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Abstract. In space missions, telemetry is a key source of systems health, and the lack of this may 

compromise the mission. Even with functional telemetry, there are some difficulties regarding the 

telemetry analysis. Some satellites have hundreds, even thousands of telemetries, and analyzing 

that to infer something about the system tends to be quite laborious. In this scenario, it can be 

difficult to perform in advance the detection, diagnosis, and prevention of anomalies and failures, 

decreasing the reliability and availability of space systems. Thus, shortening the system life and 

service continuity. This study proposes a data-driven approach, composed of a hybrid Machine 

Learning (ML) process capable of detecting anomalous behaviour on telemetry. Through 

statistics, data science processes, and ML algorithms, the proposed process was capable of 

classifying, with more than 90% of accuracy, four different circumstances for the telemetry system, 

sunlight, eclipse, twilight, and anomalous behaviour. 
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1. Introduction 

The usage of data science and machine learning algorithm to detect, diagnose, and prevent 

anomalous behaviour and therefore fails, has been applied to many different application 
fields (LI et al., 2018; SAFIZADEH, 2014; ZHANG, 2016), as to space systems as well, in special 

for satellites systems (GAO et al., 2012; YAIRI et al., 2017). 

 Artificial satellites usually provide important services in communication, remote 

sensing, scientific experiments, etc. Satellite damage entails not only a financial loss but also 

the loss of essential and sometimes strategic services. In this scenario, early detection, 

diagnosis, and prevention of anomalies and failures promote the reliability and availability 

of space systems, extending service life and long service continuity (AZEVEDO et al., 2012).  

 In space missions, telemetry plays an important role for systems status, and the lack 

of this may jeopardize a space mission since as it is usually the main source for the 

identification and prediction of anomalies.  
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 Real-time and stored telemetry data is received during a satellite pass and analysed 

by specialists and operators, constituting the main source of identification and prediction of 

anomalies in artificial satellites (AZEVEDO et al., 2012). The complexity of these satellites 

with a big number of subsystems is reflected by the big number of TMs/TCs (WERTZ, 2011). 

Therefore, a large number of telemetries make its adequate data analysis an extremely 

complex task.  

 This study intends to present a data science approach for space systems telemetry 

data analysis with the main goal, at this first stage, of being capable of detecting anomalous 

behaviour, which are patterns in data that do not conform to a well define notion of normal 

behaviour (CHANDOLA et al., 2009), on the telemetry data from the power supply subsystem. 

Therefore, outliers and anomalies can be understand here as interchangeable terms This 

study also has a goal of being a backbone for a machine learning process capable of 

performing not only detection but also failure diagnosis. 

2. Methodology 

The machine learning process proposed and applied in this study is a fusion of different 

approaches found in the literature. Looking at it from a high abstraction level it can be 

understood as the data science process proposed in (SCHUTT, O ́NEIL, 2013). Closely, the 

data-driven anomaly detection flow here is divided into four steps, being then, Data 

Preparation, Feature Reduction, Clustering, and Classification. Where the last two steps can 

be seen as a Machine Learning step in charge to generate and verify the model. This flow 

can be seen in Figure 1 and it follows the same proposed in (YAIRI et al., 2017; ZARE, 2018) 

and many others mentioned by (TABUROĞLU, 2019). 

  

 

Figure 1. Data-driven anomaly detection flow.  

The data extracted is from a TM CSV file and shaped as a pandas data frame which presents 

raw telemetry value that has to be processed to make it tidy before use (WICKHAM, 2014). 

Each telemetry channel presents a variable with different engineering magnitudes 

represented by different measurements units. It is common in these cases to normalize all 

the data so they will vary within a same range, and still carry their meaning. Before 

performing a normalization, some steps shall be earlier performed. Trivial outliers in this 

paper are understood as those that occur very rarely and abruptly, which neighbouring time 

steps differ from them. As demonstrated in (YAIRI et al., 2017),  

The usage of the dimensionality reduction in this study was inspired by the lessons learned 

seen in (AZEVEDO et al., 2012) and supported by the idea that in machine learning, data with 

high dimensionality and multimodality, frequently are treated by dimensionality reduction 



 

 

3 

 

as shown in (YAIRI at al., 2017). This process here is not only performing a feature extraction 

but also enabling the visualization of the data in three-dimensional space, key arguments for 

the usage of this technique as elicited in (MOHRI et al., 2018). 

 The PCA implementation by sci-kit learn used here mainly requires to set only one 

hyperparameter, the number of principal components (k) that shall be used to generate the 

new dataset. This was the procedure used in this article and its results can be in Figure 2. 

 

Figure 2. Percentage of variance explained by the number of features (principal 
components).  

 The choosing of the KPCA´s number of components, the kernel function, and the 

gamma hyperparameters was performed in a heuristic way, which can be considered a 

commonly used approach (ALAM, FUKUMIZU, 2014). However, a method was proposed by 

(ALAM, FUKUMIZU, 2014) to perform the hyperparameter selection in KPCA more 

deterministically, it hasn´t experimented here though. 

