
Mapping of Software Model to Simulation Model for Performance Requirement 

Verification 

 
 

Ronaldo Arias 

Instituto de Pesquisas Espaciais (INPE), Aerospace 

Electronic Division, Onboard Data Handling Group, 

São José dos Campos, SP, Brazil, 

ronaldo@dea.inpe.br  

 

 

Celso Massaki Hirata 

Instituto Tecnologico de Aeronautica (ITA), 

Department of Computing Science, São José dos 

Campos, SP, Brasil, hirata@ita.br  

 

 

Keywords: Software performance requirement 

verification, model driven and performance simulation 

model. 

 

Abstract 

This paper describes the mapping of a software model to a 

simulation model in order to support the performance 

requirement verification. More specifically, we describe a 

mapping of a software model, based on UML Deployment, 

and State Machine diagrams annotated with performance 

information, to a simulation model that is specified in 

Activity Cycle Diagrams. The simulation model is 

translated to a simulation program so that verification of 

performance requirements can be made. The mapping is 

part of a framework based on the UML Profile for MARTE 

(Modeling and Analysis of Real-Time and Embedded 

Systems) employed for performance requirement 

verification of real time computers systems. An example is 

presented to show the feasibility of the mapping. 

 

1. INTRODUCTION 

In real time systems computation, the correctness of the 

system depends not only of the logical results of the 

computation but also the time the results are produced 

[Stankovic 1988]. In practice, the verification of 

performance requirements is made in the final stages of the 

software development cycle using test and code 

optimization techniques. Code optimization techniques are 

rather restrictive in terms of performance improvement. If 

the performance requirements are not met, a considerable 

effort is required, including the re-definition of the 

architecture, detailed design update, addition of computer 

resources, and even the re-definition of the requirements. 

The term verification is used in this work with the meaning 

of check the performance requirements in the software 

architecture model. 

There is an understanding that the verification of 

performance requirements should be made as early as 

possible in the software development life cycle. The 

Software Performance Engineering methodology (SPE) 

[Smith and Williams 2002] is the first comprehensive 

approach used to integrate the performance analysis in all 

the software development processes [Balsamo at al., 2004]. 

There has been some research effort to address the 

verification of performance requirements in the RUP 

software development process [Paes and Hirata, 2008], 

however the approach specifies only what and when the 

tasks should be made, not how they are accomplished. The 

Rational Unified Process [IBM 2010] specifies activities 

and tasks that should be accomplished to produce the 

software artifacts. The activities and tasks require the 

collaboration of different roles. As pointed out in [Paes and 

Hirata 2008], the verification of performance requirements 

in the software development process involves the 

collaboration of simulation analysts and software 

specialists. Verification also entails iterations in the 

software development life cycle, so that feedbacks between 

activities are required. 

The Object Management Group has defined a set of 

standards, named UML Profiles in order to aid the process 

of modeling and analysis of non-functional requirements in 

the initial phase of the software development process. This 

paper focuses on the UML Profile for MARTE (in short 

MARTE) [OMG 2009]. It replaces the UML Profile for 

Schedulability, Performance and Time [OMG 2005]. 

MARTE adds capabilities to UML for model-driven 

development of real time and embedded systems. It 

provides support for specification, design, verification and 

validation activities. It also extends the software-driven 

analysis to system-driven (hardware and software) analysis. 

This characteristic is used to model the hardware 

environment in which the software shall be executed. 

The general performance analysis cycle based on models is 

composed of four phases: software model specification, 

performance model generation, performance model 

analysis, and generation of feedback on the software model. 

Temporal information is required for the software model in 

order to generate the performance model. One important 

factor to the performance analysis is the ability to 

automatically generate the performance model from the 

software model. 

Model-driven engineering (MDE) is a software 

development methodology which focuses on creating 

142

mailto:ronaldo@dea.inpe.br
mailto:hirata@comp.ita.br


models, or abstractions, closer to some particular domain 

concepts rather than computing concepts. It is intended to 

increase productivity by increasing compatibility between 

systems, simplifying the process of design, and promoting 

communication between individuals (roles) working on the 

system. The Unified Modeling Language (UML), with its 

supporting tools, is the most used language to describe 

models in MDE. [Kordon et al., 2008] claim that MDE is 

incomplete and there is a need to include verification. In 

their view, the verifications, including of performance 

requirements, should be made in the early phases using 

MDE. 

