 2007), will be used as a case study.

In QSEE project, there were the following computing units: Payload Data Handling

Computer (PDC), Event Pre-Processors (EPPs), and On-Board Data Handling

(OBDH) Computer.

The methodology as well as its supporting tool are named Automatizando

TesStes BasEados em Modelos e Análise de DeFeitos considerAndo Requisitos em

Linguagem NAtural (SEMAFALA - Automating Model-Based Testing and Analysis

of Defects considering Natural Language Requirements). SEMAFALA is summarized

in Figure 4.1. The dashed rectangles in Figure 4.1 indicate physical entities that will

exist in the context of the methodology. The bold rectangles represent tools that

will be developed/adapted and the thin rectangles represent activities that the user

shall accomplish to support the methodology. An environment will be developed

incorporating all the tools shown in the Context Independent part. CSAO

Generator, CSAO-to-Statecharts Translator, and Defects Analyzer are components

that will be developed. CSAO stands for Control-Subject-Action-Object and it is

an extension of the SAO triads mentioned in the work of Fantechi and Spinicci

(FANTECHI; SPINICCI, 2005). Link Grammar Parser (SLEATOR; TEMPERLEY, 1993),

GTSC (SANTIAGO et al., 2008b), and QSEE-TAS (SILVA, 2008) already exist and

they will be adapted to compose the environment.

SEMAFALA requires that a user refines the NL requirements specifications. This

refinement activity involves checking spelling and grammatical errors, identifying the

scenarios for testing, and the sequence of requirements that compose each scenario.

In system and acceptance testing, where testing is applied considering the entire

software product, a scenario-based approach is recommended . Thus, a test designer

usually breaks down the entire system based on functionalities it must provide, and

then models are derived to address each functionality. However, a complete usage

scenario is usually defined by several requirements which together characterize a

39

Figure 4.1 - The SEMAFALA Methodology.

way to stimulate the system. Thus, it is necessary that the environment somehow

knows which are the requirements that compose a particular scenario. These are the

reasons behind the identification of scenarios and their respective requirements.

The Dictionary defines the application domain and it is considered a triple ⟨N,R,C⟩,
where N is a set of Names that characterize the domain, R is a set of input/output

pairs that represent the Reactiveness of the system, and C is a set of words

that characterize specific Control behaviors when automatically translating NL

40

requirements into models (Statecharts) for testing. The user shall define the Names

and Reactiveness elements of the Dictionary via a Graphical User Interface (GUI).

The Control element will be already within the environment. It is worth to be

mentioned that the Reactiveness feature of the Dictionary comes into picture due to

the choice of Statecharts as the computational model. However, almost any system

can be modeled as a reactive system. It is a matter of perspective. Events shall be

sensed by a system so that it can act according to such inputs.

The Link Grammar Parser can then generate the set of labeled links connecting

pairs of words. Consider the following requirement adapted from the specification of

the SWPDC software product:

[TS018] SWPDC may change the PDC Operation Mode on receiving a command

from the OBDH.

The output produced by Link Grammar is shown in Figure 4.2. Note the link types

between pair of words. For instance, “SWPDC” is the subject noun (link type “S”) of

the verb “may” (the index .v in the sentence means it is a verb). Another example,

the verb “change” is connected to the object (link type “O”) “Mode”.

Figure 4.2 - Output of the Link Grammar Parser for requirement [TS018].

In J-RAn tool (FANTECHI; SPINICCI, 2005), the output of Link Grammar is

accounted for in order to identify SAO triads from the NL sentences. To accomplish

this, J-RAn searches for verbs (.v) within the sentence. Once the verb has been

detected, it is possible to identify the subject if a link type “S” is detected, and

41

objects if a link type “O” is matched. To finish the process, other words may be

added after link types like determiners (“D”). However, such tool did not present a

very good performance as mentioned in section 2.1.

In this PhD work, the intention is to implement the extraction mechanism presented

above but with several modifications. The first modification is the inclusion of

Control features (“C”) in the SAO triad so that it will be transformed into a CSAO

4-tuple. The reasoning behind this relies on the fact that words like if ... and sentence

of words like in the case ... determine a particular behavior in the model generated.

For instance, finding an if-then-else situation in one or several NL requirements (e.g.

in one requirement: “If the system ...”; in the same or in the next requirement: “On

the other hand, ...”) may imply that the behavioral model will have a state with two

outgoing transitions each one representing the possible outcome of the if-then-else

situation.

The second modification is related to the object identification. A sentence is

delimited by a period. A requirement may have more than one sentence producing

more than one CSAO 4-tuple per requirement. Actually, even one sentence may have

more than one 4-tuple, if there are more than one subject within such sentence. The

idea is to use not only the link type “O” but also “OT” and “OX” to identify objects.

Besides, other link types regarding determiners (“DD”, “DG”, “DT”, “AL”) will be

accounted for. Last but not least, it is possible that there is no explicit object

generated by Link Grammar depending on the NL requirement. Consider another

requirement adapted from the specification of SWPDC:

[TS021] Housekeeping data shall be generated automatically and continually by

SWPDC at every 600 s.

By using Link Grammar and the guidelines described above, there is no object

because none of the link types regarding object (“O”, “OT”, ...) appears in the parser

output. However, there are link types such as “MV” which means the connection of

verbs and adjectives to modifying phrases that follow (like adverbs), prepositional

phrases and other features, and “J” which represents the connection of prepositions

to objects. Hence, if there is a subject but no link type representing objects, however,

if an “MV” and/or “J” link types exist, an object is identified from the NL sentence.

Thus, the requirement [TS021] will have: C = empty; S = “Housekeeping data”; A

= “shall be generated”; O = “SWPDC”.

42

Algorithm 1 CSAO Generator.

CSAO_Generator(LinkGrammarOutput, Dictionary){

1 INITIALIZE CSAO to empty

2 FOR each sentence in LinkGrammarOutput

3 WHILE NOT end of sentence

4 SEARCH for an "C" in the labeled links

5 IF "C" is found

6 SET CSAO.Control to words in the sentence corresponding to

"C" matching Dictionary.Control

7 ELSE

8 SET CSAO.Control to empty

9 END IF

10 SEARCH for an "S" in the labeled links

11 IF "S" is found

12 SET CSAO.Subject to the the word corresponding to "S"

13 SET CSAO.Subject to CSAO.Subject + previous words until a

determiner ("D","DD","DG","DT","AL") or first word of the

sentence is encountered

14 FIND for the next ".v" in the sentence after the matched "S"

15 SET CSAO.Action to the word corresponding to ".v"

16 SET CSAO.Action to CSAO.Action + posterior verbs and negation

adverb (not) but discarding verb-modifying adverbs ("E")

17 SEARCH for the next "O" OR "OT" OR "OX" in the labeled links

18 IF "O" OR "OT" OR "OX" are found

19 SET CSAO.Object to the word corresponding to "O"/"OT"/"OX"

20 SET CSAO.Object to CSAO.Object + previous words until a

verb (.v) is encountered, discarding determiners ("D",

"DD","DG","DT","AL") and/or prepositions ("J")

21 ELSE

22 IF "MV" or "J" are found

23 SET CSAO.Object to the words corresponding the most

enclosing "MV" or "J", discarding determiners ("D",

"DD","DG","DT","AL") and/or prepositions ("J")

24 END IF

25 END IF

26 ELSE

27 SET CSAO.Control to empty

28 SET CSAO.Subject to empty

29 SET CSAO.Action to empty

30 SET CSAO.Object to empty

31 END IF

32 END WHILE

33 END FOR

34 RETURN(CSAO)}

43

The mechanisms of extracting CSAO 4-tuples from the output of the Link Grammar

Parser are shown in Algorithm 1 CSAO Generator. Note that for each sentence

in the Link Grammar output, the algorithm first searches for a “C” (conjunction)

in order to realize whether a control pattern is found in the NL sentence, and sets

the Control of the CSAO 4-tuple (lines 4-6). Otherwise, the CSAO Control is set

to empty (lines 7-8). After, the algorithm searches for subjects (“S”) (line 10) and

if it finds, CSAO Subject, Action and Object fields are set (lines 11-23). Note that

determiners, prepositions and verb-modifying adverbs are discarded when identifying

the elements of the CSAO 4-tuples. If no subject is matched, the tuple is set to empty

(lines 26-30).

The CSAO-to-Statecharts Translator will take the CSAO 4-tuples as input and will

generate the Statecharts models. Algorithm 2 presents the main ideas regarding

this tool. The model generated is a list of structures composed of the following

fields: State; TrInput (the input event related to the incoming transition of the

State); and TrOutput (the output related to the outgoing transition of the State).

The initial idea is to denote the states of the model with the Subject element of the

CSAO 4-tuple. This is clearly shown in lines 9, 14 and 18. However, a call to the

Check Subject Name method is made prior to the assignment (lines 8 and 17) in

order to realize whether there is already a state in the model with the same name of

the current CSAO Subject. The Check Subject Name method, shown in Algorithm

3, will return a new name for the subject just adding an underscore followed by an

incrementing number after the subject, if there is already a coinciding state name

in the model; otherwise, it will return the same CSAO Subject.

