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ABSTRACT  
 
The purpose of this work is to compare the extended 
Kalman filter (EKF) against the nonlinear sigma point 
Kalman filter (SPKF) for the satellite orbit determination 
problem, using GPS measurements. The comparison is 
based on the levels of accuracy improvement of the orbit 
dynamics model. The main subjects for the comparison 
between the estimators are accuracy of models and 
results. Based on the analysis of such criteria, the 
advantages and drawbacks of each estimator are 
presented.  
In this work, the orbit of an artificial satellite is 
determined using real data from the Global Positioning 
System (GPS) receivers. In orbit determination of 
artificial satellites, the dynamic system and the 
measurements equations are of nonlinear nature. It is a 
nonlinear problem in which the disturbing forces are not 
easily modeled. The problem of orbit determination 
consists essentially of estimating parameter values that 

completely specify the body trajectory in the space, 
processing a set of information (measurements) related to 
this body. Such observations can be collected through a 
ground tracking network on Earth or through sensors, like 
space GPS receivers onboard the satellite. 
The EKF implementation in orbit estimation, under 
inaccurate initial conditions and scattered measurements, 
can lead to unstable or diverging solutions. For solving 
the problem of nonlinear nature, convenient extensions of 
the Kalman filter have been sought. In particular, the 
unscented transformation was developed as a method to 
propagate mean and covariance information through 
nonlinear transformations. The Sigma Point Kalman Filter 
(SPKF) appears as an emerging estimation algorithm 
applied to nonlinear systems, without needing 
linearization steps. 
In this orbit determination case study the focus is to 
gradually improve the dynamical model, which presents 
highly nonlinear properties, and to know how it affects 
the performance of the estimators. Therefore, the EKF 
(the most widely used real time estimation algorithm) as 
well as the SPKF (supposedly one of the most appropriate 
estimation algorithm for nonlinear systems) performance 
evaluation is justified. 
 The aim of this work is to analyze the new nonlinear 
estimation technique, the SPKF, in an actual orbit 
determination problem with actual measurements data 
from GPS, and to compare it with a widely used 
technique, the EKF, pinpointing the main differences 
between both the algorithms. 
 
 
INTRODUCTION  
 
In orbit determination of artificial satellites, both the 
dynamic system and the measurements equations are of 
nonlinear nature. It is a nonlinear problem in which the 
disturbing forces are not easily modeled. The problem 
consists of estimating variables that completely specify 
the body trajectory in the space, processing a set of 
information (pseudo-range measurements) related to this 
body.  The more accurate GPS phase measurements are 
not used here, because the aim is not the search for 
accuracy, but a comparison of performance under 
different levels of orbit models. Besides with carrier 
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phase measurements, the ambiguity resolution algorithm 
could eventually mask the results.   
A space borne GPS receiver is a powerful means to 
determine orbits of artificial Earth satellites by providing 
many redundant measurements. The Topex/Poseidon 
(T/P) is an example of using GPS for space positioning. 
Through an onboard GPS receiver, the pseudo-ranges 
(pseudo-distance from satellite to each of the tracked GPS 
satellites) related to the body can be measured and can be 
used to estimate the orbital state. 
The EKF is probably the most widely used real time 
estimation algorithm for nonlinear systems. The EKF is a 
nonlinear version of the Kalman filter (KF) that generates 
reference trajectories which are updated at the time of 
each measurement processing. However, the experience 
from the estimation community has shown that it is 
difficult to implement, requires some skill to tune, and is 
only reliable for systems that are nearly linear on the time 
scale of the filter working updates. Many of these 
difficulties arise from the linearized approximations 
needed by the EKF method. Specifically for the orbit 
estimation problem, under inaccurate initial conditions 
and scattered measurements, the EKF implementation can 
lead to unstable or diverging solutions. Therefore, there is 
a strong need for a method that is more accurate than 
linearization, but at the same time does not increase 
neither the implementation nor additional computational 
costs like other higher order filtering schemes. To 
overcome this limitation, the unscented transformation 
was developed as a technique to propagate mean and 
covariance information through nonlinear 
transformations. The SPKF is a new estimator that claims 
to yield equivalent or better performance than the EKF 
and elegantly is applied to nonlinear systems, without the 
linearization steps. This algorithm is a new approach to 
generalize the KF for nonlinear process and observation 
models.  
 