Software performance analysis can be used to compare 

design alternatives, check physical deployments and 

scalability, and identify system bottlenecks [Marzolla  

2004]. Performance analysis is accomplished by using 

analytical models [Di Marco, 2005] and simulation 

[Balsamo and Marzolla 2003]. Simulation requires a 

considerable effort for modeling and experimentation. 

Nonetheless, it provides modeling flexibility and can be 

refined to provide accurate results. 

This paper describes a mapping of a software model to a 

simulation model in order to enable the verification of 

performance requirements in an iterative manner. The 

software model is represented by UML Deployment and 

State Machine diagrams annotated with performance 

information, according to the MARTE profile. The 

simulation model is represented by Activity Cycle 

Diagrams (ACD), which is a Timed-Petri nets variant. 

ACD provide a simple graphical representation to model 

discrete event simulation systems. The ACD model is 

translated to a simulation model, which is used for 

verification of performance requirements. We claim that 

the usage of ACD models provides easier iteration in the 

verification of performance requirements and generation of 

feedback on the software model since the simulation 

analyst is more familiar with those models rather than 

software models. 

Section 2 presents a short description of UML State 

Machine diagrams and ACDs used in the mapping process. 

Section 3 describes the related work in the area of 

verification of software performance requirements applied 

to real time computer systems. Section 4 describes the 

mapping of UML diagrams to a performance simulation 

model, through an example. The conclusions and final 

remarks are presented in Section 5. 

 

2. BACKGROUND 

This Section describes some characteristics of UML state 

machine diagrams and ACDs applied in the mapping of 

software model to simulation model. The mapping 

algorithm utilizes the information from the states and 

transition flows of the UML state machine diagrams. A 

state is a situation in which some invariant condition holds. 

The condition may represent a static situation such as an 

object waiting for some external event, or a dynamic 

condition, such as the process of performing some 

behavior, where the model element enters the state when 

the behavior starts and leaves it as soon as the behavior is 

completed [OMG 2004]. A transition flow represents the 

response of a state machine to events. The transition is 

composed by an event trigger, a guard and an activity, as 

described as follows: Event Trigger [Guard] / Activity. 

The event trigger indicates the occurrence of a specific 

event. A guard (optional) is a Boolean condition that 

provides control over the transition. The guard is evaluated 

when the state machine dispatches an event occurrence. If 

the guard is true, the transition may be enabled, otherwise, 

it is disabled. A transition with a guard happens only if the 

triggering event occurs and the guard is evaluated to true. 

The activity (optional) may be an action sequence, 

including actions that explicitly generate events, such as 

sending signals or invoking operations. The activity is 

executed if the transition fires. The output condition of a 

state can be an external event trigger or an internal event 

end of processing. 

Activity Cycle Diagrams [Pidd 1992] provide a graphical 

representation to model discrete event simulation systems. 

Its power is based on its simplicity. It identifies and 

describes graphically the behavior of each entity in the 

system and shows their iterations. The original proposal 

makes use of only two states: active and dead. The active 

state, represented by a rectangle, usually involves the co-

operation of different entity classes. The duration of an 

active state is always determined in advance, usually by 

using a probability distribution if the simulation model is 

stochastic. The dead state, represented by a circle, involves 

no co-operation between different entity classes and is 

generally a state in which the entity waits the occurrence of 

same event, i.e., wait for same resource. Dead states can be 

thought as wait queues. Dead states and queues are dealt 

equally in this work. The time that an entity spends in a 

dead state cannot be defined in advance. 

The life cycle of each entity class is represented by a 

sequence of active and dead states. The transition from 

state to state is represented by arrows. In general, these 

states are drawn as alternate dead and active states. The 

complete diagram consists of a combination of all the 

individual entity cycles. 

The entities can be temporary or permanent. The temporary 

entity enters and leaves the system according to its life 

cycle and the permanent entities stay in the system and can 

be thought as resources that provide service to the 

temporary entities. In order to improve the representation 

of more complex systems, which is required for real time 

system development, this work uses an extended ACD 

notation [Hirata and Paul 1996]. The extended ACD 

corresponds to a richer set of active states and it is intended 

for object-oriented implementation. It includes states for 

generation (named Generate), internal transformation 

(named Activity), composition and decomposition (named 

143



Router), interruption (named Interrupt), and destruction 

(named Destroy) of entities and of activities. 

 

3. RELATED WORK 

This section describes the related work in the area of 

verification of software performance requirements. 

