
A visual interface for satellite simulation using Google Earth
Pereira, M. O. 1 2, Dos Santos, W. A. 1

1 National Institute for Space Research, São José dos Campos, SP, Brasil

2Doctoral student on Space Engineering and Technologies - ETE.

mateusop@yahoo.com.br

Abstract. This work presents the interface between a C implemented satellite simulator into
Google Earth software. This approach aims to augment reality on satellite missions simulations
such as image processing, radar, and mapping. The focus of this paper is to describe the
connection link between the simulator and GE interface as well as the camera control and
positioning of satellite in space.

keywords: Satellite Simulator; Google Earth; Mission Analysis.

1. Inctroduction
Simulations are essential for products or even ideas to be tested before any prototypes are built.
As computing power increases, simulators tend to became more and more complex and capa-
ble of fullfilling remaining gaps between virtual environment and real world. A well known
software to perform satellite simulations, called STK (Systems Tool Kit, formerly Satellite Tool
Kit) [Analytical Graphics 2018], performs a large variety of missions. Another simulator avail-
able is called VSSGS by Taitus Software [Taitus 2018]. A simple screen-shot can be seen in
Figure 1.

Figure 1. Examples of STK (left) and Taitus VSSGS (right). [Adapted from:
[Analytical Graphics 2018] and [Taitus 2018]]

Even though both softwares are the current the state of the art in mission simulations, they are
costly and sometimes intangible for small research groups. Motivated by the history of open-
source communities, this work then proposes an open source implementation to synchronize
a custom simulator with Google Earth software, providing real imagery which can be used to
augment reality at any satellite mission design.

2. Methodology
For this work, the following methodology was adopted: collect attitude data from simulator,
rewrite values into Google Earth’s format and dispatch via TCP/IP connection, as shown in
Figure 2.

Figure 2. High level design for communication

To attempt software communication, two options were found. First, to simulate positioning
via GPS NMEA messages. The NMEA format is available here [SiRF 2012] and an example
of communication can be seen here [Google Earth Help 2018]. Although this approach seems
more robust and convenient to real life cases, the GPS messages does not control camera, which
is actually used for attitude and orientation purposes. Aother way to communicate with GE is
creating a link between files, as performed by [Zachwieja, J. 2012]. Using this method, all
available GE parameters can be sent using the Google’s KML format. See KML documentation
for details [Google 2016].

The second method was choosen for this work because it provides full access to the KML tags.
The idea presented by [Zachwieja, J. 2012] is to position the GE camera based on GPS received
messages. As GPS messages are by default updated at a frequency of 1Hz, the file to file
implementation works out with any problem. If higher update rates are needed, the file-write
becomes a bottle neck in the communication link. This work main contribution is to provide a
direct software link without the use of an external updated file, avoiding massive disk I/O usage
and possible operating system instability.

The workaround for faster communication uses a single and static KML file to instruct GE the
address of a TCP/IP connection, file name and update rate. Using this method, GE can attempt
a direct connection with any TCP/IP software. Hence, instead of updating a file, the contents
are directly sent via socket and thereby no disk is used. An example of the link can be seen in
Figure 3.

<NetworkLink>
<name>S a t e l l i t e TCP (epoch)< / name>
<open>1< / open>
<TimeStamp><when>2018−05−09 T03:00:00Z< / when>< / TimeStamp>
<f lyToView>1< / f lyToView>
<Link>

<h r e f>h t t p : / / 1 2 7 . 0 . 0 . 1 :1628 /< / h r e f>
<r e f r e shMode>o n I n t e r v a l< / r e f r e shMode>
< r e f r e s h I n t e r v a l>0 .0666< / r e f r e s h I n t e r v a l>

< / Link>
< / NetworkLink>

Figure 3. Example of kml link structure.

Using a KML file with this link structure, it is possible to instruct GE in how to read the actual
position KML file from network. Each time GE requests this position file, the simulator collects

position and attitude data of the simulated satellite orbit and creates a new response message
containing the up to date simulated status. This message is sent back to GE and all the valid
KML tags are then processed and updated. Note that GE has a smooth fly-to mechanism and it
must be bypassed by the KML tag <flyToView> in the link structure. This response message,
in full format, is shown in Figure 4, which is an example of a particular status response.

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<kml xmlns=” h t t p : / / e a r t h . goo g l e . com / kml / 2 . 0 ”>

<Placemark>
<name>S i m u l a t e d S a t e l l i t e< / name>
<Camera>

< l o n g i t u d e>16 .601803< / l o n g i t u d e>
< l a t i t u d e>−35.297547< / l a t i t u d e>
< a l t i t u d e>753777.451216< / a l t i t u d e>
<h e a d i n g>90 .803777< / h e a d i n g>
< t i l t>57 .856152< / t i l t>
< r o l l>−46.808791< / r o l l>
<a l t i t u d e M o d e>a b s o l u t e< / a l t i t u d e M o d e>

< / Camera>
< / P lacemark>

< / kml>

Figure 4. Example of kml response structure.

After the communication link between simulator and Google Earth was established, the next
step was to define the variables which need to be sent to GE in order to position the camera
accordingly to satellite position and attitude. Table 1 lists and maps simulation variables into
GE tags on KML.

Table 1: List of Simulation variables.

Var KML tag Unit Description
Latitude < latitude > Degeees Latitude position of ground track
Longitude < longitude > Degees Longitude position of ground track
Altitude < altitude > Meters Altitude above mean sea level
Pitch (θ) < tilt > Degees Angle from Zenith to camera view
Roll (φ) < roll > Degees Camera rotation (Clockwise)
Yaw (Ψ) < heading > Degees Camera direction from North (Clockwise)

From these variables, fully satellite positioning and attitude can be described. LLA positioning
is well known and will not be detailed here. Attitude angles, though, depends on which refer-
ence they are measured. As seen in [Carrara 2012] and [Grooves 2008] the more usual way to
define a satellite attitude is relative to the ECI frame.