 
THE EXTENDED KALMAN FILTER 
 
The EKF is a nonlinear version of the KF that generates 
reference trajectories which are updated at each 
measurement processing times (Brown and Hwang, 
1985). 
Due to the complexity of accurately modeling the 
nonlinear satellite orbit, the EKF is generally used in 
works of such nature. The algorithm always provides up 
to date reference trajectory around the most current 
available estimate. 
Exploiting the assumption that all transformations are 
quasi-linear, the EKF simply linearizes all nonlinear 
transformations and substitutes the Jacobian matrices for 
the linear transformations in the KF equations. The EKF 
consists of cycles of time and measurement updates. In 
the first, state and covariance are propagated from one 
previous instant to a later one, meaning that they are 
propagated between discrete instants of the system 
dynamics model. In the second one, state and covariance 
are corrected for the later instant corresponding to the 

measurement time, through the observations model. This 
method has recursive nature and does not need to store the 
measurements previously in large matrices, being 
therefore well suited for real time processing.  
The EKF time update cycle is given by 
  

)ˆ( 1−= kk xfx&  
kkkkkkk QφPφP += −−−

T
1,11,

ˆ  
 
where f is a nonlinear vector function modeling the orbit 
motion, kx  and kP  are respectively the propagated state 
and the covariance for tk; ϕ is the state transition matrix 
between tk-1 e tk; kQ  is  the dynamics noise matrix given 
by 
 

∫=
−

−−k
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The equations for the EKF measurement update cycle are 
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where hk is a nonlinear vector function modeling the 

measurements; H is the Jacobian matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

x
h ; Kk is the 

Kalman gain; x̂  and P̂  are the state vector and the 
covariance updated for the instant  k. 
There are some limitations for the EKF. For example: 
linearized transformations are reliable only if the error 
propagation can be matched with good approximation by 
a linear function; linearization can be applied only if the 
Jacobian matrix exists; and obtaining the analytical 
Jacobian matrices can be a very difficult and error-prone 
process. Summarizing, linearization, as applied in the 
EKF, is widely recognized to be inadequate, but other 
alternatives yield substantial costs in terms of derivation 
and computational complexity. The sigma point 
algorithms via unscented transformation were developed 
in an attempt to meet these needs. 
 
 
THE SIGMA POINT KALMAN FILTER 
 
If the system dynamics and the observation model are 
linear, the conventional KF can be used fearlessly. 
However because, not rarely, the system dynamics and/or 
the measurement models are nonlinear, convenient 
extensions of the KF like EKF have been used. 
The SPKF is a new estimator that allows similar 
performance than the KF for linear systems and elegantly 
extends to nonlinear systems, without the linearization 
steps. This algorithm family is a new approach to 
generalize the KF for nonlinear process and observation 
models. A set of weighted samples, the sigma points, is 
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used for computing mean and covariance of a probability 
distribution. Such algorithms include the unscented 
Kalman filter (UKF), which is based on the unscented 
transformation (UT), a nonlinear transformation for mean 
and covariance. 
The SPKF is a technique claimed to lead to a more 
accurate and easier to implement filter than the EKF or a 
second order Gaussian filter. The SPKF approach is 
described, as follows (van der Merwe et al., 2004) 
 

1. A set of weighted samples is deterministically 
calculated, based on mean and covariance 
decomposition of a random variable. 

2. The sigma points are propagated through the real 
nonlinear function, using only functional 
estimation, that is, analytical derivatives are not 
used to generate a posteriori set of sigma points. 