 To choose how many components would be used to generate the output data set, a 

similar approach to the PCA was used. Here, the eigenvalues from the eigenvectors were 

used as a data variance explaining variable. A plot similar to the PCA was generated and an 

assessment was made.  

 As this step of the machine learning process was being used as a data pre-processing 

step for the clusterization algorithm and this assessment was performed plotting the result of 

different kernel functions for the same number of components, and different values from 

gamma. This process tends to take some time as it can be seen as a manual fine-tuning. As 

an example, Figure 3 show the outcome of choosing the RBF kernel function. 
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Figure 3. KPCA output for RBF as the kernel function.  

The DBSCAN, different from the K-Means, doesn´t require a definition of how many 

clusters one would like to have but instead, through the hyperparameters epsilon (eps) and 

minimum of points (minPt), it returns how many clusters it was able to identify using theses 

hyperparameters and also returns those points which don´t fit any cluster. To find the most 

adequate values for both hyperparameters the outcome of the DBSCAN is evaluated by its 

Silhouette Coefficient (SC) value (KAUFMAN; ROUSSEEUW, 1990). The algorithm is 

executed with the eps varying from 0.1 to 1.0 in steps of 0.1. For each esp step, minPt values 

from 2 to 8 are tested. This generates a list of different combinations resulting in a different 

number of found clusters and their given SC which can be evaluated using the rule of thumb 

shown (KAUFMAN; ROUSSEEUW, 1990). This array then is appended to the original data 

frame as a column of labels, and the relationship between each telemetry and the found 

clusters is plotted through a series of histograms and a sample of it can be seen in Figure 4.  

 

Figure 4. Model accuracy versus the number of K.  

 From this plot is possible to create the relationship of which cluster represents each 

circumstance of the satellite. Since TMD0023 represent one of the solar panels output 

current, it is possible to infer that cluster #2 is related to when the satellite has sun sight, by 

the other hand, cluster #0 represent when the satellite is in eclipse, while cluster #3 and #1 

are related to the twilight situation and the clusters #-1 refers to the anomaly behaviour 

points. 
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The labeled data obtained thanks to the clusterization, now can be used to train a supervised 

classification algorithm as the KNN. This algorithm, besides simples, is easy to use and 

understand and its implementation on sci-kit learn requires only the number of neighbour’s 

(k) definitions. 

 The method applied to determine the proper k value consists in training the algorithm 

and test it with different values within a range from 1 to 40. In the end, using 

metrics.accuracy function available in sci-kit learns we can find the accuracy of the trained 

model when comparing the classified data versus the real labels on the data frame. The 

outcome of this heuristic method is then used for created a plot that represents the accuracy 

of the model versus the value defined for k. The best accuracy value provided by a value of 

k bigger than 1 is then chosen. The outcome of this process can be seen in Figure 7. 

3. Results and Discussion 

3.1. KPCA+DBSCAN+kNN   

Even though experiments were conducted with the usage of the PCA algorithm for 

dimensionality reduction as well, since the final choice was made for the usage of the KPCA 

algorithm, for the sake of space, the results regarding the PCA algorithm experiments will 

not be exposed neither discussed. Only the result regarding the chosen Machine learning 

process will be discussed 

 From the curve “Percentage of variance explained by the number of components” 

was obtained the values seen in Table 1.   

Table 1. % Variance Explained by the number of principal components (PC).  

Number of components Explained Variance (%) 

3 87,137 

4 89,674 

5 91,777 

6 93,649 

 

 The usage of three components for the KPCA already produces a very good 

explained variance value, and as the data will be plot for visualization, chose three 

components among the other values turns to be the most adequate option 

3.1.1. Without trivial outlier removal 

The outcome dataset of the KPCA, seen in Figure 5, running a sigmoid kernel, with 

eigenvectors and gamma hyperparameters of 3 and 0.1 respectively, used as input for a 

DBSCAN with epsilon equals to 0.2 and a minimum number of samples of 4, provided a 

silhouette score of 0.537, with 5 clusters identified. 
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Figure 5.  - KPCA output clustered 

 

 As seen, the clusters found through that performed tunning don´t meet the 

requirement of 4 well-defined clusters the represent the satellite's circumstances and one for 

the outliers/noise. Instead, two big clusters and two tiny clusters were assigned 

 This result was considered not adequate to proceed to the classification step, instead, 

as mentioned before, a trivial outlier removal technique was implemented to make this result 

more adequate. 

 

3.1.2. With trivial outlier removal  

The outcome dataset of the KPCA, seen in Figure 6, running a sigmoid kernel, with the 

values of eigenvector and gamma hyperparameters of 3 and 0.2 respectively, used as input 

for a DBSCAN with epsilon equals to 0.2 and a minimum number of samples of 7, provided 

a silhouette score of 0.516, with 5 clusters identified.  However, it is important to draw the 

attention that after the trivial outliers were removed from the initial dataset, a new tunning 

of the KPCA hyperparameters had to be performed. In this case, the gamma had to be 

improved, and the hyperparameter “fit_inverse_transform”, which learn the inverse 

transform for non-precomputed kernels 

 Different from the previous experiment, here, the outcome from both algorithms was 

quite satisfactory with 4 well define clusters and a cloud of sparse outliers assigned to the -

1 cluster. This result is adequate and the indexes of the cluster can be used as labels to train 

a model with the kNN algorithm. 
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Figure 6.  - KPCA output clustered with a trivial outlier cleared dataset 

 The process to choose the k parameters was performed having the above result as 

input for the kNN algorithm, and its result can be seen in Figure 7. The best outliers detection 

accuracy value achieved was 0.6875 using K equals 5. After training the model, an 

evaluation was run over a test dataset, the outcome of this test can be seen in Table 4 

 
Figure 7.  – KNN model accuracy versus number of k 

Table 2. Confusion matrix for results obtained from KNN.  