The Reactiveness set of the Dictionary plays an important role on defining the

TrInput and TrOutput values. As shown in lines 21 to 26 of Algorithm 2, if the

Object of the CSAO 4-tuple exists in the input element of the Reactiveness set,

then TrInput will be assigned to such value and TrOutput will have the value of

the corresponding output element of the set. This is because in reactive systems, the

input/output is usually well defined in terms of entities, for instance, communication

protocols. However, if the tuple Object does not match any value of the input element

of the Reactiveness set, TrInput will be formed by a combination of Action Object

of the CSAO 4-tuple, and TrOutput will be empty. Another remark of Algorithm

2 is to mention that the if-then-else situation in NL sentences is addressed from

lines 5 to 15. Hence, more than one transition may be leaving the same state in the

44

resulting model.

Algorithm 2 CSAO-to-Statecharts Translator.

CSAO_to_Statecharts_Translator(CSAO tuples, Dictionary){

1 INITIALIZE cont to FALSE

2 INITIALIZE lastcstate, exist_cont, exist_subj to empty

3 INITIALIZE Model to empty

4 FOR each tuple in CSAO tuples

5 IF tuple.Control exists in Dictionary.Control AND cont = FALSE THEN

6 SET exist_cont to tuple.Control

7 SET exist_subj to tuple.Subject

8 CALL Check_Subject_Name(tuple.Subject, Model)

9 SET Model.State to newtuple.Subject

10 SET lastcstate to newtuple.Subject

11 SET cont to TRUE

12 ELSE

13 IF tuple.Control = exist_cont AND tuple.Subject = exist_subj THEN

14 SET Model.State to lastcstate

15 SET cont to FALSE

16 ELSE

17 CALL Check_Subject_Name(tuple.Subject, Model)

18 SET Model.State to newtuple.Subject

19 END IF

20 END IF

21 IF tuple.Object exists in Dictionary.Reactiveness.Input THEN

22 SET Model.TrInput to the matched Dictionary.Reactiveness.Input

23 SET Model.TrOutput to the matched Dictionary.Reactiveness.Output

24 ELSE

25 SET Model.TrInput to tuple.Action_Object

26 SET Model.TrOutput to empty

27 END IF

28 END FOR

29 CALL Refine_Model(Model, Dictionary)

30 CALL Draw_Model(PcMLModel)}

After all tuples were translated, the Refine Model method (Algorithm 4) is called

within the CSAO-to-Statecharts Translator (Algorithm 2). Refine Model is not the

User Models Refinement activity shown in Figure 4.1. It is an automated refinement

aiming to eliminate unnecessary states and transitions of the model, to rename

certain states of the model, and to transform the 3-field structures into 4-field ones

45

Algorithm 3 Check Subject Name.

Check_Subject_Name(name, model){

1 INITIALIZE counter to 1

2 IF name already exists in model.State

3 IF name has an underscore

4 GET number after underscore

5 SET counter to number + 1

6 ELSE

7 INCREMENT counter

8 END IF

9 RETURN(name_counter)

10 ELSE

11 RETURN(name)

12 END IF}

by including the destination state of each transition. As shown in lines 3 to 5 of

Algorithm 4, the method removes a state and its respective input event (TrInput)

if the state does not exist in the Name set of the Dictionary, and the input event does

not exist in such set, and the input event does not exist either in the input set of the

Reactiveness element of the Dictionary. This is done because not all NL sentences

contain relevant information to justify the creation of a state and its transition.

However, the name of a state may be changed if TrInput exists in the Dictionary

Name set and, at the same time, it does not exist in the input set of Reactiveness (see

lines 7 to 13 of Algorithm 4). This is explained due to the fact that the subjects,

which in turn first generated the name of states in the model, in NL requirements are

usually a few names like system, the name of a computer or a software product, and

so on. This implies that the name of the states would basically be limited to those

names added by a counter (see the Check Subject Name algorithm) such as system,

system 1, system 2, and so on. In order to avoid this situation and to provide more

meaningful names for states, the new name of the state is changed to a word or

sentence of words that are in the Name set of the Dictionary. Hence, this set will

provide the name of all the states within the refined model. Also note that what is

searched in the Dictionary Name set is only the Object part of TrInput (see line 25

of Algorithm 2); the Action part is not considered.

Algorithm 4 also transforms the 3-field structures into 4-field ones (trmodel) by

46

Algorithm 4 Refine Model.

Refine_Model(model, dictionary){

1 INITIALIZE trmodel to empty

2 FOR each node n in model

3 IF model.State(n) does not exist in dictionary.Name AND

model.TrInput(n) does not exist in dictionary.Name AND

model.TrInput(n) does not exist in dictionary.Reactiveness.Input

4 REMOVE model.State(n)

5 REMOVE model.TrInput(n)

6 ELSE

7 IF model.TrInput(n) matches at least one entry of the

dictionary.Name AND model.TrInput(n) does not exist in

dictionary.Reactiveness.Input

8 IF exactly one entry of the dictionary.Name is matched

9 SET model.State(n) to the matched entry of the

dictionary.Name

10 ELSE

11 SET model.State(n) to matched entries of the

dictionary.Name separated by underscore

12 END IF

13 REMOVE underscore and following words from model.TrInput(n)

14 END IF

15 SET trmodel.Srcstate(n) to model.State(n)

16 SET trmodel.TrInput(n) to model.TrInput(n)

17 SET trmodel.TrOutput(n) to model.TrOutput(n)

18 IF n is the last node of model

19 SET trmodel.Deststate(n) to model.State(0)

20 ELSE

21 SET trmodel.Deststate(n) to model.State(n+1)

22 END IF

23 END IF

24 END FOR

25 TRANSLATE trmodel to PcML

26 RETURN(PcMLtrmodel)}

47

adding the destination state of a transition (see lines 15 to 21). This is to simplyfy the

translation of the refined model to PcML which is the input language of the GTSC

environment (see section 3.1.1). One last remark of the Refine Model method refers

to the identification of the destination state (Deststate) of the transition. Note that

when reaching the last node of model (line 18), the destination state of trmodel is

set to the first (initial) state. The FSM test criteria implemented in GTSC, DS, UIO

and switch cover, demand that the Flat FSM is initially connected. In such a kind

of machine it is possible to go back to the initial state from any state of the FSM.

This explains line 18. Even though the Statecharts criteria implemented in GTSC,

all-transitions and all-simple-paths, do not have such a demand, this action turns

the model translated from NL requirements more generic in the sense that a test

designer may choose any of the five GTSC test criteria to generate the test suite.

The Draw Model method (Algorithm 2) will show in a GUI the model returned

from Refine Model. Draw Model will do it just adding states, incoming and outgoing

transitions following the sequence of nodes in the refined model. A user can then

make a second refinement in the model probably changing the name of input events

of transitions and even the name of states. Hence, the Final Statecharts models can

be input to the GTSC environment for test case generation if the user does not

want to make any analysis related to defects of NL requirements. In the Context

Dependent part, the QSEE-TAS tool can be the one to automatically execute the

test cases and provide preliminary test results. It is important to mention that the

test cases generated by GTSC can be used to several other test case execution tools.

4.1 Defects Analyzer

Before generating test cases, the user may think it is important to analyze whether

the NL requirements have issues like inconsistency and incompleteness. The Defects

Analyzer component then takes place, and its main features are described as follows.

Instead of translating NL requirements into some sort of logic, like the propositional

one (GERVASI; ZOWGHI, 2005), SEMAFALA will handle inconsistency by examining

the Statecharts models generated. Hence, two types of inconsistencies are envisaged:

a) logical contradiction. In this case, the model will be examined to realize

whether there is an external event (input event), e, within a transition and

its negation, ¬e, leaving from the same source state and reaching the same

48

destination state;

b) non-determinism inconsistency. Suppose a state si and also that the same

external event, e, within a transition goes from si to two different states,

sj and sk. Hence, a non-determinism inconsistency is characterized.

In terms of automated detection of inconsistencies, CARL (GERVASI; ZOWGHI,

2005) addresses logical contradiction but not non-determinism inconsistency. CIRCE

(AMBRIOLA; GERVASI, 2006) (AMBRIOLA; GERVASI, 1997) deals with inconsistencies

by examining, for instance, Data Flow Diagrams (DFDs). The tool identifies conflicts

in requirements but it is not evident if such conflicts fall into the two categories

proposed above. Besides, the authors even mentioned that CIRCE discovers only

a limited class of conflicts (AMBRIOLA; GERVASI, 1997). Kim and Sheldon (KIM;

SHELDON, 2004) deals with non-determinism inconsistency by examining Statecharts

and Activity Charts but they do not mention logical contradiction. Furthermore,

their approach is entirely manual. The conclusion is that SEMAFALA will make

a contribution due to the fact of detecting both types of inconsistencies and in an

automated manner.