3. The later statistics are calculated using 
propagated sigma points functions and weights. 
In general, they assume the form of a simple 
weighted average of the mean and the 
covariance. 

 
Herein, it will be described the UT and the UKF, the filter 
steamming from this transformation.  
 
 
THE UNSCENTED TRANSFORMATION 
 
The UT is a method to calculate the statistics of a random 
variable that passes through a nonlinear transformation. 
The UT approach chooses a set of points (sigma points) 
so that their mean and covariance are x  and Pxx (Julier 
and Uhlmann, 1997, 2004). The nonlinear function is 
applied to each point, in turn, to yield a cloud of 
transformed points. The statistics of the transformed 
points (mean y  and covariance Pyy predicted) can then be 
calculated to form an estimate of the non linearly 
transformed mean and covariance. 
The sigma points are deterministically chosen so that they 
exhibit certain specific properties (given mean and 
covariance, for example), and are not drawn at random. 
Besides, they can be weighted in ways that are 
inconsistent with the distribution interpretation of sample 
points like in a particle filter. 
The n-dimensional random variable x with x  mean and 
Pxx covariance is approximated by 2n + 1 weighted 
points, given by 
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in which ℜ∈κ , ( )in xxP)( κ+  is the i-th row or column 

of the square root matrix of xxP)( κ+n . iW  is the weight 
associated to the i-th point by 
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The transformation occurs as follows  

 
1. Transform each point through the nonlinear function 

to yield the set of transformed sigma points 
 

[ ]iiy χf=  
   

2. The observations mean is given by the weighted 
average of the transformed points 
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=
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i
ii yW

2

0
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3. The covariance is the weighted outer product of the 

transformed points 
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2

0
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Despite its apparent simplicity, the UT has a number of 
important properties 
 

1. It works as a “black box” filtering library: given 
a model, a standard routine can be used to 
calculate the predicted quantities as necessary for 
any given transformation. 

2. The computational cost of the algorithm may be 
almost the same order of magnitude as the EKF. 

3. Any set of sigma points that encodes the mean 
and covariance correctly calculates the projected 
mean and covariance correctly to the second 
order at least. 

4. The algorithm can be used with discontinuous 
transformations. Sigma points can pass over a 
discontinuity and, thus, can approximate the 
effect of a discontinuity on the transformed 
estimate.  

 
 
THE UNSCENTED KALMAN FILTER 
 
Using UT, the following steps are processed in the KF 
 

1. Predict the new state system ( )kk |1ˆ +x  and its 
associated covariance ( )kk |1+P , taking into 
account the effects of the gaussian white noise 
process. 
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2. Predict the expected observation ( )kk |1ˆ +y  and 
its residual innovation matrix ( )kk |1+ννP  
considering the effects of the observation noise. 

3. Predict the cross correlation matrix 
( )kkyx |1+P . 

 
Fig. 1 shows these 3 steps of the UT, changing the EKF, 
in order to lead to the new filter: the UKF. These steps are 
put in order in the EKF with the re-structuring of 
dynamics, state vector and observations models.  
 
 

 
 

Figure 1. UT introduced in the EKF, leading to UKF 
 
 
THE ORBIT DETERMINATION 
 
The instantaneous orbit determination using GPS 
satellites is basically a geometric method. In this method, 
the observer knows the set of satellites position in the 
reference system, obtaining its own position in the same 
reference frame. Fig. 2 presents the basic parameters used 
by GPS for user position determination.  In Fig. 2, GPSiR

r
 

is the position of i-th GPS satellite in the reference 
system; iρ

r
 is the pseudorange; and ur

r
 is the user satellite 

position in the reference system.  
 

 
Figure 2. The Geometric Method 

 
 
However sequential orbit determination makes use of the 
orbit dynamical model to predict between measurement 
times and measurement model to update the orbit by 
processing of GPS measurements. This gives rise to using 
recursive and real time KF estimator to the orbit 
determination (Chiaradia et al., 2003). 
 