[Balsamo et al., 2004] present a review in the field of 

model-based software performance prediction. They 

describe a set of approaches that propose the use of 

performance models to characterize the quantitative 

behavior of software systems during all the phases of the 

software development life cycle. The main points 

emphasized in the study are: 

 Lack of software performance requirement validation is 

mostly due to the knowledge gap between software 

engineers and quality assurance experts, and the short 

time to market rather than due to foundational issues; 

 There is no approach, which is fully supported by 

automated tools, and, at the same time, there is no 

approach that does not provide or foresee some kind of 

automatic support. 

 Most of the approaches make use of UML or UML-like 

formalisms to describe behavioral models; 

 Queuing Networks are the preferred performance 

models; 

 Few approaches provide feedback information. 

Methods based on simulation techniques can provide 

more easily feedbacks because they can have a direct 

correspondence between the software specification 

abstraction level and the performance model evaluation 

results; 

 Complexity problems related to the generation of the 

performance model can be addressed by using 

simulation techniques. Analytical methods can provoke 

the problem of space state explosion. 

[Arief and Speirs 2000] present a simulation framework 

(Simulation Modeling Language - SimML) used to 

automatically generate a process-oriented simulation 

program in Java from an UML model. This framework is 

used to predict the system performance from an UML 

design. The UML model is composed of class and sequence 

diagrams. An XML file is used to store the design and the 

simulation data, and it is generated directly from the UML 

diagrams. The performance simulation tool uses the XML 

file to generate the simulation program. There is no 

automatic feedback to the software model. 

[Balsamo and Marzola 2003] propose an approach for 

software performance modeling, where the simulation 

model is derived from the software architecture represented 

by Use Case, Activity and Deployment UML diagrams, 

complemented with additional performance information 

based on a sub-set of the OMG standard UML Profile for 

Schedulability, Performance and Time Specification. The 

approach uses a software tool, named UML-PSI, to 

generate automatically a process oriented simulation 

model. It also provides a simple feedback to the software 

model. An XMI (XML Metadata Interchange) file is the 

interface between the software and performance model. 

Different from previous solutions, our approach combines 

UML State Machine and Deployment diagrams annotated 

with performance information according to MARTE, and 

maps them to an intermediary performance simulation 

model in ACD, which is translated in a simulation program. 

With these models the software and the simulation 

specialists can interact with each other in an iterative 

process of modelling and performance verification until a 

design solution is reached. 

We claim that the ACD model can help in the process of 

software performance analysis. It reduces the problem 

related to the technological gap between the software and 

the simulation specialists [Balsamo at al., 2004, Di Marco 

2005, and Sancho at al., 2005]. The simulation specialists is 

more used to concepts of verification, such as bottlenecks 

and hot spots, of his/her domain, so he/she can exploit 

better the possibilities to improve the simulation (ACD) 

model. Similarly the software specialist is more concerned 

and familiar with design concepts to build the software 

(UML) model. In our approach, both specialists can work 

on their own domains and interact with each other on 

compatible models. 

 

4. MAPPING FROM SOFTWARE MODEL TO 

SIMULATION MODEL 

This section describes the mapping of a software model 

based on UML diagrams to an ACD model. The mapping is 

employed in the simulation framework for verification of 

software performance requirements of real time computer 

systems illustrated in Figure 1. In the framework, the 

analysis of simulation results can lead to simulation model 

changes, which in turn can lead to software model changes. 

XMI/XML 

File
XACDML 

File

Annotated 

UML 

Diagram

XML/XMI 

Parser
XACDML 

Parser

Simulation 

Program

ACD 

Graphical 

Editor

Feedback

Simulation 

Model

Software 

Model

UML 

Editor

Simulation 

Analysis

Software 

Specialist

Simulation 

Analyst

Simulation 

Analyst

Figure 1. Framework for Software Performance Analysis 

The software model is represented by UML Deployment 

and State Machine diagrams. The deployment diagram is 

144



used to identify the physical resources/nodes in which the 

computations take place. The state machine diagrams are 

used to describe the behavior of the system entities and 

their iterations. Each entity is represented by a state 

machine diagram. The UML diagram model is annotated 

with performance information according to the MARTE 

Profile. An UML editor tool generates the corresponding 

XMI file, a parser program converts it to an ACD model 

and another parser translates the ACD model to the 

simulation program. The ACD model is described by an 

XML for ACD, called XACDML [Gil and Hirata 2003]. 

