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Abstract. The INPE PRODES project, which since the 1980s maps and quan-

tifies deforestation in the Brazilian Legal Amazon, can be considered the main

systematic monitoring project for tropical forests in the world. Over the time, the

project has gone through several stages, and today its methodology is the visual

interpretation of images by remote sensing experts. This paper aims to evaluate

the use of neural networks to automate this process, improving accuracy and

minimizing the time required for interpretation. Results will be compared to

official PRODES data.

1. Introduction

Deforestation in the Brazilian Amazon rainforest gained momentum in the 1970s and
1980s due to tax incentives and subsidized credit to large ranchers, having a disastrous
impact on local biodiversity and climate [Fearnside 2005]. Since then, deforestation rates
have varied according to the economy and government policies [Fearnside 1987]. In 1978,
the National Institute for Space Research (INPE) conducted a survey using digital imagery
of the LANDSAT satellite to measure the amount of deforested areas of the legal Amazon
[Tardin et al. 1979]. In a total of 552000km2 of analyzed area, approximately 7.4% - an
area of 41000km2 - were interpreted as deforested area. Recent estimates indicate 19.3%
of total deforested area1. It is important to highlight that those rates are only related to
native forest, and do not include reforested areas.

The deforestation and burning of the legal Amazon has been in the worldwide
news recently, and the environmental policies of the Brazilian government have been
questioned. In this context, research for assisting deforestation detection is becom-
ing increasingly relevant. New approaches can promote a better understanding of the
drivers of deforestation, thus enabling the generation of future scenarios, prediction of
risk sites, and the foundation of public policies for deforestation prevention and response
[Lambin et al. 1994].

Since 1988, INPE has been producing annual reports on the deforestation rate of
the Amazon rainforest through the PRODES2 project. Over the years, the methodology
used by PRODES to identify deforestation has changed, and today is based on a visual

1https://rainforests.mongabay.com/amazon/deforestation_calculations.html
2http://www.obt.inpe.br/OBT/assuntos/programa/amazonia/prodes
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interpretation of digital images by remote sensing experts. The current methodology has
shown great results [Kintisch 2007]. However, a huge amount of time is spent due to
the manual process of interpreting satellite images in order to detect deforestation. To
advance the knowledge on methodologies for automatic deforestation detection, computer
vision, machine learning and neural networks are current topics.

This work presents an evaluation of the use of a deep learning technique applied to
Amazon deforestation detection in satellite images. As noted by [Shoham et al. 2017], ar-
tificial intelligence techniques are rapidly gaining more attention in the computer science
community, where “machine learning“ and “deep learning“ are becoming more common.
The number of articles published with the keyword “Artificial Intelligence“ since 1996
has increased more than ninefold, and errors in image labeling have gone from 28.5% to
less than 2.5% since 2010.

2. Literature Review

In this section, work related to the use of machine learning techniques in the field of
computer vision will be discussed.

As noted by [Ronneberger et al. 2015], convolutional networks have improved the
state of the art in visual recognition tasks. Their limitation is linked to the large amount
of data required for training, but this problem has become less relevant due to the higher
availability and data processing capacity today.

Studies using recent AI techniques such as [Iglovikov et al. 2017] and
[Iglovikov and Shvets 2018] present great results using pixel-wise classification models
through fully convolutional neural networks using satellite images. The first one applies
those models to the Dstl Satellite Imagery Feature Detection competition database pro-
posed by Kaggle3, featuring city images with ten labels such as large vehicle, small ve-
hicle and building, while the second, to Aerial Image Labeling Dataset4, which features
city images with labels of building and not-building.

3. Model

3.1. U-Net

U-Net is a semantic segmentation fully convolutional neural network model proposed
by [Ronneberger et al. 2015], modified and extended to work with fewer images during
training in order to generate precise segmentation. Fully convolutional networks have an
encoder-decoder architecture, in which features are learned by the encoder through con-
volution layers, while the decoder converts these features into a pixel-level classification
through up-sampling layers. The model used stands out for using intermediate outputs
of the encoder concatenated to the decoder. This reduces the negative effects of dimen-
sionality reduction performed by max-pooling functions during the encoder, improving
segmentation. The original architecture is presented in Figure 1.