 
THE DYNAMIC MODEL 
 
In the case of orbit determination via GPS, the ordinary 
differential equations that represent the dynamic model 
are in its simplest form give traditionally as follows 
 

vr
r&r =  

war-v 3
rr

r
&r ++=

r
μ      

dw0d

db

+=

=
&

&
 

 
with variables given in the inertial reference frame. In the 
equations above, r

r
 is a vector of the position components 

vector (x, y, z); v
r

 is velocity vector; a
r

 represents the 
modeled perturbations vector; w

r
 is the white noise 

vector with covariance Q; b is the user clock bias; d is the 
user clock drift; and wd  is the white noise on the drift rate 
with variance Qd. 
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THE FORCE MODEL - PERTURBATIONS 
CONSIDERED IN THE MODELING 
 
The main disturbing forces of gravitational nature that 
affect the orbit of an Earth’s artificial satellite are: the non 
uniform distribution of Earth’s mass; ocean and terrestrial 
tides; and the gravitational attraction of the Sun and the 
Moon. There are also the non gravitational effects, such 
as: Earth atmospheric drag; direct and reflected solar 
radiation pressure; electric drag; emissivity effects; 
relativistic effects; and meteorites impacts. 
The disturbing effects are in general included according to 
the physical situation presented and to the accuracy that is 
intended for the orbit determination. Here we include only 
the minimum perturbations set to allow us to assess the 
performance of both filters.   
 
Geopotential 
 
The Earth is not a perfect sphere with homogeneous mass 
distribution, and cannot be considered as a material point. 
Such irregularities disturb the orbit of an artificial satellite 
and the keplerian elements that describe the orbit do not 
behave ideally. The potential function can be given by 
(Kaula, 1966): 
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where μ is Earth gravitational constant; RT is mean Earth 
radius; r is the spacecraft radial distance; φ is the 
geocentric latitude; λ is the longitude on Earth fixed 
coordinates system; Cnm and Snm are the normalized 
harmonic spherical coefficients, of degree n and order m; 
Pnm are the associated Legendre functions. The constants 
μ, RT, Cnm, and Snm determine a particular gravitational 
potential model. 
 
Direct Solar Radiation Pressure 

 
The solar radiation pressure is a non gravitational force 
that disturbs the motion of an artificial satellite. The way 
as the perturbation due to solar radiation pressure will 
affect the keplerian elements depends on the model 
adopted (if it includes or not shadow, for example). In the 
general case, it causes secular and periodic perturbations 
on the Keplerian variables (ω, Ω, M) and also to a less 
extent on the metric variables (a, e, i). 
The components of solar radiation pressure force can be 
expressed in several systems. Throughout these systems, 
the orbital elements of the satellite can be connected with 
Sun’s position. This procedure was used here, for the 
direct solar radiation pressure model adopted for the 
TOPEX/Poseidon (T/P) satellite (Marshall et al., 1991). 
Since the force due to the emerging radiation flux on the 
surface of the satellite depends on the angle of incidence, 
the attitude of the satellite must be also taken into 
account. 

As Topex/Poseidon (T/P) satellite real data are used to 
validate the estimation results in this work, the total direct 
solar radiation pressure acting on T/P, according to 
Marshall and Luthcke’s model (Marshall and Luthcke, 
1994) is: 
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where G is solar radiant flux (W/m2); A is the surface area 
of each plate (m2); δ is diffusive reflectivity, percentage 
of the total incoming radiation; ρ is specular reflectivity, 
percentage of the total incoming radiation; n)  is surface 
normal vector; s)  is source incidence vector; θ  is the 
angle between surface normal and solar incidence; and c 
is the speed of light (m/s). Subscript k varies from 1 to 8, 
representing each satellite plate, and F

r
 is the total direct 

solar radiation force acting on the satellite. 
 