XACDML is designed to provide interoperability between 

development tools used for specification, design, 

verification, code generation, and performance analysis. 

Our approach is presented through the example of a web-

based video-streaming application derived from [OMG 

2005]. The software model is represented by the 

deployment diagram, as shown in Figure 2, and the state 

machine diagrams, as shown in Figures 3, 4 and 5. 

In the example, a user at a Client Workstation requests a 

video to the centralized remote Web Server. Based on the 

request, the Web Server chooses an appropriate Video 

Server, which initiates a Video Player on the user‟s site and 

then sends it a stream of video frames. In what follows we 

list the main parameters of this example. 

 A client request a new video with an exponential 

distribution with mean of 6 seconds (workload 

intensity) as represented by the SelectService state in 

Figure 5; 

 The time to send/receive the Initiation Transmission  

message (InitTxMsg) and the Confirmation message 

(ConfMsg) from Web Server to Video Server has an 

exponential distribution with mean of 100 ms as 

illustrated in the VideoReqMsg transition in Figure 3; 

 The video frame transmission/reception time has an 

exponential distribution with mean of 200 ms as 

represented by the ReceiveFrame state in Figure 5 and 

the SendFrame state in Figure 4; 

 The Client Workstation processing demand per frame 

has a uniform distribution with minimum of 175 ms and 

maximum of 225 ms. The frames are received and 

stored in a video interface buffer to be displayed as 

represented by the ProcessFrame state in Figure 5; 

 The time to send/receive the Terminate Player message 

(TerminatePlayerMsg) from the Video Server to the 

Client Workstation has an exponential distribution with 

mean of 100 ms as indicated by the SendTerminate 

transition in Figure 4; 

 Each video is composed of N frames. The time to show 

each video frame on the video is 1 second; 

The UML stereotypes, tagged values, and constraints 

extensibility mechanisms are used to annotate the 

performance information in the UML diagrams. The 

“<<PAStep>>” stereotype and the “{open (interArrTime 

(Exp, 6, s)}” tagged value of Figure 5 are examples of 

performance information added to software model. The 

“<<PAStep>>” stereotype indicates a basic sequential 

execution on a host processor and the “{open 

(interArrTime (Exp, 6, s)}” tagged value is associated with 

the video request workload. It indicates the time between 

successive client video requests. 

 

<<Device>>
<<GAExecHost>>
ClientWorkStation

<<Device>>
<<GAExecHost>>
WebServer Node

<<Device>>
<<GAExecHost>>
VideoSErver Node

Client Workstation Web Server Video Server

<<Device>>
<<GAComnHost>>

Internet

 

Figure 2. Web-Based Video Deployment Diagram 
 

«PAStep»

WSIdle

BeginWS

VideoReqMsg/

HandleSelection(„InitTxMsg‟,„ConfMsg‟)

{hostDemand = (est, 
EXP, 100, ms)}

 

Figure 3. Web Server State Machine Diagram 

 

«PAStep»

SendFrame(„VideoFrame‟)

«PAStep»

VSIdle

IEndMsgTx

[FrameNumber2 .LT. 10]

BeginVS

{hostDemand 
= (est, EXP, 

100, ms)}

{hostDemand = (est, 
EXP, 200, ms)}

IEndMsgTx[FrameNumber2 .GE. 10]

/SendTerminate(TerminatePlayerMsg)InitTxMsg/

InitTx(„InitPlayerMsg)

 

Figure 4. Video Server State Machine Diagram 

145



«PAStep»

Confirmation

«GADestroyActivity»

TerminatePlayer

«PAStep»

ReceiveFrame

«GAWorkloadGenerator»

SelectService

IEndShowFrame

[FrameNumber1 .GE. 10]

«PAStep»

InitPlayer

IEndShowFrame

[FrameNumber .LT. 10]

BeginCW

EndCW

TerminatePlayerMsg

VideoFrame

InitPlayerMsg

{open (population = 
$Nusers, interArrTime 

(Exp, 6, s)}

{hostDemand = (est, 
EXP, 200, ms)}

{hostDemand = 
(est, UNIF, 0.175, 

0.225, ms)}

«PAStep»
ProcessFrame

ConfMsg

EndVideoSelection

/SendReq(„VideoReqMsg‟)

 

Figure 5. Client Workstation State Machine Diagram 
 

4.1. Mapping of UML Diagrams to ACD 

This section describes the mapping of UML models 

annotated with performance information to ACD models. 