 Classified 

anomalous behavior 

Classif. 

eclipsed 

Classif. 

twilight 

Classif. 

sun sight 

Classif. 

twilight 

Anomalous 

behavior 
11 2 

2 1 0 

Eclipsed 0 135 0 0 0 

Twilight 0 0 9 0 0 

Sun sight 0 0 0 156 0 

Twilight 0 0 0 0 12 
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 The usage of the trivial outliers removal technique allied to the KPCA algorithm 

presented better result when comes to anomalous behaviour detection. Even though the 

KPCA output got improved by the removal of trivial outliers, the KPCA dataset generated 

at the end of the process presented clusters with considering the difference in shape and 

density, and due to that, the work of the DBSCAN algorithm got difficult. However, we were 

able to identify clusters with a silhouette score of 0.52. Not the best, but good enough. Eleven 

anomalies were correctly classified. Once more the general accuracy was a quite satisfactory 

value, around 0,979.  

 

 Among the kernel functions implemented in the KPCA sci-kit learn, the one which 

provided a more meaningful output was the kernel function sigmoid.  Among the distance 

metrics implemented in the sci-kit learn for the kNN algorithm, two were tested, Euclidian 

and Manhattan, showing that Euclidian obtained a better accuracy when comes to anomalous 

behaviour detection in the test model. But for the sake of space, only the Ecludian related 

results were presented here.  

 

4. Conclusion 

The lack of a bigger and continuous dataset until a certain point harmed the classification 

skills of the model. Especially due to the fact it didn’t contain identified anomalous 

behaviour from the telemetries that could be used to train the model over fails. This way, it 

is not possible to infer whether the classified anomalies from the test data are real anomalies 

and led to some problem or not. As mentioned, due to the limited availability of historical 

fault data, the accuracy of machine learning and other artificial intelligence techniques for 

fault diagnosis is greatly restricted as the samples required for adequate training of relevant 

data-driven methods are normally insufficient. 

 However, the samples used were enough to verify and validate the chosen machine 

learning procedure over the anomalous behaviour detection and generate the necessary for 

the next step on the research, the anomaly diagnosis. 

 The data processing stage where variables were removed depending on their 

relevance for the model associated with the appliance of a “trivial outliers” removal 

technique over the data proved to be not just good but also needed, to avoid a model biased 

by wrong data examples.  And even though the clustering algorithm used is noise hardened, 

as its input data is the outcome from the dimensionality reduction stage, this process was 

required. 

 The choice of using the Kernel PCA over regular PCA to reduce the presented better 

result when comes to not just generate a clusterable data set, but also one which could enable 

the visualization of the satellite circumstances in orbit.  Such aspects compensate that the 

hyperparameters and kernel function choosing was more time costly than simply choose the 

numbers of components as it is when using the PCA algorithm. 
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 In the first moment, when the dataset presented clusters in which the size was more 

similar the DBSCAN showed better results when comes to the silhouette score and also the 

variability of hyperparameters selection. The difficulty to deal with different size clusters is 

a known back draw, and it was confirmed here when it generated cluster with a lower 

silhouette score after running in the dataset coming from the dimensionality reduction stage. 

Nevertheless, its usage was possible and its outcome was good enough when came to 

generate the labels for the dataset. 

 This way, it is possible to affirm that the DBSCAN algorithm served its purpose 

presenting good results, however, investigate the outcome of the appliance of different 

clustering algorithms in this context is not discarded, being a possible path to be branched 

out from this article 

 The appliance of the kNN algorithm with regards to hyperparameters tuning, proved 

to be easy and simple at a certain point. The reason behind why its accuracy to detect 

anomalous behaviour might come from how the algorithm works since it relies on the 

neighbours of the point under investigation to decide to which labels the given point belongs. 

And as anomalous behaviour points might not be as much in number as points from other 

labels, the classification of those anomalous behaviour points tends to have less accuracy 

than the overall classification. Therefore, the kNN can be considered as a good algorithm for 

studies purposes in this study case but maybe spent some effort looking for other solutions 

which could provide better accuracy, the SVM algorithm could be an option as a kickstart. 

 For now, what can be said about the proposed machine learning procedure is that, 

considering the proposed framework, the anomalous behaviour detection can be made but to 

assess whether the anomalous behaviour is a failure or a noise or even an unknown failure, 

a next step in the process has to be added. For future work we are planning to use a multi-

level SVM. 
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