Sun-Moon Gravitational Attraction 
 
These perturbations are due to Sun and Moon attraction 
force and they can be meaningful if the satellite is far 
from Earth. As the orbital variations are of the same type, 
be the Sun or the Moon the attractive body, they should 
be studied without distinguishing the third body. The luni-
solar gravitational attraction mainly acts on Ω and ω, 
what causes precession of the orbit and the orbital plane. 
The general three-body problem model is here simplified 
by the circular restricted three-body problem, where the 
orbital motion of a third body, which mass can be 
neglected, around two other massive bodies is studied. 
The motion equation that provides the third body 
acceleration can be expressed as (Prado and Kuga, 2001) 
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where 1313 rrr rrr

−= , 
2323 rrr rrr

−= , and 3,2,1, =iri
r  is the i-th 

body distance to the system center of mass. 
 
 
THE OBSERVATIONS MODEL 
 
The nonlinear equation of the observations model is 

 
( )    , kkkk νxhy += t     

 
where, at time tk, yk is the vector of m observations; 

( )kk xh  is the nonlinear function of state xk, with 
dimension m; and kν  is the observation errors vector, 
with dimension m and covariance Rk. 
 

2736
23rd International Technical Meeting of the Satellite Division of
The Institute of Navigation, Portland, OR, September 21-24, 2010



 
APPLYING UKF ON ORBIT DETERMINATION 
 
With that application in mind, it is now possible to 
establish the UKF framework. 
Because the noise enters additively in both the force and 
the observation model, the state dimension is the original       
n = 8 (position, velocity, clock offset, clock drift). In this 
work application one uses actual GPS pseudo-range 
measurements which are non linearly modeled as well. 
Next, the set of sigma points is built 
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where ( ) nn −+= καλ 2 , with α  usually chosen small, 

in the interval 110 4 ≤≤− α , control the sigma points 
scatter about the mean kx  (Jwo and Lai, 2008); κ  

provides an extra degree of freedom; and 
i

k)n( ⎟
⎠
⎞

⎜
⎝
⎛ + Pλ  

is the i-th row or column of the root square matrix of 

k)n( Pλ+ . 
In the propagation step, mean and covariance of the 
propagated sigma points are used to calculate 
algebraically the state and the covariance predicted. These 
sigma points were transformed from the state vector and 
the dynamical noise. 
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The observation vector and the innovation matrix, νν

1+kP , 
are also predicted from mean and covariance of the 
transformed sigma points on the measurements 
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where χ  is built as before. Therefore 
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In this equation, 1, +kiy  represents the sigma vectors 
propagated through the observation model nonlinear 
equation, yielding the transformed sigma points from the 
state vector and the covariance, shown earlier. 
In the update (correction) step of measurement, the 
Kalman gain, 

1+kK , is calculated based on the correlation 
matrix between the measurement and the observation, 

yx
k 1+P , and the innovation matrix, both predicted. 
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Finally, the update state and covariance are  
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where y is the actual measurement vector at the instant 
k+1. 
The process is repeated for the next instant. The updated 
mean and covariance from the present instant will be used 
to deterministically generate the sigma points of the next 
instant, cyclically. 
 