A commercial UML modeling tool is used to add the 

performance and simulation information to the UML 

diagrams, and to generate an XMI file. We implement a 

parser to analyze the XMI file and convert it to an 

XACDML file. The parser shows the feasibility of the 

automatic mapping. 

The mapping starts with the identification of the ACD 

entities (permanent or temporary). The deployment 

diagram is used to identify the physical resources/nodes on 

which the computations take place. A resource represents a 

physically or a logically persistent entity that offers one or 

more services [OMG 2004]. For computer system 

modeling, CPU is an example of active resource, and 

printer, network and disk are examples of passive resource. 

As described in Figures 3, 4 and 5, each entity is 

represented by an UML state machine diagram, which is 

mapped to an individual ACD. 

The main guidelines and the algorithm for the mapping of 

the state machines and the deployment diagram to the 

individual ACD are listed below. 

 The deployment diagram is used to identify the physical 

resources in which the computations take place (ACD 

entities). 

 For each UML state in the state machine diagram, a pair 

of dead and active state in the ACD is generated, except 

for the initial and final states. 

 The first state of a temporary entity shall be represented 

by the Generate active state in the ACD, and it shall 

describe the entity arrival information. The last state of 

a temporary entity shall be represented by the Destroy  

active state in the ACD. 

 The initial UML state of a permanent entity shall be 

converted to a Generate active state, which indicates the 

creation of a fixed number of permanent entities; 

 According to the attributes of the UML state, the ACD 

dead or active state can be made dummy. An UML state 

with no processing associated generates a dummy ACD 

active state, and an UML state with no external output 

trigger generates a dummy dead state. In this case, the 

output condition is end of internal behavior processing, 

where the entity enters the state when the behavior 

commences and leaves it as soon as the behavior is 

completed. 

 The UML state output condition shall be associated 

with the output condition of the dead state in the ACD. 

 Active and dead states dummies are included in the 

ACD essentially to maintain the alternating sequence of 

dead and active states. 

 UML transitions with an activity associated also 

generate a pair of dead and active states in the ACD. 

The dead state is always dummy. 
 

- UML to Individual ACD Mapping Algorithm 

for (each UML State Machine) { 

   for (all states) do 

     if (temporary entity) 

          then if (initial state) 

                       then {Create a Generate active state; 

                                 Check arrival time rate; 

                                 If (there is processing associated 

                                           with the output transition flow) 

                                     then Create a dummy queue and an  

                                                   active state; 

                                } 

                       else if (final state)  

                                   then {if (output condition is external event) 

                                                 then Create a queue and 

                                                          a destroy active state; 

                                                 else Create a dummy queue and  

                                                          a destroy active state; 

                                             Check for performance information; 

146



                                           } 

                                    else // neither initial nor final state 

                                           Create dead and active state (); 

          else {// permanent entity 

                   if (initial state)  

                       then Create a Generate active state; 

                       else if (idle state)  

                                 then {Create a resource queue; 

                                           for (all state transitions) do  

                                                 if (there is processing associated) 

                                                     then {Create an dummy dead and 

                                                                   an active state; 

                                                               for (all external events) do  

                                                                     Create a queue and  

                                                                        an active state (); 

                                                             } 

                                           Check for performance information  

                                         } 

                                 else // not idle state  

                                        Create dead and active state () 

                 } 

     Update dead and active state links; 

} 

 

- Create dead and active state () Algorithm 

{ 

   if (output condition is an external event) 

       then Create an event queue 

       else Create a dummy queue 

   if (there is processing associated with the state) 

       then Create an active state 

       else Create a dummy active state; 

   Check for performance information and update links; 

   for (all state transitions) do { 

      if (there is an activity associated with the transition) 

          then for all (external events associated with the transition)  

                      do { Create a dummy queue and an active state; 

                              Check for performance information; 

                              Update links;   } 

} 

 

Figure 6 describes the individual ACD for the temporary 

ClientWorkstation entity. The Generate active state 

GSelectService defines the entity arrive rate. The SendReq 

state requests a video to the WebServer (indicated by the 

message denominated VideoReqMsg). Then the entity waits 

from the WebServer a ConfMsg message indicating the 

reception of the video request and the message 

InitPlayerMsg from the VideoServer indicating the 

beginning of the video transmission. The VideoServer starts 

the video frame transmission to the ClientWorkstation 

(VideoFrame message). At the end the VideoServer sends a 

message TerminatePlayerMsg to the ClientWorkstation 

indicating the final of the video transmission. Finally the 

ClientWorkstation entity is destroyed by the destroy active 

state DTerminatePlayerD. 