In order to improve the result and shorten the time required for training convolu-
tional layer models, the use of Residual Blocks is state of the art [He et al. 2016]. Such
blocks are composed of a chain of convolutional layers, where the output of this chain is

3https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
4http://project.inria.fr/aerialimagelabeling/
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Figure 1. U-Net architecture [Ronneberger et al. 2015]

added to its input. The advantage of this structure is that it creates a free path to the gradi-
ent, which, in a structure without the residual block, can become derisory after subsequent
derivatives and activation functions in the backpropagation step. A visual representation
of this block is shown in Figure 2.

Figure 2. Residual block [He et al. 2016]

In the present work, it was chosen to fine-tune the U-Net model architecture
with Residual Blocks to get a better accuracy for the proposed task changing the net-
work’s hyperparameters, but not creating a deeper network than the original U-Net
[Ronneberger et al. 2015]. Using ADAM optimizer [Kingma and Ba 2014] with a de-
caying learning rate of 0.001, our best network with these assumptions was as follows
(Table 1). ReLU activation function was used in every convolution layer, and Softmax,
on the output layer.

3.2. Evaluation Metrics

To evaluate the trained neural network model, several metrics can be used. They are also
important at the training phase: if the metric is differentiable, it can be used as a loss
function. In the present work, three metrics were monitored. Dice Coefficient was used
for training the model.
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Table 1. Network Architecture. “+“ refers to a Sum layer, “||“ refers to a Concate-

nate layer

Layer Size Layer Size

Input 256x256x3 Dropout 32x32x512
Convolution 1 256x256x32 Convolution 15 32x32x256
Convolution 2 256x256x32 Convolution 16 32x32x256
MaxPooling 128x128x32 Convolution 17 32x32x256
Dropout 128x128x32 Conv 15 + Conv 17 32x32x256

Convolution 3 128x128x64 Deconvolution 2 64x64x128
Convolution 4 128x128x64 Deconv 2 || Conv 6 + Conv 8 64x64x256
Convolution 5 128x128x64 Dropout 64x64x256

Conv 3 + Conv 5 128x128x64 Convolution 18 64x64x128
MaxPooling 64x64x64 Convolution 19 64x64x128
Dropout 64x64x64 Convolution 20 64x64x128

Convolution 6 64x64x128 Conv 18 + Conv 20 64x64x128
Convolution 7 64x64x128 Deconvolution 3 128x128x64
Convolution 8 64x64x128 Deconv 3 || Conv 3 + Conv 5 128x128x128

Conv 6 + Conv 8 64x64x128 Dropout 128x128x128
MaxPooling 32x32x128 Convolution 21 128x128x64
Dropout 32x32x128 Convolution 22 128x128x64

Convolution 9 32x32x256 Convolution 23 128x128x64
Convolution 10 32x32x256 Conv 21 + Conv 23 128x128x64
Convolution 11 32x32x256 Deconvolution 4 256x256x32

Conv 9 + Conv 11 32x32x256 Deconv 4 || Convolution 2 256x256x64
MaxPooling 16x16x256 Dropout 256x256x64
Dropout 16x16x256 Convolution 24 256x256x32

Convolution 12 16x16x512 Convolution 25 256x256x32
Convolution 13 16x16x512 Convolution 26 256x256x32
Convolution 14 16x16x512 Conv 24 + Conv 26 256x256x32

Conv 12 + Conv 14 16x16x512 Convolution 27 256x256x3
Deconvolution 1 32x32x256 Output 256x256x3

Deconv 1 || Conv 9 + Conv 11 32x32x512

• Cross-Entropy: Entropy is a measure of uncertainty associated with a q(y) distri-
bution. Such uncertainty is given by Equation 1.

H(X) = −
n∑

i=1

P (xi)logbP (xi) (1)

For the context of a classifier, one work with two different distributions: the la-
beled distribution and the one predicted by the classifier. Thus, the loss function
for Binary Cross Entropy is given by Equation 2, while for Categorical Cross En-
tropy, Equation 3.