 
RESULTS 
 
Here, the tests and the analysis for the extended and the 
sigma point algorithms developed to compute all the 
considered perturbations are presented.  
Aspects of computational complexity and processing time 
between both algorithms were already presented 
elsewhere (Pardal et al., 2009 (a), (b)). 
To validate and to analyze the proposed method, real data 
from the T/P satellite were used. Position and velocity to 
be estimated were compared with T/P precise orbit 
ephemeris (POE), from JPL/NASA. The test conditions 
considered real L1 pseudo-range data, collected by the 
GPS receiver onboard TOPEX, on November 19, 1993. 
The tests covered a long (24 hours) period of orbit 
determination. 
The force model included perturbations due to 
geopotential up to order and degree (30x30), with 
harmonic coefficients from JGM-2 model, direct solar 
radiation pressure, and Sun-Moon attraction. The pseudo-
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range measurements were corrected to the first order with 
respect to ionosphere. 
The obtained results were evaluated through one 
parameter: error in position components, which represents 
the difference between the POE/JPL reference and the 
estimated position components. Such parameter is given 
by 
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which are after translated to radial, normal, and along-
track  (RNT) components of T/P orbit fixed system. 
First, only geopotential were considered for the 
mentioned period of orbit determination. They were 
considered two models: a lower order and degree 10, and 
then a higher order and degree 30. After, the direct solar 
radiation pressure force acting on T/P center of mass was 
included, together with the higher geopotential model. 
And, finally, perturbations due to Sun-Moon attraction 
were added to the model of forces. Therefore increasing 
levels of modeling complexity were being added to test 
the filters.  
The obtained data were after translated to RNT system, 
which interpretation is straightforward. In this system, the 
radial component “R” points to the nadir direction, the 
normal “N” is perpendicular to orbital plane, and the 
transversal (along-track) “T” is orthogonal to “R” and 
“N”, and so is also the velocity component. Thus, it is 
possible to analyze what happens with the orbital RNT 
components, and with the orbit evolution as well.  
 
 
Orbit Propagation  
 
Here the effects of introducing each perturbation 
gradually are analyzed in the orbit propagation step, 
before the orbit determination through UKF or EKF. 
Therewith, it is possible to assert if the model was well 
implemented or not. 
The orbit propagation graphics were plotted analyzing, 
step by step, the inclusion of each perturbation. First, a 
model of geopotential spherical harmonics up to order and 
degree 10; second a more complex geopotential model, up 
to higher order and degree 30; third, to the complex 
geopotencial model was added the direct solar radiation 
pressure; and, finally, the full model of forces was 
implemented, adding the Sun-Moon gravitational 
attraction to the third model. 
Fig. 3 shows the perturbations effects in orbit 
propagation. It includes geopotential up to order and 
degree 10 (geo 10); geopotential up to higher order and 
degree 30 (geo 30); geopotencial model geo 30 added to 
direct solar radiation pressure (geo 30 + srp); and, finally 
the full model of forces is implemented, including also 
Sun-Moon attraction (geo 30 +  srp + sm). 
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Figure 3. Orbit propagation for models of forces tested, in 

RNT components, with data from 19 Nov. 1993. 
 
 
When the geopotential harmonics order and degree was 
increased from 10 to 30, an anomalous non explained 
behavior of the transverse component error RMS 
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increasing occurred.  However, the direct solar radiation 
pressure inclusion did not cause any significant change in 
the RMS values. And, when the Sun-Moon attraction was 
included in the dynamical model, the components errors 
RMS had a meaningful decrease. The RMS values can be 
checked in Tab.1, as follows. In Tab. 1, “Geo10” means a 
dynamical model including only perturbations of 
geopotential spherical harmonics up to order and degree 
10; “Geo30”, a model including perturbations of 
geopotential up to higher order and degree 30; “SRP”, a 
model that adds to the “Geo30” the direct solar radiation 
pressure modeling; and “SM” the complete dynamical 
model considered, including the last perturbation 
modeling to the “SRP”: the Sun-Moon gravitational 
attraction. 
 

Table 1. RMS errors values for each model of forces 
considered in orbit propagation. 