Incompleteness will be approached in SEMAFALA using a different perspective from

the works presented in section 2.1. CIRCE detects incompleteness by searching for

unsued data (variables that are never modified), and data coming from nowhere

in DFDs. Kim and Sheldon propose to search for absorbing states/activities in

Statecharts/Activity Charts. These are valuable insights towards incompleteness

detection. However, the problem of incompleteness is much more complex so that

analyzing visual diagrams is not enough. A different method is required.

In SEMAFALA, combinatorial designs (MATHUR, 2008) will help to address

the incompleteness issue. The user is required to define the factors and

their corresponding levels. Then, Mixed-Level Covering Arrays (MCAs) will be

determined in accordance with the information the user provided. In order to

generate MCAs, two choices exist. The first option is to reuse tools that are

open source such as the Test Configuration Generator (TConfig) (UNIVERSITY OF

OTTAWA, 2008). TConfig has implemented In-Parameter-Order (IPO), a procedure

that can generate MCAs. Hence, the SEMAFALA tool might incorporate TConfig as

one of its component. Alternatively, Mathur proposes an IPO procedure for the same

purpose, but considering only pairwise designs (MATHUR, 2008). This procedure

49

might be implemented within SEMAFALA.

Basically, each run (factor combination) of the generated MCA will drive an

algorithm in SEMAFALA. The idea is that if a run is “matched” within a set of

NL requirements, then it is said that the NL requirements are complete with respect

to this run. Otherwise, they are incomplete. Let fi, 1 ≤ i ≤ k be a set of factors, and

lij, 1 ≤ j ≤ n be the set of levels for each factor fi, where n may vary depending on

i. The algorithm will realize whether there are words, or sentences of words, in the

set of NL requirements which match the levels lij of each run. Besides, there will

be a priority factor, f1, and corresponding levels, l1j, based on which the algorithm

will evaluate if the other levels of the run, lij, 2 ≤ i ≤ k, are satisfied within the NL

requirements in a pairwise manner. Hence, the strength, t, chosen is 2 (i.e. pairwise

design).

In order to exemplify how this approach works, consider Table 4.1 where an

instance of factors and levels for the SWPDC product is shown. The levels’ names

were abbreviated as follows (OpMode stands for Operation Mode, and Cmd for

Commands):

a) Initiation = “Initiation Operation Mode” ∨ “Initiation Mode”, Safety =

“Safety Operation Mode”∨“Safety Mode”, Nominal =“Nominal Operation

Mode” ∨ “Nominal Mode”, Diagnosis = “Diagnosis Operation Mode” ∨
“Diagnosis Mode”;

b) Tx Sci Data = “transmit scientific data” ∨ “TX DATA-SCIENTIFIC”,

Tx Hk Data = “transmit housekeeping data” ∨ “TX DATA-

HOUSEKEEPING”, Load Prog = “load program” ∨ “LOAD DATA”, Ver

Mode = “verify operation mode” ∨ “VER OP MODE”;

c) Memory Mgmt = “memory managament”;

d) Simple = “simple error”, Double = “double error”, Watchdog = “watchdog

error”.

Notice the disjunction (∨) in the description above. This implies that the same level

may be identified by different terms, e.g. “transmit scientific data” or the mnemonics

of the command, “TX DATA-SCIENTIFIC”. Moreover, it is also possible to include

conjunction (∧) when defining a level, and even to mix it with disjunction resulting

50

Table 4.1 - An example of factors and levels for the SWPDC case study.

Factors Levels
OpMode Initiation Safety Nominal Diagnosis

Cmd Tx Sci Data Tx Hk Data Load Prog Ver Mode

Storage Memory Mgmt No

Error Simple Double Watchdog

in a complex formula. A GUI in SEMAFALA will enable the user to define a level

such as:

time ∧ ℎousekeeeping ∧ minimum ∧ (millisecond ∨ milliseconds ∨ second ∨
seconds ∨ minute ∨ minutes).

One possible run of the MCA is {Safety, Ver Mode, No, Simple}. The translation of

this run to the algorithm is:

- having the NL requirement generated at least one CSAO 4-tuple, and if such

requirement matches the expression “Safety Operation Mode” or “Safety Mode”,

does it also match the expression “verify operation mode” or “VER OP MODE”?

- having the NL requirement generated at least one CSAO 4-tuple, if an NL

requirement matches the expression “Safety Operation Mode” or “Safety Mode”,

does it NOT match the expression “memory management”?

- having the NL requirement generated at least one CSAO 4-tuple, if an NL

requirement matches the expression “Safety Operation Mode” or “Safety Mode”,

does it also match the expression “simple error”?

Demanding the existence of at least one CSAO tuple aims to better elaborate

the search mechanism. Rather than simply searching for a pattern of words in

a requirement, the algorithm in SEMAFALA will verify whether a CSAO tuple

can de derived from the requirement. This prevents the algorithm to consider

poorly elaborated requirements, i.e. requirements without even a subject. Hence,

the incompleteness algorithm of the Defects Analyzer component will make use of

the Link Grammar Parser and also the CSAO Generator (Algorithm 1). To avoid

51

confusion, these linkages were omitted in Figure 4.1.

Note that the priority factor is OpMode. To be considered complete against this

run, all three conditions must be satisfied. If any of the conditions is not matched,

SEMAFALA will report to the user the incompleteness. Furthermore, the need

to search for the priority level, i.e. “Safety Operation Mode” or “Safety Mode”,

within the NL requirements may be optional. It depends on the structure of the

NL specification. For instance, in SWPDC specification, there is a subsection “PDC

Requirements of the Safety Operation Mode”. Hence, all requirements regarding this

subsection obviously refer to the Safety Operation Mode.

Two reasons motivated the choice of combinatorial designs for dealing with

incompleteness. First, to decrease the number of combinations which is the main

goal of combinatorial designs, and even doing so covering the interaction of factors

(in SEMAFALA, pairwise interaction). In Table 4.1, there are 96 factor combinations

if an exhaustive approach is used. However, there are only 17 factor combinations

by applying the IPO implemented in TConfig (UNIVERSITY OF OTTAWA, 2008), i.e.

it is an MCA(17, 21 31 42, 2).

The second reason is to provide hints to the test designer to identify the scenarios for

system and acceptance test case generation. Thus, the pairwise design philosophy

implemented in SEMAFALA will help the user by considering each run as a scenario.

In the example above, the run {Safety, Ver Mode, No, Simple} directs the user

to define a scenario, and to identify the corresponding requirements, which covers

the Safety Operation Mode where the command to verify the current operation

mode of the computer is present, and to realize if there is any kind of memory

management accomplished in such operation mode, and finally to wonder whether

the system is capable to handle the occurence of simple errors in the very same

mode. Naturally, the user may even decompose the run into several scenarios by

combining the levels. In other words, one scenario might cover “Safety Operation

Mode” and “verify operation mode”, another “Safety Operation Mode” and “simple

error”, and so on.

This second reason derives an alternate workflow within SEMAFALA. In the

basic workflow (Figure 4.1), the sequence of actions performed is: models

generation, inconsistency, and incompleteness analysis. On the other hand, the

alternate workflow presents the following sequence: incompleteness analysis, models

52

generation, and inconsistency analysis.

SEMAFALA will adopt the tolerating inconsistency (BALZER, 1991) and also the

tolerating incompleteness approaches. Hence, requirements can evolve and the user

will have the opportunity to resolve such issues when it is more adequate within the

software development lifecycle.

4.2 Preliminary Results

This section presents the preliminary results by the application of the methodology

proposed in this PhD Thesis. Considering the SWPDC software product, it is

assumed that the user refined the NL requirements shown in Figure 4.3, i.e.

grammatical errors were checked and such requirements form one scenario for MBT.

These requirements were refined from two deliverables developed in the context

of the QSEE project (SANTIAGO et al., 2007): Technical Specification (TS) and

Requirements Baseline (RB).

[TS025] PDC s h a l l be powered on by the Power Condit ion ing Unit
v ia an OBDH command .

[TS003] After being powered on , the PDC w i l l be in the I n i t i a t i o n
Operation Mode . SWPDC s h a l l then accompl ish a POST. I f PDC
pre s en t s any i r r e c o v e r a b l e problem , t h i s computer s h a l l remain
in the I n i t i a t i o n Operation Mode and such a problem s h a l l not
be propagated to the OBDH.

[TS012] I f PDC does not pre sent any i r r e c o v e r a b l e problem ,
a f t e r the i n i t i a t i o n process , SWPDC s h a l l automat i ca l l y change
to Sa fe ty the PDC Operation Mode .

[RB005] The OBDH s h a l l send a VER OP MODE command to PDC.

[RB064] The PDC s h a l l be in the Sa fe ty Operation Mode in order
to be switched o f f .