The following convention is adopted to assign the names of 

the dead and active ACD states: the dead state name starts 

with the character “Q”, the active states Generate, Router 

and Destroy start respectively with the characters “G”, “R” 

and “D”, and the dummy dead and active state name end 

with the letter “D”. 

 

GSelectService

QSendReq(VideoReqMsg)D

ReceiveFrame

RProcessFrame

DTerminatePlayerD

InitPlayerD

ConfirmationD

SendReq 

(VideoReqMs)

QConfimation

QReceiveFrame

QInitPlayer

[VideoFrame][InitPlayerMsg]

[ConMsg]]

[TerminatePlayerMsg]

FrameNumber1 >= N

QTerminatePlayer

QProcessFrameD

FrameNumber1 < N

 

Figure 6 – Client Workstation Entity ACD 

 

After the generation of the individual ACDs, they are 

integrated in a global ACD. In what follows we list the 

main steps to generate the global ACD. 

 Assemble a table that indicates all the external events 

for all the entities. In our computer system, the message 

exchange shall be dealt as a 

synchronization/communication external event. The 

producer shall be the message sender and the consumer 

shall be the message receiver. 

 For each message exchange event between two entities, 

create a cooperative active state. The individual ACD 

indicate which entity sends and which entity receives 

the message. For example, the active state 

SendReq/HandleSelection of Figure 7 is an example of 

cooperation active state. It was created by the 

interaction of the SendReq(VideoReqMsg) active state 

of ClientWorkstation entity and HandleSelection active 

state of WebServer entity.  

 Insert in the global ACD the activities that do not have 

communication with other entities in the system. 

 The active state that interacts with more than one entity 

can be broken in more than one cooperative active state 

in the global ACD. 

 Update the links of the global ACD according to the 

individual ACD. 

Figure 7 depicts the global ACD generated from the 

individual ACDs.  

147



GSelectService
QSendReq(VideoReqMsg)D

SendTerminate/TerminatePlayer

RSendFrame/

ReceiveFrameD

RProcessFrame

DTerminatePlayerD

InitTxInitPlayerMsg

/InitPlayerD

RSendFrame

(EndMsgTx)

HandleSelection/

InitTx

HandleSelectionConfMsg/

ConfirmationD

SendReq/

HandleSelection

QConfimation

QHandleSelectionInitTxMsg

QReceiveFrame

QInitTxInitPlayerMsg

QInitPlayer

RWSIdle

QHandleSelectionConfMsg

FrameNumber2 >= N

FrameNumber1 >= N

FrameNumber2 < N

FrameNumber1 < N

GBeginVS

QSendTerminate(TermPlayerMsg)D RVSIdle

QTerminatePlayerD

QTerminatePlayer

QProcessFrameD
QRSendFrameD

GBeginWS

QSendFrame(EndMsgTx)D

Client Workstation 
Web Server
Video Server

 

Figure 7. Web Based Video Application ACD 

 

The system entities are identified by different types of 

lines. The WebServer entity waits for a client request at the 

RWSIdle resource queue and the VideoServer entity waits 

for a new video transmission at the RVSIdle resource 

queue. The user makes a video selection (GSelectService 

active state) and sends it to the WebServer. The iteration 

between the ClientWorkStation and the WebServer is 

represented the active state SendReq/HandleSeleciton. 

Based on this selection, the WebServer chooses an 

appropriate VideoServer entity by sending a command to 

initiate the video transmission (HandleSelection/InitTxMsg 

active state), and after send a command to the 

ClientWorkstation entity to confirm the reception of a video 

request message (HandleSelectionConfMsg/ConfirmationD 

148



active state). The VideoServer transmits the video frames to 

the ClientWorkstation up to the end of the video 

(RSendFrame/ReceiveFrameD active state). At the end the 

VideoServer transmit the TerminatePlayerMsg message to 

the ClientWorkstation (SendTerminate/TerminatePlayer 

active state). 

Figure 8 presents a short fragment of the XACDML model 

generated from the software model. It shows three elements 

of the global XACDML model: the QterminatePlayer dead 

state, the GSelectService Generate active state and the 

RProcessFrame Router active state. They are elements of 

the Web Based Video ACD shown on Figure 7. 