 
Dynamical

Model R N T total
Geo10 1.764 19.812 6.562 20.945
Geo30 1.896 19.891 19.742 28.088
SRP 1.882 19.794 19.703 27.992
SM 2.090 1.367 4.427 5.083

RMS (m)

 
 
 
Orbit Determination 
 
In orbit determination, the results were obtained after 
state estimation by UKF or EKF. As it was expected, due 
Kalman filters do not completely trust in the dynamical 
model. Improving the model from a simple geopotential 
up to a lower order and degree only to a more complex 
complete model including geopotential, direct solar 
radiation pressure, and Sun-Moon attraction, did not 
cause meaningful changes in the RNT components errors 
values. Also, for a 30s sampling rate, there was not 
significant differences in the errors values if the estimator 
used was UKF or EKF. 
Fig. 4 presents a typical result obtained, with the errors in 
RNT components evolution during a long 24 hours period 
of orbit determination. For this test, sampling rate was 
30s. This result was obtained using a model including 
geopotential up to order and degree 30 and Sun-Moon 
attraction. Each error component was compared between 
the UKF estimation results (red curves) and the EKF ones 
(dark blue curves). Because of the complexity to calculate 
the direct solar radiation pressure Jacobian matrix, needed 
to the EKF implementation, and as Sun-Moon attraction 
is the major effect that shifts the errors values, one 
decided to compare both algorithms through this most 
important effect only.  
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Figure 4. Orbit determination typical result, in RNT 

components, with data from 19 Nov. 1993. 
 
Tab. 2 presents components and total RMS errors, in 
meters, for both algorithms. The dynamical models with 
geopotential up to order and degree 10, geopotential up to 
order and degree 30, and the model including the Sun-
Moon attraction to the geopotential perturbations were 
estimated by the UKF and EKF. Therefore, the complete 
model, including the direct solar radiation pressure was 
implemented only by UKF, for the reasons explained 
before. Although the statistics are very close, the best 
results occurred when Sun-Moon attraction was 
considered in the modeling, as can be seen in Tab. 2. 
There is also a mean and standard deviation column at left 
side. As mean and standard deviation are related to RMS 
through the equation 22 )deviationstd()mean(RMS +≈ , 
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the results show that statistical consistency was 
accomplished. 
 

Table 2. RMS errors values for each model of forces 
considered, and for each estimator used, in orbit 

determination. 
 

Dynamical
Model R N T total

Geo10 4.789 11.389 13.634 18.399
Geo30 4.605 10.635 13.617 17.881
SRP 4.576 10.146 13.602 17.575
SM 4.622 10.150 13.629 17.611
Geo10 5.361 11.546 13.711 18.709
Geo30 5.197 10.772 13.690 18.178
SRP 5.170 10.292 13.673 17.227

17.184 ± 6.569
16.659 ± 6.491
16.319 ± 6.516
16.319 ± 6.519
17.362 ± 6.964
16.814 ± 6.903
16.473 ± 6.940

UKF

EKF

Filter position error (m) RMS error (m)
mean ± std deviation

 
 
 
Predicted Residuals of Pseudorange 
 
As the orbit determination results have shown, the 
dynamical models accuracy improvement do not improve 
the errors results between the POE/JPL reference and the 
estimated position values. Further, such results shows 
similar competitivity between both estimators. 
With the purpose of making a deeper study of the 
dynamical models accuracy benefits, and of the filters 
competitiveness, another test was made. Different 
sampling rates were considered: 10, 30, 60, and 300s. 
With time scattered measurements, one desired to verify 
the impact of the different dynamic models, and of each 
filter in the prediction step (time update). Therefore, 
predicted pseudorange residuals (innovation) were 
analyzed. 
Fig. 5 was plotted using residuals predicted through UKF, 
considering a dynamic model with geopotential up to 
order and degree 30 and Sun-Moon attraction. It shows a 
typical pseudorange residuals behavior along time, 
obtained using a 60s sampling rate. This shape behavior 
manifested similarly for a 10, 30, or 60s rate, independent 
of the used filter.  
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Figure 5. Predicted pseudorange residuals typical 
behavior obtained by UKF, with a 60s sampling rate, and 

data from 19 Nov. 1993. 