Figure 4.3 - SWPDC NL requirements characterizing a scenario.

Figure 4.4 shows a piece of the Dictionary concerned with the SWPDC case

study. Recall that the sets Name and Reactiveness will be provided by the test

designer/requirements analyst while Control is already defined within the tool

53

<Name> = PDC, SWPDC, I n i t i a t i o n Operation Mode , I n i t i a t i o n Mode ,
I n i t i a t i o n , Sa fe ty Operation Mode , Sa fe ty Mode , Safety , Nominal
Operation Mode , Nominal Mode , Nominal , Diagnos i s Operation Mode ,
Diagnos i s Mode , Diagnos is , EPP, EPPs , EPPH1, EPPH2, EPP1, EPP2,
. . .

<React iveness> = HANDLE HW−RST PROC / CMD REC,
SND CLOCK / CLOCK DATA,
VER OP MODE / INFO OP MODE,
TX DATA−SCIENTIFIC / SCIENTIFIC DATA,
TX DATA−HOUSEKEEPING / HOUSEKEEPING DATA,
. . .

<Control> = i f , in the case , . . .

Figure 4.4 - A piece of the Dictionary for the SWPDC case study.

supporting the methodology. In Reactiveness, the term on the left side of / is the

input and the one on the right side of / is the output. These are commands (inputs)

the OBDH can send to PDC and the corresponding expected responses (outputs) the

PDC would send back. This command/response behavior is completely described in

a communication protocol that shall be implemented in both computers.

Following the methodolody, Link Grammar Parser and CSAO Generator together

will produce the CSAO 4-tuples. Figure 4.5 shows the tuples derived according to the

requirements in Figure 4.3. Overall, 10 CSAO tuples were generated. As previously

mentioned, one requirement may derive more than one tuple like requirements

[TS003] and [TS012] which were responsible for 5 and 2 tuples respectively.

Furthermore, even one sentence may generate more than one tuple. For instance, the

last 3 tuples of requirement [TS003] were due to its last sentence: If PDC presents

any irrecoverable problem, this computer shall remain in the Initiation Operation

Mode and such a problem shall not be propagated to the OBDH.

Having obtained the CSAO tuples, the CSAO-to-Statecharts Translator can generate

the Statecharts models. The results by applying the algorithms presented earlier

in this chapter are presented in Figure 4.6 and Figure 4.7. Figure 4.6 shows the

raw transformation of the CSAO tuples to the model, i.e. before the Refine Model

method is called. Note that some states (PDC, PDC 2, PDC 3, ...) differ their names

only due to the application of the Check Subject Name method (Algorithm 3).

54

[TS025]
C = −; S = PDC; A = s h a l l be powered ; O = Power Condit ion ing

Unit

[TS003]
C = −; S = PDC; A = w i l l be ; O = I n i t i a t i o n Operation Mode
C = −; S = SWPDC; A = s h a l l accompl ish ; O = POST
C = i f ; S = PDC; A = pre s en t s ; O = i r r e c o v e r a b l e problem
C = −; S = computer ; A = s h a l l remain ; O = I n i t i a t i o n Operation

Mode
C = −; S = problem ; A = s h a l l not be propagated ; O = OBDH

[TS012]
C = i f ; S = PDC; A = does not pre sent ; O = i r r e c o v e r a b l e problem
C = −; S = SWPDC; A = s h a l l change ; O = Safe ty PDC Operation

Mode

[RB005]
C = −; S = OBDH; A = s h a l l send ; O = VER OP MODE command

[RB064]
C = −; S = PDC; A = s h a l l be ; O = Safe ty Operation Mode

Figure 4.5 - CSAO 4-tuples generated according to the NL requirements in Figure 4.3.

Besides, PDC 3 occurs twice in the model. This is because the if-then-else situation

encountered in sentences of requirements [TS003] and [TS012]. Thus, in order to

represent two transitions leaving from the same state, it is necessary to repeat the

name of PDC 3 in the model created by CSAO-to-Statecharts Translator. Besides,

only one transition has input and output in accordance with the Reactiveness

element of the Dictionary (VER OP MODE / INFO OP MODE). This happens

because there is only one tuple whose Object matches an input of the Dictionary

Reactiveness set (see tuple of [RB005] in Figure 4.5). The remaining transitions have

only input events formed by the concatenation of tuple’s Action Object; they have

no outputs.

The model in Figure 4.7 is derived after the application of the Refine Model method

(Algorithm 4). Some states in the original model (Figure 4.6) have their name

changed because their input event matched some entry of the Name set of the

Dictionary. Precisely, it is not the entire name of the input event that is evaluated

in Algorithm 4 but only the name after the underscore, which corresponds to the

55

Figure 4.6 - Statechart model before calling the Refine Model method.

Figure 4.7 - Statechart model after calling the Refine Model method.

Object of the CSAO tuple. As a result, PDC 2 was renamed to Initiation Operation

Mode, computer was replaced by Initiation Operation Mode too, and SWPDC 2

56

became Safety PDC. These new state names are more relevant considering the

modeling of this reactive system. Moreover, state problem and its transition in the

original model were removed because neither problem nor OBDH (in the input event)

exists in the Name set of the Dictionary. However, the OBDH state was kept because

its outgoing transition input (VER OP MODE) is in the input of the Reactiveness

set, clearly showing that information related to reactiveness shall not be discarded

at all. Finally, when using GTSC to generate test cases, the resulting Flat FSM will

be initially connected because of the transition shall be from Safety Operation Mode

to PDC (initial state).

The user may then change the refined model (Figure 4.7) to its taste. For instance,

he/she can rename the shall be powered Power Conditioning Unit event to a more

concise term such as switch PDCon. State names may be also altered. This is the

second refinement proposed in SEMAFALA.

4.2.1 Analysis of Defects

Suppose that requirement [TS012] in Figure 4.3 is changed so that it becomes

[TS012a]:

[TS012a] If PDC does not present any irrecoverable problem, after the initiation

process, SWPDC shall automatically change to the Initiation Operation Mode.

A logical contradiction exists between requirements [TS003] and [TS012a]. The

reason is that no matter what PDC presents (external event e) or does not present

(external event ¬e) an irrecoverable problem, the PDC Operation Mode will be

Initiation. By applying the 4 algorithms presented earlier in this chapter, the

resulting Statechart model is shown in Figure 4.8. The SEMAFALA tool can then

inspect the model and detect the problem.

Now suppose another version of requirement [TS012], named [TS012b]:

[TS012b] If PDC presents any irrecoverable problem, after the initiation process,

SWPDC shall automatically change to Safety the PDC Operation Mode.

At this time, a non-determinism inconsistency is detected as shown in Figure 4.9. The

input event presents irrecoverable problem goes from state PDC 3 to two different

states: Initiation Operation Mode and Safety PDC.

57

Figure 4.8 - A logical contradiction.

Figure 4.9 - A non-determinism inconsistency.

The ideas behind the SEMAFALA methodology/tool to detect inconsistency tend

to be very suitable for analyzing larger NL requirements specifications. SEMAFALA

does not rely on very complex reasoning mechanisms but in a plain analysis of the

58

models generated. Naturally, more complex models and forms of non-determinism,

e.g. when hierarchy and parallelism are present, need a more careful investigation

to detect such conflicts.

The attention now is turned to the problem of incompleteness. As mentioned in

section 4.1, combinatorial designs help to address this issue in SEMAFALA. Table 4.2

shows another example of factors and levels for the SWPDC case study.

Table 4.2 - Factors and levels for the incompleteness analysis of the SWPDC case study.

Factors Levels
OpMode Nom Init Safe Diag

Services Sci Hk Dmp Load Dg Tst

Cmd TxSci PrpHk TxHk VOpM LdDat ExeP

Storage MemMg No

HkTime Std Min Max

In Table 4.2 factors OpMode, Cmd, and Storage are the same as in Table 4.1.

Levels of OpMode and Storage are also the same, but some commands are different

(6 out of 37 possible commands defined in the communication protocol between

PDC and OBDH computers were considered). Services refer to the capability of

SWPDC to obtain, generate, format and transmit scientific (Sci), houkeseeping (Hk),

dump (Dmp), diagnostic (Dg), and test (Tst) data, as well as to load and execute

new programs (Load) during satellite’s operation. In particular, the standard (Std),

minimum (Min), and maximum (Max) levels of the houseekeeping time (HkTime)

factor are formulae as described below:

Std: time ∧ ℎousekeeeping ∧ standard ∧ (millisecond ∨ milliseconds ∨ second ∨
seconds ∨ minute ∨ minutes);

Min: time ∧ ℎousekeeeping ∧minimum ∧ (millisecond ∨milliseconds ∨ second ∨
seconds ∨ minute ∨ minutes);

Max: time ∧ ℎousekeeeping ∧maximum ∧ (millisecond ∨milliseconds ∨ second ∨

59

seconds ∨ minute ∨ minutes).