BCE(y, ŷ) = −
1

N

N∑

i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi) (2)

CCE(y, ŷ) = −
M∑

j=0

N∑

i=0

yij · log(ŷij) (3)

whereN represents the number of examples, M represents the number of classes,
yi represents the labeled data, and ŷi, the output of the classifier.
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• Dice Coefficient: Initially proposed by [Dice 1945], it is used in computer vision
to represent the similarity between two images. This similarity is quantified as:

DSC(X, Y ) =
2 |X ∩ Y |

|X|+ |Y |
. (4)

Thus, the loss function used in the training step can be written as

J(y, ŷ) = −
n∑

i=1

yi · ŷi
yi + ŷi

, (5)

where yi represents the ground truth and ŷi, the network output.

• Jaccard Index ou Intersection over Union (IoU): a term coined by Paul Jaccard,
it is a statistic used for gauging the similarity and diversity of sample sets. It is
defined as the size of the intersection divided by the size of the union of two sets,
as presented in Equation 6.

IoU(X, Y ) =
|X ∩ Y |

|X ∪ Y |
=

|X ∩ Y |

|X|+ |Y | − |X ∩ Y |
. (6)

4. Dataset

For the development of the dataset for the present work, a set of LANDSAT 8 scenes
referring to the Xingu Indigenous Park were chosen, all referring to the year 2018. From
those scenes, only three spectral bands were included in the dataset: red, near-infrared
and short-wavelength infrared. The path row of the scenes used can be seen in Table 2.
The labels were obtained in the PRODES database5.

Table 2. Scenes in the dataset

Path Row

224 68
225 67, 68

The scenes and masks were cut into small 256x256-pixel images (Figure 3), re-
sulting in a total of 1256 clippings. These were divided into 1017 for training, 113 for
validation and 126 for testing. Preprocessing was done to mask all non-forest and non-
deforestation areas by prior knowledge, giving it a “Background“ label. Images with high
presence of this label were discarded for the training phase.

It is important to note that this dataset is expanded annually, and the area classified
as non-forest in one year is maintained in the next year’s classification, even if this area
has been reforested.

5http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes

Proceedings XX GEOINFO, November 11-13, 2019, São José dos Campos, SP, Brazil. p 57-65
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Figure 3. 256x256-pixel image and label

5. Results

The results presented in this section were achieved after an average of 40 training epochs.

The Dice coefficient of the best trained model, in addition to the cross entropy and
Jaccard Index values, can be found in Table 3. Figure 4 presents the evolution of those
metrics during the training phase.

Table 3. Metrics in training and validation sets

Metric Training set Validation set

Dice Coefficient 0.9696 0.9650
Jaccard Index 0.9014 0.8910

Binary Cross-Entropy 0.0993 0.1238
Categorical Cross-Entropy 0.1505 0.1871

In addition to these metrics, Precision, Recall, and F1-score related to each class
in the test set were calculated, as well as the overall accuracy. The values are presented in
Table 4.

Table 4. Metrics in the Test Set. Global accuracy: 0.95171.

Class Precision Recall F1-Score Support

Forest 0.93900 0.97459 0.95646 4,490,972
Deforestation 0.94757 0.87877 0.91187 2,346,132

Figure 5 compares model prediction results with the ground truth. It is noticed
that the neural network managed to generalize well for different situations.
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Figure 4. Metrics during training

Figure 5. Comparison between model prediction (c) and ground truth (b), related
to image (a).
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6. Conclusion

The model used in this work obtained a good accuracy rate when performing pixel-wise
classification of satellite images from LANDSAT-8, using labels from PRODES data for
training. PRODES global accuracy of the mapping of deforestation for the state of Mato
Grosso for the year 2014 was 94.5% ± 2.05 [Adami et al. 2017]. Our model got a 95.2%
accuracy rate. Despite a good accuracy, the model does not distinguish native forest from
reforestated areas. Most of the prediction errors of the network are from reforested areas.
As the model used has no information about previous years, it is difficult to distinguish
areas with such characteristics. In addition, other bands of the multispectral image may
retain this information.

7. Future Work

To improve what was discussed in the present work, we will evaluate the use of mul-
tispectral images and compare with the results presented here. In addition, minor
changes to the loss function recently proposed, such as the boundary error presented in
[Bokhovkin and Burnaev 2019], may improve results. One can also use recurrent models
so that the system has memory from previous years for the current year prediction, as in
[Jia et al. 2017].
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