However, through residuals mean and standard deviation 
values (Tab. 3), it seems that results suggest more 
scattering when the estimation is made by EKF than by 
UKF.  
The radical test using higher sampling rate of 300s was 
made in order to verify if the results really implies a 
higher dispersion (standard deviation) when the 
estimation is made by EKF than by UKF . Tab. 3 
confirmed that the UKF outperforms EKF yielding less 
dispersed measurement residuals. Thus, pseudorange 
residuals predicted by UKF are less scattered than the 
ones by EKF, meaning that the UKF predicted much 
better the residuals behavior due to its algorithm 
approach. 
As far as the dynamical model is concerned, more 
accurate models contribute to better results, which means 
better predicted residuals. Through Tab. 3, if the 
dynamical model accuracy is increased together with 
different sampling rates, one can see clearly how the 
residuals mean behaves as the modeling complexity 
increases. 
 

Table 3. RMS errors values for each model of forces 
considered, and for each estimator used, in orbit 

determination. 
 

Dynamical
Model

10 0.124 ± 11.384
30 0.046 ± 13.685
60 -0.187 ± 14.690

300 -22.767 ± 92.790
10 0.061 ± 11.372
30 0.042 ± 13.554
60 -0.277 ± 16.221

300 -66.785 ± 142.965
10 0.122 ± 12.036
30 0.032 ± 13.465
60 -0.091 ± 14.363

300 -1.234 ± 17.489
10 0.059 ± 12.027
30 0.031 ± 13.461
60 -0.180 ± 15.942

300 1.861 ± 45.886
10 0.115 ± 12.547
30 -0.038 ± 14.178
60 -0.109 ± 14.021

300 -1.294 ± 15.872
10 0.052 ± 12.539
30 -0.039 ± 14.055
60 -0.201 ± 15.639

300 1.021 ± 43.197
10 0.115 ± 12.570
30 -0.051 ± 13.971
60 -0.109 ± 14.017

300 -1.288 ± 15.874

UKF

Geo 10

Geo 30

SM

SRP

UKF

EKF

UKF

EKF

UKF

EKF

Pseudorange Residuals

Filter sampling (s) Mean ± Std Deviation (m)

 
 
 
In order to conclude results section, Fig. 6 will show two 
results of pseudorange residuals plotted for a 300s 
sampling rate, which values are in Tab.3. It is clear that 
measurements rejection (at the level of 150m) are higher 
in EKF estimation than in UKF. Although measurements 
rejection of outliers occurs in both algorithms, the major 
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difference is that UKF is able to better adapt to these 
adverse conditions than EKF and to predict pseudorange 
more accurately. In Fig. 6 residuals obtained via both 
UKF and EKF algorithms for the dynamic model 
including geopotential up to order and degree 30 and Sun-
Moon attraction were plotted. 
 

Predicted Pseudorange Residuals (Innovation)
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Figure 6. Predicted pseudorange residuals behavior 
obtained by UKF and EKF, with a 300s sampling rate, 

and data from 19 Nov. 1993. 
 
 
CONCLUSIONS 
 
The effects of introducing different levels of perturbations 
gradually were analyzed in the orbit prediction step (time 
update), before the measurement update cycle through 
UKF or EKF. There, it was possible to confirm that the 
models were implemented accordingly. The direct solar 
radiation pressure inclusion did not cause any significant 
change in the position components error. Also, it is 
noticed that Sun-Moon attraction inclusion is needed  to 
decrease the orbit prediction error. 
In the orbit determination using GPS, Kalman filters do 
not need to trust completely  in the dynamical model due 
to the available redundancy of measurements. The results 
have shown that dynamical models improvement do not 

decrease significantly the final accuracy. Also there was 
not significant differences in the errors whether the 
estimator used was UKF or EKF, which does not lead us 
to any conclusive choice between both algorithms. 
The analysis of predicted pseudorange residuals for 
different sampling rates confirmed that for larger 
sampling rates UKF can predict better the residuals than 
EKF, with less scattered results. This hints that UKF is 
probably more robust if other uncertainties are present. 
Future works should include large initial uncertainties and 
inaccurate initial covariances to test the aspects of 
robustness and convergence of both filters.  
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