Using the IPO implemented in TConfig (UNIVERSITY OF OTTAWA, 2008), the

generated Multi-Level Covering Array is MCA(36, 21 31 41 62, 2). In other words,

36 runs were generated. Table 4.3 shows the resulting MCA.

SEMAFALA would classify 20 runs as incomplete. However, 6 of these are not. This

is the case of run 2 where the problem is matching No memory management (Storage

factor) in the Nominal (Nom) Operation Mode. In the SWPDC requirements

specification there is a requirement asserting that memory management shall be

made to store scientific, housekeeping, and dump data. However, no requirement

states that memory management shall not be done for diagnosis and test data.

However, the latter two are not handled in the Nominal Operation Mode and, hence,

run 2 shall not be regarded as an incompleteness.

Runs number 4, 14, 19, 27, and 28 are other examples of mistakenly detected

incompleteness. At this time, the issue is the command to verify the current

operation mode of PDC (VOpM in the Cmd factor). Cmd factor represents a subset

of commands defined in the protocol specified for PDC⇔OBDH communication.

It is not mandatory for all such commands to appear in the software requirements

specification and specifically to be related to a particular PDC operation mode. In

the specification there is a requirement that references the communication protocol

document, and many commands defined are general-purpose requests. Hence, the

fact of VOpM was not found in the Nominal (Nom), Safety (Safe), and Diagnosis

(Diag) modes does not imply an incompleteness.

However, the remaining 14 runs are real incompletenesses and they can be broadly

divided into two categories. The first category is related to the Initiation (Init)

Operation Mode. Runs from 7 to 12, 26 and 32 are the ones concerned with this

problem. The specification is really poorly elaborated regarding this mode, and even

a subsection does not exist for it. It is mentioned that a processing called POST

shall be accomplished once the PDC is in the mode. Besides, it is said that the PDC

is available to communicate with OBDH only after 1 minute has elapsed since the

initiation process. On reading that, a developer might infer that during this time the

SWPDC shall reject all commands (Cmd factor) received from the OBDH. However,

it would be more complete if the requirements explicitly provide these details. The

other issue refers to the Storage factor. It is clear in the specification that none

60

Table 4.3 - MCA considering factors and levels of Table 4.2.

Run OpMode Services Cmd Storage HkTime
1 Nom Sci TxSci MemMg Std

2 Nom Hk PrpHk No Min

3 Nom Dmp TxHk MemMg Max

4 Nom Load VOpM MemMg Min

5 Nom Dg LdDat MemMg Std

6 Nom Tst ExeP MemMg Std

7 Init Sci PrpHk MemMg Max

8 Init Hk TxSci No Std

9 Init Dmp VOpM No Std

10 Init Load TxHk No Std

11 Init Dg ExeP No Min

12 Init Tst LdDat No Max

13 Safe Sci TxHk No Min

14 Safe Hk VOpM MemMg Max

15 Safe Dmp TxSci MemMg Min

16 Safe Load PrpHk No Std

17 Safe Dg TxSci MemMg Max

18 Safe Tst TxSci No Min

19 Diag Sci VOpM MemMg Std

20 Diag Hk TxHk No Min

21 Diag Dmp PrpHk MemMg Max

22 Diag Load TxSci No Max

23 Diag Dg PrpHk MemMg Std

24 Diag Tst PrpHk No Min

25 Nom Dg TxHk MemMg Max

26 Init Tst TxHk No Std

27 Safe Dg VOpM MemMg Min

28 Diag Tst VOpM No Max

29 Safe Sci LdDat MemMg Min

30 Diag Hk LdDat No Std

31 Nom Dmp LdDat MemMg Min

32 Init Load LdDat No Max

33 Safe Sci ExeP MemMg Max

34 Diag Hk ExeP No Std

35 Safe Dmp ExeP MemMg Min

36 Diag Load ExeP No Max

of the 6 services (Sci, Hk, Dmp, Load, Dg, Tst) are enabled in this mode. Thus,

one might conclude that there is no need for memory management in the Initiation

61

Mode and indeed this is true. Once again, it would be better if this is informed. Two

requirements as shown below would solve these problems:

[TS013] The PDC shall be available to communicate with OBDH only after 1 minute

has elapsed since PDC’s initiation process. During this period, none command

eventually sent by the OBDH shall be accepted by PDC.

[TS014] In the Initiation Operation Mode, the PDC shall not accomplish any data

memory management.

Runs 29, 30, 33, 34, 35, and 36 are related to the second category of incompleteness.

The issue now involves the Safety (Safe) and Diagnosis (Diag) Operation Modes,

and the commands (Cmd factor) to load program data into memory (LdDat),

and to execute a program that has just been uploaded into the computer memory

(ExeP). These commands refer to the on-the-fly mechanism to load and execute

a new program into the experiment’s computer memory. The specification clearly

asserts that in the Safety and Diagnosis Modes this service (Load) is not available.

But, there is no requirement which states what to do if these two commands were

sent by the OBDH in the aforementioned modes. What shall SWPDC do? Should it

respond with a kind of acknowledge response defined in the communication protocol?

Or should it stay quiet so that a timeout would occur in the OBDH side of the

communication? Once again, a developer would have to make a decision about this.

A solution to this problem is:

[TS015] In the Safety(Diagnosis) Operation Mode, the SWPDC shall not allow new

programs to be uploaded into the computer memory. On receiving LOAD DATA or

EXECUTE PROGRAM commands in this mode, the SWPDC shall not reply any

of these requests.

The detected incompletenesses show the potential of SEMAFALA when addressing

this issue. Naturally, the user may derive many others sets of factors and levels

in order to obtain different runs, and thus SEMAFALA can analyze these new

situations. Note that the user is important not only to define the sets of factors and

levels but also to analyze false positive incompletenesses. However, SEMAFALA will

automate significantly the incompleteness detection process, and it tends to be very

scalable in the context of handling large NL requirements specifications.

62

5 CONCLUSIONS

This PhD proposal presented a methodology, SEMAFALA, aiming to tackle two

problems. The first problem concerns with the automated translation of NL

requirements into behavioral models addressing system and acceptance test case

generation. The second issue is how to addresss automatically incompleteness and

inconsistency in NL software requirements specifications. A tool will be developed

to support the methodology. NL specifications were chosen because they are still the

state-of-practice in most application domains.

Four algorithms related to the CSAO Generator and the CSAO-to-Statecharts

Translator components of the SEMAFALA tool were presented. These algorithms

make it possible the automated translation from NL requirements into behavioral

models. On the automated analysis of defects, two types of inconsistencies are

envisaged to be addressed: logical contradiction and non-determinism inconsistency.

Such analysis will be accomplished within the Statecharts models automatically

generated. On the other hand, the approach of incompleteness involves the use of

combinatorial designs and a posterior evaluation by the user.

The SEMAFALA methodology has a basic and an alternate workflows. In the basic

workflow, the sequence of actions performed is: models generation, inconsistency, and

incompleteness analysis. In the alternate, the sequence is: incompleteness analysis,

models generation, and inconsistency analysis. The alternate option may seem

interesting for non expert professionals in a certain application domain because it

provides directions, by means of runs of MCAs, to define the scenarios for test case

generation.

The preliminary results by the application of SEMAFALA are promising even though

the tool has not yet been developed. The Statecharts model generated based on a

few NL requirements from the SWPDC case study resembles the model that would

be created by an expert. Moreover, it was demonstrated how both types of the

proposed inconsistencies can de detected. Concerning incompleteness, 14 detections

were detected divided into two main categories.

Despite the proposal for automation, the user/Requirements Engineer/test designer

has important roles within the SEMAFALA methodology. He/she needs to refine

NL requirements, to define the domain Dictionary, to eventually change the models

63

generated by the trio Link Grammar Parser, CSAO Generator and CSAO-to-

Statecharts Translator, to evaluate the detected inconsistencies and incompleteness

reported by the tool. However, all these tasks do not demand from the user“complex”

mathematical knowledge. Hence, two characteristics are behind the philosophy of the

SEMAFALA methodology/tool:

a) Easiness of use but supported by formal method. Users do not need to learn

or know any formal method (language, model, logic) to use the proposed

tool. However, the NL requirements are translated into a formal language

(Statecharts) to support MBT and reasoning of inconsistency. Approaches

like that may encourage a widespread implicit adoption of formal methods

in organizations;

b) Scalability. Provided that the mechanisms for detecting inconsistency and

incompleteness are not extremely complex if compared to other approaches

in the literature, but they seem to be effective, the belief is that this tool

may be able to handle complex NL requirements specifications.

5.1 Future Work and Schedule

The future directions of this PhD work can be divided into 3 main categories.