For GE, the angles are relative to current camera position. In other words, the θ, φ and Ψ angles
are measured in NED frame. Furthermore, the zero <tilt> angle means a top-down view while
a zero pitch angle means a leveled horizon. Then a conversion must be done. Finally, all this
variable translation must be done on interface abstract prior to sending GE responses. Figure 5
illustrates how these angles are expected to be measured. Note that, as satellites rotate around
their center of mass, the <range> tag is suppressed or always zero.

Figure 5. Google Earth camera angles. [Source: [Google 2016]]

After defined all data which must be sent to Google Earth, the timing behavior must be under-
stood. Unfortunately, there is no way to send data to GE, in fact, its automatically updated by
GE itself as defined by the KML tag <updateInterval> in Figure 3. At a fixed refresh rate, a
TCP connection is opened to the simulator interface, see Figure 6 item (a). Then the interface
requests the simulator engine for latest status of simulated variables (see item (b)). The neces-
sary information is gathered during item (c) and translated into GE’s KML units. Finally, the
item (d) represents the final response message being sent back to GE.

Figure 6. Interface timings

Initially, only forward view was implemented, which was in a constant direction along satellite
x+ axis. For extended user experience, extra modes of orientation were defined. Table 2 lists
all implemented and tested modes of camera orientation.

Table 2: List of camera control modes

Mode Description
Forward Looks along satellite body x+ axis.
Down Looks down (Nadir) despite satellite attitude.
Path Looks along satellite orbit path, with θ = −30 deg.
Back Same as Path but backwards.
At Look at specific Ψ and θ respect to body.
Sun Points toward the sun in sky

All functions presented here were implemented directly into a simulator using C language.
Although the simulator was written in C, as communications to Google Earth are performed
using TCP/IP, any language which supports socket connections can be used to re-implement
this feature. In fact, simulator and GE can be ran in different machines. The results of this work
are described in next section.

3. Results and Discussion
The interface between a custom simulator and Google Earth performed well and satisfactory.
The orbit could be visualized in real time during the simulation. Fly-by time and revisiting
times can be evaluated accordingly to any mission needs. Figure 7 shows an example of the
satellite in GE.

Figure 7. Satellite in orbit on Google Earth (Path view)

The performance of this communication is within interactive time. Update rates up to 30Hz
were tested and used. Due to the possibility of accelerating the simulation time and achieve
faster satellite speeds, a value of 15Hz was used to not overload imagery update.

Though, some limitations were found: (i) Google Earth cache is limited up to 2GB, and there-
fore world imagery is always fetched from servers; (ii) the time stamp is stored in the link (not

response) KML file, which is static, and could not be changed by simulator. If day/night or sun
orientation are needed, the epoch should be kept fixed; (iii) Near the earth poles Euler angles
have a singularity and therefore will occur if satellite passes close to them in polar orbits.

Despite this limitations being found, it is possible to overcome items i and ii. However it is likely
not possible to eliminate singularities detected by item iii, as it is the way GE was implemented.

During this work, two additional tests were made and shown in Figure 8 with look mode into
sun at left and looking down at right.

Figure 8. Satellite in orbit on Google Earth (Sun and down view)

Future implementations are widely identified for this work and the most important are listed
below.

Is is known that different cameras has different field of view. As there is no option to actu-
ally zoom at the current position and fit different cameras FoV, the GE camera altitude can be
changed to a lower or higher value, accordingly respective to narrow or wide fields of view.

Another proposal is to load 3D objects into Google Earth and use them as target or reference
for mission analysis, increasing simulation reality.

Finally, some method for changing the epoch date initially adjusted in GE is necessary to sim-
ulate day and night transitions properly.

4. Conclusion
A small contribution to open-source projects and small research groups was accomplished with
this work. The implementation of the interface using the TCP/IP direct method was simple
and reliable compared to direct file-write or simulating a GPS receiver into Google Earth. Real
imagery can be used in any mission analysis to better identify suitable payload sensors and
imaging devices.

Acknowledgments: The author would like to thanks INPE for the acceptance into doctoral
program and CAPES for the scholarship support. Last but not least, all my professors whose
lectures made this possible.

References
Analytical Graphics, Inc (2018). Systems Tool Kit, available at: http://www.agi.com/home

Accessed on August 6th 2018.

Taitus Software Italia Srl (2018). Visual Simulator for Space and Ground Segment, avail-
able at: http://www.taitussoftware.com/products/applications/vssgs-visual-simulator-space-
ground-segment/ Accessed on August 6th 2018.

Carrara, V (2012). Cinemática e Dinâmica de Satélites Artificiais São José dos Campos, INPE,
available at: http://urlib.net/8JMKD3MGP7W/3B96GD8.

Grooves, P. D. (2012). Principles of GNSS, Inertial, and Multisensor Integrated Navigation
Systems. Boston: Artech house, 2008. 505 p.

Google LLC (2016). KML Documentation Introduction, available at:
https://developers.google.com/kml/documentation/ Accessed on August 6th 2018.

SiRF Technology, Inc (2007). NMEA Reference Manual Revision 2.1, December 2007 San
Jose, CA, U.S.A.

Google LLC (2018). Real-Time GPS Tracking, available at:
https://support.google.com/earth/answer/148095?hl=en Accessed on August 6th 2018.

Jaroslaw Zachwieja (2012). Google earth gpsd (GEgpsd) version 0.3, June 2012, available
at: https://warwick.ac.uk/fac/sci/csc/people/computingstaff/jaroslaw zachwieja/gegpsd/ Ac-
cessed on August 6th 2018.