 

<?xml version="1.0"?> 

<acd id= "AUTOMATICALY_GENERATED XACDML"> 

  … 

<dead id="QTerminatePlayer" classe="a_3"> 

<type struct="QUEUE" size="10" init="0" /> 

</dead> 

  … 

<generate id="GSelectService" classe="a_3"> 

<stat stype="EXP" parm1="6.0" /> 

<next ndead="QSendReq(VideoReqMsg)D" /> 

<persistence persistence = "temp" /> 

<entitynumber entitynumber = "0" /></generate> 

  … 

<router id="RProcessFrame" classe="a_3"> 

<stat stype="UNIFORM" parm1="0.175" parm2="0.225" /> 

<prev pdead="QProcessFrameD"/> 

<whennext cond="FrameNumber1 .GE. 10"> 

<next ndead="QTerminatePlayer"/> 

</whennext> 

<whennext cond="FrameNumber1 .LT. 10"> 

<next ndead="QReceiveFrame"/> 

</whennext> 

</router> 

  … 

</acd> 

Figure 8. XACDML Representation 

 

4.2. Generating and Executing the Simulation 

Program 

The global ACD model, represented by an XACDML file 

is used as input to generate the simulation program. The 

XACDML Parser, shown in Figure 1, analyzes the global 

XACDML file, generates an internal data structure with all 

the information about the system entities and simulation 

parameters, and then executes the simulation. 

Table 1 shows the results of the simulation experiments for 

two operation scenarios. The only difference between the 

two experiments is the number of video servers. 

For this example it is assumed that all videos have a 

constant number of frames equal to 10, and the time to 

show each frame on the video window is 1 second. The 

simulation experiments show that with only one video 

server and a video request with exponential distribution of 

mean 6 seconds, it is not possible to meet the requirement 

of not exceeding the video exhibition time limit of 10.3 s 

for at least 90% of the video requests. With one video 

server, 47.57% of the requests exceeded the video 

exhibition time limit. For the simulation experiment with 

two video servers, this value is 6.19%, i.e. less than the 

10% defined by the requirements. 

 

Table 1. Simulation Results of the Video Server Example 

 

 Experiment 1 Experiment 2 

Simulation run time (s) 36000 36000 

Warm-up period (s) 1800 1800 

Exponential video request 

mean time (s)   
6 6 

Frame number per video 10 10 

Video Server Number  1 2 

Average processing time 

for each video request (s) 
12.2 4.98 

Percentage of video 

requests that exceeded 

video exhibition time 

limit (<10%) 

47.57 6.19 

 

4.3. Analysis of the mapping 

The example illustrates the feasibility of automatic 

mapping for a rather complex application. The mapping of 

UML to ACD elements described in Section 3.1 was used 

to implement the parsers described in Figure 1  

UML state machine diagram is a widely used 

representation for real time modeling. It provides a 

powerful representation to model the dynamic behavior of 

the real time system entities and their iteration. It also has 

similarities with ACD which facilitates the conversion, 

compared with other UML diagrams used for dynamic 

behavior modeling. Since there is straight correspondence 

between state machine diagrams and ACDs, the interaction 

between the simulation and software specialists is 

facilitated. Through the experimentation by running the 

simulation program and through the analysis of the ACD 

model, the simulation specialist may suggest possible 

alternatives to improve the performance of the software 

model. The performance annotations derived from the 

MARTE profile were used in the web-based video 

example. 

 

5. CONCLUSIONS AND FINAL REMARKS 

This paper presents a mapping of a software model to a 

performance model in order to allow the verification of 

performance requirements. The software model is 

represented by UML Deployment and State Machine 

diagrams annotated with the performance information 

according to the MARTE profile and the simulation model 

uses ACD. 

The mapping is employed in a simulation framework for 

verification of software performance requirements of real 

time computer systems. The framework uses two parsers. 

149



The first one translates the software model into an ACD 

performance model and the second one translates the ACD 

model to the simulation program. 

We claim that the intermediate ACD model can help in the 

process of software performance analysis. It minimizes the 

problem related to the technological gap between the 

software and simulation specialists in the process of 

software performance analysis. Both specialists can work 

on their own domains (UML and ACD models) and interact 

with each other in an iterative process of modelling and 

performance verification until a design solution is reached. 

The mapping helps the feed forward and feedback 

interaction. Currently, we are employing the mapping in 

other real time software applications. We are using it to 

verify performance requirements of embedded system for 

satellites. For future work we intend to improve the 

automation of the feedback process of the framework 

described in Figure 1. We also intend to make the 

framework available for download in a near future. 