Possible improvements

Some possible improvements are:

a) it is not mentioned how parallel and hierarchical Statecharts models can

be derived from NL requirements. One possibility for parallelism is to

create automatically new parallel states whenever a time unit (millisecond,

second, ...) is found in an NL requirement. For hierarchy, an analysis of

the model automatically created may be the option;

b) the control features of the CSAO 4-tuples shall be better elaborated. More

situations shall be addressed, for instance, how to translate requirements

characterized by logical implication. Besides, how to identify self-loop

transitions within the NL requirements;

c) it is likely that the four algorithms proposed may need to be changed when

their implementation;

64

d) it is interesting to investigate the possibility of using model checking

to detect inconsistency and incompleteness in NL requirements as an

alternative or in order to supplement the ideas proposed in this work.

Development of the SEMAFALA tool

The development of the tool will demand a significant computational effort. At first,

the idea is to develop it according to the Object-Oriented Programming paradigm

using the Java language. Some tasks regarding this point:

a) development of all GUIs;

b) adaptation of the Link Grammar Parser to compose the tool. Link

Grammar is developed in C language;

c) implementation of the components CSAO Generator, CSAO-to-Statecharts

Translator, and Defects Analyzer. In the case of the incompleteness part of

the Defects Analyzer, the IPO proposed by Mathur (MATHUR, 2008) may

be implemented, or the TConfig tool (UNIVERSITY OF OTTAWA, 2008)

may be adapted to compose the environment;

d) adaptation of the Graph Visualization Software (Graphviz)

(GRAPHVIZ.ORG, 2009) in order to show the Statecharts models generated.

Case studies

The NL requirements specifications of the SWPDC case study will be evaluated in

their entirety. Besides, 3 more requirements specifications of real software products

under development or already developed at the Divisão de Desenvolvimento de

Sistemas de Solo (DSS - Ground Systems Development Division) at INPE will be

considered for the evaluation of the methodology/tool.

The schedule related to this PhD Thesis is shown in Figure 5.1. Note that each

column corresponds to 3 months. For instance, mar/2008 implies March, April, and

May of 2008. The column Conc indicates the estimated percentage already developed

of each activity.

65

Figure 5.1 - Schedule of the main acitivities regarding this PhD Thesis.

66

REFERENCES

ABDURAZIK, A.; OFFUTT, J. Using UML collaboration diagrams for static

checking and test generation. In: UML 2000 - the Unified Modeling

Language. Berlin/Heidelberg, Germany: Springer Berlin/Heidelberg, 2000.

v. 1939, p. 383–395. Lecture notes in computer science. 30

AMBRIOLA, V.; GERVASI, V. Processing natural language requirements. In:

INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE

ENGINEERING (ASE), 12., 1997, Incline Village, NV, USA. Proceedings...

Washington, DC, USA: IEEE Computer Society, 1997. p. 36–45. 18, 49

. On the systematic analysis of natural language requirements with CIRCE.

Automated Software Engineering, v. 13, n. 1, p. 107–167, 2006. 18, 20, 49

AMMONS, G.; BODIK, R.; LARUS, J. R. Mining specifications. In: ACM

SIGPLAN-SIGACT SYMPOSIUM ON PRINCIPLES OF PROGRAMMING

LANGUAGES (POPL), 29., 2002, Portland, OR, USA. Proceedings... New

York, NY, USA: ACM, 2002. p. 4–16. 14

ANTONIOL, G.; BRIAND, L. C.; DI PENTA, M.; LABICHE, Y. A case study

using the round-trip strategy for state-based class testing. In: IEEE

INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY

ENGINEERING (ISSRE), 13., 2002, Annapolis, MD, USA. Proceedings...

Washington, DC, USA: IEEE Computer Society, 2002. p. 269–279. 33

BALCER, M.; HASLING, W.; OSTRAND, T. Automatic generation of test scripts

from formal test specifications. ACM SIGSOFT Software Engeneering

Notes, v. 14, n. 8, p. 210–218, 1989. 33, 34

BALZER, R. Tolerating inconsistency. In: INTERNATIONAL CONFERENCE

ON SOFTWARE ENGINEERING (ICSE), 13., 1991, Austin, TX, USA.

Proceedings... Los Alamitos, CA, USA: IEEE Computer Society Press, 1991. p.

158–165. 15, 20, 53

BERRY, D. M.; KAMSTIES, E.; KRIEGER, M. M. From contract drafting to

software specification: linguistic sources of ambiguity. Waterloo, Ontario,

Canada: University of Waterloo, 2003. 80 p. Available from:

67

<http://se.uwaterloo.ca/˜dberry/handbook/ambiguityHandbook.pdf>.

Access in: Apr 15, 2009. 18

BINDER, R. V. Testing object-oriented systems: models, patterns, and tools.

USA: Addison-Wesley Professional, 1999. 1248 p. 28, 33

BRESCIANI, P.; PERINI, A.; GIORGINI, P.; GIUNCHIGLIA, F.;

MYLOPOULOS, J. Tropos: an agent-oriented software development methodology.

Autonomous Agents and Multi-Agent Systems, v. 8, n. 3, p. 203–236, 2004.

15

BRIAND, L. C.; LABICHE, Y. A UML-based approach to system testing.

Journal of Software and Systems Modeling, v. 1, n. 1, p. 10–42, 2002. 31

BRIAND, L. C.; LABICHE, Y.; WANG, Y. Using simulation to empirically

investigate test coverage criteria based on Statechart. In: INTERNATIONAL

CONFERENCE ON SOFTWARE ENGINEERING (ICSE), 26., 2004, Edinburgh,

Scotland, UK. Proceedings... Washington, DC, USA: IEEE Computer Society,

2004. p. 86–95. 34

BRYANT, R. E. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, v. 35, n. 8, p. 667–691, 1986. 26

BUCCHIARONE, A.; GNESI, S.; LAMI, G.; TRENTANNI, G.; FANTECHI, A.

QuARS Express - a tool demonstration. In: IEEE/ACM INTERNATIONAL

CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE), 23.,

2008, L’Aquila, Italy. Proceedings... Los Alamitos, CA, USA: IEEE, 2008. p.

473–474. 18

CALLAGHAN, P. An evaluation of LOLITA and related natural language

processing systems. 212 p. Thesis (PhD in Computer Science) — University of

Durham, Durham, UK, 1998. 20

CHAKI, S.; CLARKE, E. M.; GROCE, A.; JHA, S.; VEITH, H. Modular

verification of software components in C. IEEE Transactions on Software

Engineering, v. 30, n. 6, p. 388–402, 2004. 26

CHOW, T. S. Testing software design modeled by finite-state machines. IEEE

Transactions on Software Engineering, SE-4, n. 3, p. 178–187, 1978. 32, 34

68

http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf

CLARKE, E. M.; EMERSON, E. A. Design and synthesis of synchronization

skeletons using branching time temporal logic. In: 25 years of model checking.

Berlin/Heidelberg, Germany: Springer Berlin/Heidelberg, 2008. v. 5000, p.

196–215. Lecture notes in computer science. 26

CLARKE, E. M.; LERDA, F. Model checking: software and beyond. Journal of

Universal Computer Science, v. 13, n. 5, p. 639–649, 2007. 20, 26

DICK, J.; FAIVRE, A. Automating the generation and sequencing of test cases

from model-based specifications. In: FME’93: industrial-strength formal

methods. Berlin/Heidelberg, Germany: Springer Berlin/Heidelberg, 1993. v. 670,

p. 268–284. Lecture notes in computer science. 33

DOLDI, L. Validation of communications systems with SDL: the art of SDL

simulation and reachability analysis. Chichester, West Sussex, UK: John Wiley &

Sons, 2003. 310 p. 31

DWYER, M. B.; AVRUNIN, G. S.; CORBETT, J. C. Patterns in property

specifications for finite-state verification. In: INTERNATIONAL CONFERENCE

ON SOFTWARE ENGINEERING (ICSE), 21., 1999, Los Angeles, CA, USA.

Proceedings... New York, NY, USA: ACM, 1999. p. 411–420. 24

EL-FAR, I. K.; WHITTAKER, J. A. Model-based software testing. In:

MARCINIAK, J. J. (Ed.). Encyclopedia of software engineering. USA: Wiley,

2001. 30

ERNST, M. D.; COCKRELL, J.; GRISWOLD, W. G.; NOTKIN, D. Dynamically

discovering likely program invariants to support program evolution. IEEE

Transactions on Software Engineering, v. 27, n. 2, p. 99–123, 2001. 14

FABBRINI, F.; FUSANI, M.; GNESI, S.; LAMI, G. The linguistic approach to the

natural language requirements quality: benefit of the use of an automatic tool. In:

ANNUAL NASA GODDARD SOFTWARE ENGINEERING WORKSHOP, 26.,

2001, Greenbelt, MD, USA. Proceedings... Los Alamitos, CA, USA: IEEE, 2001.

p. 97–105. 18

FANTECHI, A.; SPINICCI, E. A content analysis technique for inconsistency

detection in software requirements documents. In: WORKSHOP EM

ENGENHARIA DE REQUISITOS (WER), 8., 2005, Porto, Portugal. Anais...

[S.l.], 2005. p. 245–256. 21, 39, 41

69

FERGUSON, B.; LAMI, G. Automated natural language analysis of

requirements. Carnegie Mellon University, 2005. 39 slides. Available from:

<http:

//www.incose.org/delvalley/data/INCOSE-preview-QuARS_21June05.ppt>.

Access in: Apr 20, 2009. 15, 18

FROHLICH, P.; LINK, J. Automated test case generation from dynamic models.

In: ECOOP 2000: object-oriented programming. Berlin/Heidelberg,

Germany: Springer Berlin/Heidelberg, 2000. v. 1850, p. 472–491. Lecture notes in

computer science. 34

GERVASI, V.; ZOWGHI, D. Reasoning about inconsistencies in natural language

requirements. ACM Transactions on Software Engineering and

Methodology, v. 14, n. 3, p. 277–330, 2005. 16, 20, 21, 48, 49

GNESI, S.; LAMI, G.; TRENTANNI, G. An automatic tool for the analysis of

natural language requirements. International Journal of Computer Systems

Science and Engineering, v. 20, n. 1, p. 1–13, 2005. 18

GODBOLE, N. S. Software quality assurance: principles and practice. Oxford,

UK: Alpha Science International, 2006. 419 p. 13

GRAPHVIZ.ORG. 2009. Available from: <http://www.graphviz.org/>. Access

in: Oct 20, 2009. 65

HAREL, D. Statecharts: a visual formalism for complex systems. Science of

Computer Programming, v. 8, p. 231–274, 1987. 31

HAREL, D.; PNUELI, A.; SCHMIDT, J. P.; SHERMAN, R. On the formal

semantics of Statecharts (extended abstract). In: IEEE SYMPOSIUM ON LOGIC

IN COMPUTER SCIENCE (LICS), 2., 1987, Ithaca, NY, USA. Proceedings...

Washington, DC, USA: IEEE Computer Society, 1987. p. 54–64. 31

HARTMANN, J.; IMOBERDORF, C.; MEISINGER, M. UML-based integration

testing. In: ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE

TESTING AND ANALYSIS (ISSTA), 2000, Portland, OR, USA. Proceedings...

New York, NY, USA: ACM, 2000. p. 60–70. 34

HARTMANN, J.; VIEIRA, M.; FOSTER, H.; RUDER, A. A UML-based approach

to system testing. Journal of Innovations in System Software Engineering,

v. 1, p. 12–24, 2005. 31

70

http://www.incose.org/delvalley/data/INCOSE-preview-QuARS_21June05.ppt
http://www.incose.org/delvalley/data/INCOSE-preview-QuARS_21June05.ppt
http://www.graphviz.org/

HIERONS, R. M. Testing from a Z specification. The Journal of Software

Testing, Verification and Reliability, v. 7, n. 1, p. 19–33, 1997. 33

HOLZMANN, G. J. The SPIN model checker: primer and reference manual.

USA: Addison-Wesley Professional, 2003. 608 p. 24, 26

HONG, H. S.; KIM, Y. G.; CHA, S. D.; BAE, D. H.; URAL, H. A test sequence

selection method for Statecharts. Software Testing, Verification and

Reliability, v. 10, n. 4, p. 203–227, 2000. 33

HOPCROFT, J. E.; ULLMAN, J. D. Introduction to automata theory,

languages, and computation. Reading, MA, USA: Addison Wesley, 1979. 418

p. 32

HOWDEN, W. E. Reliability of the path analysis testing strategy. IEEE

Transactions on Software Engineering, SE-2, n. 3, p. 208–215, 1976. 34

HUNTER, A.; NUSEIBEH, B. Managing inconsistent specifications: reasoning,

analysis, and action. ACM Transactions on Software Engineering and

Methodology, v. 7, n. 4, p. 335–367, 1998. 21

JURAFSKY, D.; MARTIN, J. H. Speech and language processing: an

introduction to natural language processing, computational linguistics and speech

recognition. Englewood Cliffs, NJ, USA: Prentice-Hall, 2000. 950 p. 17

KIM, H. Y.; SHELDON, F. T. Testing software requirements with Z and

Statecharts applied to an embedded control system. Software Quality Journal,

v. 12, n. 3, p. 231–264, 2004. 21, 22, 49

KONRAD, S.; CHENG, B. H. C. Real-time specification patterns. In:

INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE),

27., 2005, St. Louis, MO, USA. Proceedings... New York, NY, USA: ACM, 2005.

p. 372–381. 24

. Automated analysis of natural language properties for UML models. In:

Satellite events at the MoDELS 2005 conference. Berlin/Heidelberg,

Germany: Springer Berlin/Heidelberg, 2006. v. 3844, p. 48–57. Lecture notes in

computer science. 24

LAMI, G.; TRENTANNI, G. An automatic tool for improving the quality of

software requirements. ERCIM News, n. 58, p. 18–19, 2004. 18

71

LAPRIE, J.-C.; KANOUN, K. Software reliability and system reliability. In: LYU,

M. R. (Ed.). Handbook of software reliability engineering. New York, NY,

USA: McGraw-Hill, 1996. chapter 2, p. 27–69. 27

LEE, D.; YANNAKAKIS, M. Principles and methods of testing finite state

machines: a survey. Proceedings of the IEEE, v. 84, n. 8, p. 1090–1123, 1996. 31

LORENZOLI, D.; MARIANI, L.; PEZZÈ, M. Automatic generation of software

behavioral models. In: INTERNATIONAL CONFERENCE ON SOFTWARE

ENGINEERING (ICSE), 30., 2008, Leipzig, Germany. Proceedings... New York,

NY, USA: ACM, 2008. p. 501–510. 14

MASIERO, P. C.; MALDONADO, J. C.; BOAVENTURA, I. G. A reachability

tree for Statecharts and analysis of some properties. Information and Software

Technology, v. 36, n. 10, p. 615–624, 1994. 33, 36

MATHUR, A. P. Foundations of software testing. Delhi, India: Dorling

Kindersley (India), Pearson Education in South Asia, 2008. 689 p. 28, 29, 30, 37,

49, 65

McMILLAN, K. L. Symbolic model checking. New York, NY, USA:

Springer-Verlag, 1993. 216 p. 26

MICH, L. NL-OOPS: from natural language to object oriented requirements using

the natural language processing system LOLITA. Natural Language

Engineering, v. 2, n. 2, p. 161–187, 1996. 19

MICH, L.; FRANCH, M.; INVERARDI, P. Market research for requirements

analysis using linguistic tools. Requirements Engineering Journal, v. 9, n. 1,

p. 40–56, 2004. 15, 18, 19

MICH, L.; MYLOPOULOS, J.; ZENI, N. Improving the quality of

conceptual models with NLP tools: an experiment. Trento, Italy:

University of Trento, 2002. 12 p. (DIT-02-0047). 20

MORGAN, R.; GARIGLIANO, R.; CALLAGHAN, P.; PORIA, S.; SMITH, M.;

URBANOWICZ, A.; COLLINGHAM, R.; COSTANTINO, M.; COOPER, C.;

LOLITA Group. University of Durham: description of the LOLITA system as used

in MUC-6. In: MESSAGE UNDERSTANDING CONFERENCE (MUC-6), 6.,

1995, Columbia, MD, USA. Proceedings... [S.l.], 1995. p. 71–85. 19, 20

72

MYERS, G. J. The art of software testing. 2. ed. Hoboken, NJ, USA: John

Wiley & Sons, 2004. 234 p. 27

NUSEIBEH, B.; EASTERBROOK, S. Requirements engineering: a roadmap. In:

CONFERENCE ON THE FUTURE OF SOFTWARE ENGINEERING, 2000,

Limerick, Ireland. Proceedings... New York, NY, USA: ACM, 2000. p. 35–46. 14,

15, 16

OFFUTT, J.; ABDURAZIK, A. Generating tests from UML specifications. In:

UML’99: the Unified Modeling Language. Berlin/Heidelberg, Germany:

Springer Berlin/Heidelberg, 1999. v. 1723, p. 416–429. Lecture notes in computer

science. 34

OSTRAND, T. J.; BALCER, M. J. The category-partition method for specifying

and generating functional tests. Communications of the ACM, v. 31, n. 6, p.

676–686, 1988. 29, 31, 33, 34

PARADKAR, A. Towards model-based generation of self-priming and self-checking

conformance tests for interactive systems. In: ACM SYMPOSIUM ON APPLIED

COMPUTING (SAC), 18., 2003, Melbourne, FL, USA. Proceedings... New York,

NY, USA: ACM, 2003. p. 1110–1117. 33

PETRENKO, A.; YEVTUSHENKO, N. Testing from partial deterministic FSM

specifications. IEEE Transactions on Computers, v. 54, n. 9, p. 1154–1165,

2005. 31, 32

PIMONT, S.; RAULT, J. C. A software reliability assessment based on a structural

and behavioral analysis of programs. In: INTERNATIONAL CONFERENCE ON

SOFTWARE ENGINEERING (ICSE), 2., 1976, San Francisco, CA, USA.