 

Acknowledgments 
 

We would like to thank FINEP for the financial support. 

 

References 

 

Arief, L.B., and N.A. Speirs. 2000. “A UML Tool for an 

Automatic Generation of Simulation Programs.” In ACM 

Proceedings of Second Int‟l Workshop Software and 

Performance, 71-76. 

Balsamo, S., A. Di Marco, P. Inverardi, and M. Simeoni. 

2004. “Model-Based Performance Prediction in Software 

Development: A Survey.” IEEE Transactions on Software 

Engineering, Vol. 30, Number 5, 295-310. 

Balsamo, S., and M. A. Marzolla. 2003. “Simulation-Based 

Approach to Software Performance Modeling.” 

ESEC/FSE‟03, ACM, Finland, 363-366. 

Di Marco, A. 2005. “Model-Based performance Analysis 

of Software Architecture.” Dissertation, PH.D. Thesis, 

Dipartimento di Informatica, Università di L‟ Aquila. 

Gil, J. N., and C. M. Hirata. 2003. “XACDML - Extensible 

ACD Markup Language.” In Proceedings of the 36th 

Annual Simulation Symposium, IEEE, 343-50. 

Hirata, C. M., and R. J. Paul. 1996. “Object-Oriented 

Programming Architecture for Simulation Modelling.” 

International Journal in Computer Simulation, v. 6, n. 2, 

269-287. 

IBM. 2010. Rational Unified Process. Available via 

<http://www-01.ibm.com/software/br/rational/rup.shtml> 

[accessed April 11, 2010]. 

Kordon, F., J. Hugues, and X. Renault. 2008. “From Model 

Driven Engineering to Verification Driven Engineering.” In 

Lectures Notes in Computer Science, Volume 5287/2008, 

381-393. 

Marzolla, Moreno. 2004. “Simulation-Based Performance 

Modeling of UML Software Architecture.” PH.D. Thesis, 

Università CA Foscari Venezia. 

OMG. 2004. UML 2.0 Superstructure Specification. 

Version 2.0, OMG. 

OMG. 2005. UML Profile for Schedulability, Performance 

and Time. Version 1.1, OMG. 

OMG. 2009. UML Profile for Marte: Modeling Analysis of 

real-Time and Embedded Systems. Version 1, OMG. 

Paes, C. E. B., and C. M. Hirata. 2008. “RUP Extension for 

Software Performance.” 32nd Annual IEEE International 

Computer Software and Applications Conference, 732-738. 

Pidd, M. Computer Simulation in Management Science. 

John Wiley & Sons Ltd, Chichester, 3rd ed, 1992. 

Sancho, P. P., C. Juiz, and R. Puigjaner. 2005. “Automatic 

Performance Evaluation and Feedback for MASCOT 

Designs.” In Proceedings of the 5th international Workshop 

on Software and Performance. WOSP '05. ACM, p.p. 193-

194. 

Smith, C.U., L. G. Williams. 2002. Performance Solutions, 

A Pratical Guide to Creating Responsive, Scalable 

Software. Addison-Wesley. 

Stankovic, J. A. 1988. “Misconception About Real Time 

Computing: A Serious Problem for Next-Generation 

System.” IEEE computer, Vol. 21, no. 10, 10-19. 

 

Biography 

 

Celso Massaki Hirata is an associate professor at the 

Computer Science Department, Instituto Tecnologico de 

Aeronautica (ITA), Brazil. He obtained his Ph.D. degree in 

Computer Science from Imperial College, UK, M.Sc. degree 

in Operations Research and B.Eng. degree in Mechanical-

Aeronautical Engineering from ITA. His research interests 

include distributed systems, simulation modeling, and 

software engineering. He has over 70 publications in these 

areas. His email address is <hirata@ita.br>. 

 

Ronaldo Arias is a member of the technical staff of the On-

Board Data Handling Group, Aerospace Electronic Division 

(DEA), Instituto National de Pesquisas Espaciais (INPE), 

Brazil. He is a PhD student in Computer & Electronic 

Engineering division from Instituto Tecnologico de 

Aeronautica (ITA). He obtained his M.Sc. degree in 

Computer Science from ITA and his B.S. degree in 

Computer Science from Universidade Federal de Sao 

Carlos. His research interests are real time systems, software 

engineering, simulation, and fault tolerance. His email 

address is <ronaldo@dea.inpe.br>.

 

150