Proceedings... New York, NY, USA: ACM, 1976. p. 486–491. 32

PRESSMAN, R. S. Software engineering: a practitioner’s approach. 5. ed. New

York, NY, USA: McGraw-Hill, 2001. 860 p. 13, 25

QUEILLE, J. P.; SIFAKIS, J. Specification and verification of concurrent systems

in CESAR. In: International symposium on programming.

Berlin/Heidelberg, Germany: Springer Berlin/Heidelberg, 1982. v. 137, p. 337–351.

Lecture notes in computer science. 26

RUSSELL, S. J.; NORVIG, P. Artificial intelligence: a modern approach.

Englewood Cliffs, NJ, USA: Prentice-Hall, 1995. 932 p. 17

73

SANTIAGO, V.; AMARAL, A. S. M.; VIJAYKUMAR, N. L.;

MATTIELLO-FRANCISCO, M. F.; MARTINS, E.; LOPES, O. C. A practical

approach for automated test case generation using Statecharts. In: ANNUAL

INTERNATIONAL COMPUTER SOFTWARE & APPLICATIONS

CONFERENCE (COMPSAC) - INTERNATIONAL WORKSHOP ON TESTING

AND QUALITY ASSURANCE FOR COMPONENT-BASED SYSTEMS

(TQACBS), 30., 2006, Chicago, IL, USA. Proceedings... Los Alamitos, CA,

USA: IEEE Computer Society, 2006. p. 183–188. 33, 35

SANTIAGO, V.; MATTIELLO-FRANCISCO, F.; COSTA, R.; SILVA, W. P.;

AMBROSIO, A. M. QSEE project: an experience in outsourcing software

development for space applications. In: INTERNATIONAL CONFERENCE ON

SOFTWARE ENGINEERING & KNOWLEDGE ENGINEERING (SEKE), 19.,

2007, Boston, MA, USA. Proceedings... Skokie, IL, USA: Knowledge Systems

Institute Graduate School, 2007. p. 51–56. 28, 39, 53

SANTIAGO, V.; SILVA, W. P.; VIJAYKUMAR, N. L. Shortening test case

execution time for embedded software. In: IEEE INTERNATIONAL

CONFERENCE ON SECURE SYSTEM INTEGRATION AND RELIABILITY

IMPROVEMENT (SSIRI), 2., 2008, Yokohama, Japan. Proceedings...

Washington, DC, USA: IEEE Computer Society, 2008. p. 81–88. 1 CD-ROM. 13,

28

SANTIAGO, V.; VIJAYKUMAR, N. L.; GUIMARAES, D.; AMARAL, A. S.;

FERREIRA, E. An environment for automated test case generation from

Statechart-based and Finite State Machine-based behavioral models. In:

INTERNATIONAL CONFERENCE ON SOFTWARE TESTING,

VERIFICATION AND VALIDATION (ICST) - WORKSHOP ON ADVANCES

IN MODEL BASED TESTING (A-MOST), 1., 2008, Lillehammer, Norway.

Proceedings... Washington, DC, USA: IEEE Computer Society, 2008. p. 63–72. 1

CD-ROM. 31, 35, 36, 39

SARMA, M.; MALL, R. Automatic generation of test specifications for coverage of

system state transitions. Information and Software Technology, v. 51, n. 2, p.

418–432, 2009. 34

74

SIDHU, D. P.; LEUNG, T. K. Formal methods for protocol testing: a detailed

study. IEEE Transactions on Software Engineering, v. 15, n. 4, p. 413–426,

1989. 32, 34

SILVA, W. P. QSEE-TAS/SPAC: uma ferramenta para execução

automatizada de testes de software e processamento de dados cient́ıficos

para aplicações espaciais. 99 p. Dissertation (Master in Applied Computing) —

Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, SP,

Brazil, 2008. 28, 39

SILVA, W. P.; SANTIAGO, V.; MATTIELLO-FRANCISCO, M. F.; PASSOS, D.

QSEE-TAS: uma ferramenta para execução e relato automatizados de testes de

software para aplicações espaciais. In: SIMPÓSIO BRASILEIRO DE

ENGENHARIA DE SOFTWARE (SBES) - SESSÃO DE FERRAMENTAS, 20.,

2006, Florianópolis, SC, Brazil. Anais... Porto Alegre, RS, Brazil: Sociedade

Brasileira de Computação, 2006. p. 43–48. 28

SILVA, W. P.; SANTIAGO, V.; VIJAYKUMAR, N. L.;

MATTIELLO-FRANCISCO, F. SPAC: ferramenta para processamento e análise

de dados cient́ıficos no processo de validação de software em aplicações espaciais.

In: SIMPÓSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE (SBES) -

SESSÃO DE FERRAMENTAS, 21., 2007, João Pessoa, PB, Brazil. Anais... Porto

Alegre, RS, Brazil: Sociedade Brasileira de Computação, 2007. p. 70–76. 28

SINGH, H.; CONRAD, M.; SADEGHIPOUR, S. Test case design based on Z and

the classification-tree method. In: INTERNATIONAL CONFERENCE ON

FORMAL ENGINEERING METHODS (ICFEM), 1., 1997, Hiroshima, Japan.

Proceedings... Washington, DC, USA: IEEE Computer Society, 1997. p. 81–90.

33

SINHA, A.; PARADKAR, A.; WILLIAMS, C. On generating EFSM models from

use cases. In: INTERNATIONAL WORKSHOP ON SCENARIOS AND STATE

MACHINES (SCESM), 6., 2007, Minneapolis, MN, USA. Proceedings...

Washington, DC, USA: IEEE Computer Society, 2007. p. 1–8. 15, 32

SLEATOR, D. D.; TEMPERLEY, D. Parsing English with a link grammar. In:

INTERNATIONAL WORKSHOP ON PARSING TECHNOLOGIES, 3., 1993,

Tilburg, The Netherlands. Proceedings... [S.l.], 1993. p. 277–292. 21, 39

75

SNEED, H. M. Testing against natural language requirements. In:

INTERNATIONAL CONFERENCE ON QUALITY SOFTWARE (QSIC), 7.,

2007, Portland, OR, USA. Proceedings... Washington, DC, USA: IEEE

Computer Society, 2007. p. 380–387. 22

SOUZA, S. R. S. Validação de especificações de sistemas reativos:

definição e análise de critérios de teste. 264 p. Thesis (PhD in Applied

Physics) — Universidade de São Paulo, São Carlos, SP, Brazil, 2000. 33

THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS

(IEEE). IEEE Std 610.12-1990: IEEE standard glossary of software engineering

terminology. New York, NY, USA, 1990. 83 p. 14, 25, 27

. IEEE Std 829-1998: IEEE standard for software test documentation.

New York, NY, USA, 1998. 52 p. 28

THE OBJECT MANAGEMENT GROUP (OMG). OMG Unified Modeling

Language (OMG UML), Superstructure, V2.1.2. Needham, MA, USA,

2007. 722 p. 15, 17, 30

UNIVERSITY OF OTTAWA. Alan Williams’ Page. 2008. Available from:

<http://www.site.uottawa.ca/˜awilliam/>. Access in: Oct 15, 2009. 49, 52,

60, 65

VIJAYKUMAR, N. L.; CARVALHO, S. V.; FRANCÊS, C. R. L.;

ABDURAHIMAN, V.; AMARAL, A. S. M. Performance evaluation from

Statecharts representation of complex systems: Markov approach. In:

CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO (CSBC) -

WORKSHOP EM DESEMPENHO DE SISTEMAS COMPUTACIONAIS E DE

COMUNICAÇÃO, 26., 2006, Campo Grande, MS, Brazil. Proceedings... Porto

Alegre, RS, Brazil: Sociedade Brasileira de Computação, 2006. p. 183–202. 33, 35

WEYUKER, E. J. On testing non-testable programs. The Computer Journal,

v. 25, n. 4, p. 465–470, 1982. 28

76

http://www.site.uottawa.ca/~awilliam/

	COAT
	VERSUS
	TITLE PAGE
	ABSTRACT
	RESUMO
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1 INTRODUCTION
	2 NATURAL LANGUAGE REQUIREMENTS
	2.1 Analysis of Defects in NL Requirements

	3 SOFTWARE TESTING
	3.1 Test Case Generation
	3.1.1 Model-Based Testing
	3.1.2 Combinatorial Designs

	4 PROPOSAL FOR AUTOMATING MBT AND ANALYSIS OF DEFECTS CONSIDERING NL REQUIREMENTS
	4.1 Defects Analyzer
	4.2 Preliminary Results
	4.2.1 Analysis of Defects

	5 CONCLUSIONS
	5.1 Future Work and Schedule

	REFERENCES

